1
|
Tauchmannová K, Pecinová A, Houštěk J, Mráček T. Variability of Clinical Phenotypes Caused by Isolated Defects of Mitochondrial ATP Synthase. Physiol Res 2024; 73:S243-S278. [PMID: 39016153 PMCID: PMC11412354 DOI: 10.33549/physiolres.935407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 08/09/2024] Open
Abstract
Disorders of ATP synthase, the key enzyme in mitochondrial energy supply, belong to the most severe metabolic diseases, manifesting as early-onset mitochondrial encephalo-cardiomyopathies. Since ATP synthase subunits are encoded by both mitochondrial and nuclear DNA, pathogenic variants can be found in either genome. In addition, the biogenesis of ATP synthase requires several assembly factors, some of which are also hotspots for pathogenic variants. While variants of MT-ATP6 and TMEM70 represent the most common cases of mitochondrial and nuclear DNA mutations respectively, the advent of next-generation sequencing has revealed new pathogenic variants in a number of structural genes and TMEM70, sometimes with truly peculiar genetics. Here we present a systematic review of the reported cases and discuss biochemical mechanisms, through which they are affecting ATP synthase. We explore how the knowledge of pathophysiology can improve our understanding of enzyme biogenesis and function. Keywords: Mitochondrial diseases o ATP synthase o Nuclear DNA o Mitochondrial DNA o TMEM70.
Collapse
Affiliation(s)
- K Tauchmannová
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | |
Collapse
|
2
|
Morcillo P, Kabra K, Velasco K, Cordero H, Jennings S, Yun TD, Larrea D, Akman HO, Schon EA. Aberrant ER-mitochondria communication is a common pathomechanism in mitochondrial disease. Cell Death Dis 2024; 15:405. [PMID: 38858390 PMCID: PMC11164949 DOI: 10.1038/s41419-024-06781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
Genetic mutations causing primary mitochondrial disease (i.e those compromising oxidative phosphorylation [OxPhos]) resulting in reduced bioenergetic output display great variability in their clinical features, but the reason for this is unknown. We hypothesized that disruption of the communication between endoplasmic reticulum (ER) and mitochondria at mitochondria-associated ER membranes (MAM) might play a role in this variability. To test this, we assayed MAM function and ER-mitochondrial communication in OxPhos-deficient cells, including cybrids from patients with selected pathogenic mtDNA mutations. Our results show that each of the various mutations studied indeed altered MAM functions, but notably, each disorder presented with a different MAM "signature". We also found that mitochondrial membrane potential is a key driver of ER-mitochondrial connectivity. Moreover, our findings demonstrate that disruption in ER-mitochondrial communication has consequences for cell survivability that go well beyond that of reduced ATP output. The findings of a "MAM-OxPhos" axis, the role of mitochondrial membrane potential in controlling this process, and the contribution of MAM dysfunction to cell death, reveal a new relationship between mitochondria and the rest of the cell, as well as providing new insights into the diagnosis and treatment of these devastating disorders.
Collapse
Affiliation(s)
- Patricia Morcillo
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Khushbu Kabra
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Kevin Velasco
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Hector Cordero
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
- Immunology Group, Department of Physiology, Faculty of Veterinary, University of Extremadura, Caceres, 10003, Spain
| | - Sarah Jennings
- Stony Brook University, Stony Brook, New York, NY, 11794, USA
| | - Taekyung D Yun
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Delfina Larrea
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - H Orhan Akman
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Eric A Schon
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA.
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Del Dotto V, Musiani F, Baracca A, Solaini G. Variants in Human ATP Synthase Mitochondrial Genes: Biochemical Dysfunctions, Associated Diseases, and Therapies. Int J Mol Sci 2024; 25:2239. [PMID: 38396915 PMCID: PMC10889682 DOI: 10.3390/ijms25042239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondrial ATP synthase (Complex V) catalyzes the last step of oxidative phosphorylation and provides most of the energy (ATP) required by human cells. The mitochondrial genes MT-ATP6 and MT-ATP8 encode two subunits of the multi-subunit Complex V. Since the discovery of the first MT-ATP6 variant in the year 1990 as the cause of Neuropathy, Ataxia, and Retinitis Pigmentosa (NARP) syndrome, a large and continuously increasing number of inborn variants in the MT-ATP6 and MT-ATP8 genes have been identified as pathogenic. Variants in these genes correlate with various clinical phenotypes, which include several neurodegenerative and multisystemic disorders. In the present review, we report the pathogenic variants in mitochondrial ATP synthase genes and highlight the molecular mechanisms underlying ATP synthase deficiency that promote biochemical dysfunctions. We discuss the possible structural changes induced by the most common variants found in patients by considering the recent cryo-electron microscopy structure of human ATP synthase. Finally, we provide the state-of-the-art of all therapeutic proposals reported in the literature, including drug interventions targeting mitochondrial dysfunctions, allotopic gene expression- and nuclease-based strategies, and discuss their potential translation into clinical trials.
Collapse
Affiliation(s)
- Valentina Del Dotto
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (V.D.D.); (G.S.)
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40127 Bologna, Italy;
| | - Alessandra Baracca
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (V.D.D.); (G.S.)
| | - Giancarlo Solaini
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (V.D.D.); (G.S.)
| |
Collapse
|
4
|
Falabella M, Minczuk M, Hanna MG, Viscomi C, Pitceathly RDS. Gene therapy for primary mitochondrial diseases: experimental advances and clinical challenges. Nat Rev Neurol 2022; 18:689-698. [PMID: 36257993 DOI: 10.1038/s41582-022-00715-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 11/09/2022]
Abstract
The variable clinical and biochemical manifestations of primary mitochondrial diseases (PMDs), and the complexity of mitochondrial genetics, have proven to be a substantial barrier to the development of effective disease-modifying therapies. Encouraging data from gene therapy trials in patients with Leber hereditary optic neuropathy and advances in DNA editing techniques have raised expectations that successful clinical transition of genetic therapies for PMDs is feasible. However, obstacles to the clinical application of genetic therapies in PMDs remain; the development of innovative, safe and effective genome editing technologies and vectors will be crucial to their future success and clinical approval. In this Perspective, we review progress towards the genetic treatment of nuclear and mitochondrial DNA-related PMDs. We discuss advances in mitochondrial DNA editing technologies alongside the unique challenges to targeting mitochondrial genomes. Last, we consider ongoing trials and regulatory requirements.
Collapse
Affiliation(s)
- Micol Falabella
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CESNE - Center for the Study of Neurodegeneration, University of Padova, Padova, Italy
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK.
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
5
|
Hernández-Ainsa C, López-Gallardo E, García-Jiménez MC, Climent-Alcalá FJ, Rodríguez-Vigil C, García Fernández de Villalta M, Artuch R, Montoya J, Ruiz-Pesini E, Emperador S. Development and characterization of cell models harbouring mtDNA deletions for in vitro study of Pearson syndrome. Dis Model Mech 2022; 15:dmm049083. [PMID: 35191981 PMCID: PMC8906170 DOI: 10.1242/dmm.049083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/06/2021] [Indexed: 01/19/2023] Open
Abstract
Pearson syndrome is a rare multisystem disease caused by single large-scale mitochondrial DNA deletions (SLSMDs). The syndrome presents early in infancy and is mainly characterised by refractory sideroblastic anaemia. Prognosis is poor and treatment is supportive, thus the development of new models for the study of Pearson syndrome and new therapy strategies is essential. In this work, we report three different cell models carrying an SLMSD: fibroblasts, transmitochondrial cybrids and induced pluripotent stem cells (iPSCs). All studied models exhibited an aberrant mitochondrial ultrastructure and defective oxidative phosphorylation system function, showing a decrease in different parameters, such as mitochondrial ATP, respiratory complex IV activity and quantity or oxygen consumption. Despite this, iPSCs harbouring 'common deletion' were able to differentiate into three germ layers. Additionally, cybrid clones only showed mitochondrial dysfunction when heteroplasmy level reached 70%. Some differences observed among models may depend on their metabolic profile; therefore, we consider that these three models are useful for the in vitro study of Pearson syndrome, as well as for testing new specific therapies. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Carmen Hernández-Ainsa
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), 50009 Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Ester López-Gallardo
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), 50009 Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | | | | | | | | | - Rafael Artuch
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Clinical Biochemistry, Genetics, Pediatric Neurology and Neonatalogy Departments, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), 50009 Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), 50009 Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Sonia Emperador
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), 50009 Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
6
|
Yu X, Li S, Ding Y. Maternally transmitted nonsyndromic hearing impairment may be associated with mitochondrial tRNA Ala 5601C>T and tRNA Leu(CUN) 12311T>C mutations. J Clin Lab Anal 2022; 36:e24298. [PMID: 35218233 PMCID: PMC8993639 DOI: 10.1002/jcla.24298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Sequence alternations in mitochondrial genomes, especially in genes encoding mitochondrial tRNA (mt-tRNA), were the important contributors to nonsyndromic hearing loss (NSHL); however, the molecular mechanisms remained largely undetermined. METHODS A maternally transmitted Chinese pedigree with NSHL underwent clinical, genetic, and biochemical assessment. PCR and direct sequence analyses were performed to detect mitochondrial DNA (mtDNA), GJB2, and SLC26A4 gene mutations from matrilineal relatives of this family. Mitochondrial functions including mitochondrial membrane potential (MMP), ATP, and ROS were evaluated in polymononuclear leukocytes (PMNs) derived from three deaf patients and three controls from this pedigree. RESULTS Four of nine matrilineal relatives developed hearing loss at the variable age of onset. Two putative pathogenic mutations, m.5601C>T in tRNAAla and m.12311T>C in tRNALeu(CUN) , were identified via PCR-Sanger sequencing, as well as 34 variants that belonged to mtDNA haplogroup G2b2. Intriguingly, m.5601C>T mutation resided at very conserved nucleotide in the TψC loop of tRNAAla (position 59), while the T-to-C substitution at position 12311 located at position 48 in the variable stem of tRNALeu(CUN) and was believed to alter the aminoacylation and the steady-state level of tRNA. Biochemical analysis revealed the impairment of mitochondrial functions including the significant reductions of ATP and MMP, whereas markedly increased ROS levels were found in PMNs derived from NSHL patients with m.5601C>T and m.12311T>C mutations. However, we did not detect any mutations in GJB2 and SLC26A4 genes. CONCLUSION Our data indicated that mt-tRNAAla m.5601C>T and tRNALeu(CUN) 12311T>C mutations were associated with NSHL.
Collapse
Affiliation(s)
- Xuejiao Yu
- Department of Clinical LaboratoryQuzhou People's Hospitalthe Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhouChina
| | - Sheng Li
- Department of OtolaryngologyQuzhou People's Hospitalthe Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhouChina
| | - Yu Ding
- Central LaboratoryHangzhou First People’s HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
7
|
Rewiring cell signalling pathways in pathogenic mtDNA mutations. Trends Cell Biol 2021; 32:391-405. [PMID: 34836781 DOI: 10.1016/j.tcb.2021.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022]
Abstract
Mitochondria generate the energy to sustain cell viability and serve as a hub for cell signalling. Their own genome (mtDNA) encodes genes critical for oxidative phosphorylation. Mutations of mtDNA cause major disease and disability with a wide range of presentations and severity. We review here an emerging body of data suggesting that changes in cell metabolism and signalling pathways in response to the presence of mtDNA mutations play a key role in shaping disease presentation and progression. Understanding the impact of mtDNA mutations on cellular energy homeostasis and signalling pathways seems fundamental to identify novel therapeutic interventions with the potential to improve the prognosis for patients with primary mitochondrial disease.
Collapse
|
8
|
Bakare AB, Lesnefsky EJ, Iyer S. Leigh Syndrome: A Tale of Two Genomes. Front Physiol 2021; 12:693734. [PMID: 34456746 PMCID: PMC8385445 DOI: 10.3389/fphys.2021.693734] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022] Open
Abstract
Leigh syndrome is a rare, complex, and incurable early onset (typically infant or early childhood) mitochondrial disorder with both phenotypic and genetic heterogeneity. The heterogeneous nature of this disorder, based in part on the complexity of mitochondrial genetics, and the significant interactions between the nuclear and mitochondrial genomes has made it particularly challenging to research and develop therapies. This review article discusses some of the advances that have been made in the field to date. While the prognosis is poor with no current substantial treatment options, multiple studies are underway to understand the etiology, pathogenesis, and pathophysiology of Leigh syndrome. With advances in available research tools leading to a better understanding of the mitochondria in health and disease, there is hope for novel treatment options in the future.
Collapse
Affiliation(s)
- Ajibola B. Bakare
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Edward J. Lesnefsky
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Department of Physiology/Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Shilpa Iyer
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
9
|
Su X, Dautant A, Rak M, Godard F, Ezkurdia N, Bouhier M, Bietenhader M, Mueller DM, Kucharczyk R, di Rago JP, Tribouillard-Tanvier D. The pathogenic m.8993 T > G mutation in mitochondrial ATP6 gene prevents proton release from the subunit c-ring rotor of ATP synthase. Hum Mol Genet 2021; 30:381-392. [PMID: 33600551 DOI: 10.1093/hmg/ddab043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 02/05/2023] Open
Abstract
The human ATP synthase is an assembly of 29 subunits of 18 different types, of which only two (a and 8) are encoded in the mitochondrial genome. Subunit a, together with an oligomeric ring of c-subunit (c-ring), forms the proton pathway responsible for the transport of protons through the mitochondrial inner membrane, coupled to rotation of the c-ring and ATP synthesis. Neuromuscular diseases have been associated to a number of mutations in the gene encoding subunit a, ATP6. The most common, m.8993 T > G, leads to replacement of a strictly conserved leucine residue with arginine (aL156R). We previously showed that the equivalent mutation (aL173R) dramatically compromises respiratory growth of Saccharomyces cerevisiae and causes a 90% drop in the rate of mitochondrial ATP synthesis. Here, we isolated revertants from the aL173R strain that show improved respiratory growth. Four first-site reversions at codon 173 (aL173M, aL173S, aL173K and aL173W) and five second-site reversions at another codon (aR169M, aR169S, aA170P, aA170G and aI216S) were identified. Based on the atomic structures of yeast ATP synthase and the biochemical properties of the revertant strains, we propose that the aL173R mutation is responsible for unfavorable electrostatic interactions that prevent the release of protons from the c-ring into a channel from which protons move from the c-ring to the mitochondrial matrix. The results provide further evidence that yeast aL173 (and thus human aL156) optimizes the exit of protons from ATP synthase, but is not essential despite its strict evolutionary conservation.
Collapse
Affiliation(s)
- Xin Su
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Alain Dautant
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Malgorzata Rak
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - François Godard
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Nahia Ezkurdia
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Marine Bouhier
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | | | - David M Mueller
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 00090 Warsaw, Poland
| | | | | |
Collapse
|
10
|
Perry EA, Bennett CF, Luo C, Balsa E, Jedrychowski M, O'Malley KE, Latorre-Muro P, Ladley RP, Reda K, Wright PM, Gygi SP, Myers AG, Puigserver P. Tetracyclines promote survival and fitness in mitochondrial disease models. Nat Metab 2021; 3:33-42. [PMID: 33462515 PMCID: PMC7856165 DOI: 10.1038/s42255-020-00334-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial diseases (MDs) are a heterogeneous group of disorders resulting from mutations in nuclear or mitochondrial DNA genes encoding mitochondrial proteins1,2. MDs cause pathologies with severe tissue damage and ultimately death3,4. There are no cures for MDs and current treatments are only palliative5-7. Here we show that tetracyclines improve fitness of cultured MD cells and ameliorate disease in a mouse model of Leigh syndrome. To identify small molecules that prevent cellular damage and death under nutrient stress conditions, we conduct a chemical high-throughput screen with cells carrying human MD mutations and discover a series of antibiotics that maintain survival of various MD cells. We subsequently show that a sub-library of tetracycline analogues, including doxycycline, rescues cell death and inflammatory signatures in mutant cells through partial and selective inhibition of mitochondrial translation, resulting in an ATF4-independent mitohormetic response. Doxycycline treatment strongly promotes fitness and survival of Ndufs4-/- mice, a preclinical Leigh syndrome mouse model8. A proteomic analysis of brain tissue reveals that doxycycline treatment largely prevents neuronal death and the accumulation of neuroimmune and inflammatory proteins in Ndufs4-/- mice, indicating a potential causal role for these proteins in the brain pathology. Our findings suggest that tetracyclines deserve further evaluation as potential drugs for the treatment of MDs.
Collapse
Affiliation(s)
- Elizabeth A Perry
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Biological Sciences in Dental Medicine Program, Harvard School of Dental Medicine, Boston, MA, USA
| | - Christopher F Bennett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Chi Luo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Eduardo Balsa
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Mark Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Katherine E O'Malley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Richard Porter Ladley
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Kamar Reda
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Peter M Wright
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Andrew G Myers
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Su X, Rak M, Tetaud E, Godard F, Sardin E, Bouhier M, Gombeau K, Caetano-Anollés D, Salin B, Chen H, di Rago JP, Tribouillard-Tanvier D. Deregulating mitochondrial metabolite and ion transport has beneficial effects in yeast and human cellular models for NARP syndrome. Hum Mol Genet 2020; 28:3792-3804. [PMID: 31276579 DOI: 10.1093/hmg/ddz160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 11/14/2022] Open
Abstract
The m.8993T>G mutation of the mitochondrial MT-ATP6 gene has been associated with numerous cases of neuropathy, ataxia and retinitis pigmentosa and maternally inherited Leigh syndrome, which are diseases known to result from abnormalities affecting mitochondrial energy transduction. We previously reported that an equivalent point mutation severely compromised proton transport through the ATP synthase membrane domain (FO) in Saccharomyces cerevisiae and reduced the content of cytochrome c oxidase (Complex IV or COX) by 80%. Herein, we report that overexpression of the mitochondrial oxodicarboxylate carrier (Odc1p) considerably increases Complex IV abundance and tricarboxylic acid-mediated substrate-level phosphorylation of ADP coupled to conversion of α-ketoglutarate into succinate in m.8993T>G yeast. Consistently in m.8993T>G yeast cells, the retrograde signaling pathway was found to be strongly induced in order to preserve α-ketoglutarate production; when Odc1p was overexpressed, this stress pathway returned to an almost basal activity. Similar beneficial effects were induced by a partial uncoupling of the mitochondrial membrane with the proton ionophore, cyanide m-chlorophenyl hydrazone. This chemical considerably improved the glutamine-based, respiration-dependent growth of human cytoplasmic hybrid cells that are homoplasmic for the m.8993T>G mutation. These findings shed light on the interdependence between ATP synthase and Complex IV biogenesis, which could lay the groundwork for the creation of nutritional or metabolic interventions for attenuating the effects of mtDNA mutations.
Collapse
Affiliation(s)
- Xin Su
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Malgorzata Rak
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Emmanuel Tetaud
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - François Godard
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Elodie Sardin
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Marine Bouhier
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Kewin Gombeau
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Derek Caetano-Anollés
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Bénédicte Salin
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Huimei Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Déborah Tribouillard-Tanvier
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France.,INSERM, Paris, France
| |
Collapse
|
12
|
McMillan RP, Stewart S, Budnick JA, Caswell CC, Hulver MW, Mukherjee K, Srivastava S. Quantitative Variation in m.3243A > G Mutation Produce Discrete Changes in Energy Metabolism. Sci Rep 2019; 9:5752. [PMID: 30962477 PMCID: PMC6453956 DOI: 10.1038/s41598-019-42262-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/18/2019] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial DNA (mtDNA) 3243A > G tRNALeu(UUR) heteroplasmic mutation (m.3243A > G) exhibits clinically heterogeneous phenotypes. While the high mtDNA heteroplasmy exceeding a critical threshold causes mitochondrial encephalomyopathy, lactic acidosis with stroke-like episodes (MELAS) syndrome, the low mtDNA heteroplasmy causes maternally inherited diabetes with or without deafness (MIDD) syndrome. How quantitative differences in mtDNA heteroplasmy produces distinct pathological states has remained elusive. Here we show that despite striking similarities in the energy metabolic gene expression signature, the mitochondrial bioenergetics, biogenesis and fuel catabolic functions are distinct in cells harboring low or high levels of the m.3243 A > G mutation compared to wild type cells. We further demonstrate that the low heteroplasmic mutant cells exhibit a coordinate induction of transcriptional regulators of the mitochondrial biogenesis, glucose and fatty acid metabolism pathways that lack in near homoplasmic mutant cells compared to wild type cells. Altogether, these results shed new biological insights on the potential mechanisms by which low mtDNA heteroplasmy may progressively cause diabetes mellitus.
Collapse
Affiliation(s)
- Ryan P McMillan
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, 24061, USA.,Metabolic Phenotyping Core at Virginia Tech, Blacksburg, VA, 24061, USA
| | - Sidney Stewart
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA.,Edward Via College of Osteopathic Medicine, Auburn, AL, 36832, USA
| | - James A Budnick
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Clayton C Caswell
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Matthew W Hulver
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, 24061, USA.,Metabolic Phenotyping Core at Virginia Tech, Blacksburg, VA, 24061, USA
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Sarika Srivastava
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA.
| |
Collapse
|
13
|
Otten ABC, Sallevelt SCEH, Carling PJ, Dreesen JCFM, Drüsedau M, Spierts S, Paulussen ADC, de Die-Smulders CEM, Herbert M, Chinnery PF, Samuels DC, Lindsey P, Smeets HJM. Mutation-specific effects in germline transmission of pathogenic mtDNA variants. Hum Reprod 2019; 33:1331-1341. [PMID: 29850888 DOI: 10.1093/humrep/dey114] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 05/15/2018] [Indexed: 12/31/2022] Open
Abstract
STUDY QUESTION Does germline selection (besides random genetic drift) play a role during the transmission of heteroplasmic pathogenic mitochondrial DNA (mtDNA) mutations in humans? SUMMARY ANSWER We conclude that inheritance of mtDNA is mutation-specific and governed by a combination of random genetic drift and negative and/or positive selection. WHAT IS KNOWN ALREADY mtDNA inherits maternally through a genetic bottleneck, but the underlying mechanisms are largely unknown. Although random genetic drift is recognized as an important mechanism, selection mechanisms are thought to play a role as well. STUDY DESIGN, SIZE, DURATION We determined the mtDNA mutation loads in 160 available oocytes, zygotes, and blastomeres of five carriers of the m.3243A>G mutation, one carrier of the m.8993T>G mutation, and one carrier of the m.14487T>C mutation. PARTICIPANTS/MATERIALS, SETTING, METHODS Mutation loads were determined in PGD samples using PCR assays and analysed mathematically to test for random sampling effects. In addition, a meta-analysis has been performed on mutation load transmission data in the literature to confirm the results of the PGD samples. MAIN RESULTS AND THE ROLE OF CHANCE By applying the Kimura distribution, which assumes random mechanisms, we found that mtDNA segregations patterns could be explained by variable bottleneck sizes among all our carriers (moment estimates ranging from 10 to 145). Marked differences in the bottleneck size would determine the probability that a carrier produces offspring with mutations markedly different than her own. We investigated whether bottleneck sizes might also be influenced by non-random mechanisms. We noted a consistent absence of high mutation loads in all our m.3243A>G carriers, indicating non-random events. To test this, we fitted a standard and a truncated Kimura distribution to the m.3243A>G segregation data. A Kimura distribution truncated at 76.5% heteroplasmy has a significantly better fit (P-value = 0.005) than the standard Kimura distribution. For the m.8993T>G mutation, we suspect a skewed mutation load distribution in the offspring. To test this hypothesis, we performed a meta-analysis on published blood mutation levels of offspring-mother (O-M) transmission for the m.3243A>G and m.8993T>G mutations. This analysis revealed some evidence that the O-M ratios for the m.8993T>G mutation are different from zero (P-value <0.001), while for the m.3243A>G mutation there was little evidence that the O-M ratios are non-zero. Lastly, for the m.14487T>G mutation, where the whole range of mutation loads was represented, we found no indications for selective events during its transmission. LARGE SCALE DATA All data are included in the Results section of this article. LIMITATIONS, REASON FOR CAUTION The availability of human material for the mutations is scarce, requiring additional samples to confirm our findings. WIDER IMPLICATIONS OF THE FINDINGS Our data show that non-random mechanisms are involved during mtDNA segregation. We aimed to provide the mechanisms underlying these selection events. One explanation for selection against high m.3243A>G mutation loads could be, as previously reported, a pronounced oxidative phosphorylation (OXPHOS) deficiency at high mutation loads, which prohibits oogenesis (e.g. progression through meiosis). No maximum mutation loads of the m.8993T>G mutation seem to exist, as the OXPHOS deficiency is less severe, even at levels close to 100%. In contrast, high mutation loads seem to be favoured, probably because they lead to an increased mitochondrial membrane potential (MMP), a hallmark on which healthy mitochondria are being selected. This hypothesis could provide a possible explanation for the skewed segregation pattern observed. Our findings are corroborated by the segregation pattern of the m.14487T>C mutation, which does not affect OXPHOS and MMP significantly, and its transmission is therefore predominantly determined by random genetic drift. Our conclusion is that mutation-specific selection mechanisms occur during mtDNA inheritance, which has implications for PGD and mitochondrial replacement therapy. STUDY FUNDING/COMPETING INTEREST(S) This work has been funded by GROW-School of Oncology and Developmental Biology. The authors declare no competing interests.
Collapse
Affiliation(s)
- Auke B C Otten
- Department of Genetics and Cell Biology, School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, the Netherlands
| | - Suzanne C E H Sallevelt
- Department of Clinical Genetics, Maastricht University Medical Centre+ (MUMC+), Maastricht, the Netherlands
| | - Phillippa J Carling
- Department of Neuroscience, Sheffield institute for translational neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Joseph C F M Dreesen
- Department of Clinical Genetics, Maastricht University Medical Centre+ (MUMC+), Maastricht, the Netherlands
| | - Marion Drüsedau
- Department of Clinical Genetics, Maastricht University Medical Centre+ (MUMC+), Maastricht, the Netherlands
| | - Sabine Spierts
- Department of Clinical Genetics, Maastricht University Medical Centre+ (MUMC+), Maastricht, the Netherlands
| | - Aimee D C Paulussen
- Department of Clinical Genetics, Maastricht University Medical Centre+ (MUMC+), Maastricht, the Netherlands
| | | | - Mary Herbert
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Patrick F Chinnery
- Department of Clinical Neuroscience, School of Clinical Medicine, University of Cambridge, Cambridge, UK.,Medical Research Council Mitochondrial Biology Unit, Cambridge, Biomedical Campus, Cambridge, UK
| | - David C Samuels
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Patrick Lindsey
- Department of Genetics and Cell Biology, School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, the Netherlands
| | - Hubert J M Smeets
- Department of Genetics and Cell Biology, School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
14
|
Cybrid Models of Pathological Cell Processes in Different Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4647214. [PMID: 29983856 PMCID: PMC6015674 DOI: 10.1155/2018/4647214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/26/2017] [Accepted: 05/02/2018] [Indexed: 11/22/2022]
Abstract
Modelling of pathological processes in cells is one of the most sought-after technologies of the 21st century. Using models of such processes may help to study the pathogenetic mechanisms of various diseases. The aim of the present study was to analyse the literature, dedicated to obtaining and investigating cybrid models. Besides, the possibility of modeling pathological processes in cells and treatment of different diseases using the models was evaluated. Methods of obtaining Rho0 cell cultures showed that, during their creation, mainly a standard technique, based on the use of mtDNA replication inhibitors (ethidium bromide), was applied. Cybrid lines were usually obtained by PEG fusion. Most frequently, platelets acted as donors of mitochondria. According to the analysis of the literature data, cybrid cell cultures can be modeled to study the dysfunction of the mitochondrial genome and molecular cellular pathological processes. Such models can be very promising for the development of therapeutic approaches to the treatment of various human diseases.
Collapse
|
15
|
Uittenbogaard M, Brantner CA, Fang Z, Wong LJC, Gropman A, Chiaramello A. Novel insights into the functional metabolic impact of an apparent de novo m.8993T>G variant in the MT-ATP6 gene associated with maternally inherited form of Leigh Syndrome. Mol Genet Metab 2018; 124:71-81. [PMID: 29602698 PMCID: PMC6016550 DOI: 10.1016/j.ymgme.2018.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 01/02/2023]
Abstract
In this study, we report a novel perpective of metabolic consequences for the m.8993T>G variant using fibroblasts from a proband with clinical symptoms compatible with Maternally Inherited Leigh Syndrome (MILS). Definitive diagnosis was corroborated by mitochondrial DNA testing for the pathogenic variant m.8993T>G in MT-ATP6 subunit by Sanger sequencing. The long-range PCR followed by massively parallel sequencing method detected the near homoplasmic m.8993T>G variant at 83% in the proband's fibroblasts and at 0.4% in the mother's fibroblasts. Our results are compatible with very low levels of germline heteroplasmy or an apparent de novo mutation. Our mitochondrial morphometric analysis reveals severe defects in mitochondrial cristae structure in the proband's fibroblasts. Our live-cell mitochondrial respiratory analyses show impaired oxidative phosphorylation with decreased spare respiratory capacity in response to energy stress in the proband's fibroblasts. We detected a diminished glycolysis with a lessened glycolytic capacity and reserve, revealing a stunted ability to switch to glycolysis upon full inhibition of OXPHOS activities. This dysregulated energy reprogramming results in a defective interplay between OXPHOS and glycolysis during an energy crisis. Our study sheds light on the potential pathophysiologic mechanism leading to chronic energy crisis in this MILS patient harboring the m.8993T>G variant.
Collapse
Affiliation(s)
- Martine Uittenbogaard
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Christine A Brantner
- GW Nanofabrication and Imaging Center, Office of the Vice President for Research, George Washington University, Washington, DC 20052, USA
| | - ZiShui Fang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lee-Jun C Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrea Gropman
- Children's National Medical Center, Division of Neurogenetics and Developmental Pediatrics, Washington, DC 20010, USA
| | - Anne Chiaramello
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| |
Collapse
|
16
|
Dautant A, Meier T, Hahn A, Tribouillard-Tanvier D, di Rago JP, Kucharczyk R. ATP Synthase Diseases of Mitochondrial Genetic Origin. Front Physiol 2018; 9:329. [PMID: 29670542 PMCID: PMC5893901 DOI: 10.3389/fphys.2018.00329] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/15/2018] [Indexed: 01/30/2023] Open
Abstract
Devastating human neuromuscular disorders have been associated to defects in the ATP synthase. This enzyme is found in the inner mitochondrial membrane and catalyzes the last step in oxidative phosphorylation, which provides aerobic eukaryotes with ATP. With the advent of structures of complete ATP synthases, and the availability of genetically approachable systems such as the yeast Saccharomyces cerevisiae, we can begin to understand these molecular machines and their associated defects at the molecular level. In this review, we describe what is known about the clinical syndromes induced by 58 different mutations found in the mitochondrial genes encoding membrane subunits 8 and a of ATP synthase, and evaluate their functional consequences with respect to recently described cryo-EM structures.
Collapse
Affiliation(s)
- Alain Dautant
- Institut de Biochimie et Génétique Cellulaires, Centre National de la Recherche Scientifique UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Thomas Meier
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Alexander Hahn
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Frankfurt, Germany
| | - Déborah Tribouillard-Tanvier
- Institut de Biochimie et Génétique Cellulaires, Centre National de la Recherche Scientifique UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, Centre National de la Recherche Scientifique UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
17
|
Weerasinghe CAL, Bui BHT, Vu TT, Nguyen HLT, Phung BK, Nguyen VM, Pham VA, Cao VH, Phan TN. Leigh syndrome T8993C mitochondrial DNA mutation: Heteroplasmy and the first clinical presentation in a Vietnamese family. Mol Med Rep 2018; 17:6919-6925. [PMID: 29512743 DOI: 10.3892/mmr.2018.8670] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/27/2018] [Indexed: 11/05/2022] Open
Abstract
Leigh syndrome is a rare inherited, heterogeneous and progressive neurometabolic disorder that is mainly caused by specific mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). The present study reported a case of childhood Leigh syndrome with a point mutation at bp 8,993 in the mitochondrial ATPase6 gene. A 21‑month‑old male child had developed epilepsy, muscular weakness and vomiting, which was accompanied by high fever. Magnetic resonance imaging indicated typical characteristics of Leigh syndrome, including a symmetric abnormal signal in the dorsal medulla oblongata and Sylvian fissure enlargement in association with an abnormal signal in the periventricular white matter and in the putamina and caudate heads. The diagnosis was further supported with genetic tests including polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), sequencing, and quantitative PCR. The patient was found to carry a mitochondrial T8993C (m.T8993C) mutation in peripheral blood with 94.00±1.34% heteroplasmy. Eight of his relatives were also subjected to quantification of the m.T8993C mutation. The percentages of heteroplasmy in samples taken from the grandmother, mother, aunt, cousin 1, and cousin 2 were 16.33±1.67, 66.81±0.85, 71.66±3.22, 87.00±1.79, and 91.24±2.50%, respectively. The mutation was not found in samples taken from the father, the husband of the aunt, or the grandfather of the patient. The obtained data showed that the mutation was maternally inherited and accumulated through generations. Even though the heteroplasmy levels of his mother, aunt, cousin 1, and cousin 2 were relatively high (66.81‑91.24%), they remained asymptomatic, indicating that the threshold at which this mutation shows effects is high. To the best of our knowledge, this is the first report of a case of Leigh syndrome in a Vietnamese individual harboring a mtDNA mutation at the 8,993 bp site, and showing a correlation between the heteroplasmy and clinical phenotype. These findings may be useful in helping to improve the clinical diagnosis and treatment of Leigh syndrome.
Collapse
Affiliation(s)
| | - Bich-Hong Thi Bui
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Hanoi 100000, Vietnam
| | - Thu Thi Vu
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Hanoi 100000, Vietnam
| | - Hong-Loan Thi Nguyen
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Hanoi 100000, Vietnam
| | - Bao-Khanh Phung
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Hanoi 100000, Vietnam
| | - Van-Minh Nguyen
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Hanoi 100000, Vietnam
| | - Van-Anh Pham
- Department of Neurology, Vietnam National Children's Hospital, Hanoi 100000, Vietnam
| | - Vu-Hung Cao
- Department of Neurology, Vietnam National Children's Hospital, Hanoi 100000, Vietnam
| | - Tuan-Nghia Phan
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Hanoi 100000, Vietnam
| |
Collapse
|
18
|
Yin C, He D, Chen S, Tan X, Sang N. Exogenous pyruvate facilitates cancer cell adaptation to hypoxia by serving as an oxygen surrogate. Oncotarget 2018; 7:47494-47510. [PMID: 27374086 PMCID: PMC5216956 DOI: 10.18632/oncotarget.10202] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/09/2016] [Indexed: 12/25/2022] Open
Abstract
Molecular oxygen is the final electron acceptor in cellular metabolism but cancer cells often become adaptive to hypoxia, which promotes resistance to chemotherapy and radiation. The reduction of endogenous glycolytic pyruvate to lactate is known as an adaptive strategy for hypoxic cells. Whether exogenous pyruvate is required for hypoxic cell proliferation by either serving as an electron acceptor or a biosynthetic substrate remains unclear. By using both hypoxic and ρ0 cells defective in electron transfer chain, we show that exogenous pyruvate is required to sustain proliferation of both cancer and non-cancer cells that cannot utilize oxygen. Particularly, we show that absence of pyruvate led to glycolysis inhibition and AMPK activation along with decreased NAD+ levels in ρ0 cells; and exogenous pyruvate increases lactate yield, elevates NAD+/NADH ratio and suppresses AMPK activation. Knockdown of lactate dehydrogenase significantly inhibits the rescuing effects of exogenous pyruvate. In contrast, none of pyruvate-derived metabolites tested (including acetyl-CoA, α-ketoglutarate, succinate and alanine) can replace pyruvate in supporting ρ0 cell proliferation. Knockdown of pyruvate carboxylase, pyruvate dehydrogenase and citrate synthase do not impair exogenous pyruvate to rescue ρ0 cells. Importantly, we show that exogenous pyruvate relieves ATP insufficiency and mTOR inhibition and promotes proliferation of hypoxic cells, and that well-oxygenated cells release pyruvate, providing a potential in vivo source of pyruvate. Taken together, our data support a novel pyruvate cycle model in which oxygenated cells release pyruvate for hypoxic cells as an oxygen surrogate. The pyruvate cycle may be targeted as a new therapy of hypoxic cancers.
Collapse
Affiliation(s)
- Chengqian Yin
- Department of Biology, Drexel University College of Arts and Sciences, Philadelphia, Pennsylvania, USA
| | - Dan He
- Department of Biology, Drexel University College of Arts and Sciences, Philadelphia, Pennsylvania, USA
| | - Shuyang Chen
- Department of Biology, Drexel University College of Arts and Sciences, Philadelphia, Pennsylvania, USA.,Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Xiaoling Tan
- Department of High Altitude Physiology, the Third Military Medical University, Chongqing, China
| | - Nianli Sang
- Department of Biology, Drexel University College of Arts and Sciences, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Zhou M, Wang M, Xue L, Lin Z, He Q, Shi W, Chen Y, Jin X, Li H, Jiang P, Guan MX. A hypertension-associated mitochondrial DNA mutation alters the tertiary interaction and function of tRNA Leu(UUR). J Biol Chem 2017; 292:13934-13946. [PMID: 28679533 DOI: 10.1074/jbc.m117.787028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/03/2017] [Indexed: 01/10/2023] Open
Abstract
Several mitochondrial tRNA mutations have been associated with hypertension, but their pathophysiology remains poorly understood. In this report, we identified a novel homoplasmic 3253T→C mutation in the mitochondrial tRNALeu(UUR) gene in a Han Chinese family with maternally inherited hypertension. The m.3253T→C mutation affected a highly conserved uridine at position 22 at the D-stem of tRNALeu(UUR), introducing a G-C base pairing (G13-C22) at the D-stem and a tertiary base pairing (C22-G46) between the D-stem and the variable loop. We therefore hypothesized that the m.3253T→C mutation altered both the structure and function of tRNALeu(UUR) Using cytoplasmic hybrid (cybrid) cell lines derived from this Chinese family, we demonstrated that the m.3253T→C mutation perturbed the conformation and stability of tRNALeu(UUR), as suggested by faster electrophoretic mobility of mutated tRNA relative to the wild-type molecule. Northern blot analysis revealed an ∼45% decrease in the steady-state level of tRNALeu(UUR) in the mutant cell lines carrying the m.3253T→C mutation, as compared with control cell lines. Moreover, an ∼35% reduction in aminoacylation efficiency of tRNALeu(UUR) was observed in the m.3253T→C mutant cells. These alterations in tRNALeu(UUR) metabolism impaired mitochondrial translation, especially for those polypeptides with a high proportion of Leu(UUR) codons, such as ND6. Furthermore, we demonstrated that the m.3253T→C mutation decreased the activities of mitochondrial complexes I and V, markedly diminished mitochondrial ATP levels and membrane potential, and increased the production of reactive oxygen species in the cells. In conclusion, our findings may provide new insights into the pathophysiology of maternally inherited hypertension.
Collapse
Affiliation(s)
- Mi Zhou
- From the Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China,; Institute of Genetics and Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Meng Wang
- From the Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China,; Institute of Genetics and Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ling Xue
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou 325600, Zhejiang, China
| | - Zhi Lin
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou 325600, Zhejiang, China
| | - Qiufen He
- Institute of Genetics and Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wenwen Shi
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou 325600, Zhejiang, China
| | - Yaru Chen
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou 325600, Zhejiang, China
| | - Xiaofen Jin
- Institute of Genetics and Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Haiying Li
- Department of Cardiology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325600, Zhejiang, China
| | - Pingping Jiang
- From the Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China,; Institute of Genetics and Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Min-Xin Guan
- From the Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China,; Institute of Genetics and Zhejiang University, Hangzhou 310058, Zhejiang, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, Zhejiang, China,; Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
20
|
Boominathan A, Vanhoozer S, Basisty N, Powers K, Crampton AL, Wang X, Friedricks N, Schilling B, Brand MD, O'Connor MS. Stable nuclear expression of ATP8 and ATP6 genes rescues a mtDNA Complex V null mutant. Nucleic Acids Res 2016; 44:9342-9357. [PMID: 27596602 PMCID: PMC5100594 DOI: 10.1093/nar/gkw756] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 12/29/2022] Open
Abstract
We explore the possibility of re-engineering mitochondrial genes and expressing them from the nucleus as an approach to rescue defects arising from mitochondrial DNA mutations. We have used a patient cybrid cell line with a single point mutation in the overlap region of the ATP8 and ATP6 genes of the human mitochondrial genome. These cells are null for the ATP8 protein, have significantly lowered ATP6 protein levels and no Complex V function. Nuclear expression of only the ATP8 gene with the ATP5G1 mitochondrial targeting sequence appended restored viability on Krebs cycle substrates and ATP synthesis capabilities but, failed to restore ATP hydrolysis and was insensitive to various inhibitors of oxidative phosphorylation. Co-expressing both ATP8 and ATP6 genes under similar conditions resulted in stable protein expression leading to successful integration into Complex V of the oxidative phosphorylation machinery. Tests for ATP hydrolysis / synthesis, oxygen consumption, glycolytic metabolism and viability all indicate a significant functional rescue of the mutant phenotype (including re-assembly of Complex V) following stable co-expression of ATP8 and ATP6 Thus, we report the stable allotopic expression, import and function of two mitochondria encoded genes, ATP8 and ATP6, resulting in simultaneous rescue of the loss of both mitochondrial proteins.
Collapse
Affiliation(s)
| | - Shon Vanhoozer
- SENS Research Foundation Research Center, Mountain View, CA 94041, USA
| | - Nathan Basisty
- Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Kathleen Powers
- SENS Research Foundation Research Center, Mountain View, CA 94041, USA
| | | | - Xiaobin Wang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Natalie Friedricks
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | - Martin D Brand
- Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | | |
Collapse
|
21
|
López-Gallardo E, Llobet L, Emperador S, Montoya J, Ruiz-Pesini E. Effects of Tributyltin Chloride on Cybrids with or without an ATP Synthase Pathologic Mutation. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1399-405. [PMID: 27129022 PMCID: PMC5010394 DOI: 10.1289/ehp182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/27/2015] [Accepted: 04/13/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND The oxidative phosphorylation system (OXPHOS) includes nuclear chromosome (nDNA)- and mitochondrial DNA (mtDNA)-encoded polypeptides. Many rare OXPHOS disorders, such as striatal necrosis syndromes, are caused by genetic mutations. Despite important advances in sequencing procedures, causative mutations remain undetected in some patients. It is possible that etiologic factors, such as environmental toxins, are the cause of these cases. Indeed, the inhibition of a particular enzyme by a poison could imitate the biochemical effects of pathological mutations in that enzyme. Moreover, environmental factors can modify the penetrance or expressivity of pathological mutations. OBJECTIVES We studied the interaction between mitochondrially encoded ATP synthase 6 (p.MT-ATP6) subunit and an environmental exposure that may contribute phenotypic differences between healthy individuals and patients suffering from striatal necrosis syndromes or other mitochondriopathies. METHODS We analyzed the effects of the ATP synthase inhibitor tributyltin chloride (TBTC), a widely distributed environmental factor that contaminates human food and water, on transmitochondrial cell lines with or without an ATP synthase mutation that causes striatal necrosis syndrome. Doses were selected based on TBTC concentrations previously reported in human whole blood samples. RESULTS TBTC modified the phenotypic effects caused by a pathological mtDNA mutation. Interestingly, wild-type cells treated with this xenobiotic showed similar bioenergetics when compared with the untreated mutated cells. CONCLUSIONS In addition to the known genetic causes, our findings suggest that environmental exposure to TBTC might contribute to the etiology of striatal necrosis syndromes. CITATION López-Gallardo E, Llobet L, Emperador S, Montoya J, Ruiz-Pesini E. 2016. Effects of tributyltin chloride on cybrids with or without an ATP synthase pathologic mutation. Environ Health Perspect 124:1399-1405; http://dx.doi.org/10.1289/EHP182.
Collapse
Affiliation(s)
- Ester López-Gallardo
- Departamento de Bioquímica, Biología Molecular y Celular,
- Instituto de Investigación Sanitaria de Aragón,
- CIBER de Enfermedades Raras (CIBERER), and
| | - Laura Llobet
- Departamento de Bioquímica, Biología Molecular y Celular,
- Instituto de Investigación Sanitaria de Aragón,
- CIBER de Enfermedades Raras (CIBERER), and
| | - Sonia Emperador
- Departamento de Bioquímica, Biología Molecular y Celular,
- Instituto de Investigación Sanitaria de Aragón,
- CIBER de Enfermedades Raras (CIBERER), and
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular,
- Instituto de Investigación Sanitaria de Aragón,
- CIBER de Enfermedades Raras (CIBERER), and
- Address correspondence to E. Ruiz-Pesini, Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza. C/ Miguel Servet, 177. 50013-Zaragoza, Spain. Telephone: 34-976761640. E-mail: , or J. Montoya, Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza. C/ Miguel Servet, 177. 50013-Zaragoza, Spain. Telephone: 34-976761640. E-mail:
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular,
- Instituto de Investigación Sanitaria de Aragón,
- CIBER de Enfermedades Raras (CIBERER), and
- Fundación ARAID, Universidad de Zaragoza, Zaragoza, Spain
- Address correspondence to E. Ruiz-Pesini, Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza. C/ Miguel Servet, 177. 50013-Zaragoza, Spain. Telephone: 34-976761640. E-mail: , or J. Montoya, Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza. C/ Miguel Servet, 177. 50013-Zaragoza, Spain. Telephone: 34-976761640. E-mail:
| |
Collapse
|
22
|
Wang M, Peng Y, Zheng J, Zheng B, Jin X, Liu H, Wang Y, Tang X, Huang T, Jiang P, Guan MX. A deafness-associated tRNAAsp mutation alters the m1G37 modification, aminoacylation and stability of tRNAAsp and mitochondrial function. Nucleic Acids Res 2016; 44:10974-10985. [PMID: 27536005 PMCID: PMC5159531 DOI: 10.1093/nar/gkw726] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 08/05/2016] [Indexed: 02/04/2023] Open
Abstract
In this report, we investigated the pathogenic mechanism underlying the deafness-associated mitochondrial(mt) tRNAAsp 7551A > G mutation. The m.7551A > G mutation is localized at a highly conserved nucleotide(A37), adjacent (3′) to the anticodon, which is important for the fidelity of codon recognition and stabilization in functional tRNAs. It was anticipated that the m.7551A > G mutation altered the structure and function of mt-tRNAAsp. The primer extension assay demonstrated that the m.7551A > G mutation created the m1G37 modification of mt-tRNAAsp. Using cybrid cell lines generated by transferring mitochondria from lymphoblastoid cell lines derived from a Chinese family into mitochondrial DNA(mtDNA)-less (ρo) cells, we demonstrated the significant decreases in the efficiency of aminoacylation and steady-state level of mt-tRNAAsp in mutant cybrids, compared with control cybrids. A failure in metabolism of mt-tRNAAsp caused the variable reductions in mtDNA-encoded polypeptides in mutant cybrids. Impaired mitochondrial translation led to the respiratory phenotype in mutant cybrids. The respiratory deficiency lowed mitochondrial adenosine triphosphate production and increased the production of oxidative reactive species in mutant cybrids. Our data demonstrated that mitochondrial dysfunctions caused by the m.7551A > G mutation are associated with deafness. Our findings may provide new insights into the pathophysiology of maternally transmitted deafness that was manifested by altered nucleotide modification of mitochondrial tRNA.
Collapse
Affiliation(s)
- Meng Wang
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yanyan Peng
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jing Zheng
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Binjiao Zheng
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Xiaofen Jin
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Hao Liu
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yong Wang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaowen Tang
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Pingping Jiang
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China .,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China .,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
23
|
Wang M, Liu H, Zheng J, Chen B, Zhou M, Fan W, Wang H, Liang X, Zhou X, Eriani G, Jiang P, Guan MX. A Deafness- and Diabetes-associated tRNA Mutation Causes Deficient Pseudouridinylation at Position 55 in tRNAGlu and Mitochondrial Dysfunction. J Biol Chem 2016; 291:21029-21041. [PMID: 27519417 DOI: 10.1074/jbc.m116.739482] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Indexed: 02/03/2023] Open
Abstract
Several mitochondrial tRNA mutations have been associated with maternally inherited diabetes and deafness. However, the pathophysiology of these tRNA mutations remains poorly understood. In this report, we identified the novel homoplasmic 14692A→G mutation in the mitochondrial tRNAGlu gene among three Han Chinese families with maternally inherited diabetes and deafness. The m.14692A→G mutation affected a highly conserved uridine at position 55 of the TΨC loop of tRNAGlu The uridine is modified to pseudouridine (Ψ55), which plays an important role in the structure and function of this tRNA. Using lymphoblastoid cell lines derived from a Chinese family, we demonstrated that the m.14692A→G mutation caused loss of Ψ55 modification and increased angiogenin-mediated endonucleolytic cleavage in mutant tRNAGlu The destabilization of base-pairing (18A-Ψ55) caused by the m.14692A→G mutation perturbed the conformation and stability of tRNAGlu An approximately 65% decrease in the steady-state level of tRNAGlu was observed in mutant cells compared with control cells. A failure in tRNAGlu metabolism impaired mitochondrial translation, especially for polypeptides with a high proportion of glutamic acid codons such as ND1, ND6, and CO2 in mutant cells. An impairment of mitochondrial translation caused defective respiratory capacity, especially reducing the activities of complexes I and IV. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These mitochondrial dysfunctions caused an increasing production of reactive oxygen species in the mutant cells. Our findings may provide new insights into the pathophysiology of maternally inherited diabetes and deafness, which is primarily manifested by the deficient nucleotide modification of mitochondrial tRNAGlu.
Collapse
Affiliation(s)
- Meng Wang
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Hao Liu
- the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Jing Zheng
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Bobei Chen
- the Department of Otolaryngology, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035, the Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Mi Zhou
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Wenlu Fan
- the Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Hen Wang
- the Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Xiaoyang Liang
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Xiaolong Zhou
- the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China 200031, and
| | - Gilbert Eriani
- the Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg, France
| | - Pingping Jiang
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Min-Xin Guan
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and Joining Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, Zhejiang, China 310058,
| |
Collapse
|
24
|
Alteration of structure and function of ATP synthase and cytochrome c oxidase by lack of Fo-a and Cox3 subunits caused by mitochondrial DNA 9205delTA mutation. Biochem J 2015; 466:601-11. [PMID: 25588698 DOI: 10.1042/bj20141462] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mutations in the MT-ATP6 gene are frequent causes of severe mitochondrial disorders. Typically, these are missense mutations, but another type is represented by the 9205delTA microdeletion, which removes the stop codon of the MT-ATP6 gene and affects the cleavage site in the MT-ATP8/MT-ATP6/MT-CO3 polycistronic transcript. This interferes with the processing of mRNAs for the Atp6 (Fo-a) subunit of ATP synthase and the Cox3 subunit of cytochrome c oxidase (COX). Two cases described so far presented with strikingly different clinical phenotypes-mild transient lactic acidosis or fatal encephalopathy. To gain more insight into the pathogenic mechanism, we prepared 9205delTA cybrids with mutation load ranging between 52 and 99% and investigated changes in the structure and function of ATP synthase and the COX. We found that 9205delTA mutation strongly reduces the levels of both Fo-a and Cox3 proteins. Lack of Fo-a alters the structure but not the content of ATP synthase, which assembles into a labile, ∼60 kDa smaller, complex retaining ATP hydrolytic activity but which is unable to synthesize ATP. In contrast, lack of Cox3 limits the biosynthesis of COX but does not alter the structure of the enzyme. Consequently, the diminished mitochondrial content of COX and non-functional ATP synthase prevent most mitochondrial ATP production. The biochemical effects caused by the 9205delTA microdeletion displayed a pronounced threshold effect above ∼90% mutation heteroplasmy. We observed a linear relationship between the decrease in subunit Fo-a or Cox3 content and the functional presentation of the defect. Therefore we conclude that the threshold effect originated from a gene-protein level.
Collapse
|
25
|
Xu T, Pagadala V, Mueller DM. Understanding structure, function, and mutations in the mitochondrial ATP synthase. MICROBIAL CELL 2015; 2:105-125. [PMID: 25938092 PMCID: PMC4415626 DOI: 10.15698/mic2015.04.197] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs) in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs.
Collapse
Affiliation(s)
- Ting Xu
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064
| | - Vijayakanth Pagadala
- Department of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC
| | - David M Mueller
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064
| |
Collapse
|
26
|
Aminoglycoside stress together with the 12S rRNA 1494C>T mutation leads to mitophagy. PLoS One 2014; 9:e114650. [PMID: 25474306 PMCID: PMC4256443 DOI: 10.1371/journal.pone.0114650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/12/2014] [Indexed: 12/16/2022] Open
Abstract
Aminoglycosides as modifying factors modulated the phenotypic manifestation of mitochondrial rRNA mutations and the incomplete penetrance of hearing loss. In this report, using cybrids harboring the m.1494C>T mutation, we showed that gentamycin aggravated mitochondrial dysfunction in a combination of the m.1494C>T mutation. The m.1494C>T mutation was responsible for the dramatic reduction in three mtDNA-encoded proteins of H-strand, with the average of 39% reduction, except of the MT-ND6 protein, accompanied with 21% reduction of ATP production and increase in mitochondrial reactive oxygen species, compared with those of control cybrids. After exposure to gentamycin, 35% reduction of mitochondrial ATP production was observed in mutant cybrids with a marked decrease of the mitochondrial membrane potential. More excessive cellular reactive oxygen species was detected with stimulus of gentamycin than those in mutant cells. Under gentamycin and m.1494C>T stress together, more dysfunctional mitochondria were forced to fuse and exhibited mitophagy via up-regulated LC3-B, as a compensatory protective response to try to optimize mitochondrial function, rather than undergo apoptosis. These findings may provide valuable information to further understand of mechanistic link between mitochondrial rRNA mutation, toxicity of AGs and hearing loss.
Collapse
|
27
|
Torrell H, Salas A, Abasolo N, Morén C, Garrabou G, Valero J, Alonso Y, Vilella E, Costas J, Martorell L. Mitochondrial DNA (mtDNA) variants in the European haplogroups HV, JT, and U do not have a major role in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:607-17. [PMID: 25132006 DOI: 10.1002/ajmg.b.32264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/18/2014] [Indexed: 12/17/2022]
Abstract
It has been reported that certain genetic factors involved in schizophrenia could be located in the mitochondrial DNA (mtDNA). Therefore, we hypothesized that mtDNA mutations and/or variants would be present in schizophrenia patients and may be related to schizophrenia characteristics and mitochondrial function. This study was performed in three steps: (1) identification of pathogenic mutations and variants in 14 schizophrenia patients with an apparent maternal inheritance of the disease by sequencing the entire mtDNA; (2) case-control association study of 23 variants identified in step 1 (16 missense, 3 rRNA, and 4 tRNA variants) in 495 patients and 615 controls, and (3) analyses of the associated variants according to the clinical, psychopathological, and neuropsychological characteristics and according to the oxidative and enzymatic activities of the mitochondrial respiratory chain. We did not identify pathogenic mtDNA mutations in the 14 sequenced patients. Two known variants were nominally associated with schizophrenia and were further studied. The MT-RNR2 1811A > G variant likely does not play a major role in schizophrenia, as it was not associated with clinical, psychopathological, or neuropsychological variables, and the MT-ATP6 9110T > C p.Ile195Thr variant did not result in differences in the oxidative and enzymatic functions of the mitochondrial respiratory chain. The patients with apparent maternal inheritance of schizophrenia did not exhibit any mutations in their mtDNA. The variants nominally associated with schizophrenia in the present study were not related either to phenotypic characteristics or to mitochondrial function. We did not find evidence pointing to a role for mtDNA sequence variation in schizophrenia.
Collapse
Affiliation(s)
- Helena Torrell
- Hospital Universitari Institut Pere Mata. IISPV. Universitat Rovirai Virgili. CIBERSAM, Reus, Catalunya, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Garvin MR, Bielawski JP, Sazanov LA, Gharrett AJ. Review and meta-analysis of natural selection in mitochondrial complex I in metazoans. J ZOOL SYST EVOL RES 2014. [DOI: 10.1111/jzs.12079] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael R. Garvin
- Fisheries Division; School of Fisheries and Ocean Sciences; University of Alaska Fairbanks; Juneau AK USA
| | - Joseph P. Bielawski
- Department of Biology; Dalhousie University; Halifax NS Canada
- Department of Mathematics & Statistics; Dalhousie University; Halifax NS Canada
| | | | - Anthony J. Gharrett
- Fisheries Division; School of Fisheries and Ocean Sciences; University of Alaska Fairbanks; Juneau AK USA
| |
Collapse
|
29
|
Gong S, Peng Y, Jiang P, Wang M, Fan M, Wang X, Zhou H, Li H, Yan Q, Huang T, Guan MX. A deafness-associated tRNAHis mutation alters the mitochondrial function, ROS production and membrane potential. Nucleic Acids Res 2014; 42:8039-48. [PMID: 24920829 PMCID: PMC4081083 DOI: 10.1093/nar/gku466] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this report, we investigated the molecular genetic mechanism underlying the deafness-associated mitochondrial tRNAHis 12201T>C mutation. The destabilization of a highly conserved base-pairing (5A-68U) by the m.12201T>C mutation alters structure and function of tRNAHis. Using cybrids constructed by transferring mitochondria from lymphoblastoid cell lines derived from a Chinese family into mtDNA-less (ρo) cells, we showed ∼70% decrease in the steady-state level of tRNAHis in mutant cybrids, compared with control cybrids. The mutation changed the conformation of tRNAHis, as suggested by slower electrophoretic mobility of mutated tRNA with respect to the wild-type molecule. However, ∼60% increase in aminoacylated level of tRNAHis was observed in mutant cells. The failure in tRNAHis metabolism was responsible for the variable reductions in seven mtDNA-encoded polypeptides in mutant cells, ranging from 37 to 81%, with the average of ∼46% reduction, as compared with those of control cells. The impaired mitochondrial translation caused defects in respiratory capacity in mutant cells. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These mitochondrial dysfunctions caused an increase in the production of reactive oxygen species in the mutant cells. The data provide the evidence for a mitochondrial tRNAHis mutation leading to deafness.
Collapse
Affiliation(s)
- Shasha Gong
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China 310058
| | - Yanyan Peng
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China 310058 Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA 45229
| | - Pingping Jiang
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China 310058
| | - Meng Wang
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China 310058
| | - Mingjie Fan
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China 310058
| | - Xinjian Wang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA 45229
| | - Hong Zhou
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China 310058
| | - Huawei Li
- Department of Otology and Skull Base Surgery, Eye and ENT Hospital, Fudan University, Shanghai, China 200031
| | - Qingfeng Yan
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China 310058
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA 45229
| | - Min-Xin Guan
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China 310058 Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA 45229
| |
Collapse
|
30
|
Cytoplasmic hybrid (cybrid) cell lines as a practical model for mitochondriopathies. Redox Biol 2014; 2:619-31. [PMID: 25460729 PMCID: PMC4297942 DOI: 10.1016/j.redox.2014.03.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022] Open
Abstract
Cytoplasmic hybrid (cybrid) cell lines can incorporate human subject mitochondria and perpetuate its mitochondrial DNA (mtDNA)-encoded components. Since the nuclear background of different cybrid lines can be kept constant, this technique allows investigators to study the influence of mtDNA on cell function. Prior use of cybrids has elucidated the contribution of mtDNA to a variety of biochemical parameters, including electron transport chain activities, bioenergetic fluxes, and free radical production. While the interpretation of data generated from cybrid cell lines has technical limitations, cybrids have contributed valuable insight into the relationship between mtDNA and phenotype alterations. This review discusses the creation of the cybrid technique and subsequent data obtained from cybrid applications. The cytoplasmic hybrid (cybrid) model can be used to determine mitochondrial DNA (mtDNA) contributions to phenotypic alterations. Cybrids are used to study mitochondriopathies such as Parkinson’s disease and Alzheimer’s disease. mtDNA heteroplasmy threshold and nuclear DNA-mtDNA compatibility can be determined using cybrid models.
Collapse
|
31
|
Wu SB, Wu YT, Wu TP, Wei YH. Role of AMPK-mediated adaptive responses in human cells with mitochondrial dysfunction to oxidative stress. Biochim Biophys Acta Gen Subj 2013; 1840:1331-44. [PMID: 24513455 DOI: 10.1016/j.bbagen.2013.10.034] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/06/2013] [Accepted: 10/22/2013] [Indexed: 02/09/2023]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) mutations are an important cause of mitochondrial diseases, for which there is no effective treatment due to complex pathophysiology. It has been suggested that mitochondrial dysfunction-elicited reactive oxygen species (ROS) plays a vital role in the pathogenesis of mitochondrial diseases, and the expression levels of several clusters of genes are altered in response to the elevated oxidative stress. Recently, we reported that glycolysis in affected cells with mitochondrial dysfunction is upregulated by AMP-activated protein kinase (AMPK), and such an adaptive response of metabolic reprogramming plays an important role in the pathophysiology of mitochondrial diseases. SCOPE OF REVIEW We summarize recent findings regarding the role of AMPK-mediated signaling pathways that are involved in: (1) metabolic reprogramming, (2) alteration of cellular redox status and antioxidant enzyme expression, (3) mitochondrial biogenesis, and (4) autophagy, a master regulator of mitochondrial quality control in skin fibroblasts from patients with mitochondrial diseases. MAJOR CONCLUSION Induction of adaptive responses via AMPK-PFK2, AMPK-FOXO3a, AMPK-PGC-1α, and AMPK-mTOR signaling pathways, respectively is modulated for the survival of human cells under oxidative stress induced by mitochondrial dysfunction. We suggest that AMPK may be a potential target for the development of therapeutic agents for the treatment of mitochondrial diseases. GENERAL SIGNIFICANCE Elucidation of the adaptive mechanism involved in AMPK activation cascades would lead us to gain a deeper insight into the crosstalk between mitochondria and the nucleus in affected tissue cells from patients with mitochondrial diseases. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Shi-Bei Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Yu-Ting Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Tsung-Pu Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Yau-Huei Wei
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
| |
Collapse
|
32
|
Blanco-Grau A, Bonaventura-Ibars I, Coll-Cantí J, Melià MJ, Martinez R, Martínez-Gallo M, Andreu AL, Pinós T, García-Arumí E. Identification and biochemical characterization of the novel mutation m.8839G>C in the mitochondrial ATP6 gene associated with NARP syndrome. GENES BRAIN AND BEHAVIOR 2013; 12:812-20. [PMID: 24118886 DOI: 10.1111/gbb.12089] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/25/2013] [Accepted: 09/30/2013] [Indexed: 12/21/2022]
Abstract
Mutations in the ATP6 gene are reported to be associated with Leber hereditary optic neuropathy, bilateral striatal necrosis, coronary atherosclerosis risk and neuropathy, ataxia and retinitis pigmentosa (NARP)/maternally inherited Leigh syndromes. Here, we present a patient with NARP syndrome, in whom a previously undescribed mutation was detected in the ATP6 gene: m.8839G>C. Several observations support the concept that m.8839G>C is pathogenically involved in the clinical phenotype of this patient: (1) the mutation was heteroplasmic in muscle; (2) mutation load was higher in the symptomatic patient than in the asymptomatic carriers; (3) cybrids carrying this mutation presented lower cell proliferation, increased mitochondrial DNA (mtDNA) copy number, increased steady-state OxPhos protein levels and decreased mitochondrial membrane potential with respect to isogenic wild-type cybrids; (4) this change was not observed in 2959 human mtDNAs from different mitochondrial haplogroups; (5) the affected amino acid was conserved in all the ATP6 sequences analyzed; and (6) using in silico prediction, the mutation was classified as 'probably damaging'. However, measurement of ATP synthesis showed no differences between wild-type and mutated cybrids. Thus, we suggest that m.8839G>C may lower the efficiency between proton translocation within F0 and F1 rotation, required for ATP synthesis. Further experiments are needed to fully characterize the molecular mechanisms involved in m.8839G>C pathogenicity.
Collapse
Affiliation(s)
- A Blanco-Grau
- Departament de Patología Mitocondrial i Neuromuscular, Universitari Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Mitochondrial defects within substantia nigra (SN) neurons are implicated in the pathogenesis of Parkinson's disease. SN neurons show increased mitochondrial defects, mitochondrial DNA deletion levels, and susceptibility to such dysfunction, although the role of mitochondria in neuronal degeneration remains uncertain. In this study, we addressed this important question by exploring changes within the mitochondria of SN neurons from patients with primary mitochondrial diseases to determine whether mitochondrial dysfunction leads directly to neuronal cell loss. We counted the pigmented neurons and quantified mitochondrial respiratory activity, deficiencies in mitochondrial proteins, and the percentage of pathogenic mutations in single neurons. We found evidence of defects of both complex I and complex IV of the respiratory chain in all patients. We found that marked neuronal cell loss was only observed in a few patients with mitochondrial disease and that all these patients had mutations in polymerase gamma (POLG), which leads to the formation of multiple mitochondrial DNA deletions over time, similar to aging and Parkinson's disease. Interestingly, we detected α-synuclein pathology in two mitochondrial patients with POLG mutations. Our observations highlight the complex relationship between mitochondrial dysfunction and the susceptibility of SN neurons to degeneration and α-synuclein pathology. Our finding that the loss of SN neurons was only severe in patients with POLG mutations suggests that acquired mitochondrial defects may be less well tolerated by SN neurons than by inherited ones.
Collapse
|
34
|
Abstract
Mitochondrial diseases involve the respiratory chain, which is under the dual control of nuclear and mitochondrial DNA (mtDNA). The complexity of mitochondrial genetics provides one explanation for the clinical heterogeneity of mitochondrial diseases, but our understanding of disease pathogenesis remains limited. Classification of Mendelian mitochondrial encephalomyopathies has been laborious, but whole-exome sequencing studies have revealed unexpected molecular aetiologies for both typical and atypical mitochondrial disease phenotypes. Mendelian mitochondrial defects can affect five components of mitochondrial biology: subunits of respiratory chain complexes (direct hits); mitochondrial assembly proteins; mtDNA translation; phospholipid composition of the inner mitochondrial membrane; or mitochondrial dynamics. A sixth category-defects of mtDNA maintenance-combines features of Mendelian and mitochondrial genetics. Genetic defects in mitochondrial dynamics are especially important in neurology as they cause optic atrophy, hereditary spastic paraplegia, and Charcot-Marie-Tooth disease. Therapy is inadequate and mostly palliative, but promising new avenues are being identified. Here, we review current knowledge on the genetics and pathogenesis of the six categories of mitochondrial disorders outlined above, focusing on their salient clinical manifestations and highlighting novel clinical entities. An outline of diagnostic clues for the various forms of mitochondrial disease, as well as potential therapeutic strategies, is also discussed.
Collapse
|
35
|
Holley AK, Dhar SK, St Clair DK. Curbing cancer's sweet tooth: is there a role for MnSOD in regulation of the Warburg effect? Mitochondrion 2013; 13:170-88. [PMID: 22820117 PMCID: PMC4604438 DOI: 10.1016/j.mito.2012.07.104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/04/2012] [Accepted: 07/10/2012] [Indexed: 01/27/2023]
Abstract
Reactive oxygen species (ROS), while vital for normal cellular function, can have harmful effects on cells, leading to the development of diseases such as cancer. The Warburg effect, the shift from oxidative phosphorylation to glycolysis, even in the presence of adequate oxygen, is an important metabolic change that confers many growth and survival advantages to cancer cells. Reactive oxygen species are important regulators of the Warburg effect. The mitochondria-localized antioxidant enzyme manganese superoxide dismutase (MnSOD) is vital to survival in our oxygen-rich atmosphere because it scavenges mitochondrial ROS. MnSOD is important in cancer development and progression. However, the significance of MnSOD in the regulation of the Warburg effect is just now being revealed, and it may significantly impact the treatment of cancer in the future.
Collapse
Affiliation(s)
- Aaron K. Holley
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536
| | - Sanjit Kumar Dhar
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536
| | - Daret K. St Clair
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
36
|
Herbst A, Johnson CJ, Hynes K, McKenzie D, Aiken JM. Mitochondrial biogenesis drives a vicious cycle of metabolic insufficiency and mitochondrial DNA deletion mutation accumulation in aged rat skeletal muscle fibers. PLoS One 2013; 8:e59006. [PMID: 23516592 PMCID: PMC3596334 DOI: 10.1371/journal.pone.0059006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 02/08/2013] [Indexed: 01/07/2023] Open
Abstract
Aged muscles possess dysfunctional fibers that contain intracellular expansions of somatically derived mitochondrial DNA deletion mutations. At high abundance, these mutations disrupt the expression of mitochondrially-encoded protein subunits of the electron transport chain resulting in aerobic respiration deficient muscle fiber segments. These fiber segments atrophy and break contributing to the loss of muscle mass and function that occurs with age. By combining micro-dissection of individual muscle fibers with microarray analysis, we observed the response induced within these abnormal muscle fibers and detected an increase in many genes affecting metabolism and metabolic regulation. The transcriptional profile and subsequent protein validation suggested that a non-compensatory program of mitochondrial biogenesis was initiated. We hypothesized that this non-adaptive program of mitochondrial biogenesis was driving mtDNA deletion mutation accumulation. We tested this hypothesis by treating aged rats with β-Guanidinopropionic acid, a compound that stimulates mitochondrial biogenesis. β-Guanidinopropionic acid treatment increased muscle mitochondrial genome copy number and resulted in a 3.7 fold increase in the abundance of electron transport chain negative muscle fiber segments. We conclude that in electron transport system abnormal muscle fiber segments, a vicious cycle of metabolic insufficiency and non-compensatory mitochondrial biogenesis drive mtDNA deletion mutation accumulation.
Collapse
Affiliation(s)
- Allen Herbst
- Centre for Prions and Protein Folding Diseases, Agriculture Food and Nutritional Sciences, University of Alberta, Edmonton, Canada
| | - Chad J. Johnson
- Department of Soil Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kayla Hynes
- Centre for Prions and Protein Folding Diseases, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Debbie McKenzie
- Centre for Prions and Protein Folding Diseases, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Judd M. Aiken
- Centre for Prions and Protein Folding Diseases, Agriculture Food and Nutritional Sciences, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
37
|
|
38
|
Sauvanet C, Duvezin-Caubet S, Salin B, David C, Massoni-Laporte A, di Rago JP, Rojo M. Mitochondrial DNA mutations provoke dominant inhibition of mitochondrial inner membrane fusion. PLoS One 2012; 7:e49639. [PMID: 23166736 PMCID: PMC3500310 DOI: 10.1371/journal.pone.0049639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/16/2012] [Indexed: 11/18/2022] Open
Abstract
Mitochondria are highly dynamic organelles that continuously move, fuse and divide. Mitochondrial dynamics modulate overall mitochondrial morphology and are essential for the proper function, maintenance and transmission of mitochondria and mitochondrial DNA (mtDNA). We have investigated mitochondrial fusion in yeast cells with severe defects in oxidative phosphorylation (OXPHOS) due to removal or various specific mutations of mtDNA. We find that, under fermentative conditions, OXPHOS deficient cells maintain normal levels of cellular ATP and ADP but display a reduced mitochondrial inner membrane potential. We demonstrate that, despite metabolic compensation by glycolysis, OXPHOS defects are associated to a selective inhibition of inner but not outer membrane fusion. Fusion inhibition was dominant and hampered the fusion of mutant mitochondria with wild-type mitochondria. Inhibition of inner membrane fusion was not systematically associated to changes of mitochondrial distribution and morphology, nor to changes in the isoform pattern of Mgm1, the major fusion factor of the inner membrane. However, inhibition of inner membrane fusion correlated with specific alterations of mitochondrial ultrastructure, notably with the presence of aligned and unfused inner membranes that are connected to two mitochondrial boundaries. The fusion inhibition observed upon deletion of OXPHOS related genes or upon removal of the entire mtDNA was similar to that observed upon introduction of point mutations in the mitochondrial ATP6 gene that are associated to neurogenic ataxia and retinitis pigmentosa (NARP) or to maternally inherited Leigh Syndrome (MILS) in humans. Our findings indicate that the consequences of mtDNA mutations may not be limited to OXPHOS defects but may also include alterations in mitochondrial fusion. Our results further imply that, in healthy cells, the dominant inhibition of fusion could mediate the exclusion of OXPHOS-deficient mitochondria from the network of functional, fusogenic mitochondria.
Collapse
Affiliation(s)
- Cécile Sauvanet
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
- Université Bordeaux Segalen, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Stéphane Duvezin-Caubet
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
- Université Bordeaux Segalen, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Bénédicte Salin
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
- Université Bordeaux Segalen, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Claudine David
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
- Université Bordeaux Segalen, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Aurélie Massoni-Laporte
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
- Université Bordeaux Segalen, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Jean-Paul di Rago
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
- Université Bordeaux Segalen, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Manuel Rojo
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
- Université Bordeaux Segalen, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
- * E-mail:
| |
Collapse
|
39
|
Qiu C, Kumar S, Guo J, Lu J, Shi S, Kalachikov SM, Russo JJ, Naini AB, Schon EA, Ju J. Mitochondrial single nucleotide polymorphism genotyping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using cleavable biotinylated dideoxynucleotides. Anal Biochem 2012; 427:202-10. [PMID: 22579594 DOI: 10.1016/j.ab.2012.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 04/19/2012] [Accepted: 05/02/2012] [Indexed: 10/28/2022]
Abstract
Characterization of mitochondrial DNA (mtDNA) single nucleotide polymorphisms (SNPs) and mutations is crucial for disease diagnosis, which requires accurate and sensitive detection methods and quantification due to mitochondrial heteroplasmy. We report here the characterization of mutations for myoclonic epilepsy with ragged red fibers syndrome using chemically cleavable biotinylated dideoxynucleotides and a mass spectrometry (MS)-based solid phase capture (SPC) single base extension (SBE) assay. The method effectively eliminates unextended primers and primer dimers, and the presence of cleavable linkers between the base and biotin allows efficient desalting and release of the DNA products from solid phase for MS analysis. This approach is capable of high multiplexing, and the use of different length linkers for each of the purines and each of the pyrimidines permits better discrimination of the four bases by MS. Both homoplasmic and heteroplasmic genotypes were accurately determined on different mtDNA samples. The specificity of the method for mtDNA detection was validated by using mitochondrial DNA-negative cells. The sensitivity of the approach permitted detection of less than 5% mtDNA heteroplasmy levels. This indicates that the SPC-SBE approach based on chemically cleavable biotinylated dideoxynucleotides and MS enables rapid, accurate, and sensitive genotyping of mtDNA and has broad applications for genetic analysis.
Collapse
Affiliation(s)
- Chunmei Qiu
- Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Perazzo JC, Tallis S, Delfante A, Souto PA, Lemberg A, Eizayaga FX, Romay S. Hepatic encephalopathy: An approach to its multiple pathophysiological features. World J Hepatol 2012; 4:50-65. [PMID: 22489256 PMCID: PMC3321490 DOI: 10.4254/wjh.v4.i3.50] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 11/19/2011] [Accepted: 02/24/2012] [Indexed: 02/06/2023] Open
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric complex syndrome, ranging from subtle behavioral abnormalities to deep coma and death. Hepatic encephalopathy emerges as the major complication of acute or chronic liver failure. Multiplicity of factors are involved in its pathophysiology, such as central and neuromuscular neurotransmission disorder, alterations in sleep patterns and cognition, changes in energy metabolism leading to cell injury, an oxidative/nitrosative state and a neuroinflammatory condition. Moreover, in acute HE, a condition of imminent threat of death is present due to a deleterious astrocyte swelling. In chronic HE, changes in calcium signaling, mitochondrial membrane potential and long term potential expression, N-methyl-D-aspartate-cGMP and peripheral benzodiazepine receptors alterations, and changes in the mRNA and protein expression and redistribution in the cerebral blood flow can be observed. The main molecule indicated as responsible for all these changes in HE is ammonia. There is no doubt that ammonia, a neurotoxic molecule, triggers or at least facilitates most of these changes. Ammonia plasma levels are increased two- to three-fold in patients with mild to moderate cirrhotic HE and up to ten-fold in patients with acute liver failure. Hepatic and inter-organ trafficking of ammonia and its metabolite, glutamine (GLN), lead to hyperammonemic conditions. Removal of hepatic ammonia is a differentiated work that includes the hepatocyte, through the urea cycle, converting ammonia into GLN via glutamine synthetase. Under pathological conditions, such as liver damage or liver blood by-pass, the ammonia plasma level starts to rise and the risk of HE developing is high. Knowledge of the pathophysiology of HE is rapidly expanding and identification of focally localized triggers has led the development of new possibilities for HE to be considered. This editorial will focus on issues where, to the best of our knowledge, more research is needed in order to clarify, at least partially, controversial topics.
Collapse
Affiliation(s)
- Juan Carlos Perazzo
- Juan Carlos Perazzo, Silvina Tallis, Amalia Delfante, Pablo Andrés Souto, Abraham Lemberg, Francisco Xavier Eizayaga, Salvador Romay, Laboratory of Portal Hypertension and Hepatic Encephalopathy, Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 950, CP 1113, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
41
|
Szczepanowska J, Malinska D, Wieckowski MR, Duszynski J. Effect of mtDNA point mutations on cellular bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1740-6. [PMID: 22406627 DOI: 10.1016/j.bbabio.2012.02.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
This overview discusses the results of research on the effects of most frequent mtDNA point mutations on cellular bioenergetics. Thirteen proteins coded by mtDNA are crucial for oxidative phosphorylation, 11 of them constitute key components of the respiratory chain complexes I, III and IV and 2 of mitochondrial ATP synthase. Moreover, pathogenic point mutations in mitochondrial tRNAs and rRNAs generate abnormal synthesis of the mtDNA coded proteins. Thus, pathogenic point mutations in mtDNA usually disturb the level of key parameter of the oxidative phosphorylation, i.e. the electric potential on the inner mitochondrial membrane (Δψ), and in a consequence calcium signalling and mitochondrial dynamics in the cell. Mitochondrial generation of reactive oxygen species is also modified in the mutated cells. The results obtained with cultured cells and describing biochemical consequences of mtDNA point mutations are full of contradictions. Still they help elucidate the biochemical basis of pathologies and provide a valuable tool for finding remedies in the future. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
Affiliation(s)
- Joanna Szczepanowska
- Department of Biochemsitry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | |
Collapse
|
42
|
Jonckheere AI, Smeitink JAM, Rodenburg RJT. Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis 2012; 35:211-25. [PMID: 21874297 PMCID: PMC3278611 DOI: 10.1007/s10545-011-9382-9] [Citation(s) in RCA: 386] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/22/2011] [Accepted: 07/27/2011] [Indexed: 12/16/2022]
Abstract
Human mitochondrial (mt) ATP synthase, or complex V consists of two functional domains: F(1), situated in the mitochondrial matrix, and F(o), located in the inner mitochondrial membrane. Complex V uses the energy created by the proton electrochemical gradient to phosphorylate ADP to ATP. This review covers the architecture, function and assembly of complex V. The role of complex V di-and oligomerization and its relation with mitochondrial morphology is discussed. Finally, pathology related to complex V deficiency and current therapeutic strategies are highlighted. Despite the huge progress in this research field over the past decades, questions remain to be answered regarding the structure of subunits, the function of the rotary nanomotor at a molecular level, and the human complex V assembly process. The elucidation of more nuclear genetic defects will guide physio(patho)logical studies, paving the way for future therapeutic interventions.
Collapse
Affiliation(s)
- An I. Jonckheere
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, 656 Laboratory for Genetic, Endocrine, and Metabolic Disorders, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Jan A. M. Smeitink
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, 656 Laboratory for Genetic, Endocrine, and Metabolic Disorders, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Richard J. T. Rodenburg
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, 656 Laboratory for Genetic, Endocrine, and Metabolic Disorders, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
43
|
AMPK-mediated increase of glycolysis as an adaptive response to oxidative stress in human cells: Implication of the cell survival in mitochondrial diseases. Biochim Biophys Acta Mol Basis Dis 2012; 1822:233-47. [DOI: 10.1016/j.bbadis.2011.09.014] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 09/21/2011] [Accepted: 09/23/2011] [Indexed: 11/22/2022]
|
44
|
Gilkerson RW, De Vries RLA, Lebot P, Wikstrom JD, Torgyekes E, Shirihai OS, Przedborski S, Schon EA. Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition. Hum Mol Genet 2011; 21:978-90. [PMID: 22080835 DOI: 10.1093/hmg/ddr529] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Autophagy has emerged as a key cellular process for organellar quality control, yet this pathway apparently fails to eliminate mitochondria containing pathogenic mutations in mitochondrial DNA (mtDNA) in patients with a variety of human diseases. In order to explore how mtDNA-mediated mitochondrial dysfunction interacts with endogenous autophagic pathways, we examined autophagic status in a panel of human cytoplasmic hybrid (cybrid) cell lines carrying a variety of pathogenic mtDNA mutations. We found that both genetic- and chemically induced loss of mitochondrial transmembrane potential (Δψ(m)) caused recruitment of the pro-mitophagic factor Parkin to mitochondria. Strikingly, however, the loss of Δψ(m) alone was insufficient to prompt delivery of mitochondria to the autophagosome (mitophagy). We found that mitophagy could be induced following treatment with the mTORC1 inhibitor rapamycin in cybrids carrying either large-scale partial deletions of mtDNA or complete depletion of mtDNA. Further, we found that the level of endogenous Parkin is a crucial determinant of mitophagy. These results suggest a two-hit model, in which the synergistic induction of both (i) mitochondrial recruitment of Parkin following the loss of Δψ(m) and (ii) mTORC1-controlled general macroautophagy is required for mitophagy. It appears that mitophagy can be accomplished by the endogenous autophagic machinery, but requires the full engagement of both of these pathways.
Collapse
Affiliation(s)
- Robert W Gilkerson
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Celotto AM, Chiu WK, Van Voorhies W, Palladino MJ. Modes of metabolic compensation during mitochondrial disease using the Drosophila model of ATP6 dysfunction. PLoS One 2011; 6:e25823. [PMID: 21991365 PMCID: PMC3185040 DOI: 10.1371/journal.pone.0025823] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/11/2011] [Indexed: 11/30/2022] Open
Abstract
Numerous mitochondrial DNA mutations cause mitochondrial encephalomyopathy: a collection of related diseases for which there exists no effective treatment. Mitochondrial encephalomyopathies are complex multisystem diseases that exhibit a relentless progression of severity, making them both difficult to treat and study. The pathogenic and compensatory metabolic changes that are associated with chronic mitochondrial dysfunction are not well understood. The Drosophila ATP61 mutant models human mitochondrial encephalomyopathy and allows the study of metabolic changes and compensation that occur throughout the lifetime of an affected animal. ATP61animals have a nearly complete loss of ATP synthase activity and an acute bioenergetic deficit when they are asymptomatic, but surprisingly we discovered no chronic bioenergetic deficit in these animals during their symptomatic period. Our data demonstrate dynamic metabolic compensatory mechanisms that sustain normal energy availability and activity despite chronic mitochondrial complex V dysfunction resulting from an endogenous mutation in the mitochondrial DNA. ATP61animals compensate for their loss of oxidative phosphorylation through increases in glycolytic flux, ketogenesis and Kreb's cycle activity early during pathogenesis. However, succinate dehydrogenase activity is reduced and mitochondrial supercomplex formation is severely disrupted contributing to the pathogenesis seen in ATP61 animals. These studies demonstrate the dynamic nature of metabolic compensatory mechanisms and emphasize the need for time course studies in tractable animal systems to elucidate disease pathogenesis and novel therapeutic avenues.
Collapse
Affiliation(s)
- Alicia M Celotto
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.
| | | | | | | |
Collapse
|
46
|
|
47
|
Haefeli RH, Erb M, Gemperli AC, Robay D, Courdier Fruh I, Anklin C, Dallmann R, Gueven N. NQO1-dependent redox cycling of idebenone: effects on cellular redox potential and energy levels. PLoS One 2011; 6:e17963. [PMID: 21483849 PMCID: PMC3069029 DOI: 10.1371/journal.pone.0017963] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 02/21/2011] [Indexed: 11/25/2022] Open
Abstract
Short-chain quinones are described as potent antioxidants and in the case of idebenone have already been under clinical investigation for the treatment of neuromuscular disorders. Due to their analogy to coenzyme Q10 (CoQ10), a long-chain quinone, they are widely regarded as a substitute for CoQ10. However, apart from their antioxidant function, this provides no clear rationale for their use in disorders with normal CoQ10 levels. Using recombinant NAD(P)H:quinone oxidoreductase (NQO) enzymes, we observed that contrary to CoQ10 short-chain quinones such as idebenone are good substrates for both NQO1 and NQO2. Furthermore, the reduction of short-chain quinones by NQOs enabled an antimycin A-sensitive transfer of electrons from cytosolic NAD(P)H to the mitochondrial respiratory chain in both human hepatoma cells (HepG2) and freshly isolated mouse hepatocytes. Consistent with the substrate selectivity of NQOs, both idebenone and CoQ1, but not CoQ10, partially restored cellular ATP levels under conditions of impaired complex I function. The observed cytosolic-mitochondrial shuttling of idebenone and CoQ1 was also associated with reduced lactate production by cybrid cells from mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) patients. Thus, the observed activities separate the effectiveness of short-chain quinones from the related long-chain CoQ10 and provide the rationale for the use of short-chain quinones such as idebenone for the treatment of mitochondrial disorders.
Collapse
Affiliation(s)
- Roman H. Haefeli
- Santhera Pharmaceuticals, Liestal, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Michael Erb
- Santhera Pharmaceuticals, Liestal, Switzerland
| | | | | | | | | | - Robert Dallmann
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Nuri Gueven
- Santhera Pharmaceuticals, Liestal, Switzerland
| |
Collapse
|
48
|
Rommelaere G, Michel S, Mercy L, Fattaccioli A, Demazy C, Ninane N, Houbion A, Renard P, Arnould T. Hypersensitivity of mtDNA-depleted cells to staurosporine-induced apoptosis: roles of Bcl-2 downregulation and cathepsin B. Am J Physiol Cell Physiol 2010; 300:C1090-106. [PMID: 21068357 DOI: 10.1152/ajpcell.00037.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We show that mitochondrial DNA (mtDNA)-depleted 143B cells are hypersensitive to staurosporine-induced cell death as evidenced by a more pronounced DNA fragmentation, a stronger activation of caspase-3, an enhanced poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, and a more dramatic cytosolic release of cytochrome c. We also show that B-cell CLL/lymphoma-2 (Bcl-2), B-cell lymphoma extra large (Bcl-X(L)), and myeloid cell leukemia-1 (Mcl-1) are constitutively less abundant in mtDNA-depleted cells, that the inhibition of Bcl-2 and Bcl-X(L) can sensitize the parental cell line to staurosporine-induced apoptosis, and that overexpression of Bcl-2 or Bcl-X(L) can prevent the activation of caspase-3 in ρ(0)143B cells treated with staurosporine. Moreover, the inactivation of cathepsin B with CA074-Me significantly reduced cytochrome c release, caspase-3 activation, PARP-1 cleavage, and DNA fragmentation in mtDNA-depleted cells, whereas the pan-caspase inhibitor failed to completely prevent PARP-1 cleavage and DNA fragmentation in these cells, suggesting that caspase-independent mechanisms are responsible for cell death even if caspases are activated. Finally, we show that cathepsin B is released in the cytosol of ρ(0) cells in response to staurosporine, suggesting that the absence of mitochondrial activity leads to a facilitated permeabilization of lysosomal membranes in response to staurosporine.
Collapse
Affiliation(s)
- Guillaume Rommelaere
- Laboratory of Biochemistry and Cell Biology, Faculty of Sciences, University of Namur, 61 rue de Bruxelles, Namur, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Morán M, Rivera H, Sánchez-Aragó M, Blázquez A, Merinero B, Ugalde C, Arenas J, Cuezva JM, Martín MA. Mitochondrial bioenergetics and dynamics interplay in complex I-deficient fibroblasts. Biochim Biophys Acta Mol Basis Dis 2010; 1802:443-53. [PMID: 20153825 DOI: 10.1016/j.bbadis.2010.02.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 02/03/2010] [Accepted: 02/08/2010] [Indexed: 11/17/2022]
Abstract
BACKGROUND Complex I (CI) deficiency is the most frequent cause of OXPHOS disorders. Recent studies have shown increases in reactive oxygen species (ROS) production and mitochondrial network disturbances in patients' fibroblasts harbouring mutations in CI subunits. OBJECTIVES The present work evaluates the impact of mutations in the NDUFA1 and NDUFV1 genes of CI on mitochondrial bioenergetics and dynamics, in fibroblasts from patients suffering isolated CI deficiency. RESULTS Decreased oxygen consumption rate and slow growth rate were found in patients with severe CI deficiency. Mitochondrial diameter was slightly increased in patients' cells cultured in galactose or treated with 2'-deoxyglucose without evidence of mitochondrial fragmentation. Expression levels of the main proteins involved in mitochondrial dynamics, OPA1, MFN2, and DRP1, were slightly augmented in all patients' cells lines. The study of mitochondrial dynamics showed delayed recovery of the mitochondrial network after treatment with the uncoupler carbonyl cyanide m-chlorophenyl hydrazone (cccp) in patients with severe CI deficiency. Intracellular ROS levels were not increased neither in glucose nor galactose medium in patients' fibroblasts. CONCLUSION Our main finding was that severe CI deficiency in patients harbouring mutations in the NDUFA1 and NDUFV1 genes is linked to a delayed mitochondrial network recovery after cccp treatment. However, the CI deficiency is neither associated with massive mitochondrial fragmentation nor with increased ROS levels. The different genetic backgrounds of patients with OXPHOS disorders would explain, at least partially, differences in the pathophysiological manifestations of CI deficiency.
Collapse
Affiliation(s)
- M Morán
- Centro de Investigación, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lindroos MM, Borra RJ, Parkkola R, Virtanen SM, Lepomäki V, Bucci M, Virta JR, Rinne JO, Nuutila P, Majamaa K. Cerebral oxygen and glucose metabolism in patients with mitochondrial m.3243A>G mutation. ACTA ACUST UNITED AC 2010; 132:3274-84. [PMID: 19843652 DOI: 10.1093/brain/awp259] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The m.3243A>G mutation is the most common pathogenic mutation in mitochondrial DNA. It leads to defective oxidative phosphorylation, decreased oxygen consumption and increased glucose utilization and lactate production in vitro. However, oxygen and glucose metabolism has not been studied in the brain of patients harbouring the m.3243A>G mutation. Therefore, 14 patients with the m.3243A>G mutation, not experiencing acute stroke-like episodes and 14 age-matched controls underwent positron emission tomography using 2-[(18)F]fluoro-2-deoxyglucose, [(15)O]H(2)O and [(15)O]O(2) as the tracers during normoglycaemia. The metabolic rate of oxygen and glucose were determined using a quantitative region of interest analysis. Metabolites in unaffected periventricular tissue were measured using magnetic resonance spectroscopy. We found that the cerebral metabolic rate of oxygen was decreased by 26% (range 18%-29%) in the grey as well as the white matter of patients with the m.3243A>G mutation. A decrease in the metabolic rate of glucose was found with predilection to the posterior part of the brain. No major changes were detected in cerebral blood flow or the number of white matter lesions. Our results show that the m.3243A>G mutation leads to a global decrease in oxygen consumption in the grey matter including areas where no other signs of disease were present.
Collapse
Affiliation(s)
- Markus M Lindroos
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|