1
|
Alpízar-Pedraza D, Romero-Rivero A, Perdomo-Morales R, Mantilla-García N, Pérez-Martínez C, Garay-Pérez H, Rosenau F, Ständker L, Montero-Alejo V. Improving the antimicrobial potential of the peptide CIDEM-501 through acylation: A computational approach. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184407. [PMID: 39788472 DOI: 10.1016/j.bbamem.2025.184407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/05/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Acylation is a common method used to modify antimicrobial peptides to enhance their effectiveness. It increases the interactions between the peptide and the bacterial cell membranes. However, acylation can also reduce the selectivity of the peptides by making them more active on eukaryotic membranes, which can lead to unintended toxicity. This study examines the potential of using in silico tools to evaluate the interaction and selectivity of the antimicrobial peptide CIDEM-501 when acylated with decanoic acid at the N-terminus, compared to the non-acylated counterpart. Circular dichroism, microdilution, and hemolysis assays were used to determine the peptide's secondary structure, antimicrobial activity, and selectivity to validate the theoretical predictions. The acylated peptide showed a more stable interaction with the bacterial membrane by inserting the acyl chain into the membrane's hydrophobic core, which led to tighter adsorption and a greater buried surface area. Additionally, it significantly altered membrane order more than the non-acylated counterpart, suggesting superior antimicrobial potential. Finally, in vitro activity assays confirmed theoretical predictions, showing that the acylated peptide had lower Minimum Inhibitory Concentration (MIC) values than the non-acylated peptide. Neither peptide showed significant hemolytic activity at their MIC. The computational techniques used in this study displayed strong predictive capability and helped to elucidate the interaction between the peptide and the membranes.
Collapse
Affiliation(s)
- Daniel Alpízar-Pedraza
- Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Ave. 26 # 1605, Nuevo Vedado, Ciudad de La Habana, 10400, Cuba.
| | - Adrian Romero-Rivero
- Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Ave. 26 # 1605, Nuevo Vedado, Ciudad de La Habana, 10400, Cuba.
| | - Rolando Perdomo-Morales
- Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Ave. 26 # 1605, Nuevo Vedado, Ciudad de La Habana, 10400, Cuba.
| | - Niurys Mantilla-García
- Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Ave. 26 # 1605, Nuevo Vedado, Ciudad de La Habana, 10400, Cuba.
| | - Claudia Pérez-Martínez
- Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Ave. 26 # 1605, Nuevo Vedado, Ciudad de La Habana, 10400, Cuba.
| | - Hilda Garay-Pérez
- Peptide Synthesis Group, Center for Genetic Engineering and Biotechnology, Ave. 31 e/158 y 190, Playa, Habana 11600, Cuba.
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Ludger Ständker
- Core Facility for Functional Peptidomics, Ulm Peptide Pharmaceuticals (U-PEP), Faculty of Medicine, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Vivian Montero-Alejo
- Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Ave. 26 # 1605, Nuevo Vedado, Ciudad de La Habana, 10400, Cuba.
| |
Collapse
|
2
|
Markelova N, Chumak A. Antimicrobial Activity of Bacillus Cyclic Lipopeptides and Their Role in the Host Adaptive Response to Changes in Environmental Conditions. Int J Mol Sci 2025; 26:336. [PMID: 39796193 PMCID: PMC11720072 DOI: 10.3390/ijms26010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Bacillus cyclic lipopeptides (CLP), part of the three main families-surfactins, iturins, and fengycins-are secondary metabolites with a unique chemical structure that includes both peptide and lipid components. Being amphiphilic compounds, CLPs exhibit antimicrobial activity in vitro, damaging the membranes of microorganisms. However, the concentrations of CLPs used in vitro are difficult to achieve in natural conditions. Therefore, in a natural environment, alternative mechanisms of antimicrobial action by CLPs are more likely, such as inducing apoptosis in fungal cells, preventing microbial adhesion to the substrate, and promoting the death of phytopathogens by stimulating plant immune responses. In addition, CLPs in low concentrations act as signaling molecules of Bacillus's own metabolism, and when environmental conditions change, they form an adaptive response of the host bacterium. Namely, they trigger the differentiation of the bacterial population into various specialized cell types: competent cells, flagellated cells, matrix producers, and spores. In this review, we have summarized the current understanding of the antimicrobial action of Bacillus CLPs under both experimental and natural conditions. We have also shown the relationship between some regulatory pathways involved in CLP biosynthesis and bacterial cell differentiation, as well as the role of CLPs as signaling molecules that determine changes in the physiological state of Bacillus subpopulations in response to shifts in environmental conditions.
Collapse
Affiliation(s)
- Natalia Markelova
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, Moscow 119021, Russia;
| | | |
Collapse
|
3
|
Girdhar M, Sen A, Nigam A, Oswalia J, Kumar S, Gupta R. Antimicrobial peptide-based strategies to overcome antimicrobial resistance. Arch Microbiol 2024; 206:411. [PMID: 39311963 DOI: 10.1007/s00203-024-04133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024]
Abstract
Antibiotic resistance has emerged as a global threat, rendering the existing conventional treatment strategies ineffective. In view of this, antimicrobial peptides (AMPs) have proven to be potent alternative therapeutic interventions with a wide range of applications in clinical health. AMPs are small peptides produced naturally as a part of the innate immune responses against a broad range of bacterial, fungal and viral pathogens. AMPs present a myriad of advantages over traditional antibiotics, including their ability to target multiple sites, reduced susceptibility to resistance development, and high efficacy at low doses. These peptides have demonstrated notable potential in inhibiting microbes resistant to traditional antibiotics, including the notorious ESKAPE pathogens, recognized as the primary culprits behind nosocomial infections. AMPs, with their multifaceted benefits, emerge as promising candidates in the ongoing efforts to combat the escalating challenges posed by antibiotic resistance. This in-depth review provides a detailed discussion on AMPs, encompassing their classification, mechanism of action, and diverse clinical applications. Focus has been laid on combating newly emerging drug-resistant organisms, emphasizing the significance of AMPs in mitigating this pressing challenge. The review also illuminates potential future strategies that may be implemented to improve AMP efficacy, such as structural modifications and using AMPs in combination with antibiotics and matrix-inhibiting compounds.
Collapse
Affiliation(s)
| | - Aparajita Sen
- Department of Genetics, University of Delhi, South Campus, New Delhi, 110021, India
| | - Arti Nigam
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, 110016, India
| | - Jyoti Oswalia
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sachin Kumar
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Rashi Gupta
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India.
| |
Collapse
|
4
|
Enninful GN, Kuppusamy R, Tiburu EK, Kumar N, Willcox MDP. Non-canonical amino acid bioincorporation into antimicrobial peptides and its challenges. J Pept Sci 2024; 30:e3560. [PMID: 38262069 DOI: 10.1002/psc.3560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/01/2023] [Accepted: 11/14/2023] [Indexed: 01/25/2024]
Abstract
The rise of antimicrobial resistance and multi-drug resistant pathogens has necessitated explorations for novel antibiotic agents as the discovery of conventional antibiotics is becoming economically less viable and technically more challenging for biopharma. Antimicrobial peptides (AMPs) have emerged as a promising alternative because of their particular mode of action, broad spectrum and difficulty that microbes have in becoming resistant to them. The AMPs bacitracin, gramicidin, polymyxins and daptomycin are currently used clinically. However, their susceptibility to proteolytic degradation, toxicity profile, and complexities in large-scale manufacture have hindered their development. To improve their proteolytic stability, methods such as integrating non-canonical amino acids (ncAAs) into their peptide sequence have been adopted, which also improves their potency and spectrum of action. The benefits of ncAA incorporation have been made possible by solid-phase peptide synthesis. However, this method is not always suitable for commercial production of AMPs because of poor yield, scale-up difficulties, and its non-'green' nature. Bioincorporation of ncAA as a method of integration is an emerging field geared towards tackling the challenges of solid-phase synthesis as a green, cheaper, and scalable alternative for commercialisation of AMPs. This review focusses on the bioincorporation of ncAAs; some challenges associated with the methods are outlined, and notes are given on how to overcome these challenges. The review focusses particularly on addressing two key challenges: AMP cytotoxicity towards microbial cell factories and the uptake of ncAAs that are unfavourable to them. Overcoming these challenges will draw us closer to a greater yield and an environmentally friendly and sustainable approach to make AMPs more druggable.
Collapse
Affiliation(s)
| | - Rajesh Kuppusamy
- University of New South Wales, Kensington, New South Wales, Australia
| | | | - Naresh Kumar
- University of New South Wales, Kensington, New South Wales, Australia
| | - Mark D P Willcox
- University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
5
|
Yang P, Mao W, Zhang J, Yang Y, Zhang F, Ouyang X, Li B, Wu X, Ba Z, Ran K, Tian Y, Liu H, Zhang Y, Gou S, Zhong C, Ni J. A novel antimicrobial peptide with broad-spectrum and exceptional stability derived from the natural peptide Brevicidine. Eur J Med Chem 2024; 269:116337. [PMID: 38537511 DOI: 10.1016/j.ejmech.2024.116337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
The global issue of antibiotic resistance is increasingly severe, highlighting the urgent necessity for the development of new antibiotics. Brevicidine, a natural cyclic lipopeptide, exhibits remarkable antimicrobial activity against Gram-negative bacteria. In this study, a comprehensive structure-activity relationship of Brevicidine was investigated through 20 newly synthesized cyclic lipopeptide analogs, resulting in the identification of an optimal linear analog 22. The sequence of analog 22 consisted of five d-amino acids and four non-natural amino acid 2,5-diaminovaleric acid (Orn) and conjugated with decanoic acid at N-terminal. Compared to Brevicidine, analog 22 was easier to synthesize, and exerted broad spectrum antimicrobial activity and excellent stability (t1/2 = 40.98 h). Additionally, analog 22 demonstrated a rapid bactericidal effect by permeating non-specifically through the bacterial membranes, thereby minimizing the likelihood of inducing resistance. Moreover, it exhibited remarkable efficacy in combating bacterial biofilms and reversing bacterial resistance to conventional antibiotics. Furthermore, it effectively suppressed the growth of bacteria in vital organs of mice infected with S. aureus ATCC 25923. In conclusion, analog 22 may represent a potential antimicrobial peptide for further optimization.
Collapse
Affiliation(s)
- Ping Yang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Wenbo Mao
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Jingying Zhang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Yinyin Yang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Fangyan Zhang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Xu Ouyang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Beibei Li
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Xiaoyan Wu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Zufang Ba
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Kaixin Ran
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Yali Tian
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Hui Liu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Yun Zhang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Sanhu Gou
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Chao Zhong
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| | - Jingman Ni
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
6
|
Sreelakshmi KP, Madhuri M, Swetha R, Rangarajan V, Roy U. Microbial lipopeptides: their pharmaceutical and biotechnological potential, applications, and way forward. World J Microbiol Biotechnol 2024; 40:135. [PMID: 38489053 DOI: 10.1007/s11274-024-03908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
As lead molecules, cyclic lipopeptides with antibacterial, antifungal, and antiviral properties have garnered a lot of attention in recent years. Because of their potential, cyclic lipopeptides have earned recognition as a significant class of antimicrobial compounds with applications in pharmacology and biotechnology. These lipopeptides, often with biosurfactant properties, are amphiphilic, consisting of a hydrophilic moiety, like a carboxyl group, peptide backbone, or carbohydrates, and a hydrophobic moiety, mostly a fatty acid. Besides, several lipopeptides also have cationic groups that play an important role in biological activities. Antimicrobial lipopeptides can be considered as possible substitutes for antibiotics that are conventional to address the current drug-resistant issues as pharmaceutical industries modify the parent antibiotic molecules to render them more effective against antibiotic-resistant bacteria and fungi, leading to the development of more resistant microbial strains. Bacillus species produce lipopeptides, which are secondary metabolites that are amphiphilic and are typically synthesized by non-ribosomal peptide synthetases (NRPSs). They have been identified as potential biocontrol agents as they exhibit a broad spectrum of antimicrobial activity. A further benefit of lipopeptides is that they can be produced and purified biotechnologically or biochemically in a sustainable manner using readily available, affordable, renewable sources without harming the environment. In this review, we discuss the biochemical and functional characterization of antifungal lipopeptides, as well as their various modes of action, method of production and purification (in brief), and potential applications as novel antibiotic agents.
Collapse
Affiliation(s)
- K P Sreelakshmi
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - M Madhuri
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - R Swetha
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - Vivek Rangarajan
- Department of Chemical Engineering, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - Utpal Roy
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India.
| |
Collapse
|
7
|
Ramesh S, Roy U, Roy S, Rudramurthy SM. A promising antifungal lipopeptide from Bacillus subtilis: its characterization and insight into the mode of action. Appl Microbiol Biotechnol 2024; 108:161. [PMID: 38252130 DOI: 10.1007/s00253-023-12976-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/23/2024]
Abstract
Emerging resistance of fungal pathogens and challenges faced in drug development have prompted renewed investigations into novel antifungal lipopeptides. The antifungal lipopeptide AF3 reported here is a natural lipopeptide isolated and purified from Bacillus subtilis. The AF3 lipopeptide's secondary structure, functional groups, and the presence of amino acid residues typical of lipopeptides were determined by circular dichroism, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. The lipopeptide's low minimum inhibitory concentrations (MICs) of 4-8 mg/L against several fungal strains demonstrate its strong antifungal activity. Biocompatibility assays showed that ~ 80% of mammalian cells remained viable at a 2 × MIC concentration of AF3. The treated Candida albicans cells examined by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy clearly showed ultrastructural alterations such as the loss of the cell shape and cell membrane integrity. The antifungal effect of AF3 resulted in membrane permeabilization facilitating the uptake of the fluorescent dyes-acridine orange (AO)/propidium iodide (PI) and FUN-1. Using 1,6-diphenyl-1,3,5-hexatriene (DPH) and 4-(2-[6-(dioctylamino)-2-naphthalenyl] ethenyl)-1-(3-sulfopropyl) pyridinium inner salt (di-8-ANEPPS), we observed that the binding of AF3 to the membrane bilayer results in membrane disruption and depolarization. Flow cytometry analyses revealed a direct correlation between lipopeptide activity, membrane permeabilization (~ 75% PI uptake), and reduced cell viability. An increase in 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence demonstrates endogenous reactive oxygen species production. Lipopeptide treatment appears to induce late-stage apoptosis and alterations to nuclear morphology, suggesting that AF3-induced membrane damage may lead to a cellular stress response. Taken together, this study illustrates antifungal lipopeptide's potential as an antifungal drug candidate. KEY POINTS: • The studied lipopeptide variant AF3 displayed potent antifungal activity against C. albicans • Its biological activity was stable to proteolysis • Analytical studies demonstrated that the lipopeptide is essentially membranotropic and able to cause membrane dysfunction, elevated ROS levels, apoptosis, and DNA damage.
Collapse
Affiliation(s)
- Swetha Ramesh
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, NH 17B Bypass Road, Sancoale, Goa, 403726, India
| | - Utpal Roy
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, NH 17B Bypass Road, Sancoale, Goa, 403726, India.
| | - Subhasish Roy
- Department of Chemistry, BITS Pilani K.K. Birla Goa Campus, NH 17B Bypass Road, Sancoale, Goa, 403726, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
8
|
Huang S, Su G, Jiang S, Chen L, Huang J, Yang F. New N-Terminal Fatty-Acid-Modified Melittin Analogs with Potent Biological Activity. Int J Mol Sci 2024; 25:867. [PMID: 38255940 PMCID: PMC10815238 DOI: 10.3390/ijms25020867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Melittin, a natural antimicrobial peptide, has broad-spectrum antimicrobial activity. This has resulted in it gaining increasing attention as a potential antibiotic alternative; however, its practical use has been limited by its weak antimicrobial activity, high hemolytic activity, and low proteolytic stability. In this study, N-terminal fatty acid conjugation was used to develop new melittin-derived lipopeptides (MDLs) to improve the characteristics of melittin. Our results showed that compared with native melittin, the antimicrobial activity of MDLs was increased by 2 to 16 times, and the stability of these MDLs against trypsin and pepsin degradation was increased by 50 to 80%. However, the hemolytic activity of the MDLs decreased when the length of the carbon chain of fatty acids exceeded 10. Among the MDLs, the newly designed analog Mel-C8 showed optimal antimicrobial activity and protease stability. The antimicrobial mechanism studied revealed that the MDLs showed a rapid bactericidal effect by interacting with lipopolysaccharide (LPS) or lipoteichoic acid (LTA) and penetrating the bacterial cell membrane. In conclusion, we designed and synthesized a new class of MDLs with potent antimicrobial activity, high proteolytic stability, and low hemolytic activity through N-terminal fatty acid conjugation.
Collapse
Affiliation(s)
- Sheng Huang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (L.C.)
| | - Guoqi Su
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (L.C.)
| | - Shan Jiang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (L.C.)
| | - Li Chen
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (L.C.)
| | - Jinxiu Huang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (L.C.)
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
| | - Feiyun Yang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (L.C.)
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
| |
Collapse
|
9
|
Ramesh S, Roy U, Roy S. The elucidation of the multimodal action of the investigational anti- Candida lipopeptide (AF 4) lead from Bacillus subtilis. Front Mol Biosci 2023; 10:1248444. [PMID: 38131013 PMCID: PMC10736182 DOI: 10.3389/fmolb.2023.1248444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/11/2023] [Indexed: 12/23/2023] Open
Abstract
Background: Candida species are the main etiological agents for candidiasis, and Candida albicans are the most common infectious species. Candida species' growing resistance to conventional therapies necessitates more research into novel antifungal agents. Antifungal peptides isolated from microorganisms have potential applications as novel therapeutics. AF4 a Bacillus-derived lipopeptide demonstrating broad-spectrum antifungal activity has been investigated for its ability to cause cell death in Candida species via membrane damage and oxidative stress. Methods: Using biophysical techniques, the secondary structure of the AF4 lipopeptide was identified. Scanning electron microscopy and confocal microscopy with fluorescent dyes were performed to visualise the effect of the lipopeptide. The membrane disruption and permeabilization were assessed using the 1,6-diphenyl hexatriene (DPH) fluorescence assay and flow cytometric (FC) assessment of propidium iodide (PI) uptake, respectively. The reactive oxygen species levels were estimated using the FC assessment. The induction of apoptosis and DNA damage were studied using Annexin V-FITC/PI and DAPI. Results: Bacillus-derived antifungal variant AF4 was found to have structural features typical of lipopeptides. Microscopy imaging revealed that AF4 damages the surface of treated cells and results in membrane permeabilization, facilitating the uptake of the fluorescent dyes. A loss of membrane integrity was observed in cells treated with AF4 due to a decrease in DPH fluorescence and a dose-dependent increase in PI uptake. Cell damage was also determined from the log reduction of viable cells treated with AF4. AF4 treatment also caused elevated ROS levels, induced phosphatidylserine externalisation, late-stage apoptosis, and alterations to nuclear morphology revealed by DAPI fluorescence. Conclusion: Collectively, the mode of action studies revealed that AF4 acts primarily on the cell membrane of C. albicans and has the potential to act as an antifungal drug candidate.
Collapse
Affiliation(s)
- Swetha Ramesh
- Department of Biological Sciences, Birla Institute of Technology and Science, K.K. Birla Goa Campus, Goa, India
| | - Utpal Roy
- Department of Chemistry, Birla Institute of Technology and Science, K.K. Birla Goa Campus, Goa, India
| | - Subhashis Roy
- Department of Chemistry, Birla Institute of Technology and Science, K.K. Birla Goa Campus, Goa, India
| |
Collapse
|
10
|
Bellavita R, Falanga A, Merlino F, D'Auria G, Molfetta N, Saviano A, Maione F, Galdiero U, Catania MR, Galdiero S, Grieco P, Roscetto E, Falcigno L, Buommino E. Unveiling the mechanism of action of acylated temporin L analogues against multidrug-resistant Candida albicans. J Enzyme Inhib Med Chem 2023; 38:36-50. [PMID: 36305289 PMCID: PMC9621209 DOI: 10.1080/14756366.2022.2134359] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The increasing resistance of fungi to conventional antifungal drugs has prompted worldwide the search for new compounds. In this work, we investigated the antifungal properties of acylated Temporin L derivatives, Pent-1B and Dec-1B, against Candida albicans, including the multidrug-resistant strains. Acylated peptides resulted to be active both on reference and clinical strains with MIC values ranging from 6.5 to 26 µM, and they did not show cytotoxicity on human keratinocytes. In addition, we also observed a synergistic or additive effect with voriconazole for peptides Dec-1B and Pent-1B through the checkerboard assay on voriconazole-resistant Candida strains. Moreover, fluorescence-based assays, NMR spectroscopy, and confocal microscopy elucidated a potential membrane-active mechanism, consisting of an initial electrostatic interaction of acylated peptides with fungal membrane, followed by aggregation and insertion into the lipid bilayer and causing membrane perturbation probably through a carpeting effect.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples "Federico II", Portici, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Gabriella D'Auria
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Nicola Molfetta
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Anella Saviano
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Francesco Maione
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Umberto Galdiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Catania
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Paolo Grieco
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Emanuela Roscetto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Lucia Falcigno
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | | |
Collapse
|
11
|
Sikora K, Jędrzejczak J, Bauer M, Neubauer D, Jaśkiewicz M, Szaryńska M. Quaternary Ammonium Salts of Cationic Lipopeptides with Lysine Residues - Synthesis, Antimicrobial, Hemolytic and Cytotoxic Activities. Probiotics Antimicrob Proteins 2023; 15:1465-1483. [PMID: 37770629 PMCID: PMC10687119 DOI: 10.1007/s12602-023-10161-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 09/30/2023]
Abstract
Ultrashort cationic lipopeptides (USCLs) and quaternary ammonium salts constitute two groups of cationic surfactants with high antimicrobial activity. This study aimed to investigate the influence of quaternization of the amino group of the lysine side chain in USCLs on their antimicrobial, hemolytic and cytotoxic activities. To do this, two series of lipopeptides were synthesized, USLCs and their quaternized analogues containing trimethylated lysine residues - qUSCLs (quaternized ultrashort cationic lipopeptides). Quaternization was performed on a resin during a standard solid-phase peptide synthesis with CH3I as the methylating agent. According to our knowledge, this is the first study presenting on-resin peptide quaternization. The lipopeptides were tested for their antibacterial and antifungal activities against the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella aerogenes) bacteria and Candida glabrata yeast-like fungus. Most of the compounds proved to be active antimicrobial agents with enhanced activity against Gram-positive strains and fungi and a lower against Gram-negative species. In addition, the antimicrobial activity of lipopeptides was increasing with an increase in hydrophobicity but qUSCLs exhibited usually a poorer antimicrobial activity than their parent molecules. Furthermore, the toxicity against red blood cells and human keratinocytes was assessed. It's worth emphasizing that qUSCLs were less toxic than the parent molecules of comparative hydrophobicity. The results of the study proved that qUSCLs can offer a higher selectivity to pathogens over human cells than that of USCLs. Last but not least, quaternization of the peptides could increase their solubility and therefore their bioavailability and utility.
Collapse
Affiliation(s)
- Karol Sikora
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland.
| | - Jakub Jędrzejczak
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Marta Bauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Damian Neubauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Maciej Jaśkiewicz
- International Research Agenda 3P- Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, Building no. 5, 80-211, Gdańsk, Poland
| | - Magdalena Szaryńska
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| |
Collapse
|
12
|
Posa L, Tomek P, Lamba S, Sarojini V, Barker D. Development of truncated Battacin antimicrobials featuring novel N-terminal fatty acids with an excellent safety profile. Bioorg Med Chem Lett 2023; 96:129535. [PMID: 37871890 DOI: 10.1016/j.bmcl.2023.129535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Octapeptin B5 peptides containing a novel fatty acids have been found to have enhanced antibacterial activity against Staphylococcus aureus and also have an excellent safety profile. Cyclic lipopeptides such as the polymyxins and battacin are potent antibacterial agents. It has been shown that truncated, non-linear, versions of these agents (e.g. octapeptin B5) can retain the activity of the more complex cyclic compounds. In this work the synthesis of Octapeptin B5 peptides containing a range of novel fatty acids is reported. Many of these lipopeptides have been found to have enhanced antibacterial activity against Staphylococcus aureus compared to Octapeptin B5 whilst also having an excellent safety profile in haemolytic and cytotoxicity assays.
Collapse
Affiliation(s)
- Luka Posa
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Petr Tomek
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, School of Medical Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Saurabh Lamba
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand; Macdiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand.
| | - David Barker
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand; Macdiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand.
| |
Collapse
|
13
|
Selvaraj SP, Chen JY. Conjugation of antimicrobial peptides to enhance therapeutic efficacy. Eur J Med Chem 2023; 259:115680. [PMID: 37515922 DOI: 10.1016/j.ejmech.2023.115680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
The growing prevalence of antimicrobial resistance (AMR) has brought with it a continual increase in the numbers of deaths from multidrug-resistant (MDR) infections. Since the current arsenal of antibiotics has become increasingly ineffective, there exists an urgent need for discovery and development of novel antimicrobials. Antimicrobial peptides (AMPs) are considered to be a promising class of molecules due to their broad-spectrum activities and low resistance rates compared with other types of antibiotics. Since AMPs also often play major roles in elevating the host immune response, the molecules may also be called "host defense peptides." Despite the great promise of AMPs, the majority remain unsuitable for clinical use due to issues of structural instability, degradation by proteases, and/or toxicity to host cells. Moreover, AMP activities in vivo can be influenced by many factors, such as interaction with blood and serum biomolecules, physiological salt concentrations or different pH values. To overcome these limitations, structural modifications can be made to the AMP. Among several modifications, physical and chemical conjugation of AMP to other biomolecules is widely considered an effective strategy. In this review, we discuss structural modification strategies related to conjugation of AMPs and their possible effects on mode of action. The conjugation of fatty acids, glycans, antibiotics, photosensitizers, polymers, nucleic acids, nanoparticles, and immobilization to biomaterials are highlighted.
Collapse
Affiliation(s)
- Sanjay Prasad Selvaraj
- Molecular and Biological Agricultural Science Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd, Jiaushi, Ilan, 262, Taiwan; The iEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
14
|
Pilz M, Cavelius P, Qoura F, Awad D, Brück T. Lipopeptides development in cosmetics and pharmaceutical applications: A comprehensive review. Biotechnol Adv 2023; 67:108210. [PMID: 37460047 DOI: 10.1016/j.biotechadv.2023.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Lipopeptides are surface active, natural products of bacteria, fungi and green-blue algae origin, having diverse structures and functionalities. In analogy, a number of chemical synthesis techniques generated new designer lipopeptides with desirable features and functions. Lipopetides are self-assembly guided, supramolecular compounds which have the capacity of high-density presentation of the functional epitopes at the surface of the nanostructures. This feature contributes to their successful application in several industry sectors, including food, feed, personal care, and pharmaceutics. In this comprehensive review, the novel class of ribosomally synthesized lipopeptides is introduced alongside the more commonly occuring non-ribosomal lipopeptides. We highlight key representatives of the most researched as well as recently described lipopeptide families, with emphasis on structural features, self-assembly and associated functions. The common biological, chemical and hybrid production routes of lipopeptides, including prominent analogues and derivatives are also discussed. Furthermore, genetic engineering strategies aimed at increasing lipopeptide yields, diversity and biological activity are summarized and exemplified. With respect to application, this work mainly details the potential of lipopeptides in personal care and cosmetics industry as cleansing agents, moisturizer, anti-aging/anti-wrinkling, skin whitening and preservative agents as well as the pharmaceutical industry as anitimicrobial agents, vaccines, immunotherapy, and cancer drugs. Given that this review addresses human applications, we conclude on the topic of safety of lipopeptide formulations and their sustainable production.
Collapse
Affiliation(s)
- Melania Pilz
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Philipp Cavelius
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Farah Qoura
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| | - Thomas Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| |
Collapse
|
15
|
Akintayo SO, Hosseini B, Vahidinasab M, Messmer M, Pfannstiel J, Bertsche U, Hubel P, Henkel M, Hausmann R, Voegele RT, Lilge L. Characterization ofantifungal properties of lipopeptide-producing Bacillus velezensis strains and their proteome-based response to the phytopathogens, Diaporthe spp. Front Bioeng Biotechnol 2023; 11:1228386. [PMID: 37609113 PMCID: PMC10440741 DOI: 10.3389/fbioe.2023.1228386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction: B. velezensis strains are of interest in agricultural applications due to their beneficial interactions with plants, notable through their antimicrobial activity. The biocontrol ability of two new lipopeptides-producing B. velezensis strains ES1-02 and EFSO2-04, against fungal phytopathogens of Diaporthe spp., was evaluated and compared with reference strains QST713 and FZB42. All strains were found to be effective against the plant pathogens, with the new strains showing comparable antifungal activity to QST713 and slightly lower activity than FZB42. Methods: Lipopeptides and their isoforms were identified by high-performance thin-layer chromatography (HPTLC) and mass spectrometric measurements. The associated antifungal influences were determined in direct in vitro antagonistic dual culture assays, and the inhibitory growth effects on Diaporthe spp. as representatives of phytopathogenic fungi were determined. The effects on bacterial physiology of selected B. velezensis strains were analyzed by mass spectrometric proteomic analyses using nano-LC-MS/MS. Results and Discussion: Lipopeptide production analysis revealed that all strains produced surfactin, and one lipopeptide of the iturin family, including bacillomycin L by ES1-02 and EFSO2-04, while QST713 and FZB42 produced iturin A and bacillomycin D, respectively. Fengycin production was however only detected in the reference strains. As a result of co-incubation of strain ES1-02 with the antagonistic phytopathogen D. longicolla, an increase in surfactin production of up to 10-fold was observed, making stress induction due to competitors an attractive strategy for surfactin bioproduction. An associated global proteome analysis showed a more detailed overview about the adaptation and response mechanisms of B. velezensis, including an increased abundance of proteins associated with the biosynthesis of antimicrobial compounds. Furthermore, higher abundance was determined for proteins associated with oxidative, nitrosative, and general stress response. In contrast, proteins involved in phosphate uptake, amino acid transport, and translation were decreased in abundance. Altogether, this study provides new insights into the physiological adaptation of lipopeptide-producing B. velezensis strains, which show the potential for use as biocontrol agents with respect to phytopathogenic fungi.
Collapse
Affiliation(s)
- Stephen Olusanmi Akintayo
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Behnoush Hosseini
- Department of Phytopathology, Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Maliheh Vahidinasab
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Marc Messmer
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Core Facility, University of Hohenheim, Stuttgart, Germany
| | - Ute Bertsche
- Core Facility Hohenheim, Mass Spectrometry Core Facility, University of Hohenheim, Stuttgart, Germany
| | - Philipp Hubel
- Core Facility Hohenheim, Mass Spectrometry Core Facility, University of Hohenheim, Stuttgart, Germany
| | - Marius Henkel
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Rudolf Hausmann
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Ralf T. Voegele
- Department of Phytopathology, Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Lars Lilge
- Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| |
Collapse
|
16
|
Wang X, Feng L, Li M, Dong W, Luo X, Shang D. Membrane-active and DNA binding related double-action antimycobacterial mechanism of antimicrobial peptide W3R6 and its synthetic analogs. Biochim Biophys Acta Gen Subj 2023:130415. [PMID: 37336295 DOI: 10.1016/j.bbagen.2023.130415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
The emergence of multidrug- or extremely drug-resistant M. tuberculosis strains has made very few drugs available for current tuberculosis treatment. Antimicrobial peptides can be employed as a promising alternative strategy for TB treatment. Here, we designed and synthesized a series of peptide sequences based on the structure-activity relationships of natural sequences of antimicrobial peptides. The peptide W3R6 and its analogs were screened and found to have potent antimycobacterial activity against M. smegmatis, and no hemolytic activity against human erythrocytes. The evidence from the mechanism of action study indicated that W3R6 and its analogs can interact with the mycobacterial membrane in a lytic manner and form pores on the outer membrane of M. smegmatis. Significant colocalization of D-W3R6 with mycobacterial DNA was observed by confocal laser scanning microscopy and DNA retardation assays, which suggested that the antimycobacterial mechanism of action of the peptide was associated with the unprotected genomic DNA of M. smegmatis. In general, W3R6 and its analogs act on not only the mycobacterial membrane but also the genomic DNA in the cytoplasm, which makes it difficult for mycobacteria to generate resistance due to the peptides having two targets. In addition, the peptides can effectively eliminate M. smegmatis cells from infected macrophages. Our findings indicated that the antimicrobial peptide W3R6 could be a novel lead compound to overcome the threat from drug-resistant M. tuberculosis strains in the development of potent AMPs for TB therapeutic applications.
Collapse
Affiliation(s)
- Xiaorui Wang
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Liubin Feng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mengmiao Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Weibing Dong
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China.
| | - Xueyue Luo
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
17
|
Yang L, Chen C, Liang T, Hao L, Gu Q, Xu H, Zhao Y, Jiang L, Fan X. Disassembling ability of lipopeptide promotes the antibacterial activity. J Colloid Interface Sci 2023; 649:535-546. [PMID: 37356155 DOI: 10.1016/j.jcis.2023.05.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/27/2023]
Abstract
Lipopeptides have become one of the most potent antibacterial agents, however, there is so far no consensus about the link between their physic-chemical properties and biological activity, in particular their inherent aggregation propensity and antibacterial potency. To this end, we here de novo design a series of lipopeptides (CnH(2n-1)O-(VVKK)2V-NH2), in which an alkyl chain is covalently attached onto the N-terminus of a short cationic peptide sequence with an alternating pattern of hydrophobic VV (Val) and positively charged KK (Lys) motifs. By varying the alkyl chain length (ortho-octanoic acid (C8), lauric acid (C12), and palmitic acid (C16)), the lipopeptides show distinct physicochemical properties and self-assembly behaviors, which have great effect on their antibacterial activities. C8H15O-(VVKK)2V-NH2, which contains the lowest hydrophobicity and surface activity has the lowest antibacterial activity. C12H23O-(VVKK)2V-NH2 and C16H31O-(VVKK)2V-NH2 both have high hydrophobicity and surface activity, and self-assembled into long nanofibers. However, the nanofibers formed by C12H23O-(VVKK)2V-NH2 disassembled by dilution, resulting in its high antibacterial activity via bacterial membrane disruption. Comparatively, the nanofibers formed by C16H31O-(VVKK)2V-NH2 were very stable, which can closely attach on bacterial surface but not permeate bacterial membrane, leading to its low antibacterial activity. Thus, the stability other than the morphologies of lipopeptides' nanostructures contribute to their antibacterial ability. Importantly, this study enhances our understanding of the antibacterial mechanisms of self-assembling lipopeptides that will be helpful in exploring their biomedical applications.
Collapse
Affiliation(s)
- Liuxin Yang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Cuixia Chen
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | - Tiantian Liang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Liyun Hao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Qilong Gu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Lixia Jiang
- Hospital of China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Xinglong Fan
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China.
| |
Collapse
|
18
|
Zhao X, Zhong X, Yang S, Deng K, Liu L, Song X, Zou Y, Li L, Zhou X, Jia R, Lin J, Tang H, Ye G, Yang J, Zhao S, Lang Y, Wan H, Yin Z, Kuipers OP. Elucidating the Mechanism of Action of the Gram-Negative-Pathogen-Selective Cyclic Antimicrobial Lipopeptide Brevicidine. Antimicrob Agents Chemother 2023; 67:e0001023. [PMID: 36912655 PMCID: PMC10190627 DOI: 10.1128/aac.00010-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Due to the accelerated appearance of antimicrobial-resistant (AMR) pathogens in clinical infections, new first-in-class antibiotics, operating via novel modes of action, are desperately needed. Brevicidine, a bacterial nonribosomally produced cyclic lipopeptide, has shown potent and selective antimicrobial activity against Gram-negative pathogens. However, before our investigations, little was known about how brevicidine exerts its potent bactericidal effect against Gram-negative pathogens. In this study, we find that brevicidine has potent antimicrobial activity against AMR Enterobacteriaceae pathogens, with MIC values ranging between 0.5 μM (0.8 mg/L) and 2 μM (3.0 mg/L). In addition, brevicidine showed potent antibiofilm activity against the Enterobacteriaceae pathogens, with the same 100% inhibition and 100% eradication concentration of 4 μM (6.1 mg/L). Further mechanistic studies showed that brevicidine exerts its potent bactericidal activity by interacting with lipopolysaccharide in the outer membrane, targeting phosphatidylglycerol and cardiolipin in the inner membrane, and dissipating the proton motive force of bacteria. This results in metabolic perturbation, including the inhibition of ATP synthesis; the inhibition of the dehydrogenation of NADH; the accumulation of reactive oxygen species in bacteria; and the inhibition of protein synthesis. Finally, brevicidine showed a good therapeutic effect in a mouse peritonitis-sepsis model. Our findings pave the way for further research on the clinical applications of brevicidine to combat prevalent infections caused by AMR Gram-negative pathogens worldwide.
Collapse
Affiliation(s)
- Xinghong Zhao
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinyi Zhong
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Shinong Yang
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Kai Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lu Liu
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Xun Zhou
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juchun Lin
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Gang Ye
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Jianqing Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Shan Zhao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yifei Lang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hongping Wan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, China
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
19
|
He S, Yang Z, Li X, Wu H, Zhang L, Shan A, Wang J. Boosting stability and therapeutic potential of proteolysis-resistant antimicrobial peptides by end-tagging β-naphthylalanine. Acta Biomater 2023; 164:175-194. [PMID: 37100185 DOI: 10.1016/j.actbio.2023.04.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Recently, much emphasis has been placed on solving the intrinsic defects of antimicrobial peptides (AMPs), especially their susceptibility to protease digestion for the systemic application of antibacterial biomaterials. Although many strategies have increased the protease stability of AMPs, antimicrobial activity was severely compromised, thereby substantially weakening their therapeutic effect. To address this issue, we introduced hydrophobic group modifications at the N-terminus of proteolysis-resistant AMPs D1 (AArIIlrWrFR) through end-tagging with stretches of natural amino acids (W and I), unnatural amino acid (Nal) and fatty acids. Of these peptides, N1 tagged with a Nal at N-terminus showed the highest selectivity index (GMSI = 19.59), with a 6.73-fold improvement over D1. In addition to potent broad-spectrum antimicrobial activity, N1 also exhibited high antimicrobial stability toward salts, serum and proteases in vitro and ideal biocompatibility and therapeutic efficacy in vivo. Furthermore, N1 killed bacteria through multiple mechanisms, involving disruption of bacterial membranes and inhibition of bacterial energy metabolism. Indeed, appropriate terminal hydrophobicity modification opens up new avenues for developing and applying high-stability peptide-based antibacterial biomaterials. STATEMENT OF SIGNIFICANCE: To improve the potency and stability of proteolysis-resistant antimicrobial peptides (AMPs) without increasing toxicity, we constructed a convenient and tunable platform based on different compositions and lengths of hydrophobic end modifications. By tagging an Nal at the N-terminal, the obtained target compound N1 exhibited strong antimicrobial activity and desirable stability under multifarious environments in vitro (protease, salts and serum), and also showed favorable biocompatibility and therapeutic efficacy in vivo. Notably, N1exerted its bactericidal effect by damaging bacterial cell membranes and inhibiting bacterial energy metabolism in a dual mode. The findings provide a potential method for designing or optimizing proteolysis-resistant AMPs thus promoting the development and application of peptide-based antibacterial biomaterial.
Collapse
Affiliation(s)
- Shiqi He
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhanyi Yang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xuefeng Li
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hua Wu
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Licong Zhang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Anshan Shan
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Jiajun Wang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China.
| |
Collapse
|
20
|
Glycosylation and Lipidation Strategies: Approaches for Improving Antimicrobial Peptide Efficacy. Pharmaceuticals (Basel) 2023; 16:ph16030439. [PMID: 36986538 PMCID: PMC10059750 DOI: 10.3390/ph16030439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Antimicrobial peptides (AMPs) have recently gained attention as a viable solution for combatting antibiotic resistance due to their numerous advantages, including their broad-spectrum activity, low propensity for inducing resistance, and low cytotoxicity. Unfortunately, their clinical application is limited due to their short half-life and susceptibility to proteolytic cleavage by serum proteases. Indeed, several chemical strategies, such as peptide cyclization, N-methylation, PEGylation, glycosylation, and lipidation, are widely used for overcoming these issues. This review describes how lipidation and glycosylation are commonly used to increase AMPs’ efficacy and engineer novel AMP-based delivery systems. The glycosylation of AMPs, which involves the conjugation of sugar moieties such as glucose and N-acetyl galactosamine, modulates their pharmacokinetic and pharmacodynamic properties, improves their antimicrobial activity, and reduces their interaction with mammalian cells, thereby increasing selectivity toward bacterial membranes. In the same way, lipidation of AMPs, which involves the covalent addition of fatty acids, has a significant impact on their therapeutic index by influencing their physicochemical properties and interaction with bacterial and mammalian membranes. This review highlights the possibility of using glycosylation and lipidation strategies to increase the efficacy and activity of conventional AMPs.
Collapse
|
21
|
Glossop HD, Sarojini V. Accessing the Thiol Toolbox: Synthesis and Structure-Activity Studies on Fluoro-Thiol Conjugated Antimicrobial Peptides. Bioconjug Chem 2023; 34:218-227. [PMID: 36524416 DOI: 10.1021/acs.bioconjchem.2c00519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The para-fluoro-thiol reaction (PFTR) is a modern name for the much older concept of a nucleophilic aromatic substitution reaction in which the para-position fluorine of a perfluorinated benzene moiety is substituted by a thiol. As a rapid and mild reaction, the PFTR is a useful technique for the post-synthetic modification of macromolecules like peptides on the solid phase. This reaction is of great potential since it allows for peptide chemists to access the vast catalogue of commercially available thiols with diverse structures to conjugate to peptides, which may impart favorable biological activity, particularly in antimicrobial sequences. This work covers the generation of a library of antimicrobial peptides by modifying a relatively inactive tetrapeptide with thiols of various structures using the PFTR to grant antimicrobial potency to the core sequence. In general, nucleophilic substitution of the peptide scaffold by hydrophobic thiols like cyclohexanethiol and octanethiol imparted the greatest antimicrobial activity over that of hydrophilic thiols bearing carboxylic acid or sugar moieties, which were ineffectual at improving the antimicrobial activity. The general trend here follows expected structure-activity relationship outcomes like that of changing the acyl group of lipopeptide antibiotics and is encouraging for the use of this reaction for structural modifications of antimicrobial sequences further.
Collapse
Affiliation(s)
- Hugh D Glossop
- School of Chemical Sciences, The University of Auckland, Science Centre, Building 302, 23 Symonds Street, Auckland 1142, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences, The University of Auckland, Science Centre, Building 302, 23 Symonds Street, Auckland 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
22
|
Sinha T, Malakar C, Talukdar NC. Mustard seed–associated endophytes suppress Sclerotinia sclerotiorum causing Sclerotinia rot in mustard crop. Int Microbiol 2022:10.1007/s10123-022-00314-0. [PMID: 36542232 DOI: 10.1007/s10123-022-00314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
Mustard-rapeseed cultivation is affected by Sclerotinia sclerotiorum resulting in loss of oil yield and degradation of crop quality. This study adopted an environment friendly biocontrol approach of screening mustard endophytes against the pathogen. Two bacterial isolates, Bacillus safensis (TS46 bac4) and Bacillus australimaris (SM2) showed potential biocontrol activity under both in vitro and in vivo conditions. Dual culture assay reported 90% inhibition of fungal growth. The bacterial cell free supernatant of isolate SM2 showed 52.89% inhibition and the other isolate TS46 bac4 showed 57.97% inhibition. The crude (10 mg/ml) and purified (10 mg/ml) metabolite extract of SM2 showed 100% and 97% inhibition respectively. Both crude (10 mg/ml) and purified (7.5 mg/ml) metabolite extract of TS46 bac4 exhibited 99% inhibition of the pathogen. Antifungal lipopeptides: surfactin, iturin and fengycin were identified in bacterial metabolite extract of the isolates. Both strains promoted healthy germination and prevented the formation of any disease symptoms in seedling. The selected Bacillus strains applied by spray method showed better results against fungal infection on mustard leaf and stem. Microscopic studies revealed degradation of fungal mycelial growth by both isolates. These findings support the employment of the bacterial strains as potential biocontrol agents to reduce the effects of S. sclerotiorum in mustard-rapeseed.
Collapse
|
23
|
Synthesis and Antimicrobial Activity of Short Analogues of the Marine Antimicrobial Peptide Turgencin A: Effects of SAR Optimizations, Cys-Cys Cyclization and Lipopeptide Modifications. Int J Mol Sci 2022; 23:ijms232213844. [PMID: 36430320 PMCID: PMC9696794 DOI: 10.3390/ijms232213844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
We have synthesised short analogues of the marine antimicrobial peptide Turgencin A from the colonial Arctic ascidian Synoicum turgens. In this study, we focused on a central, cationic 12-residue Cys-Cys loop region within the sequence. Modified (tryptophan- and arginine-enriched) linear peptides were compared with Cys-Cys cyclic derivatives, and both linear and Cys-cyclic peptides were N-terminally acylated with octanoic acid (C8), decanoic acid (C10) or dodecanoic acid (C12). The highest antimicrobial potency was achieved by introducing dodecanoic acid to a cyclic Turgencin A analogue with low intrinsic hydrophobicity, and by introducing octanoic acid to a cyclic analogue displaying a higher intrinsic hydrophobicity. Among all tested synthetic Turgencin A lipopeptide analogues, the most promising candidates regarding both antimicrobial and haemolytic activity were C12-cTurg-1 and C8-cTurg-2. These optimized cyclic lipopeptides displayed minimum inhibitory concentrations of 4 µg/mL against Staphylococcus aureus, Escherichia coli and the fungus Rhodothorula sp. Mode of action studies on bacteria showed a rapid membrane disruption and bactericidal effect of the cyclic lipopeptides. Haemolytic activity against human erythrocytes was low, indicating favorable selective targeting of bacterial cells.
Collapse
|
24
|
Bajpai A, Agnihotri R, Prakash A, Johri BN. Biosurfactant from Bacillus sp. A5F Reduces Disease Incidence of Sclerotinia sclerotiorum in Soybean Crop. Curr Microbiol 2022; 79:206. [PMID: 35622162 DOI: 10.1007/s00284-022-02897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022]
Abstract
The present study was conducted to assess the biocontrol activity of biosurfactants obtained from Bacillus species A5F. The variables significantly influencing the production of biosurfactants under in vitro conditions were further optimized using response surface methodology. Optimal values of selected culture variables, i.e., glucose, soybean oil, and incubation time were 3.5 g l-1, 3.5 ml l-1, and 78 h, respectively, resulting in 2.14-fold enhancement in biosurfactant levels in 5 l fermentor. Identified biosurfactants had a significant effect on chlorophyll content, shoot biomass, number of pods, and seed weight. Biosurfactants also reduced the disease incidence in S. sclerotiorum infected soybean plants and showed antagonistic action against major phytopathogens by disrupting the hyphal cell wall. 16% reduction in ITS gene copy number was observed as compared to control with less non-target effect upon biosurfactant spray on foliar parts of soybean. Thus, the study confirms that biosurfactants from strain A5F can be used as a potent biocontrol agent to control sclerotium wilt on soybean plants.
Collapse
Affiliation(s)
- Apekcha Bajpai
- Department of Microbiology, Barkatullah University, Bhopal, M.P., 462026, India.
| | - Richa Agnihotri
- M S Swaminathan Research Foundation (MSSRF), Pillaiyarkuppam, Thondamanatham Post, Vazhuthavoor Road, Puducherry, 605502, India
| | - Anil Prakash
- Department of Microbiology, Barkatullah University, Bhopal, M.P., 462026, India.
| | | |
Collapse
|
25
|
Xiong ZR, Cobo M, Whittal RM, Snyder AB, Worobo RW. Purification and characterization of antifungal lipopeptide produced by Bacillus velezensis isolated from raw honey. PLoS One 2022; 17:e0266470. [PMID: 35385565 PMCID: PMC8985968 DOI: 10.1371/journal.pone.0266470] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/21/2022] [Indexed: 01/22/2023] Open
Abstract
Raw honey contains a diverse microbiota originating from honeybees, plants, and soil. Some gram-positive bacteria isolated from raw honey are known for their ability to produce secondary metabolites that have the potential to be exploited as antimicrobial agents. Currently, there is a high demand for natural, broad-spectrum, and eco-friendly bio-fungicides in the food industry. Naturally occurring antifungal products from food-isolated bacteria are ideal candidates for agricultural applications. To obtain novel antifungals from natural sources, we isolated bacteria from raw clover and orange blossom honey to evaluate their antifungal-producing potential. Two Bacillus velezensis isolates showed strong antifungal activity against food-isolated fungal strains. Antifungal compound production was optimized by adjusting the growth conditions of these bacterial isolates. Extracellular proteinaceous compounds were purified via ammonium sulfate precipitation, solid phase extraction, and RP-HPLC. Antifungal activity of purified products was confirmed by deferred overlay inhibition assay. Mass spectrometry (MS) was performed to determine the molecular weight of the isolated compounds. Whole genome sequencing (WGS) was conducted to predict secondary metabolite gene clusters encoded by the two antifungal-producing strains. Using MS and WGS data, we determined that the main antifungal compound produced by these two Bacillus velezensis isolates was iturin A, a lipopeptide exhibiting broad spectrum antifungal activity.
Collapse
Affiliation(s)
- Zirui Ray Xiong
- Department of Food Science, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| | - Mario Cobo
- Department of Food Science, Cornell University, Ithaca, NY, United States of America
| | - Randy M. Whittal
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Abigail B. Snyder
- Department of Food Science, Cornell University, Ithaca, NY, United States of America
| | - Randy W. Worobo
- Department of Food Science, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
26
|
Gong X, Hui X, Wu G, Morton JD, Brennan MA, Brennan CS. In vitro digestion characteristics of cereal protein concentrates as assessed using a pepsin-pancreatin digestion model. Food Res Int 2022; 152:110715. [PMID: 35181112 DOI: 10.1016/j.foodres.2021.110715] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/16/2021] [Accepted: 09/12/2021] [Indexed: 11/17/2022]
Abstract
An alkaline extraction method has been used in many studies to extract total protein from cereal samples. Wheat bran protein concentrate (WBPC), oat bran protein concentrate (OBPC), and barley protein concentrate (BPC) were prepared by alkaline extraction and isoelectric precipitation to study their functional and nutritional properties. The three protein concentrates were hydrolysed by an in vitro pepsin-pancreatin digestion model. Their digestibility (%) and degree of hydrolysis (DH%) were evaluated, and SDS-PAGE electrophoresis was used to illustrate the protein and peptides patterns. The change of the particle sizes and the release of the essential amino acids was followed during the digestion process. The in vitro digestibility of WBPC, OBPC and BPC was 87.4%, 96.1% and 76.9%, respectively. The DH% of protein concentrates were between 50 and 60%. The change of the particle size distribution values Dv(50) was assumed to be related to protein aggregations during the digestion. The protein fractions were identified and the degradation during the digestion and were analysed by SDS-PAGE; the gels of WBPC and OBPC digestion showed virtually complete degradation whereas the intensive bands of undigested protein were presented for BPC. The generation of the free amino acids and short chain peptides were significantly higher at the end of the intestinal digestion compared to the stages of before and after gastric digestion. Higher content of the deficient amino acids such as lysine and threonine were found comparing to the level of deficient amino acids in cereal grains but does not meet the daily recommended intake.
Collapse
Affiliation(s)
- Xi Gong
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Xiaodan Hui
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Gang Wu
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Margaret A Brennan
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Charles S Brennan
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; Biosciences and Food Technologies, School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| |
Collapse
|
27
|
Bugli F, Massaro F, Buonocore F, Saraceni PR, Borocci S, Ceccacci F, Bombelli C, Di Vito M, Marchitiello R, Mariotti M, Torelli R, Sanguinetti M, Porcelli F. Design and Characterization of Myristoylated and Non-Myristoylated Peptides Effective against Candida spp. Clinical Isolates. Int J Mol Sci 2022; 23:2164. [PMID: 35216297 PMCID: PMC8875392 DOI: 10.3390/ijms23042164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 01/08/2023] Open
Abstract
The increasing resistance of fungi to antibiotics is a severe challenge in public health, and newly effective drugs are required. Promising potential medications are lipopeptides, linear antimicrobial peptides (AMPs) conjugated to a lipid tail, usually at the N-terminus. In this paper, we investigated the in vitro and in vivo antifungal activity of three short myristoylated and non-myristoylated peptides derived from a mutant of the AMP Chionodracine. We determined their interaction with anionic and zwitterionic membrane-mimicking vesicles and their structure during this interaction. We then investigated their cytotoxic and hemolytic activity against mammalian cells. Lipidated peptides showed a broad spectrum of activity against a relevant panel of pathogen fungi belonging to Candida spp., including the multidrug-resistant C. auris. The antifungal activity was also observed vs. biofilms of C. albicans, C. tropicalis, and C. auris. Finally, a pilot efficacy study was conducted on the in vivo model consisting of Galleria mellonella larvae. Treatment with the most-promising myristoylated peptide was effective in counteracting the infection from C. auris and C. albicans and the death of the larvae. Therefore, this myristoylated peptide is a potential candidate to develop antifungal agents against human fungal pathogens.
Collapse
Affiliation(s)
- Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (M.D.V.); (R.M.); (M.M.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy;
| | - Federica Massaro
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.M.); (F.B.); (P.R.S.); (S.B.)
| | - Francesco Buonocore
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.M.); (F.B.); (P.R.S.); (S.B.)
| | - Paolo Roberto Saraceni
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.M.); (F.B.); (P.R.S.); (S.B.)
| | - Stefano Borocci
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.M.); (F.B.); (P.R.S.); (S.B.)
- CNR—Institute for Biological Systems, Area Della Ricerca di Roma 1, SP35d 9, 00010 Montelibretti, Italy
| | - Francesca Ceccacci
- CNR—Institute For Biological Systems, Sede Secondaria di Roma-Meccanismi di Reazione, c/o Università La Sapienza, 00185 Rome, Italy; (F.C.); (C.B.)
| | - Cecilia Bombelli
- CNR—Institute For Biological Systems, Sede Secondaria di Roma-Meccanismi di Reazione, c/o Università La Sapienza, 00185 Rome, Italy; (F.C.); (C.B.)
| | - Maura Di Vito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (M.D.V.); (R.M.); (M.M.)
| | - Rosalba Marchitiello
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (M.D.V.); (R.M.); (M.M.)
| | - Melinda Mariotti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (M.D.V.); (R.M.); (M.M.)
| | - Riccardo Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy;
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (M.D.V.); (R.M.); (M.M.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy;
| | - Fernando Porcelli
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.M.); (F.B.); (P.R.S.); (S.B.)
| |
Collapse
|
28
|
Moll L, Badosa E, Planas M, Feliu L, Montesinos E, Bonaterra A. Antimicrobial Peptides With Antibiofilm Activity Against Xylella fastidiosa. Front Microbiol 2021; 12:753874. [PMID: 34819923 PMCID: PMC8606745 DOI: 10.3389/fmicb.2021.753874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022] Open
Abstract
Xylella fastidiosa is a plant pathogen that was recently introduced in Europe and is causing havoc to its agriculture. This Gram-negative bacterium invades the host xylem, multiplies, and forms biofilm occluding the vessels and killing its host. In spite of the great research effort, there is no method that effectively prevents or cures hosts from infections. The main control strategies up to now are eradication, vector control, and pathogen-free plant material. Antimicrobial peptides have arisen as promising candidates to combat this bacterium due to their broad spectrum of activity and low environmental impact. In this work, peptides previously reported in the literature and newly designed analogs were studied for its bactericidal and antibiofilm activity against X. fastidiosa. Also, their hemolytic activity and effect on tobacco leaves when infiltrated were determined. To assess the activity of peptides, the strain IVIA 5387.2 with moderate growth, able to produce biofilm and susceptible to antimicrobial peptides, was selected among six representative strains found in the Mediterranean area (DD1, CFBP 8173, Temecula, IVIA 5387.2, IVIA 5770, and IVIA 5901.2). Two interesting groups of peptides were identified with bactericidal and/or antibiofilm activity and low-moderate toxicity. The peptides 1036 and RIJK2 with dual (bactericidal-antibiofilm) activity against the pathogen and moderate toxicity stand out as the best candidates to control X. fastidiosa diseases. Nevertheless, peptides with only antibiofilm activity and low toxicity are also promising agents as they could prevent the occlusion of xylem vessels caused by the pathogen. The present work contributes to provide novel compounds with antimicrobial and antibiofilm activity that could lead to the development of new treatments against diseases caused by X. fastidiosa.
Collapse
Affiliation(s)
- Luís Moll
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Girona, Spain
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| |
Collapse
|
29
|
Sharma J, Sundar D, Srivastava P. Biosurfactants: Potential Agents for Controlling Cellular Communication, Motility, and Antagonism. Front Mol Biosci 2021; 8:727070. [PMID: 34708073 PMCID: PMC8542798 DOI: 10.3389/fmolb.2021.727070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022] Open
Abstract
Biosurfactants are surface-active molecules produced by microorganisms, either on the cell surface or secreted extracellularly. They form a thin film on the surface of microorganisms and help in their detachment or attachment to other cell surfaces. They are involved in regulating the motility of bacteria and quorum sensing. Here, we describe the various types of biosurfactants produced by microorganisms and their role in controlling motility, antagonism, virulence, and cellular communication.
Collapse
Affiliation(s)
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
30
|
Liu H, Yang N, Teng D, Mao R, Hao Y, Ma X, Wang X, Wang J. Fatty acid modified-antimicrobial peptide analogues with potent antimicrobial activity and topical therapeutic efficacy against Staphylococcus hyicus. Appl Microbiol Biotechnol 2021; 105:5845-5859. [PMID: 34319418 DOI: 10.1007/s00253-021-11454-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
There is an urgent need to explore new antimicrobial agents due to the looming threat of bacteria resistance. Bovine lactoferricin (LfcinB), as a multifunctional peptide, has the potential to be a new active drug in the future. In this study, it aims to investigate the effect of fatty acid conjugation on antimicrobial peptide activity and topical therapeutic efficacy in a mouse model infected with Staphylococcus hyicus. Both Lfcin4 and Lfcin5 were conjugated with the unsaturated fatty acid linoleic acid (18-C) at their N-terminus and modified by acylation at the C-terminus. The derived peptides of Lin-Lf4NH2 and Lin-Lf5NH2 showed better antibacterial activity (MICs of 3.27 to 6.64 μM) than their parent peptides (MICs of 1.83 to 59.57 μM). Lin-Lf4NH2 (63.2%, 5 min) and Lin-Lf5NH2 (35.8%, 5 min) could more rapidly penetrate bacterial membrane than Lf4NH2 (2.34%, 5 min) and Lf5NH2 (1.94%, 5 min), which further confirmed by the laser scanning confocal microscopy (LSCM). Electron microscopy observations showed Lin-Lf4NH2 and Lin-Lf5NH2 disrupted S. hyicus cell membranes and led to the leakage of contents. Furthermore, after treatment with Lin-Lf4NH2 and Lin-Lf5NH2, the abscess symptoms of mice were significantly alleviated; the recovery rate of abscesses scope of Lin-Lf4NH2 (73.25%) and Lin-Lf5NH2 (71.71%) were 38.8 and 37.9-fold higher than that of untreated group (1.89%), respectively, and superior to Lf4NH2 (46.87%) and Lf5NH2 (58.75%). They significantly reduced the bacterial load and the levels of the pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) and chemokine (MCP-1) in S. hyicus skin lesions. This study provides evidence that conjugation of a fatty acid to antimicrobial peptides can improve the activity and have potential for topical therapeutic of S. hyicus skin infections. KEY POINTS: • Lin-Lfcin4NH2/Lfcin5NH2 showed stronger antimicrobial activity than parent peptides. • Lin-Lfcin4NH2/Lfcin5NH2 had a more effective ability to destroy bacterial membranes. • Lin-Lfcin4NH2/Lfcin5NH2 showed a topically higher efficacy than parent peptides.
Collapse
Affiliation(s)
- He Liu
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Xuanxuan Ma
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Xiumin Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China. .,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| |
Collapse
|
31
|
Li W, Separovic F, O'Brien-Simpson NM, Wade JD. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem Soc Rev 2021; 50:4932-4973. [PMID: 33710195 DOI: 10.1039/d0cs01026j] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antimicrobial resistance (AMR) is one of the greatest threats to human health that, by 2050, will lead to more deaths from bacterial infections than cancer. New antimicrobial agents, both broad-spectrum and selective, that do not induce AMR are urgently required. Antimicrobial peptides (AMPs) are a novel class of alternatives that possess potent activity against a wide range of Gram-negative and positive bacteria with little or no capacity to induce AMR. This has stimulated substantial chemical development of novel peptide-based antibiotics possessing improved therapeutic index. This review summarises recent synthetic efforts and their impact on analogue design as well as their various applications in AMP development. It includes modifications that have been reported to enhance antimicrobial activity including lipidation, glycosylation and multimerization through to the broad application of novel bio-orthogonal chemistry, as well as perspectives on the direction of future research. The subject area is primarily the development of next-generation antimicrobial agents through selective, rational chemical modification of AMPs. The review further serves as a guide toward the most promising directions in this field to stimulate broad scientific attention, and will lead to new, effective and selective solutions for the several biomedical challenges to which antimicrobial peptidomimetics are being applied.
Collapse
Affiliation(s)
- Wenyi Li
- Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, VIC 3010, Australia. and Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - Frances Separovic
- Bio21 Institute, University of Melbourne, VIC 3010, Australia and School of Chemistry, University of Melbourne, VIC 3010, Australia
| | - Neil M O'Brien-Simpson
- Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, VIC 3010, Australia. and Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - John D Wade
- School of Chemistry, University of Melbourne, VIC 3010, Australia and The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
32
|
Oliveras À, Moll L, Riesco-Llach G, Tolosa-Canudas A, Gil-Caballero S, Badosa E, Bonaterra A, Montesinos E, Planas M, Feliu L. D-Amino Acid-Containing Lipopeptides Derived from the Lead Peptide BP100 with Activity against Plant Pathogens. Int J Mol Sci 2021; 22:ijms22126631. [PMID: 34205705 PMCID: PMC8233901 DOI: 10.3390/ijms22126631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/19/2022] Open
Abstract
From a previous collection of lipopeptides derived from BP100, we selected 18 sequences in order to improve their biological profile. In particular, analogues containing a D-amino acid at position 4 were designed, prepared, and tested against plant pathogenic bacteria and fungi. The biological activity of these sequences was compared with that of the corresponding parent lipopeptides with all L-amino acids. In addition, the influence of the length of the hydrophobic chain on the biological activity was evaluated. Interestingly, the incorporation of a D-amino acid into lipopeptides bearing a butanoyl or a hexanoyl chain led to less hemolytic sequences and, in general, that were as active or more active than the corresponding all L-lipopeptides. The best lipopeptides were BP475 and BP485, both incorporating a D-Phe at position 4 and a butanoyl group, with MIC values between 0.8 and 6.2 µM, low hemolysis (0 and 24% at 250 µM, respectively), and low phytotoxicity. Characterization by NMR of the secondary structure of BP475 revealed that the D-Phe at position 4 disrupts the α-helix and that residues 6 to 10 are able to fold in an α-helix. This secondary structure would be responsible for the high antimicrobial activity and low hemolysis of this lipopeptide.
Collapse
Affiliation(s)
- Àngel Oliveras
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17004 Girona, Spain; (À.O.); (G.R.-L.); (A.T.-C.)
| | - Luís Moll
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17004 Girona, Spain; (L.M.); (E.B.); (A.B.); (E.M.)
| | - Gerard Riesco-Llach
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17004 Girona, Spain; (À.O.); (G.R.-L.); (A.T.-C.)
| | - Arnau Tolosa-Canudas
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17004 Girona, Spain; (À.O.); (G.R.-L.); (A.T.-C.)
| | - Sergio Gil-Caballero
- Serveis Tècnics de Recerca (NMR), Universitat de Girona, Parc Científic i Tecnològic de la UdG, Pic de Peguera 15, 17004 Girona, Spain;
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17004 Girona, Spain; (L.M.); (E.B.); (A.B.); (E.M.)
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17004 Girona, Spain; (L.M.); (E.B.); (A.B.); (E.M.)
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17004 Girona, Spain; (L.M.); (E.B.); (A.B.); (E.M.)
| | - Marta Planas
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17004 Girona, Spain; (À.O.); (G.R.-L.); (A.T.-C.)
- Correspondence: (M.P.); (L.F.)
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17004 Girona, Spain; (À.O.); (G.R.-L.); (A.T.-C.)
- Correspondence: (M.P.); (L.F.)
| |
Collapse
|
33
|
Cardoso P, Glossop H, Meikle TG, Aburto-Medina A, Conn CE, Sarojini V, Valery C. Molecular engineering of antimicrobial peptides: microbial targets, peptide motifs and translation opportunities. Biophys Rev 2021; 13:35-69. [PMID: 33495702 PMCID: PMC7817352 DOI: 10.1007/s12551-021-00784-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
The global public health threat of antimicrobial resistance has led the scientific community to highly engage into research on alternative strategies to the traditional small molecule therapeutics. Here, we review one of the most popular alternatives amongst basic and applied research scientists, synthetic antimicrobial peptides. The ease of peptide chemical synthesis combined with emerging engineering principles and potent broad-spectrum activity, including against multidrug-resistant strains, has motivated intense scientific focus on these compounds for the past decade. This global effort has resulted in significant advances in our understanding of peptide antimicrobial activity at the molecular scale. Recent evidence of molecular targets other than the microbial lipid membrane, and efforts towards consensus antimicrobial peptide motifs, have supported the rise of molecular engineering approaches and design tools, including machine learning. Beyond molecular concepts, supramolecular chemistry has been lately added to the debate; and helped unravel the impact of peptide self-assembly on activity, including on biofilms and secondary targets, while providing new directions in pharmaceutical formulation through taking advantage of peptide self-assembled nanostructures. We argue that these basic research advances constitute a solid basis for promising industry translation of rationally designed synthetic peptide antimicrobials, not only as novel drugs against multidrug-resistant strains but also as components of emerging antimicrobial biomaterials. This perspective is supported by recent developments of innovative peptide-based and peptide-carrier nanobiomaterials that we also review.
Collapse
Affiliation(s)
- Priscila Cardoso
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
- School of Science, RMIT University, Melbourne, Australia
| | - Hugh Glossop
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | - Celine Valery
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| |
Collapse
|
34
|
Zhong C, Zhang F, Zhu N, Zhu Y, Yao J, Gou S, Xie J, Ni J. Ultra-short lipopeptides against gram-positive bacteria while alleviating antimicrobial resistance. Eur J Med Chem 2020; 212:113138. [PMID: 33422980 DOI: 10.1016/j.ejmech.2020.113138] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 01/05/2023]
Abstract
Facing the continuously urgent demands for novel antimicrobial agents since the growing emergence of bacterial resistance, a series of new ultra-short lipopeptides, composed of tryptophan and arginine and fatty acids, were de novo designed and synthesized in this study. Most of the new lipopeptides exhibited preferable antimicrobial potential against gram-positive bacteria, including MRSA clinical isolates. Among them, the new lipopeptides C14-R1 (C14-RWW-NH2) and C12-R2 (C12-RRW-NH2) presented higher selectivity to bacterial membranes over mammalian membranes and low cytotoxicity, which also maintained better antimicrobial activity in the presence of physiological salts or serum. Most importantly, C14-R1 and C12-R2 not only expressed low tendency of bacterial resistance, but also displayed synergistic antimicrobial activity against antibiotics-resistant bacteria when be used in combination with antibiotics. Especially, they could alleviate or reverse the ciprofloxacin resistance, implying an ideal anti-resistance function. Moreover, the new lipopeptides showed rapid killing kinetics, obvious effectiveness for persistent cells that escaped from antibiotics, and strong anti-biofilm ability, which further indicated a preferable anti-resistance ability. The typical non-receptor-mediated membrane mechanisms were characterized by LPS/LTA competitive inhibition, cytoplasmic membrane depolarization, PI uptake assay and scanning electron microscopy analyses systematically. Reactive oxygen species (ROS) generation assays supplemented their intracellular targets in the meanwhile. In addition to the remarkable antimicrobial activity in vivo, the new lipopeptides also displayed significant anti-inflammatory effect in vivo. To sum up, the new lipopeptides C14-R1 and C12-R2 viewed as novel antimicrobial alternatives for tackling the impending crisis of antimicrobial resistance.
Collapse
Affiliation(s)
- Chao Zhong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Fangyan Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ningyi Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yuewen Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jia Yao
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Sanhu Gou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China.
| |
Collapse
|
35
|
Rounds T, Straus SK. Lipidation of Antimicrobial Peptides as a Design Strategy for Future Alternatives to Antibiotics. Int J Mol Sci 2020; 21:ijms21249692. [PMID: 33353161 PMCID: PMC7766664 DOI: 10.3390/ijms21249692] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023] Open
Abstract
Multi-drug-resistant bacteria are becoming more prevalent, and treating these bacteria is becoming a global concern. One alternative approach to combat bacterial resistance is to use antimicrobial (AMPs) or host-defense peptides (HDPs) because they possess broad-spectrum activity, function in a variety of ways, and lead to minimal resistance. However, the therapeutic efficacy of HDPs is limited by a number of factors, including systemic toxicity, rapid degradation, and low bioavailability. One approach to circumvent these issues is to use lipidation, i.e., the attachment of one or more fatty acid chains to the amine groups of the N-terminus or a lysine residue of an HDP. In this review, we examined lipidated analogs of 66 different HDPs reported in the literature to determine: (i) whether there is a link between acyl chain length and antibacterial activity; (ii) whether the charge and (iii) the hydrophobicity of the HDP play a role; and (iv) whether acyl chain length and toxicity are related. Overall, the analysis suggests that lipidated HDPs with improved activity over the nonlipidated counterpart had acyl chain lengths of 8–12 carbons. Moreover, active lipidated peptides attached to short HDPs tended to have longer acyl chain lengths. Neither the charge of the parent HDP nor the percent hydrophobicity of the peptide had an apparent significant impact on the antibacterial activity. Finally, the relationship between acyl chain length and toxicity was difficult to determine due to the fact that toxicity is quantified in different ways. The impact of these trends, as well as combined strategies such as the incorporation of d- and non-natural amino acids or alternative approaches, will be discussed in light of how lipidation may play a role in the future development of antimicrobial peptide-based alternatives to current therapeutics.
Collapse
|
36
|
Liu Y, Li S, Shen T, Chen L, Zhou J, Shi S, Wang Y, Zhao Z, Liao C, Wang C. N-terminal Myristoylation Enhanced the Antimicrobial Activity of Antimicrobial Peptide PMAP-36PW. Front Cell Infect Microbiol 2020; 10:450. [PMID: 32984074 PMCID: PMC7481357 DOI: 10.3389/fcimb.2020.00450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/23/2020] [Indexed: 01/08/2023] Open
Abstract
Drug-resistant bacteria infections and drug residues have been increasing and causing antibiotic resistance and public health threats worldwide. Antimicrobial peptides (AMPs) are novel antimicrobial drugs with the potential to solve these problems. Here, a peptide based on our previously studied peptide PMAP-36PW was designed via N-terminal myristoylation and referred to as Myr-36PW. The fatty acid modification provided the as-prepared peptide with good stability and higher antimicrobial activity compared with PMAP-36PW in vitro. Moreover, Myr-36PW exhibited effective anti-biofilm activity against Gram-negative bacteria and may kill bacteria by improving the permeability of their membranes. In addition, the designed peptide Myr-36PW could inhibit the bacterial growth of Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa GIM 1.551 to target organs, decrease the inflammatory damage, show an impressive therapeutic effect on mouse pneumonia and peritonitis experiments, and promote abscess reduction and wound healing in infected mice. These results reveal that Myr-36PW is a promising antimicrobial agent against bacterial infections.
Collapse
Affiliation(s)
- Yongqing Liu
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Shengnan Li
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Tengfei Shen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Liangliang Chen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Jiangfei Zhou
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Shuaibing Shi
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Yang Wang
- Henan Provincial Open Laboratory of Key Disciplines in Environment and Animal Products Safety, Henan University of Science and Technology, Luoyang, China
| | - Zhanqin Zhao
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Chengshui Liao
- Henan Provincial Open Laboratory of Key Disciplines in Environment and Animal Products Safety, Henan University of Science and Technology, Luoyang, China
| | - Chen Wang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
37
|
Mimicry of a Non-ribosomally Produced Antimicrobial, Brevicidine, by Ribosomal Synthesis and Post-translational Modification. Cell Chem Biol 2020; 27:1262-1271.e4. [PMID: 32707039 DOI: 10.1016/j.chembiol.2020.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
The group of bacterial non-ribosomally produced peptides (NRPs) forms a rich source of antibiotics, such as daptomycin, vancomycin, and teixobactin. The difficulty of functionally expressing and engineering the corresponding large biosynthetic complexes is a bottleneck in developing variants of such peptides. Here, we apply a strategy to synthesize mimics of the recently discovered antimicrobial NRP brevicidine. We mimicked the molecular structure of brevicidine by ribosomally synthesized, post-translationally modified peptide (RiPP) synthesis, introducing several relevant modifications, such as dehydration and thioether ring formation. Following this strategy, in two rounds peptides were engineered in vivo, which showed antibacterial activity against Gram-negative pathogenic bacteria susceptible to wild-type brevicidine. This study demonstrates the feasibility of a strategy to structurally and functionally mimic NRPs by employing the synthesis and post-translational modifications typical for RiPPs. This enables the future generation of large genetically encoded peptide libraries of NRP-mimicking structures to screen for antimicrobial activity against relevant pathogens.
Collapse
|
38
|
Qi R, Zhang N, Zhang P, Zhao H, Liu J, Cui J, Xiang J, Han Y, Wang S, Wang Y. Gemini Peptide Amphiphiles with Broad-Spectrum Antimicrobial Activity and Potent Antibiofilm Capacity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17220-17229. [PMID: 32193931 DOI: 10.1021/acsami.0c01167] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To address the challenge from microbial resistance and biofilm, this work develops three gemini peptide amphiphiles with basic tetrapeptide spacers 12-(Arg)4-12, 12-(Lys)4-12, and 12-(His)4-12 and finds that they exhibit varied antimicrobial/antibiofilm activities. 12-(Arg)4-12 shows the best performance, possessing the broad-spectrum antimicrobial activity and excellent antibiofilm capacity. The antimicrobial and antibiofilm activities strongly depend on the membrane permeation and self-assembling structure of these peptide amphiphiles. Gemini peptide amphiphile with highly polar arginine as the spacer, 12-(Arg)4-12, self-assembles into short rods that are prone to dissociate into monomers for permeating and lysing membrane , leading to its broad-spectrum antimicrobial activity and high efficiency in eradicating biofilm. Long rods formed by relatively weaker polar 12-(Lys)4-12 are less prone to disassemble into monomers for further membrane permeation, which makes it selectively kill more negatively charged bacteria and endow it medium antibiofilm activity. Low polar 12-(His)4-12 aggregates into long fibers, which are very difficult to dissociate and they mainly electrostatically bind on the negative microbial surface, resulting in its weakest antimicrobial and antibiofilm activity. This study reveals the effect of the antimicrobial peptide structure and aggregation on the antimicrobial activities and would be helpful for developing high-efficient antimicrobial peptides with antibiofilm activity.
Collapse
Affiliation(s)
- Ruilian Qi
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Na Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengbo Zhang
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hao Zhao
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jian Liu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jie Cui
- Center for Analysis and Testing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Junfeng Xiang
- Center for Analysis and Testing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuchun Han
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shu Wang
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
39
|
Grimsey E, Collis DWP, Mikut R, Hilpert K. The effect of lipidation and glycosylation on short cationic antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183195. [PMID: 32130974 DOI: 10.1016/j.bbamem.2020.183195] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 01/16/2023]
Abstract
The global health threat surrounding bacterial resistance has resulted in antibiotic researchers shifting their focus away from 'traditional' antibiotics and concentrating on other antimicrobial agents, including antimicrobial peptides. These low molecular weight "mini-proteins" exhibit broad-spectrum activity against bacteria, including multi-drug resistant strains, viruses, fungi and protozoa and constitute a major element of the innate-immune system of many multicellular organisms. Some naturally occurring antimicrobial peptides are lipidated and/or glycosylated and almost all antimicrobial peptides in clinical use are either lipopeptides (Daptomycin and Polymyxin E and B) or glycopeptides (Vancomycin). Lipidation, glycosylation and PEGylation are an option for improving stability and activity in serum and for reducing the rapid clearing via the kidneys and liver. Two broad-spectrum antimicrobial peptides NH2-RIRIRWIIR-CONH2 (A1) and NH2-KRRVRWIIW-CONH2 (B1) were conjugated via a linker, producing A2 and B2, to individual fatty acids of C8, C10, C12 and C14 and in addition, A2 was conjugated to either glucose, N-acetyl glucosamine, galactose, mannose, lactose or polyethylene glycol (PEG). Antimicrobial activity against two Gram-positive strains (methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococcus faecalis (VRE)) and three Gram-negative strains (Salmonella typhimurium, E. coli and Pseudomonas aeruginosa) were determined. Activity patterns for the lipidated versions are very complex, dependent on sequence, bacteria and fatty acid. Two reciprocal effects were measured; compared to the parental peptides, some combinations led to a 16-fold improvement whereas other combinations let to a 32-fold reduction in antimicrobial activity. Glycosylation decreased antimicrobial activity by 2 to 16-fold in comparison to A1, respectively on the sugar-peptide combination. PEGylation rendered the peptide inactive. Antimicrobial activity in the presence of 25% human serum of A1 and B1 was reduced 32-fold and 8-fold, respectively. The longer chain fatty acids almost completely restored this activity; however, these fatty acids increased hemolytic activity. B1 modified with C8 increased the therapeutic index by 2-fold for four bacterial strains. Our results suggest that finding the right lipid-peptide combination can lead to improved activity in the presence of serum and potentially more effective drug candidates for animal studies. Glycosylation with the optimal sugar and numbers of sugars at the right peptide position could be an alternative route or could be used in addition to lipidation to counteract solubility and toxicity issues.
Collapse
Affiliation(s)
- Elizabeth Grimsey
- Institute for Infection and Immunity, St. George's University of London, London, UK
| | | | - Ralf Mikut
- Karlsruhe Institute of Technology (KIT), Institute for Automation and Applied Informatics (IAI), Eggenstein-Leopoldshafen, Germany
| | - Kai Hilpert
- Institute for Infection and Immunity, St. George's University of London, London, UK.
| |
Collapse
|
40
|
Structural characterization of Kannurin isoforms and evaluation of the role of β-hydroxy fatty acid tail length in functional specificity. Sci Rep 2020; 10:2839. [PMID: 32071421 PMCID: PMC7029025 DOI: 10.1038/s41598-020-59872-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/30/2019] [Indexed: 12/04/2022] Open
Abstract
The novel anti-fungal cyclic lipopeptide ‘Kannurin’ and its three structural variants produced by Bacillus cereus AK1 were previously reported from our laboratory. The present study reports unexplored structural variants of Kannurin those have functional benefits. Due to the difference in β-hydroxy fatty acid tail length, they are designated here as Kannurin A (m/z 994.67 ± 0.015), B (m/z 1008.68 ± 0.017), C (m/z 1022.69 ± 0.021), D (m/z 1036.70 ± 0.01), CL (m/z 1040.71 ± 0.02) and DL (m/z 1054.72 ± 0.01). The isoform A (m/z 994.67 ± 0.015) is the shortest cyclic form of Kannurin identified so far. In addition, CL (m/z 1040.71 ± 0.02) and DL (m/z 1054.72 ± 0.01) are the rare natural linear forms. The results of the antimicrobial assays deduced that the difference in lipid tail length of the isoforms contributes tremendous differences in their antimicrobial properties. The isoforms with short lipid tails (A and B) are more selective and potent towards bacteria, whereas the isoforms with long lipid tails (C and D) are more potent against fungi. The molecular dynamics studies and electron microscopic observations supported with circular dichroic spectroscopy analysis showed the structural confirmation and formation of aggregates of Kannurin in solution. The molecular dynamics simulation studies revealed that a single molecule of Kannurin makes enormous intra-molecular interactions and structural re-arrangements to attain stable lowest energy state in solution. When they reach a particular concentration (CMC) especially in aqueous environment, tends to form structural aggregates called ‘micelles’. With the structural information and activity relationship described in this study, it is trying to point out the sensitive structural entities that can be modified to improve the efficacy and target specificities of lipopeptide class of antibiotics.
Collapse
|
41
|
Fischer CL. Antimicrobial Activity of Host-Derived Lipids. Antibiotics (Basel) 2020; 9:E75. [PMID: 32054068 PMCID: PMC7168235 DOI: 10.3390/antibiotics9020075] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
Host-derived lipids are increasingly recognized as antimicrobial molecules that function in innate immune activities along with antimicrobial peptides. Sphingoid bases and fatty acids found on the skin, in saliva and other body fluids, and on all mucosal surfaces, including oral mucosa, exhibit antimicrobial activity against a variety of Gram positive and Gram negative bacteria, viruses, and fungi, and reduce inflammation in animal models. Multiple studies demonstrate that the antimicrobial activity of lipids is both specific and selective. There are indications that the site of action of antimicrobial fatty acids is the bacterial membrane, while the long-chain bases may inhibit cell wall synthesis as well as interacting with bacterial membranes. Research in this area, although still sporadic, has slowly increased in the last few decades; however, we still have much to learn about antimicrobial lipid mechanisms of activity and their potential use in novel drugs or topical treatments. One important potential benefit for the use of innate antimicrobial lipids (AMLs) as antimicrobial agents is the decreased likelihood side effects with treatment. Multiple studies report that endogenous AML treatments do not induce damage to cells or tissues, often decrease inflammation, and are active against biofilms. The present review summarizes the history of antimicrobial lipids from the skin surface, including both fatty acids and sphingoid bases, in multiple human body systems and summarizes their relative activity against various microorganisms. The range of antibacterial activities of lipids present at the skin surface and in saliva is presented. Some observations relevant to mechanisms of actions are discussed, but are largely still unknown. Multiple recent studies examine the therapeutic and prophylactic uses of AMLs. Although these lipids have been repeatedly demonstrated to act as innate effector molecules, they are not yet widely accepted as such. These compiled data further support fatty acid and sphingoid base inclusion as innate effector molecules.
Collapse
Affiliation(s)
- Carol L Fischer
- Biology Department, Waldorf University, Forest City, IA 50436, USA
| |
Collapse
|
42
|
Jin P, Wang H, Tan Z, Xuan Z, Dahar GY, Li QX, Miao W, Liu W. Antifungal mechanism of bacillomycin D from Bacillus velezensis HN-2 against Colletotrichum gloeosporioides Penz. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:102-107. [PMID: 31973845 DOI: 10.1016/j.pestbp.2019.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Anthracnose is a leaf spot, blossom blight, or fruit rot disease caused by Colletotrichum gloeosporioides (Penz.). It is the most prevalent disease in mango-growing countries worldwide. Lipopeptides, such as those in the iturin family, account for the majority of antifungal secondary metabolites in Bacillus subtilis, Bacillus amyloliquefaciens and Bacillus velezensis, and includes bacillomycin D. Thus far, the mechanism of bacillomycin D's activity has not been clear. In this study, bacillomycin D was isolated from B. velezensis HN-2, which strongly inhibits C. gloeosporioides (Penz.). The median inhibitory concentration of bacillomycin D was 2.162 μg/mL, causing deformation and damage to C. gloeosporioides (Penz.). Bacillomycin D showed more potent activity against C. gloeosporioides (Penz.) than two common fungicides prochloraz and mancozeb. Scanning and transmission electron microscopy revealed that bacillomycin D could injure the cell wall and cell membrane of the hyphae and spores of C. gloeosporioides (Penz.), and the cytoplasm and organelles inside the cell were exuded and formed empty holes. This research clarifies the mechanism underlying bacillomycin D antifungal activity and reveals its high potential as a biopesticide to control phytopathogens.
Collapse
Affiliation(s)
- Pengfei Jin
- College of Plant Protection, Hainan University, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Haonan Wang
- College of Plant Protection, Hainan University, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Zheng Tan
- College of Plant Protection, Hainan University, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Zhe Xuan
- College of Plant Protection, Hainan University, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Ghulam Yaseen Dahar
- College of Plant Protection, Hainan University, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Qing X Li
- College of Plant Protection, Hainan University, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China; Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Weiguo Miao
- College of Plant Protection, Hainan University, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China.
| | - Wenbo Liu
- College of Plant Protection, Hainan University, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China.
| |
Collapse
|
43
|
Sanderson JM. Far from Inert: Membrane Lipids Possess Intrinsic Reactivity That Has Consequences for Cell Biology. Bioessays 2020; 42:e1900147. [PMID: 31995246 DOI: 10.1002/bies.201900147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/06/2019] [Indexed: 12/19/2022]
Abstract
In this article, it is hypothesized that a fundamental chemical reactivity exists between some non-lipid constituents of cellular membranes and ester-based lipids, the significance of which is not generally recognized. Many peptides and smaller organic molecules have now been shown to undergo lipidation reactions in model membranes in circumstances where direct reaction with the lipid is the only viable route for acyl transfer. Crucially, drugs like propranolol are lipidated in vivo with product profiles that are comparable to those produced in vitro. Some compounds have also been found to promote lipid hydrolysis. Drugs with high lytic activity in vivo tend to have higher toxicity in vitro. Deacylases and lipases are proposed as key enzymes that protect cells against the effects of intrinsic lipidation. The toxic effects of intrinsic lipidation are hypothesized to include a route by which nucleation can occur during the formation of amyloid fibrils.
Collapse
|
44
|
Ultrashort Cationic Lipopeptides-Effect of N-Terminal Amino Acid and Fatty Acid Type on Antimicrobial Activity and Hemolysis. Molecules 2020; 25:molecules25020257. [PMID: 31936341 PMCID: PMC7024302 DOI: 10.3390/molecules25020257] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 01/28/2023] Open
Abstract
Ultrashort cationic lipopeptides (USCLs) are promising antimicrobial agents that hypothetically may be alternatively used to combat pathogens such as bacteria and fungi. In general, USCLs consist of fatty acid chains and a few basic amino acid residues. The main shortcoming of USCLs is their relatively high cytotoxicity and hemolytic activity. This study focuses on the impact of the hydrophobic fatty acid chain, on both antimicrobial and hemolytic activities. To learn more about this region, a series of USCLs with different straight-chain fatty acids (C8, C10, C12, C14) attached to the tripeptide with two arginine residues were synthesized. The amino acid at the N-terminal position was exchanged for proteinogenic and non-proteinogenic amino acid residues (24 in total). Moreover, the branched fatty acid residues were conjugated to N-terminus of a dipeptide with two arginine residues. All USCLs had C-terminal amides. USCLs were tested against reference bacterial strains (including ESKAPE group) and Candida albicans. The hemolytic potential was tested on human erythrocytes. Hydrophobicity of the compounds was evaluated by RP-HPLC. Shortening of the fatty acid chain and simultaneous addition of amino acid residue at N-terminus were expected to result in more selective and active compounds than those of the reference lipopeptides with similar lipophilicity. Hypothetically, this approach would also be beneficial to other antimicrobial peptides where N-lipidation strategy was used to improve their biological characteristics.
Collapse
|
45
|
Zhong C, Zhu N, Zhu Y, Liu T, Gou S, Xie J, Yao J, Ni J. Antimicrobial peptides conjugated with fatty acids on the side chain of D-amino acid promises antimicrobial potency against multidrug-resistant bacteria. Eur J Pharm Sci 2019; 141:105123. [PMID: 31676352 DOI: 10.1016/j.ejps.2019.105123] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/08/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023]
Abstract
With the alarming burden of antibiotic resistance, antimicrobial peptides (AMPs) seem to be novel antimicrobial alternatives for infection treatment due to their rapid broad-spectrum antimicrobial activity and low tendency for bacterial resistance. To obtain promising AMPs, a series of new peptides were designed and synthesized by conjugating various lengths of fatty acid chains onto the side chain of the position 4 or 7 D-amino acid of Ano-D4,7 (analogue of anoplin with D-amino acid substitutions at positions 4 and 7). The new peptides exhibited excellent antimicrobial activity against a range of bacteria, especially multidrug-resistant bacteria in contrast to conventional antibiotics. Moreover, the new peptides conjugated with fatty acid chains ranging from 8 to 12 carbons in length presented preferable antimicrobial selectivity and anti-biofilm activity. Additionally, the new peptides also exerted high stability to trypsin, serum, salts and different pH environments. Most notably, the new peptides showed a low tendency to develop bacterial resistance and they displayed optimal antimicrobial activity against the obtained resistant strains. Furthermore, the results from the outer/inner membrane permeabilization and cytoplasmic membrane depolarization assays and flow cytometry and scanning electron microscopy analyses demonstrated that the new peptides exert antimicrobial effects by typical non-receptor-mediated membrane mechanisms, as well as intracellular targets characterized by gel retardation and reactive oxygen species (ROS) generation assays. Furthermore, the new peptides presented remarkable in vivo antimicrobial potency, anti-inflammatory activity, and endotoxin neutralization. Collectively, the conjugation of fatty acids to the side chains of D-amino acids is a potential strategy for designing hopeful antimicrobial alternatives to tackle the risk of bacterial resistance.
Collapse
Affiliation(s)
- Chao Zhong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ningyi Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yuewen Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Tianqi Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Sanhu Gou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Yao
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
46
|
Clements T, Ndlovu T, Khan W. Broad-spectrum antimicrobial activity of secondary metabolites produced by Serratia marcescens strains. Microbiol Res 2019; 229:126329. [PMID: 31518853 DOI: 10.1016/j.micres.2019.126329] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/01/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022]
Abstract
The genus Serratia is a predominantly unexplored source of antimicrobial secondary metabolites. The aim of the current study was thus to isolate and evaluate the antimicrobial properties of biosurfactants produced by Serratia species. Forty-nine (n = 34 pigmented; n = 15 non-pigmented) biosurfactant producing Serratia strains were isolated from environmental sources and selected isolates (n = 11 pigmented; n = 11 non-pigmented) were identified as Serratia marcescens using molecular typing. The swrW gene (serrawettin W1 synthetase) was detected in all the screened pigmented strains and one non-pigmented strain and primers were designed for the detection of the swrA gene (non-ribosomal serrawettin W2 synthetase), which was detected in nine non-pigmented strains. Crude extracts obtained from S. marcescens P1, NP1 and NP2 were chemically characterised using ultra-performance liquid chromatography coupled to electrospray ionisation mass spectrometry (UPLC-ESI-MS), which revealed that P1 produced serrawettin W1 homologues and prodigiosin, while NP1 produced serrawettin W1 homologues and glucosamine derivative A. In contrast, serrawettin W2 analogues were predominantly identified in the crude extract obtained from S. marcescens NP2. Both P1 and NP1 crude extracts displayed broad-spectrum antimicrobial activity against clinical, food and environmental pathogens, such as multidrug-resistant Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus and Cryptococcus neoformans. In contrast, the NP2 crude extract displayed antibacterial activity against a limited range of pathogenic and opportunistic pathogens. The serrawettin W1 homologues, in combination with prodigiosin and glucosamine derivatives, produced by pigmented and non-pigmented S. marcescens strains, could thus potentially be employed as broad-spectrum therapeutic agents against multidrug-resistant bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Tanya Clements
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Thando Ndlovu
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
47
|
Glossop HD, De Zoysa GH, Hemar Y, Cardoso P, Wang K, Lu J, Valéry C, Sarojini V. Battacin-Inspired Ultrashort Peptides: Nanostructure Analysis and Antimicrobial Activity. Biomacromolecules 2019; 20:2515-2529. [PMID: 31145611 DOI: 10.1021/acs.biomac.9b00291] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptides can serve as versatile therapeutics with a highly modular structure and tunable biophysical properties. In particular, the efficacy of peptide antibiotics against drug-resistant pathogens is of great promise, as few new classes of antibiotics are being developed to overcome the ever-increasing bacterial resistance to contemporary drugs. This work reports biophysical and antimicrobial studies of a designed library of ultrashort peptides that self-assemble into hydrogels at concentrations as low as 0.5% w/v in buffered saline, as confirmed by rheology. The hydrogels are constituted by β-sheet-rich nanofibril networks, as determined by biophysical techniques including spectroscopy (attenuated total reflectance Fourier transform infrared spectroscopy and Congo red binding assay), short- and wide-angle X-ray scattering, and electron microscopy. Both peptide solutions and self-assembled hydrogels show potent antimicrobial activity against S. aureus and Pseudomonas aeruginosa by membrane lysis. These peptides also displayed selectivity toward bacterial cells over human dermal fibroblasts in vitro, as determined from Live/Dead, scanning electron microscopy, and coculture assays. This work reports an antimicrobial self-assembling motif of only three residues comprising an aromatically acylated cationic d-Dab/Lys amino acid, a second cationic residue, and naphthylalanine that heavily influences the self-assembly of these peptides into hydrogels. The variations in the antimicrobial activity and self-assembly properties between analogues may have implications in future studies on the correlation between self-assembly and biological activity in ultrashort peptides.
Collapse
Affiliation(s)
- Hugh D Glossop
- School of Chemical Sciences , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand
| | - Gayan Heruka De Zoysa
- School of Chemical Sciences , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand
| | - Yacine Hemar
- School of Chemical Sciences , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand
| | - Priscila Cardoso
- School of Health and Biomedical Sciences , RMIT University , Bundoora, Melbourne 3000 , Australia
| | - Kelvin Wang
- Faculty of Health and Environmental Sciences , Auckland University of Technology , Auckland 1010 , New Zealand
| | - Jun Lu
- Faculty of Health and Environmental Sciences , Auckland University of Technology , Auckland 1010 , New Zealand
| | - Céline Valéry
- School of Health and Biomedical Sciences , RMIT University , Bundoora, Melbourne 3000 , Australia
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology , Wellington 6140 , New Zealand
| |
Collapse
|
48
|
Analogues of Human Granulysin as Antimycobacterial Agents. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-9715-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
49
|
Goswami M, Deka S. Biosurfactant production by a rhizosphere bacteria Bacillus altitudinis MS16 and its promising emulsification and antifungal activity. Colloids Surf B Biointerfaces 2019; 178:285-296. [DOI: 10.1016/j.colsurfb.2019.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 01/12/2023]
|
50
|
Húmpola MV, Rey MC, Spontón PG, Simonetta AC, Tonarelli GG. A Comparative Study of the Antimicrobial and Structural Properties of Short Peptides and Lipopeptides Containing a Repetitive Motif KLFK. Protein Pept Lett 2019; 26:192-203. [PMID: 30526450 DOI: 10.2174/0929866526666181208144629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/16/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the last years, Antimicrobial Peptides (AMPs) and lipopeptides have received attention as promising candidates to treat infections caused by resistant microorganisms. OBJECTIVE The main objective of this study was to investigate the effect of repetitive KLFK motifs and the attachment of aliphatic acids to the N-terminus of (KLFK)n peptides on therapeutic properties. METHODS Minimal inhibitory concentration against Gram (+) and (-) bacteria and yeast of synthetic compounds were determined by broth microtiter dilution method, and the toxicity was evaluated by hemolysis assay. Membrane-peptide interaction studies were performed with model phospholipid membranes mimicking those of bacterial and mammalian cells by Fluorescence Spectroscopy. The secondary structure in solution and membranes was determined by Circular Dichroism. RESULTS Our results showed that the resulting compounds have inhibitory activity against bacteria and fungi. The (KLFK)3 peptide showed the highest therapeutic index against bacterial and yeast strains, and the (KLFK)2 peptide conjugated with octanoic acid was the most active against yeasts. All the lipopeptides containing long-chain fatty acids (C14 or longer) were highly hemolytic at low concentrations. The antimicrobial activity of (KLFK)2 and (KLFK)3 lipopeptides was mainly associated with improved stability of the amphipathic secondary structure, which showed high contributions of α-helix in dipalmitoylphosphatidylglycerol (DPPG) vesicles. CONCLUSION The repetition of the KLFK sequence and the conjugation with lipid tails allowed obtained compounds with high antimicrobial activity and low toxicity, becoming good candidates for treating infectious diseases.
Collapse
Affiliation(s)
- María Verónica Húmpola
- Departamento de Quimica Organica, Facultad de Bioquimica y Cs. Biologicas, Universidad Nacional del Litoral (U.N.L), Santa Fe, Argentina
| | - María Carolina Rey
- Departamento de Quimica Organica, Facultad de Bioquimica y Cs. Biologicas, Universidad Nacional del Litoral (U.N.L), Santa Fe, Argentina
| | - Pablo Gabriel Spontón
- Departamento de Quimica Organica, Facultad de Bioquimica y Cs. Biologicas, Universidad Nacional del Litoral (U.N.L), Santa Fe, Argentina.,Catedras de Microbiologia y Biotecnologia, Departamento de Ingenieria en Alimentos, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Arturo Carlos Simonetta
- Catedras de Microbiologia y Biotecnologia, Departamento de Ingenieria en Alimentos, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Georgina Guadalupe Tonarelli
- Departamento de Quimica Organica, Facultad de Bioquimica y Cs. Biologicas, Universidad Nacional del Litoral (U.N.L), Santa Fe, Argentina
| |
Collapse
|