1
|
Kleizen B, de Mattos E, Papaioannou O, Monti M, Tartaglia GG, van der Sluijs P, Braakman I. Transmembrane Helices 7 and 8 Confer Aggregation Sensitivity to the Cystic Fibrosis Transmembrane Conductance Regulator. Int J Mol Sci 2023; 24:15741. [PMID: 37958724 PMCID: PMC10648718 DOI: 10.3390/ijms242115741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a large multi-spanning membrane protein that is susceptible to misfolding and aggregation. We have identified here the region responsible for this instability. Temperature-induced aggregation of C-terminally truncated versions of CFTR demonstrated that all truncations up to the second transmembrane domain (TMD2), including the R region, largely resisted aggregation. Limited proteolysis identified a folded structure that was prone to aggregation and consisted of TMD2 and at least part of the Regulatory Region R. Only when both TM7 (TransMembrane helix 7) and TM8 were present, TMD2 fragments became as aggregation-sensitive as wild-type CFTR, in line with increased thermo-instability of late CFTR nascent chains and in silico prediction of aggregation propensity. In accord, isolated TMD2 was degraded faster in cells than isolated TMD1. We conclude that TMD2 extended at its N-terminus with part of the R region forms a protease-resistant structure that induces heat instability in CFTR and may be responsible for its limited intracellular stability.
Collapse
Affiliation(s)
- Bertrand Kleizen
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Eduardo de Mattos
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Olga Papaioannou
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Michele Monti
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (M.M.); (G.G.T.)
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genoa, Italy
| | - Gian Gaetano Tartaglia
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (M.M.); (G.G.T.)
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genoa, Italy
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| |
Collapse
|
2
|
Trouvé P, Kerbiriou M, Teng L, Benz N, Taiya M, Le Hir S, Férec C. G551D-CFTR needs more bound actin than wild-type CFTR to maintain its presence in plasma membranes. Cell Biol Int 2015; 39:978-85. [PMID: 25712891 DOI: 10.1002/cbin.10456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/16/2022]
Abstract
Cystic Fibrosis is due to mutations in the CFTR gene. The missense mutation G551D (approx. 5% of cases) encodes a CFTR chloride channel with normal cell surface expression but with an altered chloride channel activity, leading to a severe phenotype. Our aim was to identify specific interacting proteins of G551D-CFTR which could explain the channel defect. Wild-type CFTR (Wt-CFTR) was co-immunoprecipitated from stably transfected HeLa cells and resolved by 2D gel electrophoresis. Among the detected spots, one was expressed at a high level. Mass Spectrometry revealed that it corresponded to actin which is known to be involved in the CFTR's channel function. To assess whether actin could be involved in the altered G551D-CFTR function, its basal expression was studied. Because actin expression was the same in wt- and in G551D-CFTR expressing cells, its interaction with both wt- and G551D-CFTR was studied by co-immunoprecipitation, and we found that a higher amount of actin was bound onto G551D-CFTR than onto Wt-CFTR. The role of actin upon wt- and G551D-CFTR function was further studied by patch-clamp experiments after cytochalasin D treatment of the cells. We found a decrease of the very weak currents in G551D-CFTR expressing cells. Because a higher amount of actin is bound onto G551D-CFTR than onto Wt-CFTR, it is likely to be not involved in the mutated CFTR's defect. Nevertheless, because actin is necessary to maintain the very weak global currents observed in G551D-CFTR expressing HeLa cells, we conclude that more actin is necessary to maintain G551D-CFTR in the plasma membrane than for Wt-CFTR.
Collapse
Affiliation(s)
- Pascal Trouvé
- Inserm, UMR1078, Brest, F-29218, France.,Université de Bretagne Occidentale, Faculté de Médecine et des sciences de la santé, Brest, F-29200, France
| | - Mathieu Kerbiriou
- Inserm, UMR1078, Brest, F-29218, France.,Université de Bretagne Occidentale, Faculté de Médecine et des sciences de la santé, Brest, F-29200, France
| | - Ling Teng
- Inserm, UMR1078, Brest, F-29218, France.,Université de Bretagne Occidentale, Faculté de Médecine et des sciences de la santé, Brest, F-29200, France
| | - Nathalie Benz
- Inserm, UMR1078, Brest, F-29218, France.,Association de Biogénétique Gaëtan Salaün - Bretagne, Brest, F-29200, France
| | - Mehdi Taiya
- Service commun de spectrométrie de masse, Université de Bretagne Occidentale, Brest, F-29200, France
| | - Sophie Le Hir
- Inserm, UMR1078, Brest, F-29218, France.,C.H.U. Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, F-29200, France
| | - Claude Férec
- Inserm, UMR1078, Brest, F-29218, France.,Université de Bretagne Occidentale, Faculté de Médecine et des sciences de la santé, Brest, F-29200, France.,C.H.U. Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, F-29200, France.,Etablissement Français du Sang - Bretagne, Brest, F-29200, France
| |
Collapse
|
3
|
Tucker TA, Fortenberry JA, Zsembery A, Schwiebert LM, Schwiebert EM. The ΔF508-CFTR mutation inhibits wild-type CFTR processing and function when co-expressed in human airway epithelia and in mouse nasal mucosa. BMC PHYSIOLOGY 2012; 12:12. [PMID: 22999299 PMCID: PMC3507716 DOI: 10.1186/1472-6793-12-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 09/04/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Rescue or correction of CFTR function in native epithelia is the ultimate goal of CF therapeutics development. Wild-type (WT) CFTR introduction and replacement is also of particular interest. Such therapies may be complicated by possible CFTR self-assembly into an oligomer or multimer. RESULTS Surprisingly, functional CFTR assays in native airway epithelia showed that the most common CFTR mutant, ΔF508-CFTR (ΔF-CFTR), inhibits WT-CFTR when both forms are co-expressed. To examine more mechanistically, both forms of CFTR were transfected transiently in varying amounts into IB3-1 CF human airway epithelial cells and HEK-293 human embryonic kidney cells null for endogenous CFTR protein expression. Increasing amounts of ΔF-CFTR inhibited WT-CFTR protein processing and function in CF human airway epithelial cells but not in heterologous HEK-293 cells. Stably expressed ΔF-CFTR in clones of the non-CF human airway epithelial cell line, CALU-3, also showed reduction in cAMP-stimulated anion secretion and in WT-CFTR processing. An ultimate test of this dominant negative-like effect of ΔF-CFTR on WT-CFTR was the parallel study of two different CF mouse models: the ΔF-CFTR mouse and the bitransgenic CFTR mouse corrected in the gut but null in the lung and airways. WT/ΔF heterozygotes had an intermediate phenotype with regard to CFTR agonist responses in in vivo nasal potential difference (NPD) recordings and in Ussing chamber recordings of short-circuit current (ISC) in vitro on primary tracheal epithelial cells isolated from the same mice. In contrast, CFTR bitransgenic +/- heterozygotes had no difference in their responses versus +/+ wild-type mice. CONCLUSIONS Taken altogether, these data suggest that ΔF-CFTR and WT-CFTR co-assemble into an oligomeric macromolecular complex in native epithelia and share protein processing machinery and regulation at the level of the endoplasmic reticulum (ER). As a consequence, ΔF-CFTR slows WT-CFTR protein processing and limits its expression and function in the apical membrane of native airway epithelia. Implications of these data for the relative health of CF heterozygous carriers, for CFTR protein processing in native airway epithelia, and for the relative efficacy of different CF therapeutic approaches is significant and is discussed.
Collapse
Affiliation(s)
- Torry A Tucker
- Departments of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294-0005, USA
- Gregory Fleming James Cystic Fibrosis (CF) Research Center, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, 35294-0005 AL, USA
- Department of Biochemistry, University of Texas Health Sciences Center at Tyler, Tyler, TX, USA
| | - James A Fortenberry
- Gregory Fleming James Cystic Fibrosis (CF) Research Center, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, 35294-0005 AL, USA
| | - Akos Zsembery
- Departments of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294-0005, USA
- Gregory Fleming James Cystic Fibrosis (CF) Research Center, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, 35294-0005 AL, USA
- Department of Experimental Human Physiology, Semmelweis University, Budapest, Hungary
| | - Lisa M Schwiebert
- Departments of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294-0005, USA
- Gregory Fleming James Cystic Fibrosis (CF) Research Center, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, 35294-0005 AL, USA
| | - Erik M Schwiebert
- Departments of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294-0005, USA
- Gregory Fleming James Cystic Fibrosis (CF) Research Center, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, 35294-0005 AL, USA
- DiscoveryBioMed, Inc, Birmingham, AL, USA
| |
Collapse
|
4
|
Teng L, Kerbiriou M, Taiya M, Le Hir S, Mignen O, Benz N, Trouvé P, Férec C. Proteomic identification of calumenin as a G551D-CFTR associated protein. PLoS One 2012; 7:e40173. [PMID: 22768251 PMCID: PMC3387016 DOI: 10.1371/journal.pone.0040173] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 06/06/2012] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is the most common lethal autosomal recessive disease in the Caucasian population. It is due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. To date, over 1910 mutations have been identified in the CFTR gene. Among these mutations, the CF-causing missense mutation G551D-CFTR (approx. 5% of cases) encodes for a CFTR chloride channel with normal expression on the cell surface. Nevertheless, it is associated with severe disease due to its altered channel activation. The aim of the present study was to identify specific interacting proteins of G551D-CFTR. Co-immunoprecipitated proteins with G551D-CFTR were resolved by 2D-gel electrophoresis (2-DE). Mass Spectrometry revealed that calumenin was present in the protein complex linked to G551D-CFTR. Despite its basal expression was not modified in G551D-CFTR expressing cells when compared to Wt-CFTR expressing cells, it was more abundant in the G551D-CFTR complex detected by immunoprecipitation. The calumenin-CFTR interaction was also shown by Surface Plasmon Resonance and further confirmed by computational analysis of the predicted calumenin’s partners. Because in our cellular model calumenin was found in the endoplasmic reticulum (ER) by immunofluorescence experiments, we suggest that calumenin is likely involved in the mutated CFTR’s maturation. In conclusion, we showed for the first time that calumenin binds to CFTR and that it is increased in the G551D-CFTR complex. We suggest that it may be involved in the physiopathology of G551D-CFTR and that G551D-CFTR may follow a specific maturation and trafficking pathway. We also hypothesize that UPR may be triggered independently of the retention of G551D-CFTR in the ER because Grp78/Bip expression is increased in the cells. Finally, we propose here that Calumenin is a new CFTR chaperone.
Collapse
Affiliation(s)
- Ling Teng
- Inserm, UMR1078, Brest, France
- Université de Bretagne Occidentale, Faculté de Médecine et des sciences de la santé, Brest, France
| | - Mathieu Kerbiriou
- Inserm, UMR1078, Brest, France
- Université de Bretagne Occidentale, Faculté de Médecine et des sciences de la santé, Brest, France
| | - Mehdi Taiya
- Université de Bretagne Occidentale, Service commun de spectrométrie de masse, Brest, France
| | - Sophie Le Hir
- Inserm, UMR1078, Brest, France
- C.H.R.U. Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Olivier Mignen
- Inserm, UMR1078, Brest, France
- Université de Bretagne Occidentale, Faculté de Médecine et des sciences de la santé, Brest, France
| | - Nathalie Benz
- Inserm, UMR1078, Brest, France
- Association de Biogénétique Gaëtan Salaün, Brest, France
| | - Pascal Trouvé
- Inserm, UMR1078, Brest, France
- Université de Bretagne Occidentale, Faculté de Médecine et des sciences de la santé, Brest, France
- * E-mail: (PT); (CF)
| | - Claude Férec
- Inserm, UMR1078, Brest, France
- Université de Bretagne Occidentale, Faculté de Médecine et des sciences de la santé, Brest, France
- C.H.R.U. Morvan, Laboratoire de Génétique Moléculaire, Brest, France
- Etablissement Français du Sang, Brest, France
- * E-mail: (PT); (CF)
| |
Collapse
|
5
|
Playford MP, Nurminen E, Pentikäinen OT, Milgram SL, Hartwig JH, Stossel TP, Nakamura F. Cystic fibrosis transmembrane conductance regulator interacts with multiple immunoglobulin domains of filamin A. J Biol Chem 2010; 285:17156-65. [PMID: 20351098 DOI: 10.1074/jbc.m109.080523] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mutations of the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) that impair its apical localization and function cause cystic fibrosis. A previous report has shown that filamin A (FLNa), an actin-cross-linking and -scaffolding protein, interacts directly with the cytoplasmic N terminus of CFTR and that this interaction is necessary for stability and confinement of the channel to apical membranes. Here, we report that the CFTR N terminus has sequence similarity to known FLNa-binding partner-binding sites. FLNa has 24 Ig (IgFLNa) repeats, and a CFTR peptide pulled down repeats 9, 12, 17, 19, 21, and 23, which share sequence similarity yet differ from the other FLNa Ig domains. Using known structures of IgFLNa.partner complexes as templates, we generated in silico models of IgFLNa.CFTR peptide complexes. Point and deletion mutants of IgFLNa and CFTR informed by the models, including disease-causing mutations L15P and W19C, disrupted the binding interaction. The model predicted that a P5L CFTR mutation should not affect binding, but a synthetic P5L mutant peptide had reduced solubility, suggesting a different disease-causing mechanism. Taken together with the fact that FLNa dimers are elongated ( approximately 160 nm) strands, whereas CFTR is compact (6 approximately 8 nm), we propose that a single FLNa molecule can scaffold multiple CFTR partners. Unlike previously defined dimeric FLNa.partner complexes, the FLNa-monomeric CFTR interaction is relatively weak, presumptively facilitating dynamic clustering of CFTR at cell membranes. Finally, we show that deletion of all CFTR interacting domains from FLNa suppresses the surface expression of CFTR on baby hamster kidney cells.
Collapse
|
6
|
Cui G, Zhang ZR, O'Brien ARW, Song B, McCarty NA. Mutations at arginine 352 alter the pore architecture of CFTR. J Membr Biol 2008; 222:91-106. [PMID: 18421494 DOI: 10.1007/s00232-008-9105-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 03/21/2008] [Indexed: 01/11/2023]
Abstract
Arginine 352 (R352) in the sixth transmembrane domain of the cystic fibrosis transmembrane conductance regulator (CFTR) previously was reported to form an anion/cation selectivity filter and to provide positive charge in the intracellular vestibule. However, mutations at this site have nonspecific effects, such as inducing susceptibility of endogenous cysteines to chemical modification. We hypothesized that R352 stabilizes channel structure and that charge-destroying mutations at this site disrupt pore architecture, with multiple consequences. We tested the effects of mutations at R352 on conductance, anion selectivity and block by the sulfonylurea drug glipizide, using recordings of wild-type and mutant channels. Charge-altering mutations at R352 destabilized the open state and altered both selectivity and block. In contrast, R352K-CFTR was similar to wild-type. Full conductance state amplitude was similar to that of wild-type CFTR in all mutants except R352E, suggesting that R352 does not itself form an anion coordination site. In an attempt to identify an acidic residue that may interact with R352, we found that permeation properties were similarly affected by charge-reversing mutations at D993. Wild-type-like properties were rescued in R352E/D993R-CFTR, suggesting that R352 and D993 in the wild-type channel may interact to stabilize pore architecture. Finally, R352A-CFTR was sensitive to modification by externally applied MTSEA+, while wild-type and R352E/D993R-CFTR were not. These data suggest that R352 plays an important structural role in CFTR, perhaps reflecting its involvement in forming a salt bridge with residue D993.
Collapse
Affiliation(s)
- Guiying Cui
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| | | | | | | | | |
Collapse
|
7
|
Wehbi H, Gasmi-Seabrook G, Choi MY, Deber CM. Positional dependence of non-native polar mutations on folding of CFTR helical hairpins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:79-87. [DOI: 10.1016/j.bbamem.2007.08.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/27/2007] [Accepted: 08/29/2007] [Indexed: 12/19/2022]
|
8
|
Trouvé P, Le Drévo MA, Kerbiriou M, Friocourt G, Fichou Y, Gillet D, Férec C. Annexin V is directly involved in cystic fibrosis transmembrane conductance regulator's chloride channel function. Biochim Biophys Acta Mol Basis Dis 2007; 1772:1121-33. [PMID: 17869070 DOI: 10.1016/j.bbadis.2007.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 06/27/2007] [Accepted: 06/27/2007] [Indexed: 10/23/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) functions as a cAMP-activated chloride channel, which is regulated by protein-protein interactions. The extent to which CFTR is regulated by these interactions remains unknown. Annexin V is overexpressed in cystic fibrosis (CF), and given the functional properties of annexin V and CFTR we considered whether they are associated and if so whether this has implications for CFTR function. Using co-immunoprecipitation and overlay experiments, we show that annexin V is associated with nucleotide-binding domain 1 (NBD1) of CFTR. Surface plasmon resonance (SPR) indicated different KD values in the absence and presence of both calcium and ATP, suggesting that this interaction is calcium- and ATP-dependent. Using an siRNA approach and overexpression, we showed that CFTR chloride channel function and its localization in the cell membranes were dependent on annexin V expression. We concluded that annexin V is necessary for normal CFTR chloride channel activity. Furthermore, we show that CFTR and annexin V are partially co-distributed in normal epithelial cells in human bronchi. In conclusion, we show for the first time that annexin V is associated with CFTR and is involved in its function.
Collapse
Affiliation(s)
- Pascal Trouvé
- INSERM, Unité 613, 46 rue Félix le Dantec, BP62025, 29220 Brest, France.
| | | | | | | | | | | | | |
Collapse
|
9
|
Structural Genomics. CELL ENGINEERING 2007. [PMCID: PMC7122701 DOI: 10.1007/1-4020-5252-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Drug discovery based on structural knowledge has proven useful as several structure-based medicines are already on the market. Structural genomics aims at studying a large number of gene products including whole genomes, topologically similar proteins, protein families and protein subtypes in parallel. Particularly, therapeutically relevant targets have been selected for structural genomics initiatives. In this context, integral membrane proteins, which represent 60–70% of the current drug targets, have been of major interest. Paradoxically, membrane proteins present the last frontier to conquer in structural biology as some 100 high resolution structures among the 30,000 entries in public structural databases are available. The modest success rate on membrane proteins relates to the difficulties in their expression, purification and crystallography. To facilitate technology development large networks providing expertise in molecular biology, protein biochemistry and structural biology have been established. The privately funded MePNet program has studied 100 G protein-coupled receptors, which resulted in high level expression of a large number of receptors at structural biology compatible levels. Currently, selected GPCRs have been purified and subjected to crystallization attempts
Collapse
|
10
|
Gross CH, Abdul-Manan N, Fulghum J, Lippke J, Liu X, Prabhakar P, Brennan D, Willis MS, Faerman C, Connelly P, Raybuck S, Moore J. Nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator, an ABC transporter, catalyze adenylate kinase activity but not ATP hydrolysis. J Biol Chem 2005; 281:4058-68. [PMID: 16361259 DOI: 10.1074/jbc.m511113200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter family. CFTR consists of two transmembrane domains, two nucleotide-binding domains (NBD1 and NBD2), and a regulatory domain. Previous biochemical reports suggest NBD1 is a site of stable nucleotide interaction with low ATPase activity, whereas NBD2 is the site of active ATP hydrolysis. It has also been reported that NBD2 additionally possessed adenylate kinase (AK) activity. Knowledge about the intrinsic biochemical activities of the NBDs is essential to understanding the Cl(-) ion gating mechanism. We find that purified mouse NBD1, human NBD1, and human NBD2 function as adenylate kinases but not as ATPases. AK activity is strictly dependent on the addition of the adenosine monophosphate (AMP) substrate. No liberation of [(33)P]phosphate is observed from the gamma-(33)P-labeled ATP substrate in the presence or absence of AMP. AK activity is intrinsic to both human NBDs, as the Walker A box lysine mutations abolish this activity. At low protein concentration, the NBDs display an initial slower nonlinear phase in AK activity, suggesting that the activity results from homodimerization. Interestingly, the G551D gating mutation has an exaggerated nonlinear phase compared with the wild type and may indicate this mutation affects the ability of NBD1 to dimerize. hNBD1 and hNBD2 mixing experiments resulted in an 8-57-fold synergistic enhancement in AK activity suggesting heterodimer formation, which supports a common theme in ABC transporter models. A CFTR gating mechanism model based on adenylate kinase activity is proposed.
Collapse
|
11
|
Abstract
The assembly of the cystic fibrosis transmembrane regulator (CFTR) chloride channel is of interest from the broad perspective of understanding how ion channels and ABC transporters are formed as well as dealing with the mis-assembly of CFTR in cystic fibrosis. CFTR is functionally distinct from other ABC transporters because it permits bidirectional permeation of anions rather than vectorial transport of solutes. This adaptation of the ABC transporter structure can be rationalized by considering CFTR as a hydrolyzable-ligand-gated channel with cytoplasmic ATP as ligand. Channel gating is initiated by ligand binding when the protein is also phosphorylated by protein kinase A and made reversible by ligand hydrolysis. The two nucleotide-binding sites play different roles in channel activation. CFTR self-associates, possibly as a function of its activation, but most evidence, including the low-resolution three-dimensional structure, indicates that the channel is monomeric. Domain assembly and interaction within the monomer is critical in maturation, stability, and function of the protein. Disease-associated mutations, including the most common, DeltaF508, interfere with domain folding and association, which occur both co- and post-translationally. Intermolecular interactions of mature CFTR have been detected primarily with the N- and C-terminal tails, and these interactions have some impact not only on channel function but also on localization and processing within the cell. The biosynthetic processing of the nascent polypeptide leading to channel assembly involves transient interactions with numerous chaperones and enzymes on both sides of the endoplasmic reticulum membrane.
Collapse
Affiliation(s)
- John R Riordan
- Mayo Clinic College of Medicine, Scottsdale, Arizona, 85259, USA.
| |
Collapse
|
12
|
Du K, Sharma M, Lukacs GL. The ΔF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR. Nat Struct Mol Biol 2004; 12:17-25. [PMID: 15619635 DOI: 10.1038/nsmb882] [Citation(s) in RCA: 277] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Accepted: 11/19/2004] [Indexed: 02/03/2023]
Abstract
Misfolding accounts for the endoplasmic reticulum-associated degradation of mutant cystic fibrosis transmembrane conductance regulators (CFTRs), including deletion of Phe508 (DeltaF508) in the nucleotide-binding domain 1 (NBD1). To study the role of Phe508, the de novo folding and stability of NBD1, NBD2 and CFTR were compared in conjunction with mutagenesis of Phe508. DeltaF508 and amino acid replacements that prevented CFTR folding disrupted the NBD2 fold and its native interaction with NBD1. DeltaF508 caused limited alteration in NBD1 conformation. Whereas nonpolar and some aliphatic residues were permissive, charged residues and glycine compromised the post-translational folding and stability of NBD2 and CFTR. The results suggest that hydrophobic side chain interactions of Phe508 are required for vectorial folding of NBD2 and the domain-domain assembly of CFTR, representing a combined co- and post-translational folding mechanism that may be used by other multidomain membrane proteins.
Collapse
Affiliation(s)
- Kai Du
- Hospital for Sick Children Research Institute, Program in Cell and Lung Biology, University of Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
13
|
Zhang ZR, Cui G, Liu X, Song B, Dawson DC, McCarty NA. Determination of the functional unit of the cystic fibrosis transmembrane conductance regulator chloride channel. One polypeptide forms one pore. J Biol Chem 2004; 280:458-68. [PMID: 15504728 DOI: 10.1074/jbc.m409626200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The magnitudes and distributions of subconductance states were studied in chloride channels formed by the wild-type cystic fibrosis transmembrane conductance regulator (CFTR) and in CFTRs bearing amino acid substitutions in transmembrane segment 6. Within an open burst, it was possible to distinguish three distinct conductance states referred to as the full conductance, subconductance 1, and subconductance 2 states. Amino acid substitutions in transmembrane segment 6 altered the duration and probability of occurrence of these subconductance states but did not greatly alter their relative amplitudes. Results from real time measurements indicated that covalent modification of single R334C-CFTR channels by [2-(trimethylammonium)ethyl]methanethiosulfonate resulted in the simultaneous modification of all three conductance levels in what appeared to be a single step, without changing the proportion of time spent in each state. This behavior suggests that at least a portion of the conduction path is common to all three conducting states. The time course for the modification of R334C-CFTR, measured in outside-out macropatches using a rapid perfusion system, was also consistent with a single modification step as if each pore contained only a single copy of the cysteine at position 334. These results are consistent with a model for the CFTR conduction pathway in which a single anion-conducting pore is formed by a single CFTR polypeptide.
Collapse
Affiliation(s)
- Zhi-Ren Zhang
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA
| | | | | | | | | | | |
Collapse
|
14
|
Graf SA, Haigh SE, Corson ED, Shirihai OS. Targeting, import, and dimerization of a mammalian mitochondrial ATP binding cassette (ABC) transporter, ABCB10 (ABC-me). J Biol Chem 2004; 279:42954-63. [PMID: 15215243 DOI: 10.1074/jbc.m405040200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP binding cassette (ABC) transporters are a diverse superfamily of energy-dependent membrane translocases. Although responsible for the majority of transmembrane transport in bacteria, they are relatively uncommon in eukaryotic mitochondria. Organellar trafficking and import, in addition to quaternary structure assembly, of mitochondrial ABC transporters is poorly understood and may offer explanations for the paucity of their diversity. Here we examine these processes in ABCB10 (ABC-me), a mitochondrial inner membrane erythroid transporter involved in heme biosynthesis. We report that ABCB10 possesses an unusually long 105-amino acid mitochondrial targeting presequence (mTP). The central subdomain of the mTP (amino acids (aa) 36-70) is sufficient for mitochondrial import of enhanced green fluorescent protein. The N-terminal subdomain (aa 1-35) of the mTP, although not necessary for the trafficking of ABCB10 to mitochondria, participates in the proper import of the molecule into the inner membrane. We performed a series of amino acid mutations aimed at changing specific properties of the mTP. The mTP requires neither arginine residues nor predictable alpha-helices for efficient mitochondrial targeting. Disruption of its hydrophobic character by the mutation L46Q/I47Q, however, greatly diminishes its efficacy. This mutation can be rescued by cryptic downstream (aa 106-715) mitochondrial targeting signals, highlighting the redundancy of this protein's targeting qualities. Mass spectrometry analysis of chemically cross-linked, immunoprecipitated ABCB10 indicates that ABCB10 embedded in the mitochondrial inner membrane homodimerizes and homo-oligomerizes. A deletion mutant of ABCB10 that lacks its mTP efficiently targets to the endoplasmic reticulum. Quaternary structure assembly of ABCB10 in the ER appears to be similar to that in the mitochondria.
Collapse
Affiliation(s)
- Solomon A Graf
- BioCurrents Research Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | | | | | | |
Collapse
|
15
|
Kidd JF, Kogan I, Bear CE. Molecular Basis for the Chloride Channel Activity of Cystic Fibrosis Transmembrane Conductance Regulator and the Consequences of Disease-Causing Mutations. Curr Top Dev Biol 2004; 60:215-49. [PMID: 15094300 DOI: 10.1016/s0070-2153(04)60007-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Jackie F Kidd
- Programme in Structural Biology and Biochemistry Research Institute, Hospital for Sick Children, Department of Physiology, University of Toronto, Toronto Canada M5G 1X8
| | | | | |
Collapse
|