1
|
De Masi R, Orlando S. GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. Int J Mol Sci 2022; 23:7373. [PMID: 35806376 PMCID: PMC9266668 DOI: 10.3390/ijms23137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Glycans are one of the four fundamental macromolecular components of living matter, and they are highly regulated in the cell. Their functions are metabolic, structural and modulatory. In particular, ER resident N-glycans participate with the Glc3Man9GlcNAc2 highly conserved sequence, in protein folding process, where the physiological balance between glycosylation/deglycosylation on the innermost glucose residue takes place, according GANAB/UGGT concentration ratio. However, under abnormal conditions, the cell adapts to the glucose availability by adopting an aerobic or anaerobic regimen of glycolysis, or to external stimuli through internal or external recognition patterns, so it responds to pathogenic noxa with unfolded protein response (UPR). UPR can affect Multiple Sclerosis (MS) and several neurological and metabolic diseases via the BiP stress sensor, resulting in ATF6, PERK and IRE1 activation. Furthermore, the abnormal GANAB expression has been observed in MS, systemic lupus erythematous, male germinal epithelium and predisposed highly replicating cells of the kidney tubules and bile ducts. The latter is the case of Polycystic Liver Disease (PCLD) and Polycystic Kidney Disease (PCKD), where genetically induced GANAB loss affects polycystin-1 (PC1) and polycystin-2 (PC2), resulting in altered protein quality control and cyst formation phenomenon. Our topics resume the role of glycans in cell physiology, highlighting the N-glycans one, as a substrate of GANAB, which is an emerging key molecule in MS and other human pathologies.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy;
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| |
Collapse
|
2
|
Strategy for Designing Selective Lysosomal Acid α-Glucosidase Inhibitors: Binding Orientation and Influence on Selectivity. Molecules 2020; 25:molecules25122843. [PMID: 32575625 PMCID: PMC7357040 DOI: 10.3390/molecules25122843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 11/21/2022] Open
Abstract
Deoxynojirimycin (DNJ) is the archetypal iminosugar, in which the configuration of the hydroxyl groups in the piperidine ring truly mimic those of d-glucopyranose; DNJ and derivatives have beneficial effects as therapeutic agents, such as anti-diabetic and antiviral agents, and pharmacological chaperones for genetic disorders, because they have been shown to inhibit α-glucosidases from various sources. However, attempts to design a better molecule based solely on structural similarity cannot produce selectivity between α-glucosidases that are localized in multiple organs and tissues, because the differences of each sugar-recognition site are very subtle. In this study, we provide the first example of a design strategy for selective lysosomal acid α-glucosidase (GAA) inhibitors focusing on the alkyl chain storage site. Our design of α-1-C-heptyl-1,4-dideoxy-1,4-imino-l-arabinitol (LAB) produced a potent inhibitor of the GAA, with an IC50 value of 0.44 µM. It displayed a remarkable selectivity toward GAA (selectivity index value of 168.2). A molecular dynamic simulation study revealed that the ligand-binding conformation stability gradually improved with increasing length of the α-1-C-alkyl chain. It is noteworthy that α-1-C-heptyl-LAB formed clearly different interactions from DNJ and had favored hydrophobic interactions with Trp481, Phe525, and Met519 at the alkyl chain storage pocket of GAA. Moreover, a molecular docking study revealed that endoplasmic reticulum (ER) α-glucosidase II does not have enough space to accommodate these alkyl chains. Therefore, the design strategy focusing on the shape and acceptability of long alkyl chain at each α-glucosidase may lead to the creation of more selective and practically useful inhibitors.
Collapse
|
3
|
Synthesis and Therapeutic Applications of Iminosugars in Cystic Fibrosis. Int J Mol Sci 2020; 21:ijms21093353. [PMID: 32397443 PMCID: PMC7247015 DOI: 10.3390/ijms21093353] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Iminosugars are sugar analogues endowed with a high pharmacological potential. The wide range of biological activities exhibited by these glycomimetics associated with their excellent drug profile make them attractive therapeutic candidates for several medical interventions. The ability of iminosugars to act as inhibitors or enhancers of carbohydrate-processing enzymes suggests their potential use as therapeutics for the treatment of cystic fibrosis (CF). Herein we review the most relevant advances in the field, paying attention to both the chemical synthesis of the iminosugars and their biological evaluations, resulting from in vitro and in vivo assays. Starting from the example of the marketed drug NBDNJ (N-butyl deoxynojirimycin), a variety of iminosugars have exhibited the capacity to rescue the trafficking of F508del-CFTR (deletion of F508 residue in the CF transmembrane conductance regulator), either alone or in combination with other correctors. Interesting results have also been obtained when iminosugars were considered as anti-inflammatory agents in CF lung disease. The data herein reported demonstrate that iminosugars hold considerable potential to be applied for both therapeutic purposes.
Collapse
|
4
|
Thakur K, Zhang YY, Mocan A, Zhang F, Zhang JG, Wei ZJ. 1-Deoxynojirimycin, its potential for management of non-communicable metabolic diseases. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Onda M, Hakamata W. Antiviral Activity and Mechanism of Action of Endoplasmic Reticulum Glucosidase Inhibitors: A Mini Review. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1753.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Momoko Onda
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | - Wataru Hakamata
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| |
Collapse
|
6
|
Tyrrell BE, Sayce AC, Warfield KL, Miller JL, Zitzmann N. Iminosugars: Promising therapeutics for influenza infection. Crit Rev Microbiol 2017; 43:521-545. [PMID: 27931136 PMCID: PMC5470110 DOI: 10.1080/1040841x.2016.1242868] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/02/2016] [Accepted: 09/27/2016] [Indexed: 01/11/2023]
Abstract
Influenza virus causes three to five million severe respiratory infections per year in seasonal epidemics, and sporadic pandemics, three of which occurred in the twentieth century and are a continuing global threat. Currently licensed antivirals exclusively target the viral neuraminidase or M2 ion channel, and emerging drug resistance necessitates the development of novel therapeutics. It is believed that a host-targeted strategy may combat the development of antiviral drug resistance. To this end, a class of molecules known as iminosugars, hydroxylated carbohydrate mimics with the endocyclic oxygen atom replaced by a nitrogen atom, are being investigated for their broad-spectrum antiviral potential. The influenza virus glycoproteins, hemagglutinin and neuraminidase, are susceptible to inhibition of endoplasmic reticulum α-glucosidases by certain iminosugars, leading to reduced virion production or infectivity, demonstrated by in vitro and in vivo studies. In some experiments, viral strain-specific effects are observed. Iminosugars may also inhibit other host and virus targets with antiviral consequences. While investigations of anti-influenza iminosugar activities have been conducted since the 1980s, recent successes of nojirimycin derivatives have re-invigorated investigation of the therapeutic potential of iminosugars as orally available, low cytotoxicity, effective anti-influenza drugs.
Collapse
Affiliation(s)
- Beatrice Ellen Tyrrell
- Department of Biochemistry, University of Oxford Medical Sciences DivisionOxfordUnited Kingdom of Great Britain and Northern Ireland
| | - Andrew Cameron Sayce
- Department of Biochemistry, University of Oxford Medical Sciences DivisionOxfordUnited Kingdom of Great Britain and Northern Ireland
| | - Kelly Lyn Warfield
- Antiviral Research and Development, Emergent BioSolutions IncGaithersburgMDUnited States
| | - Joanna Louise Miller
- Department of Biochemistry, University of Oxford Medical Sciences DivisionOxfordUnited Kingdom of Great Britain and Northern Ireland
| | - Nicole Zitzmann
- Department of Biochemistry, University of Oxford Medical Sciences DivisionOxfordUnited Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
7
|
Iminosugar antivirals: the therapeutic sweet spot. Biochem Soc Trans 2017; 45:571-582. [PMID: 28408497 PMCID: PMC5390498 DOI: 10.1042/bst20160182] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 01/03/2023]
Abstract
Many viruses require the host endoplasmic reticulum protein-folding machinery in order to correctly fold one or more of their glycoproteins. Iminosugars with glucose stereochemistry target the glucosidases which are key for entry into the glycoprotein folding cycle. Viral glycoproteins are thus prevented from interacting with the protein-folding machinery leading to misfolding and an antiviral effect against a wide range of different viral families. As iminosugars target host enzymes, they should be refractory to mutations in the virus. Iminosugars therefore have great potential for development as broad-spectrum antiviral therapeutics. We outline the mechanism giving rise to the antiviral activity of iminosugars, the current progress in the development of iminosugar antivirals and future prospects for this field.
Collapse
|
8
|
“Three sources and three component parts” of free oligosaccharides. UKRAINIAN BIOCHEMICAL JOURNAL 2014; 86:5-17. [DOI: 10.15407/ubj86.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
9
|
Alonzi DS, Kukushkin NV, Allman SA, Hakki Z, Williams SJ, Pierce L, Dwek RA, Butters TD. Glycoprotein misfolding in the endoplasmic reticulum: identification of released oligosaccharides reveals a second ER-associated degradation pathway for Golgi-retrieved proteins. Cell Mol Life Sci 2013; 70:2799-814. [PMID: 23503623 PMCID: PMC11113499 DOI: 10.1007/s00018-013-1304-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/31/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a key cellular process whereby misfolded proteins are removed from the endoplasmic reticulum (ER) for subsequent degradation by the ubiquitin/proteasome system. In the present work, analysis of the released, free oligosaccharides (FOS) derived from all glycoproteins undergoing ERAD, has allowed a global estimation of the mechanisms of this pathway rather than following model proteins through degradative routes. Examining the FOS produced in endomannosidase-compromised cells following α-glucosidase inhibition has revealed a mechanism for clearing Golgi-retrieved glycoproteins that have failed to enter the ER quality control cycle. The Glc3Man7GlcNAc2 FOS species has been shown to be produced in the ER lumen by a mechanism involving a peptide: N-glycanase-like activity, and its production was sensitive to disruption of Golgi-ER trafficking. The detection of this oligosaccharide was unaffected by the overexpression of EDEM1 or cytosolic mannosidase, both of which increased the production of previously characterised cytosolically localised FOS. The lumenal FOS identified are therefore distinct in their production and regulation compared to FOS produced by the conventional route of misfolded glycoproteins directly removed from the ER. The production of such lumenal FOS is indicative of a novel degradative route for cellular glycoproteins that may exist under certain conditions.
Collapse
Affiliation(s)
- Dominic S. Alonzi
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Nikolay V. Kukushkin
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Sarah A. Allman
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Zalihe Hakki
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC 3010 Australia
| | - Spencer J. Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC 3010 Australia
| | - Lorna Pierce
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Raymond A. Dwek
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Terry D. Butters
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
10
|
Nandagudi A, Jury EC, Alonzi D, Butters TD, Hughes S, Isenberg DA. Heart failure in a woman with SLE, anti-phospholipid syndrome and Fabry's disease. Lupus 2013; 22:1070-6. [PMID: 23864039 PMCID: PMC4107795 DOI: 10.1177/0961203313497116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We describe a female patient with systemic lupus erythematosus (SLE) also diagnosed with Fabry's disease and anti-phospholipid antibody syndrome (APS). SLE and Fabry's disease are both systemic diseases with variable clinical presentations. Recent studies have shown a relatively high incidence of late onset Fabry's disease in female heterozygous individuals, suggesting that this condition could be under-diagnosed. We discuss a possible association between SLE and Fabry's disease and consider the role of lipid abnormalities in the pathogenesis of SLE.
Collapse
Affiliation(s)
- A Nandagudi
- Department of Rheumatology, University College Hospital, UK
| | | | | | | | | | | |
Collapse
|
11
|
Katoh T, Takase J, Tani Y, Amamoto R, Aoshima N, Tiemeyer M, Yamamoto K, Ashida H. Deficiency of α-glucosidase I alters glycoprotein glycosylation and lifespan in Caenorhabditis elegans. Glycobiology 2013; 23:1142-51. [PMID: 23836288 DOI: 10.1093/glycob/cwt051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Endoplasmic reticulum (ER) α-glucosidase I is an enzyme that trims the distal α1,2-linked glucose (Glc) residue from the Glc3Man9GlcNAc2 oligosaccharide following its addition to nascent glycoproteins in the initial step of processing. This reaction is critical to the subsequent processing of N-glycans and thus defects in α-glucosidase I gene in human cause congenital disorder of glycosylation (CDG) type IIb. We identified the Caenorhabditis elegans α-glucosidase I gene (F13H10.4, designated agl-1) that encodes a polypeptide with 36% identity to human α-glucosidase I. The agl-1 cDNA restored the expression of complex-type N-glycans on the cell surface of α-glucosidase I-defective Chinese hamster ovary Lec23 cells. RNAi knockdown of agl-1 [agl-1(RNAi)] produced worms that were visibly similar to wild-type, but lifespan was reduced to about half of the control. Analyses of N-glycosylation in agl-1(RNAi) animals by western blotting and mass spectrometry showed reduction of paucimannose and complex-type glycans and dramatic increase of glucosylated oligomannose glycans. In addition, a significant amount of unusual terminally fucosylated N-glycans were found in agl-1(RNAi) animals. ER stress response was also provoked, leading to the accumulation of large amounts of triglucosylated free oligosaccharides (FOSs) (Glc3Man4-5GlcNAc1-2) in agl-1(RNAi) animals. Acceleration of ER-associated degradation in response to the accumulation of unfolded glycoproteins and insufficient interaction with calnexin/calreticulin in the ER lumen likely accounts for the increase of FOSs. Taken together, these studies in C. elegans demonstrate that decreased ER α-glucosidase I affects the entire N-glycan profile and induces chronic ER stress, which may contribute to the pathophysiology of CDG-IIb in humans.
Collapse
Affiliation(s)
- Toshihiko Katoh
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602-4712, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Chang J, Warren TK, Zhao X, Gill T, Guo F, Wang L, Comunale MA, Du Y, Alonzi DS, Yu W, Ye H, Liu F, Guo JT, Mehta A, Cuconati A, Butters TD, Bavari S, Xu X, Block TM. Small molecule inhibitors of ER α-glucosidases are active against multiple hemorrhagic fever viruses. Antiviral Res 2013; 98:432-40. [PMID: 23578725 DOI: 10.1016/j.antiviral.2013.03.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/02/2013] [Accepted: 03/30/2013] [Indexed: 11/25/2022]
Abstract
Host cellular endoplasmic reticulum α-glucosidases I and II are essential for the maturation of viral glycosylated envelope proteins that use the calnexin mediated folding pathway. Inhibition of these glycan processing enzymes leads to the misfolding and degradation of these viral glycoproteins and subsequent reduction in virion secretion. We previously reported that, CM-10-18, an imino sugar α-glucosidase inhibitor, efficiently protected the lethality of dengue virus infection of mice. In the current study, through an extensive structure-activity relationship study, we have identified three CM-10-18 derivatives that demonstrated superior in vitro antiviral activity against representative viruses from four viral families causing hemorrhagic fever. Moreover, the three novel imino sugars significantly reduced the mortality of two of the most pathogenic hemorrhagic fever viruses, Marburg virus and Ebola virus, in mice. Our study thus proves the concept that imino sugars are promising drug candidates for the management of viral hemorrhagic fever caused by variety of viruses.
Collapse
Affiliation(s)
- Jinhong Chang
- Drexel Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, PA 18902, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Orwig SD, Tan YL, Grimster NP, Yu Z, Powers ET, Kelly JW, Lieberman RL. Binding of 3,4,5,6-tetrahydroxyazepanes to the acid-β-glucosidase active site: implications for pharmacological chaperone design for Gaucher disease. Biochemistry 2011; 50:10647-57. [PMID: 22047104 DOI: 10.1021/bi201619z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pharmacologic chaperoning is a therapeutic strategy being developed to improve the cellular folding and trafficking defects associated with Gaucher disease, a lysosomal storage disorder caused by point mutations in the gene encoding acid-β-glucosidase (GCase). In this approach, small molecules bind to and stabilize mutant folded or nearly folded GCase in the endoplasmic reticulum (ER), increasing the concentration of folded, functional GCase trafficked to the lysosome where the mutant enzyme can hydrolyze the accumulated substrate. To date, the pharmacologic chaperone (PC) candidates that have been investigated largely have been active site-directed inhibitors of GCase, usually containing five- or six-membered rings, such as modified azasugars. Here we show that a seven-membered, nitrogen-containing heterocycle (3,4,5,6-tetrahydroxyazepane) scaffold is also promising for generating PCs for GCase. Crystal structures reveal that the core azepane stabilizes GCase in a variation of its proposed active conformation, whereas binding of an analogue with an N-linked hydroxyethyl tail stabilizes GCase in a conformation in which the active site is covered, also utilizing a loop conformation not seen previously. Although both compounds preferentially stabilize GCase to thermal denaturation at pH 7.4, reflective of the pH in the ER, only the core azepane, which is a mid-micromolar competitive inhibitor, elicits a modest increase in enzyme activity for the neuronopathic G202R and the non-neuronopathic N370S mutant GCase in an intact cell assay. Our results emphasize the importance of the conformational variability of the GCase active site in the design of competitive inhibitors as PCs for Gaucher disease.
Collapse
Affiliation(s)
- Susan D Orwig
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | | | | | | | | | | | | |
Collapse
|
14
|
Demonstration that endoplasmic reticulum-associated degradation of glycoproteins can occur downstream of processing by endomannosidase. Biochem J 2011; 438:133-42. [DOI: 10.1042/bj20110186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During quality control in the ER (endoplasmic reticulum), nascent glycoproteins are deglucosylated by ER glucosidases I and II. In the post-ER compartments, glycoprotein endo-α-mannosidase provides an alternative route for deglucosylation. Previous evidence suggests that endomannosidase non-selectively deglucosylates glycoproteins that escape quality control in the ER, facilitating secretion of aberrantly folded as well as normal glycoproteins. In the present study, we employed FOS (free oligosaccharides) released from degrading glycoproteins as biomarkers of ERAD (ER-associated degradation), allowing us to gain a global rather than single protein-centred view of ERAD. Glucosidase inhibition was used to discriminate between glucosidase- and endomannosidase-mediated ERAD pathways. Endomannosidase expression was manipulated in CHO (Chinese-hamster ovary)-K1 cells, naturally lacking a functional version of the enzyme, and HEK (human embryonic kidney)-293T cells. Endomannosidase was shown to decrease the levels of total FOS, suggesting decreased rates of ERAD. However, following pharmacological inhibition of ER glucosidases I and II, endomannosidase expression resulted in a partial switch between glucosylated FOS, released from ER-confined glycoproteins, to deglucosylated FOS, released from endomannosidase-processed glycoproteins transported from the Golgi/ERGIC (ER/Golgi intermediate compartment) to the ER. Using this approach, we have identified a previously unknown pathway of glycoprotein flow, undetectable by the commonly employed methods, in which secretory cargo is targeted back to the ER after being processed by endomannosidase.
Collapse
|
15
|
Chang J, Schul W, Butters TD, Yip A, Liu B, Goh A, Lakshminarayana SB, Alonzi D, Reinkensmeier G, Pan X, Qu X, Weidner JM, Wang L, Yu W, Borune N, Kinch MA, Rayahin JE, Moriarty R, Xu X, Shi PY, Guo JT, Block TM. Combination of α-glucosidase inhibitor and ribavirin for the treatment of dengue virus infection in vitro and in vivo. Antiviral Res 2010; 89:26-34. [PMID: 21073903 DOI: 10.1016/j.antiviral.2010.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/26/2010] [Accepted: 11/03/2010] [Indexed: 10/18/2022]
Abstract
Cellular α-glucosidases I and II are enzymes that sequentially trim the three terminal glucoses in the N-linked oligosaccharides of viral envelope glycoproteins. This process is essential for the proper folding of viral glycoproteins and subsequent assembly of many enveloped viruses, including dengue virus (DENV). Imino sugars are substrate mimics of α-glucosidases I and II. In this report, we show that two oxygenated alkyl imino sugar derivatives, CM-9-78 and CM-10-18, are potent inhibitors of both α-glucosidases I and II in vitro and in treated animals, and efficiently inhibit DENV infection of cultured human cells. Pharmacokinetic studies reveal that both compounds are well tolerated at doses up to 100mg/kg in rats and have favorable pharmacokinetic properties and bioavailability in mice. Moreover, we showed that oral administration of either CM-9-78 or CM-10-18 reduces the peak viremia of DENV in mice. Interestingly, while treatment of DENV infected mice with ribavirin alone did not reduce the viremia, combination therapy of ribavirin with sub-effective dose of CM-10-18 demonstrated a significantly enhanced antiviral activity, as indicated by a profound reduction of the viremia. Our findings thus suggest that combination therapy of two broad-spectrum antiviral agents may provide a practically useful approach for the treatment of DENV infection.
Collapse
Affiliation(s)
- Jinhong Chang
- Drexel Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA 18902, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang RJ, Yang CH, Hu ML. 1-Deoxynojirimycin inhibits metastasis of B16F10 melanoma cells by attenuating the activity and expression of matrix metalloproteinases-2 and -9 and altering cell surface glycosylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:8988-8993. [PMID: 23654233 DOI: 10.1021/jf101401b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
1-Deoxynojirimycin (1-DNJ), an iminosugar rich in mulberry, has been shown to possess antimetastatic potential. The antimetastatic mechanisms of 1-DNJ in melanoma B16F10 cells were studied, as were the antimetastatic activity (cell adhesion, migration, and invasion) of 1-DNJ, matrix metalloproteinases (MMP-2 and MMP-9), tissue inhibitors of metalloproteinase (TIMP-1 and TIMP-2) mRNA, and flow cytometric analysis of cell surface in melanoma B16F10 cells. 1-DNJ significantly inhibited invasion, migration, and cell-matrix adhesion and markedly decreased MMP-2 and MMP-9 activity and mRNA expression. In contrast, 1-DNJ effectively enhanced the expression of TIMP-2 mRNA. In addition, 1-DNJ significantly decreased abnormal glycosylation and/or sialylation on B16F10 melanoma cell surface but increased the levels of α-mannose. Thus, the antimetastatic effects of 1-DNJ against B16F10 melanoma cells are likely associated with its attenuated activities and expression of MMP-2/9, enhancement of the TIMP-2 mRNA expression, and alterations of the cell surface-binding motif. These results suggest that 1-DNJ may be useful as an adjuvant of antimetastatic agents such as cisplatin.
Collapse
Affiliation(s)
- Ran-Juh Wang
- Miaoli District Agricultural Research and Extension Station, COA, 261, Gungguan Shiang, Miaoli 363, Taiwan, Republic of China
| | | | | |
Collapse
|
17
|
Lysosomal storage of oligosaccharide and glycosphingolipid in imino sugar treated cells. Glycoconj J 2010; 27:297-308. [DOI: 10.1007/s10719-010-9278-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/08/2010] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
|
18
|
Stevens AJ, Gahan ME, Mahalingam S, Keller PA. The medicinal chemistry of dengue fever. J Med Chem 2010; 52:7911-26. [PMID: 19739651 DOI: 10.1021/jm900652e] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Andrew J Stevens
- Department of Chemistry, University of Wollongong, Wollongong 2522, Australia
| | | | | | | |
Collapse
|
19
|
Alonzi DS, Dwek RA, Butters TD. Improved cellular inhibitors for glycoprotein processing α-glucosidases: biological characterisation of alkyl- and arylalkyl-N-substituted deoxynojirimycins. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.tetasy.2009.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Rawlings AJ, Lomas H, Pilling AW, Lee MJR, Alonzi DS, Rountree JSS, Jenkinson SF, Fleet GWJ, Dwek RA, Jones JH, Butters TD. Synthesis and Biological Characterisation of NovelN-Alkyl-Deoxynojirimycin α-Glucosidase Inhibitors. Chembiochem 2009; 10:1101-5. [DOI: 10.1002/cbic.200900025] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Carbasugar–thioether pseudodisaccharides related to N-glycan biosynthesis. Carbohydr Res 2009; 344:454-9. [DOI: 10.1016/j.carres.2008.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 12/16/2008] [Accepted: 12/24/2008] [Indexed: 11/20/2022]
|
22
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2003-2004. MASS SPECTROMETRY REVIEWS 2009; 28:273-361. [PMID: 18825656 PMCID: PMC7168468 DOI: 10.1002/mas.20192] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 05/13/2023]
Abstract
This review is the third update of the original review, published in 1999, on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings the topic to the end of 2004. Both fundamental studies and applications are covered. The main topics include methodological developments, matrices, fragmentation of carbohydrates and applications to large polymeric carbohydrates from plants, glycans from glycoproteins and those from various glycolipids. Other topics include the use of MALDI MS to study enzymes related to carbohydrate biosynthesis and degradation, its use in industrial processes, particularly biopharmaceuticals and its use to monitor products of chemical synthesis where glycodendrimers and carbohydrate-protein complexes are highlighted.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
23
|
Suzuki T, Matsuo I, Totani K, Funayama S, Seino J, Taniguchi N, Ito Y, Hase S. Dual-gradient high-performance liquid chromatography for identification of cytosolic high-mannose-type free glycans. Anal Biochem 2008; 381:224-32. [PMID: 18656438 DOI: 10.1016/j.ab.2008.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/30/2008] [Accepted: 07/01/2008] [Indexed: 11/26/2022]
Abstract
It has been shown that free oligosaccharides derived from N-linked glycans accumulate in the cytosol of animal cells. Most of the glycans have only a single GlcNAc at their reducing termini (Gn1 glycans), whereas the original N-glycans retain N,N'-diacetylchitobiose at their reducing termini (Gn2 glycans). Under the conditions of high-performance liquid chromatography (HPLC) mapping established for pyridylamine (PA)-labeled Gn2 N-glycans, Gn1 glycans are not well retained on reversed-phase HPLC, making simultaneous analysis of Gn1 and Gn2 glycans problematic. We introduced a dual gradient (i.e., pH and butanol gradient) for the separation of Gn1 and Gn2 glycans in a single reversed-phase HPLC. Determination of elution time for various standard Gn2 high-mannose-type glycans, as well as Gn1 glycans found in the cytosol of animal cells, showed that elution of Gn1 and Gn2 glycans could be separated. Sufficient separation for most of the structural isomers could be achieved for Gn1 and Gn2 glycans. This HPLC, therefore, is a powerful method for identification of the structures of PA-labeled glycans, especially Gn1-type glycans, isolated from the cytosol of animal cells.
Collapse
Affiliation(s)
- Tadashi Suzuki
- RIKEN (Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
New Synthetic Seven-Membered 1-Azasugars Displaying Potent Inhibition Towards Glycosidases and Glucosylceramide Transferase. Chembiochem 2008; 9:253-60. [DOI: 10.1002/cbic.200700496] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Chantret I, Moore SEH. Free oligosaccharide regulation during mammalian protein N-glycosylation. Glycobiology 2007; 18:210-24. [DOI: 10.1093/glycob/cwn003] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
26
|
Alonzi DS, Neville DCA, Lachmann RH, Dwek RA, Butters TD. Glucosylated free oligosaccharides are biomarkers of endoplasmic- reticulum α-glucosidase inhibition. Biochem J 2007; 409:571-80. [PMID: 17868040 DOI: 10.1042/bj20070748] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The inhibition of ER (endoplasmic reticulum) α-glucosidases I and II by imino sugars, including NB-DNJ (N-butyl-deoxynojirimycin), causes the retention of glucose residues on N-linked oligosaccharides. Therefore, normal glycoprotein trafficking and processing through the glycosylation pathway is abrogated and glycoproteins are directed to undergo ERAD (ER-associated degradation), a consequence of which is the production of cytosolic FOS (free oligosaccharides). Following treatment with NB-DNJ, FOS were extracted from cells, murine tissues and human plasma and urine. Improved protocols for analysis were developed using ion-exchange chromatography followed by fluorescent labelling with 2-AA (2-aminobenzoic acid) and purification by lectin-affinity chromatography. Separation of 2-AA-labelled FOS by HPLC provided a rapid and sensitive method that enabled the detection of all FOS species resulting from the degradation of glycoproteins exported from the ER. The generation of oligosaccharides derived from glucosylated protein degradation was rapid, reversible, and time- and inhibitor concentration-dependent in cultured cells and in vivo. Long-term inhibition in cultured cells and in vivo indicated a slow rate of clearance of glucosylated FOS. In mouse and human urine, glucosylated FOS were detected as a result of transrenal excretion and provide unique and quantifiable biomarkers of ER-glucosidase inhibition.
Collapse
Affiliation(s)
- Dominic S Alonzi
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | |
Collapse
|
27
|
Suzuki T. Cytoplasmic peptide:N-glycanase and catabolic pathway for free N-glycans in the cytosol. Semin Cell Dev Biol 2007; 18:762-9. [DOI: 10.1016/j.semcdb.2007.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 08/07/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
|
28
|
Suzuki T, Funakoshi Y. Free N-linked oligosaccharide chains: formation and degradation. Glycoconj J 2007; 23:291-302. [PMID: 16897173 DOI: 10.1007/s10719-006-6975-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 12/21/2005] [Accepted: 12/27/2005] [Indexed: 01/09/2023]
Abstract
There is growing evidence that N-linked glycans play pivotal roles in protein folding and intra- and/or intercellular trafficking of N-glycosylated proteins. It has been shown that during the N-glycosylation of proteins, significant amounts of free oligosaccharides (free OSs) are generated in the lumen of the endoplasmic reticulum (ER) by a mechanism which remains to be clarified. Free OSs are also formed in the cytosol by enzymatic deglycosylation of misfolded glycoproteins, which are subjected to destruction by a cellular system called "ER-associated degradation (ERAD)." While the precise functions of free OSs remain obscure, biochemical studies have revealed that a novel cellular process enables them to be catabolized in a specialized manner, that involves pumping free OSs in the lumen of the ER into the cytosol where further processing occurs. This process is followed by entry into the lysosomes. In this review we summarize current knowledge about the formation, processing and degradation of free OSs in eukaryotes and also discuss the potential biological significance of this pathway. Other evidence for the occurrence of free OSs in various cellular processes is also presented.
Collapse
Affiliation(s)
- Tadashi Suzuki
- 21st COE (Center of Excellence) Program and Department of Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
29
|
Okumiya T, Kroos MA, Vliet LV, Takeuchi H, Van der Ploeg AT, Reuser AJJ. Chemical chaperones improve transport and enhance stability of mutant alpha-glucosidases in glycogen storage disease type II. Mol Genet Metab 2007; 90:49-57. [PMID: 17095274 DOI: 10.1016/j.ymgme.2006.09.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 09/20/2006] [Accepted: 09/20/2006] [Indexed: 11/15/2022]
Abstract
Glycogen storage disease type II (GSDII; Pompe disease or acid maltase deficiency) is an autosomal recessive disorder caused by lysosomal acid alpha-glucosidase (AalphaGlu) deficiency and manifests predominantly as skeletal muscle weakness. Defects in post-translational modification and transport of mutant AalphaGlu species are frequently encountered and may potentially be corrected with chaperone-mediated therapy. In the present study, we have tested this hypothesis by using deoxynojirimycin and derivatives as chemical chaperones to correct the AalphaGlu deficiency in cultured fibroblasts from patients with GSDII. Four mutant phenotypes were chosen: Y455F/Y455F, P545L/P545L, 525del/R600C and D645E/R854X. In case of Y455F/Y455F and P545L/P545L, N-(n-butyl)deoxynojirimycin (NB-DNJ) restored the transport, maturation and activity of AalphaGlu in a dose dependent manner, while it had no effect on the reference enzyme beta-hexosaminidase. NB-DNJ promoted export from the endoplasmic reticulum (ER) to the lysosomes and stabilized the activity of mutant AalphaGlu species, Y455F and P545L, inside the lysosomes. In long-term culture, the AalphaGlu activity in the fibroblasts from the patients with mutant phenotypes, Y455F/Y455F and P545L/P545L, increased up to 14.0- and 7.9-fold, respectively, in the presence of 10mumol/L NB-DNJ. However, the effect of NB-DNJ on Y455F/Y455F subsided quickly after removal of the compound. We conclude that NB-DNJ acts in low concentration as chemical chaperone for certain mutant forms of AalphaGlu that are trapped in the ER, poorly transported or labile in the lysosomal environment. Chemical chaperone therapy could create new perspectives for therapeutic intervention in GSDII.
Collapse
Affiliation(s)
- Toshika Okumiya
- Department of Clinical Genetics, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
30
|
Suzuki T, Hara I, Nakano M, Shigeta M, Nakagawa T, Kondo A, Funakoshi Y, Taniguchi N. Man2C1, an alpha-mannosidase, is involved in the trimming of free oligosaccharides in the cytosol. Biochem J 2006; 400:33-41. [PMID: 16848760 PMCID: PMC1635433 DOI: 10.1042/bj20060945] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The endoplasmic-reticulum-associated degradation of misfolded (glyco)proteins ensures that only functional, correctly folded proteins exit from the endoplasmic reticulum and that misfolded ones are degraded by the ubiquitin-proteasome system. During the degradation of misfolded glycoproteins, they are deglycosylated by the PNGase (peptide:N-glycanase). The free oligosaccharides released by PNGase are known to be further catabolized by a cytosolic alpha-mannosidase, although the gene encoding this enzyme has not been identified unequivocally. The findings in the present study demonstrate that an alpha-mannosidase, Man2C1, is involved in the processing of free oligosaccharides that are formed in the cytosol. When the human Man2C1 orthologue was expressed in HEK-293 cells, most of the enzyme was localized in the cytosol. Its activity was enhanced by Co2+, typical of other known cytosolic alpha-mannosidases so far characterized from animal cells. The down-regulation of Man2C1 activity by a small interfering RNA drastically changed the amount and structure of oligosaccharides accumulating in the cytosol, demonstrating that Man2C1 indeed is involved in free oligosaccharide processing in the cytosol. The oligosaccharide processing in the cytosol by PNGase, endo-beta-N-acetylglucosaminidase and alpha-mannosidase may represent the common 'non-lysosomal' catabolic pathway for N-glycans in animal cells, although the molecular mechanism as well as the functional importance of such processes remains to be determined.
Collapse
Affiliation(s)
- Tadashi Suzuki
- Department of Biochemistry, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Pearson MSM, Saad RO, Dintinger T, Amri H, Mathé-Allainmat M, Lebreton J. Flexible synthesis and biological evaluation of novel 5-deoxyadenophorine analogues. Bioorg Med Chem Lett 2006; 16:3262-7. [PMID: 16603357 DOI: 10.1016/j.bmcl.2006.03.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 03/13/2006] [Accepted: 03/13/2006] [Indexed: 10/24/2022]
Abstract
Adenophorine and its 5-deoxy analogue have been identified as natural iminosugars with efficient glycosidase inhibitory effects. The syntheses and biological evaluation of two new series of 5-deoxyadenophorine analogues in their racemic form are reported. The compounds 12e and 13d bearing a C11 and C7 alkyl chain, respectively, were found to be potent inhibitors of the beta-glucosidase from almond with Ki near to 60 microM. The compounds 13a,d which possess a 3,4-cis stereochemistry were efficient on glucosidases but also on the beta-galactosidase, what was not observed with the 3,4-trans series 12.
Collapse
Affiliation(s)
- Morwenna S M Pearson
- Université de Nantes, CNRS, Laboratoire de Synthèse Organique, UMR 6513, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | | | | | | | | | | |
Collapse
|
32
|
Sawkar AR, Adamski-Werner SL, Cheng WC, Wong CH, Beutler E, Zimmer KP, Kelly JW. Gaucher Disease-Associated Glucocerebrosidases Show Mutation-Dependent Chemical Chaperoning Profiles. ACTA ACUST UNITED AC 2005; 12:1235-44. [PMID: 16298303 DOI: 10.1016/j.chembiol.2005.09.007] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 08/16/2005] [Accepted: 09/20/2005] [Indexed: 11/25/2022]
Abstract
Gaucher disease is a lysosomal storage disorder caused by deficient glucocerebrosidase activity. We have previously shown that the cellular activity of the most common Gaucher disease-associated glucocerebrosidase variant, N370S, is increased when patient-derived cells are cultured with the chemical chaperone N-nonyl-deoxynojirimycin. Chemical chaperones stabilize proteins against misfolding, enabling their trafficking from the endoplasmic reticulum. Herein, the generality of this therapeutic strategy is evaluated with other glucocerebrosidase variants and with additional candidate chemical chaperones. Improved chemical chaperones are identified for N370S glucocerebrosidase. Moreover, we demonstrate that G202R, a glucocerebrosidase variant that is known to be retained in the endoplasmic reticulum, is also amenable to chemical chaperoning. The L444P variant is not chaperoned by any of the active site-directed molecules tested, likely because this mutation destabilizes a domain distinct from the catalytic domain.
Collapse
Affiliation(s)
- Anu R Sawkar
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Butters TD, Dwek RA, Platt FM. Imino sugar inhibitors for treating the lysosomal glycosphingolipidoses. Glycobiology 2005; 15:43R-52R. [PMID: 15901676 DOI: 10.1093/glycob/cwi076] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The inherited metabolic disorders of glycosphingolipid (GSL) metabolism are a relatively rare group of diseases that have diverse and often neurodegenerative phenotypes. Typically, a deficiency in catabolic enzyme activity leads to lysosomal storage of GSL substrates and in many diseases, several other glycoconjugates. A novel generic approach to treating these diseases has been termed substrate reduction therapy (SRT), and the discovery and development of N-alkylated imino sugars as effective and approved drugs is discussed. An understanding of the molecular mechanism for the inhibition of the key enzyme in GSL biosynthesis, ceramide glucosyltransferase (CGT) by N-alkylated imino sugars, has also lead to compound design for improvements to inhibitory potency, bioavailability, enzyme selectivity, and biological safety. Following a successful clinical evaluation of one compound, N-butyl-deoxynojirimycin [(NB-DNJ), miglustat, Zavesca], for treating type I Gaucher disease, issues regarding the significance of side effects and CNS access have been addressed as exposure of drug to patients has increased. An alternative experimental approach to treat specific glycosphingolipid (GSL) lysosomal storage diseases is to use imino sugars as molecular chaperons that assist protein folding and stability of mutant enzymes. The principles of chaperon-mediated therapy (CMT) are described, and the potential efficacy and preclinical status of imino sugars is compared with substrate reduction therapy (SRT). The increasing use of imino sugars for clinical evaluation of a group of storage diseases that are complex and often intractable disorders to treat has considerable benefit. This is particularly so given the ability of small molecules to be orally available, penetrate the central nervous system (CNS), and have well-characterized biological and pharmacological properties.
Collapse
Affiliation(s)
- Terry D Butters
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | | | |
Collapse
|
34
|
Lochnit G, Bongaarts R, Geyer R. Searching new targets for anthelminthic strategies: Interference with glycosphingolipid biosynthesis and phosphorylcholine metabolism affects development of Caenorhabditis elegans. Int J Parasitol 2005; 35:911-23. [PMID: 15885697 DOI: 10.1016/j.ijpara.2005.02.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 02/07/2005] [Accepted: 02/22/2005] [Indexed: 11/17/2022]
Abstract
Nematode infections are amongst the most abundant diseases of man and animals. They are characterised by a low mortality but high morbidity, thus reflecting the adaptation of these parasites to their hosts. Resistance as well as severe side-effects and efficacies restricted to distinct larval stages or parasites of the anthelmithics used at present require the urgent development of new and more nematode-specific drugs, targeting enzymes of parasite restricted biosynthetic routes. Caenorhabditis elegans has been found to be a good model system for parasitic nematodes, drug screening and developmental studies. Structural analyses have revealed nematode-specific glycosphingolipid structures of the arthro-series, carrying in part, phosphorylcholine substituents. These biomolecules appear to play important roles in nematode development, fertility and survival within the host and are, therefore, good target-candidates for the development of new anthelminthic strategies. Here we show that RNAi experiments targeting enzymes of glycosphingolipid biosynthesis or choline metabolism result, in part, in a drastic reduction of fertility. We further tested various chemical inhibitors of these pathways and found significant effects on the development of the worms, resulting in developmental arrest, sterility and, in part, lethality. Such inhibitors can, therefore, help to define new classes of anthelminthics.
Collapse
Affiliation(s)
- Günter Lochnit
- Faculty of Medicine, Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany.
| | | | | |
Collapse
|
35
|
Mellor H, Neville D, Harvey D, Platt F, Dwek R, Butters T. Cellular effects of deoxynojirimycin analogues: uptake, retention and inhibition of glycosphingolipid biosynthesis. Biochem J 2004; 381:861-6. [PMID: 15128268 PMCID: PMC1133897 DOI: 10.1042/bj20031822] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2003] [Revised: 04/21/2004] [Accepted: 05/06/2004] [Indexed: 11/17/2022]
Abstract
Deoxynojirimycin (DNJ) analogues are inhibitors of ceramide glucosyltransferase (CGT), which catalyses the first step in the glucosphingolipid (GSL) biosynthetic pathway. We have synthesized a series of DNJ analogues to study the contribution of N-alk(en)yl side chains (C4, C9 or C18) to the behaviour of these analogues in cultured HL60 cells. When cells were treated for 16 h at non-cytotoxic concentrations of inhibitor, a 40-50% decrease in GSL levels was measured by HPLC analysis of GSL-derived oligosaccharides following ceramide glycanase digestion of GSL and 2-aminobenzamide labelling of the released oligosaccharides. Using a novel technique for short-term [14C]galactose labelling of cellular GSL, we used compound inhibition of GSL biosynthesis as a marker for compound uptake into cells. Surprisingly, the uptake of all three of the DNJ analogues was extremely rapid and was not dependent upon the length of the N-alk(en)yl moiety. Compound uptake occurred in less than 1 min, as shown by the complete inhibition of GSL labelling in cells treated with all the DNJ analogues. Greatly increased cellular retention of N-cis-13-octadecenyl-DNJ was observed relative to the shorter-chain compounds, N-butyl-DNJ and N-nonyl-DNJ, as indicated by complete inhibition of CGT 24 h after removal of inhibitor from the culture medium. The present study further characterizes the properties of N-alk(en)ylated DNJs, and demonstrates that increasing the length of the side chain is a simple way of improving imino sugar retention and therefore inhibitory efficacy for CGT in cultured cells.
Collapse
Affiliation(s)
- Howard R. Mellor
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - David C. A. Neville
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - David J. Harvey
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Frances M. Platt
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Raymond A. Dwek
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Terry D. Butters
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
- To whom correspondence should be addressed (e-mail )
| |
Collapse
|