1
|
Pauss SN, Bates EA, Martinez GJ, Bates ZT, Kipp ZA, Gipson C, Hinds TD. Steroid Receptors and Coregulators: Dissemination of Sex Differences and Emerging Technologies. J Biol Chem 2025:108363. [PMID: 40023399 DOI: 10.1016/j.jbc.2025.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025] Open
Abstract
Steroid receptors are ligand-induced transcription factors that have broad functions among all living animal species, ranging from control of sex differences, body weight, stress responses, and many others. Their binding to coregulator proteins is regulated by corepressors and coactivators that interchange upon stimulation with a ligand. Coregulator proteins are an imperative and understudied aspect of steroid receptor signaling. Here, we discuss steroid receptor basics from protein domain structures that allow them to interact with coregulators and other proteins, their essential functions as transcription factors, and other elemental protein-protein interactions. We deliberate about the mechanisms that coregulators control in steroid receptor signaling, sex hormone signaling differences, sex hormone treatment in the opposite sex, and how these affect the coregulator and sex steroid receptor complexes. The steroid receptor-coregulator signaling mechanisms are essential built-in components of the mammalian DNA that mediate physiological and everyday functions. Targeting their crosstalk might be useful when imbalances lead to disease. We introduce novel technologies, such as the PamGene PamStation, that make investigating the heterogeneity of the steroid receptor-coregulator complexes and targeting their binding more feasible. This review provides an extensive understanding of steroid receptor-coregulator signaling and how these interactions are intrinsic to many physiological functions that may offer therapeutic advantages.
Collapse
Affiliation(s)
- Sally N Pauss
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Evelyn A Bates
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Genesee J Martinez
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Zane T Bates
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH, USA
| | - Zachary A Kipp
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Cassandra Gipson
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Terry D Hinds
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
2
|
Johnson TA, Fettweis G, Wagh K, Ceacero-Heras D, Krishnamurthy M, Sánchez de Medina F, Martínez-Augustin O, Upadhyaya A, Hager GL, Alvarez de la Rosa D. The glucocorticoid receptor potentiates aldosterone-induced transcription by the mineralocorticoid receptor. Proc Natl Acad Sci U S A 2024; 121:e2413737121. [PMID: 39541347 PMCID: PMC11588051 DOI: 10.1073/pnas.2413737121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The glucocorticoid and mineralocorticoid receptors (GR and MR, respectively) have distinct, yet overlapping physiological and pathophysiological functions. There are indications that both receptors interact functionally and physically, but the precise role of this interdependence is poorly understood. Here, we analyzed the impact of GR coexpression on MR genome-wide transcriptional responses and chromatin binding upon activation by aldosterone and glucocorticoids, both physiological ligands of this receptor. Transcriptional responses of MR in the absence of GR result in fewer regulated genes. In contrast, coexpression of GR potentiates MR-mediated transcription, particularly in response to aldosterone, both in cell lines and in the more physiologically relevant model of mouse colon organoids. MR chromatin binding is altered by GR coexpression in a locus- and ligand-specific way. Single-molecule tracking of MR suggests that the presence of GR contributes to productive binding of MR/aldosterone complexes to chromatin. Together, our data indicate that coexpression of GR potentiates aldosterone-mediated MR transcriptional activity, even in the absence of glucocorticoids.
Collapse
Affiliation(s)
- Thomas A. Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
| | - Gregory Fettweis
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
| | - Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
- Department of Physics, University of Maryland, College Park, MD20742
| | - Diego Ceacero-Heras
- Department of Biochemistry and Molecular Biology 2, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, School of Pharmacy, Instituto de Investigación Biosanitaria de Granada, Instituto de Nutrición y Tecnología de los Alimentos José Mataix, University of Granada, Granada18071, Spain
| | - Manan Krishnamurthy
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
| | - Fermín Sánchez de Medina
- Department of Pharmacology, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, School of Pharmacy, Instituto de Investigación Biosanitaria de Granada, University of Granada, Granada18071, Spain
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology 2, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, School of Pharmacy, Instituto de Investigación Biosanitaria de Granada, Instituto de Nutrición y Tecnología de los Alimentos José Mataix, University of Granada, Granada18071, Spain
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, MD20742
- Institute for Physical Science and Technology, University of Maryland, College Park, MD20742
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
| | - Diego Alvarez de la Rosa
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna38200, Spain
| |
Collapse
|
3
|
Uversky VN. How to drug a cloud? Targeting intrinsically disordered proteins. Pharmacol Rev 2024; 77:PHARMREV-AR-2023-001113. [PMID: 39433443 DOI: 10.1124/pharmrev.124.001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
Biologically active proteins/regions without stable structure (i.e., intrinsically disordered proteins and regions (IDPs and IDRs)) are commonly found in all proteomes. They have a unique functional repertoire that complements the functionalities of ordered proteins and domains. IDPs/IDRs are multifunctional promiscuous binders capable of folding at interaction with specific binding partners on a template- or context-dependent manner, many of which undergo liquid-liquid phase separation, leading to the formation of membrane-less organelles and biomolecular condensates. Many of them are frequently related to the pathogenesis of various human diseases. All this defines IDPs/IDRs as attractive targets for the development of novel drugs. However, their lack of unique structures, multifunctionality, binding promiscuity, and involvement in unusual modes of action preclude direct use of traditional structure-based drug design approaches for targeting IDPs/IDRs, and make disorder-based drug discovery for these "protein clouds" challenging. Despite all these complexities there is continuing progress in the design of small molecules affecting IDPs/IDRs. This article describes the major structural features of IDPs/IDRs and the peculiarities of the disorder-based functionality. It also discusses the roles of IDPs/IDRs in various pathologies, and shows why the approaches elaborated for finding drugs targeting ordered proteins cannot be directly used for the intrinsic disorder-based drug design, and introduces some novel methodologies suitable for these purposes. Finally, it emphasizes that regardless of their multifunctionality, binding promiscuity, lack of unique structures, and highly dynamic nature, "protein clouds" are principally druggable. Significance Statement Intrinsically disordered proteins and regions are highly abundant in nature, have multiple important biological functions, are commonly involved in the pathogenesis of a multitude of human diseases, and are therefore considered as very attractive drug targets. Although dealing with these unstructured multifunctional protein/regions is a challenging task, multiple innovative approaches have been designed to target them by small molecules.
Collapse
|
4
|
Obst JK, Tien AH, Setiawan JC, Deneault LF, Sadar MD. Inhibitors of the transactivation domain of androgen receptor as a therapy for prostate cancer. Steroids 2024; 210:109482. [PMID: 39053630 PMCID: PMC11364166 DOI: 10.1016/j.steroids.2024.109482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
The androgen receptor (AR) is a modular transcription factor which functions as a master regulator of gene expression. AR protein is composed of three functional domains; the ligand-binding domain (LBD); DNA-binding domain (DBD); and the intrinsically disordered N-terminal transactivation domain (TAD). AR is transactivated upon binding to the male sex hormone testosterone and other androgens. While the AR may tolerate loss of its LBD, the TAD contains activation function-1 (AF-1) that is essential for all AR transcriptional activity. AR is frequently over-expressed in most prostate cancer. Currently, androgen deprivation therapy (ADT) in the form of surgical or chemical castration remains the standard of care for patients with high risk localized disease, advanced and metastatic disease, and those patients that experience biochemical relapse following definitive primary treatment. Patients with recurrent disease that receive ADT will ultimately progress to lethal metastatic castration-resistant prostate cancer. In addition to ADT not providing a cure, it is associated with numerous adverse effects including cardiovascular disease, osteoporosis and sexual dysfunction. Recently there has been a renewed interest in investigating the possibility of using antiandrogens which competitively bind the AR-LBD without ADT for patients with hormone sensitive, non-metastatic prostate cancer. Here we describe a class of compounds termed AR transactivation domain inhibitors (ARTADI) and their mechanism of action. These compounds bind to the AR-TAD to inhibit AR transcriptional activity in the absence and presence of androgens. Thus these inhibitors may have utility in preventing prostate cancer growth in the non-castrate setting.
Collapse
Affiliation(s)
- Jon K Obst
- Department of Genome Sciences, BC Cancer Research Institute, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Amy H Tien
- Department of Genome Sciences, BC Cancer Research Institute, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Josie C Setiawan
- Department of Genome Sciences, BC Cancer Research Institute, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Lauren F Deneault
- Department of Genome Sciences, BC Cancer Research Institute, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Marianne D Sadar
- Department of Genome Sciences, BC Cancer Research Institute, BC Cancer, Vancouver, BC, V5Z 1L3, Canada.
| |
Collapse
|
5
|
Madeshwaran A, Vijayalakshmi P, Umapathy VR, Shanmugam R, Selvaraj C. Unlocking estrogen receptor: Structural insights into agonists and antagonists for glioblastoma therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:1-24. [PMID: 39059983 DOI: 10.1016/bs.apcsb.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Glioblastoma (GBM), a malignant brain tumor originating in glial cells, is one of the most common primary brain malignancies, affecting one in 100,000 people, typically in the frontal lobe. Estrogens, like estradiol-17 (E2), significantly influence GBM progression, metastasis, and angiogenesis. Estrogen receptors (ERs) are crucial in signal transduction and physiology, making them potential therapeutic targets. However, their roles in GBM pathogenesis remain unclear. This review explores ERs in GBM, focusing on their involvement in tumor immune evasion, modulation of the tumor microenvironment, and the mechanisms underlying GBM progression. Additionally, therapeutic opportunities targeting ERs for GBM treatment are discussed. Estrogen, synthesized primarily in ovaries and in smaller amounts by adrenal glands and fat tissues, regulates reproductive systems, bone density, skin health, and cardiovascular function. The invasive nature and heterogeneity of GBM complicate therapy development. Preclinical findings suggest that endocrine therapy with hormone receptor agonists or antagonists can extend patient survival and improve post-treatment quality of life. The ERβ pathway, in particular, shows tumor-suppressive potential, limiting glioma progression with fewer side effects. ERβ agonists could become a novel drug class for GBM treatment. Identifying biomarkers and specific therapeutic targets is crucial for early detection and improved prognosis. Estrogen and its receptors are advantageous for GBM treatment due to their regulation of numerous biological processes, ability to penetrate the blood-brain barrier, and genomic and non-genomic control of transcription, making them promising targets for GBM therapy.
Collapse
Affiliation(s)
- Asokan Madeshwaran
- Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Periyasamy Vijayalakshmi
- Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Rajeshkumar Shanmugam
- Nano Biomedicine Lab, Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Chandrabose Selvaraj
- CsrDD LAB, Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| |
Collapse
|
6
|
Fettweis G, Johnson TA, Almeida‐Prieto B, Weller‐Pérez J, Presman DM, Hager GL, Alvarez de la Rosa D. The mineralocorticoid receptor forms higher order oligomers upon DNA binding. Protein Sci 2024; 33:e4890. [PMID: 38160317 PMCID: PMC10868434 DOI: 10.1002/pro.4890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/30/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The prevailing model of steroid hormone nuclear receptor function assumes ligand-induced homodimer formation followed by binding to DNA hormone response elements (HREs). This model has been challenged by evidence showing that the glucocorticoid receptor (GR) forms tetramers upon ligand and DNA binding, which then drive receptor-mediated gene transactivation and transrepression. GR and the closely-related mineralocorticoid receptors (MR) interact to transduce corticosteroid hormone signaling, but whether they share the same quaternary arrangement is unknown. Here, we used a fluorescence imaging technique, Number & Brightness, to study oligomerization in a cell system allowing real-time analysis of receptor-DNA interactions. Agonist-bound MR forms tetramers in the nucleoplasm and higher order oligomers upon binding to HREs. Antagonists form intermediate-size quaternary arrangements, suggesting that large oligomers are essential for function. Divergence between MR and GR quaternary structure is driven by different functionality of known and new multimerization interfaces, which does not preclude formation of heteromers. Thus, influencing oligomerization may be important to selectively modulate corticosteroid signaling.
Collapse
Affiliation(s)
- Gregory Fettweis
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
- Present address:
Laboratory of Gene Expression and Cancer, GIGA‐Molecular Biology of DiseaseUniversity of LiègeLiègeBelgium
| | - Thomas A. Johnson
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Brian Almeida‐Prieto
- Departmento de Ciencias Médicas Básicas and Instituto de Tecnologías BiomédicasUniversidad de La LagunaLa LagunaSpain
| | - Julián Weller‐Pérez
- Departmento de Ciencias Médicas Básicas and Instituto de Tecnologías BiomédicasUniversidad de La LagunaLa LagunaSpain
| | - Diego M. Presman
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET‐Universidad de Buenos AiresFacultad de Ciencias Exactas y NaturalesBuenos AiresArgentina
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Diego Alvarez de la Rosa
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
- Departmento de Ciencias Médicas Básicas and Instituto de Tecnologías BiomédicasUniversidad de La LagunaLa LagunaSpain
| |
Collapse
|
7
|
Iyer-Bierhoff A, Wieczorek M, Peter SM, Ward D, Bens M, Vettorazzi S, Guehrs KH, Tuckermann JP, Heinzel T. Acetylation-induced proteasomal degradation of the activated glucocorticoid receptor limits hormonal signaling. iScience 2024; 27:108943. [PMID: 38333702 PMCID: PMC10850750 DOI: 10.1016/j.isci.2024.108943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Glucocorticoid (GC) signaling is essential for mounting a stress response, however, chronic stress or prolonged GC therapy downregulates the GC receptor (GR), leading to GC resistance. Regulatory mechanisms that refine this equilibrium are not well understood. Here, we identify seven lysine acetylation sites in the amino terminal domain of GR, with lysine 154 (Lys154) in the AF-1 region being the dominant acetyl-acceptor. GR-Lys154 acetylation is mediated by p300/CBP in the nucleus in an agonist-dependent manner and correlates with transcriptional activity. Deacetylation by NAD+-dependent SIRT1 facilitates dynamic regulation of this mark. Notably, agonist-binding to both wild-type GR and an acetylation-deficient mutant elicits similar short-term target gene expression. In contrast, upon extended treatment, the polyubiquitination of the acetylation-deficient GR mutant is impaired resulting in higher protein stability, increased chromatin association and prolonged transactivation. Taken together, reversible acetylation fine-tunes duration of the GC response by regulating proteasomal degradation of activated GR.
Collapse
Affiliation(s)
- Aishwarya Iyer-Bierhoff
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Martin Wieczorek
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Sina Marielle Peter
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Dima Ward
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Martin Bens
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Karl-Heinz Guehrs
- Core Facility Proteomics, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Thorsten Heinzel
- Institute of Biochemistry and Biophysics, Centre for Molecular Biomedicine (CMB), Friedrich Schiller University, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| |
Collapse
|
8
|
Fancher AT, Hua Y, Close DA, Xu W, McDermott LA, Strock CJ, Santiago U, Camacho CJ, Johnston PA. Characterization of allosteric modulators that disrupt androgen receptor co-activator protein-protein interactions to alter transactivation-Drug leads for metastatic castration resistant prostate cancer. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:325-343. [PMID: 37549772 DOI: 10.1016/j.slasd.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/06/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Three series of compounds were prioritized from a high content screening campaign that identified molecules that blocked dihydrotestosterone (DHT) induced formation of Androgen Receptor (AR) protein-protein interactions (PPIs) with the Transcriptional Intermediary Factor 2 (TIF2) coactivator and also disrupted preformed AR-TIF2 PPI complexes; the hydrobenzo-oxazepins (S1), thiadiazol-5-piperidine-carboxamides (S2), and phenyl-methyl-indoles (S3). Compounds from these series inhibited AR PPIs with TIF2 and SRC-1, another p160 coactivator, in mammalian 2-hybrid assays and blocked transcriptional activation in reporter assays driven by full length AR or AR-V7 splice variants. Compounds inhibited the growth of five prostate cancer cell lines, with many exhibiting differential cytotoxicity towards AR positive cell lines. Representative compounds from the 3 series substantially reduced both endogenous and DHT-enhanced expression and secretion of the prostate specific antigen (PSA) cancer biomarker in the C4-2 castration resistant prostate cancer (CRPC) cell line. The comparatively weak activities of series compounds in the H3-DHT and/or TIF2 box 3 LXXLL-peptide binding assays to the recombinant ligand binding domain of AR suggest that direct antagonism at the orthosteric ligand binding site or AF-2 surface respectively are unlikely mechanisms of action. Cellular enhanced thermal stability assays (CETSA) indicated that compounds engaged AR and reduced the maximum efficacy and right shifted the EC50 of DHT-enhanced AR thermal stabilization consistent with the effects of negative allosteric modulators. Molecular docking of potent representative hits from each series to AR structures suggest that S1-1 and S2-6 engage a novel binding pocket (BP-1) adjacent to the orthosteric ligand binding site, while S3-11 occupies the AR binding function 3 (BF-3) allosteric pocket. Hit binding poses indicate spaces and residues adjacent to the BP-1 and BF-3 pockets that will be exploited in future medicinal chemistry optimization studies. Small molecule allosteric modulators that prevent/disrupt AR PPIs with coactivators like TIF2 to alter transcriptional activation in the presence of orthosteric agonists might evade the resistance mechanisms to existing prostate cancer drugs and provide novel starting points for medicinal chemistry lead optimization and future development into therapies for metastatic CRPC.
Collapse
Affiliation(s)
- Ashley T Fancher
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Nucleus Global, 2 Ravinia Drive, Suite 605, Atlanta, GA 30346, USA
| | - Yun Hua
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David A Close
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wei Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lee A McDermott
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; PsychoGenics Inc, 215 College Road, Paramus, NJ 07652, USA
| | | | - Ulises Santiago
- Department of Computational and Systems Biology, School of Medicine, at the University of Pittsburgh, USA
| | - Carlos J Camacho
- Department of Computational and Systems Biology, School of Medicine, at the University of Pittsburgh, USA
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
9
|
Johnson TA, Fettweis G, Wagh K, Almeida-Prieto B, Krishnamurthy M, Upadhyaya A, Hager GL, Alvarez de la Rosa D. The Glucocorticoid Receptor is Required for Efficient Aldosterone-Induced Transcription by the Mineralocorticoid Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525745. [PMID: 36789429 PMCID: PMC9928040 DOI: 10.1101/2023.01.26.525745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The glucocorticoid and mineralocorticoid receptors (GR and MR, respectively) have distinct, yet overlapping physiological and pathophysiological functions. There are indications that both receptors interact functionally and physically, but the precise role of this interdependence is poorly understood. Here, we analyzed the impact of GR co-expression on MR genome-wide chromatin binding and transcriptional responses to aldosterone and glucocorticoids, both physiological ligands of this receptor. Our data show that GR co-expression alters MR genome-wide binding to consensus DNA sequences in a locus- and ligand-specific way. MR binding to consensus DNA sequences is affected by GR. Transcriptional responses of MR in the absence of GR are weak and show poor correlation with chromatin binding. In contrast, co-expression of GR potentiates MR-mediated transcription, particularly in response to aldosterone. Finally, single-molecule tracking of MR suggests that the presence of GR contributes to productive binding of MR/aldosterone complexes to chromatin. Together, our data indicate that co-expression of GR potentiates aldosterone-mediated MR transcriptional activity, even in the absence of glucocorticoids.
Collapse
Affiliation(s)
- Thomas A. Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
| | - Gregory Fettweis
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
| | - Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
- Department of Physics, University of Maryland, College Park, 4296 Stadium Drive, College Park, MD, USA
| | - Brian Almeida-Prieto
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Campus de Ciencias de la Salud sn, 38200 San Cristóbal de La Laguna, Spain
| | - Manan Krishnamurthy
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, 4296 Stadium Drive, College Park, MD, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
| | - Diego Alvarez de la Rosa
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Campus de Ciencias de la Salud sn, 38200 San Cristóbal de La Laguna, Spain
| |
Collapse
|
10
|
Fettweis G, Johnson TA, Almeida-Prieto B, Presman DM, Hager GL, Alvarez de la Rosa D. The mineralocorticoid receptor forms higher order oligomers upon DNA binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525752. [PMID: 36789424 PMCID: PMC9928021 DOI: 10.1101/2023.01.26.525752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The prevailing model of steroid hormone nuclear receptor function assumes ligand-induced homodimer formation followed by binding to DNA hormone response elements (HREs). This model has been challenged by evidence showing that the glucocorticoid receptor (GR) forms tetramers upon ligand and DNA binding, which then drive receptor-mediated gene transactivation and transrepression. GR and the closely-related mineralocorticoid receptors (MR) interact to transduce corticosteroid hormone signaling, but whether they share the same quaternary arrangement is unknown. Here, we used a fluorescence imaging technique, Number & Brightness, to study oligomerization in a cell system allowing real-time analysis of receptor-DNA interactions. Agonist-bound MR forms tetramers in the nucleoplasm and higher order oligomers upon binding to HREs. Antagonists form intermediate quaternary arrangements, suggesting that large oligomers are essential for function. Divergence between MR and GR quaternary structure is driven by different functionality of known and new multimerization interfaces, which does not preclude formation of heteromers. Thus, influencing oligomerization may be important to selectively modulate corticosteroid signaling.
Collapse
Affiliation(s)
- Gregory Fettweis
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5055, USA
| | - Thomas A. Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5055, USA
| | - Brian Almeida-Prieto
- Departmento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna 38200, Spain
| | - Diego M. Presman
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5055, USA
| | - Diego Alvarez de la Rosa
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5055, USA
- Departmento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna 38200, Spain
| |
Collapse
|
11
|
Sołtys K, Ożyhar A. Phase separation propensity of the intrinsically disordered AB region of human RXRβ. Cell Commun Signal 2023; 21:92. [PMID: 37143076 PMCID: PMC10157963 DOI: 10.1186/s12964-023-01113-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/25/2023] [Indexed: 05/06/2023] Open
Abstract
RXRβ is one of three subtypes of human retinoid X receptor (RXR), a transcription factor that belongs to the nuclear receptor superfamily. Its expression can be detected in almost all tissues. In contrast to other subtypes - RXRα and RXRγ - RXRβ has the longest and unique N-terminal sequence called the AB region, which harbors a ligand-independent activation function. In contrast to the functional properties of this sequence, the molecular properties of the AB region of human RXRβ (AB_hRXRB) have not yet been characterized. Here, we present a systematic biochemical and biophysical analysis of recombinant AB_hRXRB, along with in silico examinations, which demonstrate that AB_hRXRB exhibits properties of a coil-like intrinsically disordered region. AB_hRXRB possesses a flexible structure that is able to adopt a more ordered conformation under the influence of different environmental factors. Interestingly, AB_hRXRB promotes the formation of liquid-liquid phase separation (LLPS), a phenomenon previously observed for the AB region of another human subtype of RXR - RXRγ (AB_hRXRG). Although both AB regions seem to be similar in terms of their ability to induce phase separation, they clearly differ in the sensitivity to factors driving and regulating LLPS. This distinct LLPS response to environmental factors driven by the unique amino acid compositions of AB_hRXRB and AB_hRXRG can be significant for the specific modulation of the transcriptional activation of target genes by different subtypes of RXR. Video Abstract.
Collapse
Affiliation(s)
- Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
12
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
13
|
Luo S, Wohl S, Zheng W, Yang S. Biophysical and Integrative Characterization of Protein Intrinsic Disorder as a Prime Target for Drug Discovery. Biomolecules 2023; 13:biom13030530. [PMID: 36979465 PMCID: PMC10046839 DOI: 10.3390/biom13030530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Protein intrinsic disorder is increasingly recognized for its biological and disease-driven functions. However, it represents significant challenges for biophysical studies due to its high conformational flexibility. In addressing these challenges, we highlight the complementary and distinct capabilities of a range of experimental and computational methods and further describe integrative strategies available for combining these techniques. Integrative biophysics methods provide valuable insights into the sequence–structure–function relationship of disordered proteins, setting the stage for protein intrinsic disorder to become a promising target for drug discovery. Finally, we briefly summarize recent advances in the development of new small molecule inhibitors targeting the disordered N-terminal domains of three vital transcription factors.
Collapse
Affiliation(s)
- Shuqi Luo
- Center for Proteomics and Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Samuel Wohl
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Wenwei Zheng
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, USA
- Correspondence: (W.Z.); (S.Y.)
| | - Sichun Yang
- Center for Proteomics and Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence: (W.Z.); (S.Y.)
| |
Collapse
|
14
|
Čonkaš J, Sabol M, Ozretić P. 'Toxic Masculinity': What Is Known about the Role of Androgen Receptors in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24043766. [PMID: 36835177 PMCID: PMC9965076 DOI: 10.3390/ijms24043766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), the most prevalent cancer in the head and neck region, develops from the mucosal epithelium of the upper aerodigestive tract. Its development directly correlates with alcohol and/or tobacco consumption and infection with human papillomavirus. Interestingly, the relative risk for HNSCC is up to five times higher in males, so it is considered that the endocrine microenvironment is another risk factor. A gender-specific risk for HNSCC suggests either the existence of specific risk factors that affect only males or that females have defensive hormonal and metabolic features. In this review, we summarized the current knowledge about the role of both nuclear and membrane androgen receptors (nAR and mARs, respectively) in HNSCC. As expected, the significance of nAR is much better known; it was shown that increased nAR expression was observed in HNSCC, while treatment with dihydrotestosterone increased proliferation, migration, and invasion of HNSCC cells. For only three out of five currently known mARs-TRPM8, CaV1.2, and OXER1-it was shown either their increased expression in various types of HNSCC or that their increased activity enhanced the migration and invasion of HNSCC cells. The primary treatments for HNSCC are surgery and radiotherapy, but targeted immunotherapies are on the rise. On the other hand, given the evidence of elevated nAR expression in HNSCC, this receptor represents a potential target for antiandrogen therapy. Moreover, there is still plenty of room for further examination of mARs' role in HNSCC diagnosis, prognosis, and treatment.
Collapse
|
15
|
Singh M, Agarwal V, Jindal D, Pancham P, Agarwal S, Mani S, Tiwari RK, Das K, Alghamdi BS, Abujamel TS, Ashraf GM, Jha SK. Recent Updates on Corticosteroid-Induced Neuropsychiatric Disorders and Theranostic Advancements through Gene Editing Tools. Diagnostics (Basel) 2023; 13:diagnostics13030337. [PMID: 36766442 PMCID: PMC9914305 DOI: 10.3390/diagnostics13030337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/28/2022] [Accepted: 10/16/2022] [Indexed: 01/19/2023] Open
Abstract
The vast use of corticosteroids (CCSs) globally has led to an increase in CCS-induced neuropsychiatric disorders (NPDs), a very common manifestation in patients after CCS consumption. These neuropsychiatric disorders range from depression, insomnia, and bipolar disorders to panic attacks, overt psychosis, and many other cognitive changes in such subjects. Though their therapeutic importance in treating and improving many clinical symptoms overrides the complications that arise after their consumption, still, there has been an alarming rise in NPD cases in recent years, and they are seen as the greatest public health challenge globally; therefore, these potential side effects cannot be ignored. It has also been observed that many of the neuronal functional activities are regulated and controlled by genomic variants with epigenetic factors (DNA methylation, non-coding RNA, and histone modeling, etc.), and any alterations in these regulatory mechanisms affect normal cerebral development and functioning. This study explores a general overview of emerging concerns of CCS-induced NPDs, the effective molecular biology approaches that can revitalize NPD therapy in an extremely specialized, reliable, and effective manner, and the possible gene-editing-based therapeutic strategies to either prevent or cure NPDs in the future.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
- Correspondence: (M.S.); (S.K.J.)
| | - Vinayak Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Divya Jindal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Pranav Pancham
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Shriya Agarwal
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201309, India
| | - Raj Kumar Tiwari
- School of Health Sciences, Pharmaceutical Sciences, UPES, Dehradun 248007, India
| | - Koushik Das
- School of Health Sciences, Pharmaceutical Sciences, UPES, Dehradun 248007, India
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tukri S. Abujamel
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
- Correspondence: (M.S.); (S.K.J.)
| |
Collapse
|
16
|
Interactions governing transcriptional activity of nuclear receptors. Biochem Soc Trans 2022; 50:1941-1952. [DOI: 10.1042/bst20220338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
The key players in transcriptional regulation are transcription factors (TFs), proteins that bind specific DNA sequences. Several mechanisms exist to turn TFs ‘on’ and ‘off’, including ligand binding which induces conformational changes within TFs, subsequently influencing multiple inter- and intramolecular interactions to drive transcriptional responses. Nuclear receptors are a specific family of ligand-regulated TFs whose activity relies on interactions with DNA, coregulator proteins and other receptors. These multidomain proteins also undergo interdomain interactions on multiple levels, further modulating transcriptional outputs. Cooperation between these distinct interactions is critical for appropriate transcription and remains an intense area of investigation. In this review, we report and summarize recent findings that continue to advance our mechanistic understanding of how interactions between nuclear receptors and diverse partners influence transcription.
Collapse
|
17
|
Malbeteau L, Pham HT, Eve L, Stallcup MR, Poulard C, Le Romancer M. How Protein Methylation Regulates Steroid Receptor Function. Endocr Rev 2022; 43:160-197. [PMID: 33955470 PMCID: PMC8755998 DOI: 10.1210/endrev/bnab014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Steroid receptors (SRs) are members of the nuclear hormonal receptor family, many of which are transcription factors regulated by ligand binding. SRs regulate various human physiological functions essential for maintenance of vital biological pathways, including development, reproduction, and metabolic homeostasis. In addition, aberrant expression of SRs or dysregulation of their signaling has been observed in a wide variety of pathologies. SR activity is tightly and finely controlled by post-translational modifications (PTMs) targeting the receptors and/or their coregulators. Whereas major attention has been focused on phosphorylation, growing evidence shows that methylation is also an important regulator of SRs. Interestingly, the protein methyltransferases depositing methyl marks are involved in many functions, from development to adult life. They have also been associated with pathologies such as inflammation, as well as cardiovascular and neuronal disorders, and cancer. This article provides an overview of SR methylation/demethylation events, along with their functional effects and biological consequences. An in-depth understanding of the landscape of these methylation events could provide new information on SR regulation in physiology, as well as promising perspectives for the development of new therapeutic strategies, illustrated by the specific inhibitors of protein methyltransferases that are currently available.
Collapse
Affiliation(s)
- Lucie Malbeteau
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Ha Thuy Pham
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Louisane Eve
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
18
|
Adlanmerini M, Fontaine C, Gourdy P, Arnal JF, Lenfant F. Segregation of nuclear and membrane-initiated actions of estrogen receptor using genetically modified animals and pharmacological tools. Mol Cell Endocrinol 2022; 539:111467. [PMID: 34626731 DOI: 10.1016/j.mce.2021.111467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022]
Abstract
Estrogen receptor alpha (ERα) and beta (ERβ) are members of the nuclear receptor superfamily, playing widespread functions in reproductive and non-reproductive tissues. Beside the canonical function of ERs as nuclear receptors, in this review, we summarize our current understanding of extra-nuclear, membrane-initiated functions of ERs with a specific focus on ERα. Over the last decade, in vivo evidence has accumulated to demonstrate the physiological relevance of this ERα membrane-initiated-signaling from mouse models to selective pharmacological tools. Finally, we discuss the perspectives and future challenges opened by the integration of extra-nuclear ERα signaling in physiology and pathology of estrogens.
Collapse
Affiliation(s)
- Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Jean-François Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France.
| |
Collapse
|
19
|
Patel JM, Jeselsohn RM. Estrogen Receptor Alpha and ESR1 Mutations in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:171-194. [DOI: 10.1007/978-3-031-11836-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Structural overview and perspectives of the nuclear receptors, a major family as the direct targets for small-molecule drugs. Acta Biochim Biophys Sin (Shanghai) 2021; 54:12-24. [PMID: 35130630 PMCID: PMC9909358 DOI: 10.3724/abbs.2021001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The nuclear receptors (NRs) are an evolutionarily related family of transcription factors, which share certain common structural characteristics and regulate the expressions of various genes by recognizing different response elements. NRs play important roles in cell differentiation, proliferation, survival and apoptosis, rendering them indispensable in many physiological activities including growth and metabolism. As a result, dysfunctions of NRs are closely related to a variety of diseases, such as diabetes, obesity, infertility, inflammation, the Alzheimer's disease, cardiovascular diseases, prostate and breast cancers. Meanwhile, small-molecule drugs directly targeting NRs have been widely used in the treatment of above diseases. Here we summarize recent progress in the structural biology studies of NR family proteins. Compared with the dozens of structures of isolated DNA-binding domains (DBDs) and the striking more than a thousand of structures of isolated ligand-binding domains (LBDs) accumulated in the Protein Data Bank (PDB) over thirty years, by now there are only a small number of multi-domain NR complex structures, which reveal the integration of different NR domains capable of the allosteric signal transduction, or the detailed interactions between NR and various coregulator proteins. On the other hand, the structural information about several orphan NRs is still totally unavailable, hindering the further understanding of their functions. The fast development of new technologies in structural biology will certainly help us gain more comprehensive information of NR structures, inspiring the discovery of novel NR-targeting drugs with a new binding site beyond the classic LBD pockets and/or a new mechanism of action.
Collapse
|
21
|
Ceccarelli I, Bioletti L, Peparini S, Solomita E, Ricci C, Casini I, Miceli E, Aloisi AM. Estrogens and phytoestrogens in body functions. Neurosci Biobehav Rev 2021; 132:648-663. [PMID: 34890602 DOI: 10.1016/j.neubiorev.2021.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/23/2022]
Abstract
Estrogens are the hormones of reproduction in women as well as of many other important functions in the male and female body. They undergo significant changes in the different phases of life, e.g. during puberty, pregnancy or at menopause/andropause. Phytoestrogens are natural non-steroidal phenolic plant compounds that can mimic the activity of estrogens and their beneficial effects in women and in men. This narrative review summarizes the literature on the physiological role of estrogens and the several potential health benefits of phytoestrogens, with particular attention given to the possible role of phytoestrogens in aging.
Collapse
Affiliation(s)
- Ilaria Ceccarelli
- Department Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Lucia Bioletti
- Department Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Sofia Peparini
- Department Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Erminia Solomita
- Department Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Comasia Ricci
- Department Life Sciences, University of Siena, Siena, Italy
| | - Ilenia Casini
- Department Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Elisangela Miceli
- Department Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Anna Maria Aloisi
- Department Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
| |
Collapse
|
22
|
Sołtys K, Wycisk K, Ożyhar A. Liquid-liquid phase separation of the intrinsically disordered AB region of hRXRγ is driven by hydrophobic interactions. Int J Biol Macromol 2021; 183:936-949. [PMID: 33971237 DOI: 10.1016/j.ijbiomac.2021.05.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022]
Abstract
Nuclear receptors (NRs) are a family of transcription factors that are regulated endogenously by small lipophilic ligands. Recently, liquid-liquid phase separation (LLPS) has appeared as a new aspect of NR function. In the human retinoid X receptor γ (hRXRγ), the inherently disordered AB region undergoes LLPS via homotypic multivalent interactions. To better understand the functions of liquid condensates, a clear view of the molecular interactions underlying the LLPS are required. The phase separation propensity of the AB region of hRXRγ (AB_hRXG) at a high NaCl concentration, a lower critical solution temperature behavior, and also sensitivity to kosmotropic salts and 1,6-hexanediol, which all indicate the importance of hydrophobic interactions in the formation of AB_hRXG liquid condensates, is presented in the paper. Additionally, molecular crowding agents and TMAO shift the equilibrium, in turn enabling phase transition at lower AB_hRXG concentrations. Although the LLPS of the proteins can lead to aggregation, AB_hRXG liquid condensates are not aggregation prone. Interestingly, the formation of AB_hRXG liquid condensates has an impact on the rest of the receptor, as AB_hRXG liquid condensates recruit the remaining fragment of hRXRγ into the droplets. The ability of AB_hRXG to undergo LLPS might be important for gene expression regulation.
Collapse
Affiliation(s)
- Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Krzysztof Wycisk
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
23
|
Sanborn AL, Yeh BT, Feigerle JT, Hao CV, Townshend RJ, Lieberman Aiden E, Dror RO, Kornberg RD. Simple biochemical features underlie transcriptional activation domain diversity and dynamic, fuzzy binding to Mediator. eLife 2021; 10:68068. [PMID: 33904398 PMCID: PMC8137143 DOI: 10.7554/elife.68068] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/25/2021] [Indexed: 01/07/2023] Open
Abstract
Gene activator proteins comprise distinct DNA-binding and transcriptional activation domains (ADs). Because few ADs have been described, we tested domains tiling all yeast transcription factors for activation in vivo and identified 150 ADs. By mRNA display, we showed that 73% of ADs bound the Med15 subunit of Mediator, and that binding strength was correlated with activation. AD-Mediator interaction in vitro was unaffected by a large excess of free activator protein, pointing to a dynamic mechanism of interaction. Structural modeling showed that ADs interact with Med15 without shape complementarity (‘fuzzy’ binding). ADs shared no sequence motifs, but mutagenesis revealed biochemical and structural constraints. Finally, a neural network trained on AD sequences accurately predicted ADs in human proteins and in other yeast proteins, including chromosomal proteins and chromatin remodeling complexes. These findings solve the longstanding enigma of AD structure and function and provide a rationale for their role in biology. Cells adapt and respond to changes by regulating the activity of their genes. To turn genes on or off, they use a family of proteins called transcription factors. Transcription factors influence specific but overlapping groups of genes, so that each gene is controlled by several transcription factors that act together like a dimmer switch to regulate gene activity. The presence of transcription factors attracts proteins such as the Mediator complex, which activates genes by gathering the protein machines that read the genes. The more transcription factors are found near a specific gene, the more strongly they attract Mediator and the more active the gene is. A specific region on the transcription factor called the activation domain is necessary for this process. The biochemical sequences of these domains vary greatly between species, yet activation domains from, for example, yeast and human proteins are often interchangeable. To understand why this is the case, Sanborn et al. analyzed the genome of baker’s yeast and identified 150 activation domains, each very different in sequence. Three-quarters of them bound to a subunit of the Mediator complex called Med15. Sanborn et al. then developed a machine learning algorithm to predict activation domains in both yeast and humans. This algorithm also showed that negatively charged and greasy regions on the activation domains were essential to be activated by the Mediator complex. Further analyses revealed that activation domains used different poses to bind multiple sites on Med15, a behavior known as ‘fuzzy’ binding. This creates a high overall affinity even though the binding strength at each individual site is low, enabling the protein complexes to remain dynamic. These weak interactions together permit fine control over the activity of several genes, allowing cells to respond quickly and precisely to many changes. The computer algorithm used here provides a new way to identify activation domains across species and could improve our understanding of how living things grow, adapt and evolve. It could also give new insights into mechanisms of disease, particularly cancer, where transcription factors are often faulty.
Collapse
Affiliation(s)
- Adrian L Sanborn
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States.,Department of Computer Science, Stanford University, Stanford, United States
| | - Benjamin T Yeh
- Department of Computer Science, Stanford University, Stanford, United States
| | - Jordan T Feigerle
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Cynthia V Hao
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | | | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, United States.,Center for Theoretical Biological Physics, Rice University, Houston, United States
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, United States
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
24
|
Saha S, Dey S, Nath S. Steroid Hormone Receptors: Links With Cell Cycle Machinery and Breast Cancer Progression. Front Oncol 2021; 11:620214. [PMID: 33777765 PMCID: PMC7994514 DOI: 10.3389/fonc.2021.620214] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Progression of cells through cell cycle consists of a series of events orchestrated in a regulated fashion. Such processes are influenced by cell cycle regulated expression of various proteins where multiple families of transcription factors take integral parts. Among these, the steroid hormone receptors (SHRs) represent a connection between the external hormone milieu and genes that control cellular proliferation. Therefore, understanding the molecular connection between the transcriptional role of steroid hormone receptors and cell cycle deserves importance in dissecting cellular proliferation in normal as well as malignant conditions. Deregulation of cell cycle promotes malignancies of various origins, including breast cancer. Indeed, SHR members play crucial role in breast cancer progression as well as management. This review focuses on SHR-driven cell cycle regulation and moving forward, attempts to discuss the role of SHR-driven crosstalk between cell cycle anomalies and breast cancer.
Collapse
Affiliation(s)
- Suryendu Saha
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Samya Dey
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Somsubhra Nath
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| |
Collapse
|
25
|
Phasing the intranuclear organization of steroid hormone receptors. Biochem J 2021; 478:443-461. [DOI: 10.1042/bcj20200883] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Steroid receptors (SRs) encompass a family of transcription factors that regulate the expression of thousands of genes upon binding to steroid hormones and include the glucocorticoid, androgen, progesterone, estrogen and mineralocorticoid receptors. SRs control key physiological and pathological processes, thus becoming relevant drug targets. As with many other nuclear proteins, hormone-activated SRs concentrate in multiple discrete foci within the cell nucleus. Even though these foci were first observed ∼25 years ago, their exact structure and function remained elusive. In the last years, new imaging methodologies and theoretical frameworks improved our understanding of the intranuclear organization. These studies led to a new paradigm stating that many membraneless nuclear compartments, including transcription-related foci, form through a liquid–liquid phase separation process. These exciting ideas impacted the SR field by raising the hypothesis of SR foci as liquid condensates involved in transcriptional regulation. In this work, we review the current knowledge about SR foci formation under the light of the condensate model, analyzing how these structures may impact SR function. These new ideas, combined with state-of-the-art techniques, may shed light on the biophysical mechanisms governing the formation of SR foci and the biological function of these structures in normal physiology and disease.
Collapse
|
26
|
Asangani I, Blair IA, Van Duyne G, Hilser VJ, Moiseenkova-Bell V, Plymate S, Sprenger C, Wand AJ, Penning TM. Using biochemistry and biophysics to extinguish androgen receptor signaling in prostate cancer. J Biol Chem 2021; 296:100240. [PMID: 33384381 PMCID: PMC7949100 DOI: 10.1074/jbc.rev120.012411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/19/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Castration resistant prostate cancer (CRPC) continues to be androgen receptor (AR) driven. Inhibition of AR signaling in CRPC could be advanced using state-of-the-art biophysical and biochemical techniques. Structural characterization of AR and its complexes by cryo-electron microscopy would advance the development of N-terminal domain (NTD) and ligand-binding domain (LBD) antagonists. The structural basis of AR function is unlikely to be determined by any single structure due to the intrinsic disorder of its NTD, which not only interacts with coregulators but likely accounts for the constitutive activity of AR-splice variants (SV), which lack the LBD and emerge in CRPC. Using different AR constructs lacking the LBD, their effects on protein folding, DNA binding, and transcriptional activity could reveal how interdomain coupling explains the activity of AR-SVs. The AR also interacts with coregulators that promote chromatin looping. Elucidating the mechanisms involved can identify vulnerabilities to treat CRPC, which do not involve targeting the AR. Phosphorylation of the AR coactivator MED-1 by CDK7 is one mechanism that can be blocked by the use of CDK7 inhibitors. CRPC gains resistance to AR signaling inhibitors (ARSI). Drug resistance may involve AR-SVs, but their role requires their reliable quantification by SILAC-mass spectrometry during disease progression. ARSI drug resistance also occurs by intratumoral androgen biosynthesis catalyzed by AKR1C3 (type 5 17β-hydroxysteroid dehydrogenase), which is unique in that its acts as a coactivator of AR. Novel bifunctional inhibitors that competitively inhibit AKR1C3 and block its coactivator function could be developed using reverse-micelle NMR and fragment-based drug discovery.
Collapse
Affiliation(s)
- Irfan Asangani
- Department Cancer Biology, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian A Blair
- Department Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vincent J Hilser
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vera Moiseenkova-Bell
- Department Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen Plymate
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington, and GRECC, Seattle, Washington, USA
| | - Cynthia Sprenger
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Washington, and GRECC, Seattle, Washington, USA
| | - A Joshua Wand
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, USA
| | - Trevor M Penning
- Department Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
27
|
Wood M, Whirledge S. Mechanism of glucocorticoid action in immunology—Basic concepts. REPRODUCTIVE IMMUNOLOGY 2021:147-170. [DOI: 10.1016/b978-0-12-818508-7.00020-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
28
|
Pace F, Watnick PI. The Interplay of Sex Steroids, the Immune Response, and the Intestinal Microbiota. Trends Microbiol 2020; 29:849-859. [PMID: 33257138 DOI: 10.1016/j.tim.2020.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
The role of sex steroids in mammalian maturation is well established. Recently, it has been increasingly appreciated that sex steroids also play an important role in the propensity of adults to develop a myriad of diseases. The exposure and responsiveness of tissues to sex steroids varies among individuals and between the sexes, and this has been correlated with gender-specific differences in the composition of the intestinal microbiota and in susceptibility to metabolic, autoimmune, and neoplastic diseases. Here we focus on recent studies that demonstrate an interplay between sex steroids, the intestinal immune response, and the intestinal microbiota. While correlations between biological sex, the intestinal innate immune response, intestinal inflammation, and intestinal microbiota have been established, many gaps in our knowledge prevent the emergence of an overarching model for this complex interaction. Such a model could aid in the development of prebiotic, probiotic, or synthetic therapeutics that decrease the risk of autoimmune, metabolic, neoplastic, and infectious diseases of the intestine and mitigate the particular health risks faced by individuals receiving sex steroid treatment.
Collapse
Affiliation(s)
- Fernanda Pace
- Division of Infectious Diseases, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Paula I Watnick
- Division of Infectious Diseases, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Yu X, Yi P, Hamilton RA, Shen H, Chen M, Foulds CE, Mancini MA, Ludtke SJ, Wang Z, O'Malley BW. Structural Insights of Transcriptionally Active, Full-Length Androgen Receptor Coactivator Complexes. Mol Cell 2020; 79:812-823.e4. [PMID: 32668201 DOI: 10.1016/j.molcel.2020.06.031] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 01/15/2023]
Abstract
Steroid receptors activate gene transcription by recruiting coactivators to initiate transcription of their target genes. For most nuclear receptors, the ligand-dependent activation function domain-2 (AF-2) is a primary contributor to the nuclear receptor (NR) transcriptional activity. In contrast to other steroid receptors, such as ERα, the activation function of androgen receptor (AR) is largely dependent on its ligand-independent AF-1 located in its N-terminal domain (NTD). It remains unclear why AR utilizes a different AF domain from other receptors despite that NRs share similar domain organizations. Here, we present cryoelectron microscopy (cryo-EM) structures of DNA-bound full-length AR and its complex structure with key coactivators, SRC-3 and p300. AR dimerization follows a unique head-to-head and tail-to-tail manner. Unlike ERα, AR directly contacts a single SRC-3 and p300. The AR NTD is the primary site for coactivator recruitment. The structures provide a basis for understanding assembly of the AR:coactivator complex and its domain contributions for coactivator assembly and transcriptional regulation.
Collapse
Affiliation(s)
- Xinzhe Yu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ping Yi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ross A Hamilton
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hong Shen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muyuan Chen
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven J Ludtke
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhao Wang
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Rivero-Wendt CLG, Miranda-Vilela AL, Domingues I, Oliveira R, Monteiro MS, Moura-Mello MAM, Matias R, Soares AMVM, Grisolia CK. Steroid androgen 17 alpha methyltestosterone used in fish farming induces biochemical alterations in zebrafish adults. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1321-1332. [PMID: 32654587 DOI: 10.1080/10934529.2020.1790954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The 17 alpha methyltestosterone (MT) hormone is fed to Oreochromis niloticus larvae in fish farms with the purpose of inducing sex reversal. The aim of this study was to evaluate the toxicity and sub-lethality of MT (99.9% purity) and cMT (a commercial MT with 90% purity) in zebrafish (Danio rerio) adults, where the animals were exposed to concentrations of 0, 4, 23, 139, 833 and 5000 µg/L for 96 hours. Genotoxicity was evaluated by micronucleus test (MN), nuclear abnormalities (NA) and comet assay. A low genotoxic potential of MT was showed, inducing micronucleus, nuclear abnormalities and DNA damage in Danio rerio, depending on the use of MT or cMT, gender and tested concentrations. In the sub-lethality trials, there was a basal difference in the activity of the enzymatic biochemical markers for males and females, while the Glutatione S transferase (GST) activity decreased in all analyzed tissues, and for males the enzymatic activity decreased only in the intestine. Results suggest that MT has a toxic potential to fish because it alters enzymatic metabolic pathways and may pose a risk to the ecosystems.
Collapse
Affiliation(s)
| | - Ana Luisa Miranda-Vilela
- Department of Genetics and Morphology, Institute of Biological Sciences, Universidade de Brasília, Brasília, DF, Brazil
| | - Inês Domingues
- Department of Biology & CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Rhaul Oliveira
- Department of Biology & CESAM, Universidade de Aveiro, Aveiro, Portugal
| | | | | | | | - Amadeu Mortágua Velho Maia Soares
- Department of Biology & CESAM, Universidade de Aveiro, Aveiro, Portugal
- Graduate Program in Vegetal Production, Universidade Federal do Tocantins, Gurupi, TO, Brazil
| | - Cesar Koppe Grisolia
- Department of Genetics and Morphology, Institute of Biological Sciences, Universidade de Brasília, Brasília, DF, Brazil
| |
Collapse
|
31
|
Bafna D, Ban F, Rennie PS, Singh K, Cherkasov A. Computer-Aided Ligand Discovery for Estrogen Receptor Alpha. Int J Mol Sci 2020; 21:E4193. [PMID: 32545494 PMCID: PMC7352601 DOI: 10.3390/ijms21124193] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
Breast cancer (BCa) is one of the most predominantly diagnosed cancers in women. Notably, 70% of BCa diagnoses are Estrogen Receptor α positive (ERα+) making it a critical therapeutic target. With that, the two subtypes of ER, ERα and ERβ, have contrasting effects on BCa cells. While ERα promotes cancerous activities, ERβ isoform exhibits inhibitory effects on the same. ER-directed small molecule drug discovery for BCa has provided the FDA approved drugs tamoxifen, toremifene, raloxifene and fulvestrant that all bind to the estrogen binding site of the receptor. These ER-directed inhibitors are non-selective in nature and may eventually induce resistance in BCa cells as well as increase the risk of endometrial cancer development. Thus, there is an urgent need to develop novel drugs with alternative ERα targeting mechanisms that can overcome the limitations of conventional anti-ERα therapies. Several functional sites on ERα, such as Activation Function-2 (AF2), DNA binding domain (DBD), and F-domain, have been recently considered as potential targets in the context of drug research and discovery. In this review, we summarize methods of computer-aided drug design (CADD) that have been employed to analyze and explore potential targetable sites on ERα, discuss recent advancement of ERα inhibitor development, and highlight the potential opportunities and challenges of future ERα-directed drug discovery.
Collapse
Affiliation(s)
| | | | | | | | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (D.B.); (F.B.); (P.S.R.); (K.S.)
| |
Collapse
|
32
|
Lambert É, Babeu JP, Simoneau J, Raisch J, Lavergne L, Lévesque D, Jolibois É, Avino M, Scott MS, Boudreau F, Boisvert FM. Human Hepatocyte Nuclear Factor 4-α Encodes Isoforms with Distinct Transcriptional Functions. Mol Cell Proteomics 2020; 19:808-827. [PMID: 32123031 PMCID: PMC7196586 DOI: 10.1074/mcp.ra119.001909] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/28/2020] [Indexed: 01/02/2023] Open
Abstract
HNF4α is a nuclear receptor produced as 12 isoforms from two promoters by alternative splicing. To characterize the transcriptional capacities of all 12 HNF4α isoforms, stable lines expressing each isoform were generated. The entire transcriptome associated with each isoform was analyzed as well as their respective interacting proteome. Major differences were noted in the transcriptional function of these isoforms. The α1 and α2 isoforms were the strongest regulators of gene expression whereas the α3 isoform exhibited significantly reduced activity. The α4, α5, and α6 isoforms, which use an alternative first exon, were characterized for the first time, and showed a greatly reduced transcriptional potential with an inability to recognize the consensus response element of HNF4α. Several transcription factors and coregulators were identified as potential specific partners for certain HNF4α isoforms. An analysis integrating the vast amount of omics data enabled the identification of transcriptional regulatory mechanisms specific to certain HNF4α isoforms, hence demonstrating the importance of considering all isoforms given their seemingly diverse functions.
Collapse
Affiliation(s)
- Élie Lambert
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Jean-Philippe Babeu
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Joël Simoneau
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Jennifer Raisch
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Laurie Lavergne
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Dominique Lévesque
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Émilie Jolibois
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Mariano Avino
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Michelle S Scott
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - François Boudreau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada.
| | - Francois-Michel Boisvert
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada.
| |
Collapse
|
33
|
Concolino P, Costella A, Paragliola RM. Mutational Landscape of Resistance to Thyroid Hormone Beta (RTHβ). Mol Diagn Ther 2020; 23:353-368. [PMID: 30976996 DOI: 10.1007/s40291-019-00399-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Resistance to thyroid hormone beta (RTHβ) is a syndrome characterized by reduced responsiveness of peripheral tissues to thyroid hormone (TH). In most cases, the disorder is associated with germline pathogenic variants in the thyroid hormone receptor beta (THRB) gene. This paper summarizes the clinical and biochemical presentation of the disease, providing a comprehensive overview on molecular genetic features. Particular care is given in reporting all identified THRB variants with an assessed or unknown clinical significance. Our aim is to offer a useful tool for clinical and genetic specialists in order to ease clinical diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Paola Concolino
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy.
| | - Alessandra Costella
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | | |
Collapse
|
34
|
Gkika D, Lolignier S, Grolez GP, Bavencoffe A, Shapovalov G, Gordienko D, Kondratskyi A, Meleine M, Prival L, Chapuy E, Etienne M, Eschalier A, Shuba Y, Skryma R, Busserolles J, Prevarskaya N. Testosterone-androgen receptor: The steroid link inhibiting TRPM8-mediated cold sensitivity. FASEB J 2020; 34:7483-7499. [PMID: 32277850 DOI: 10.1096/fj.201902270r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/10/2020] [Accepted: 03/18/2020] [Indexed: 11/11/2022]
Abstract
Recent studies have revealed gender differences in cold perception, and pointed to a possible direct action of testosterone (TST) on the cold-activated TRPM8 (Transient Receptor Potential Melastatin Member 8) channel. However, the mechanisms by which TST influences TRPM8-mediated sensory functions remain elusive. Here, we show that TST inhibits TRPM8-mediated mild-cold perception through the noncanonical engagement of the Androgen Receptor (AR). Castration of both male rats and mice increases sensitivity to mild cold, and this effect depends on the presence of intact TRPM8 and AR. TST in nanomolar concentrations suppresses whole-cell TRPM8-mediated currents and single-channel activity in native dorsal root ganglion (DRG) neurons and HEK293 cells co-expressing recombinant TRPM8 and AR, but not TRPM8 alone. AR cloned from rat DRGs shows no difference from standard AR. However, biochemical assays and confocal imaging reveal the presence of AR on the cell surface and its interaction with TRPM8 in response to TST, leading to an inhibition of channel activity.
Collapse
Affiliation(s)
- Dimitra Gkika
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, Lille, France
| | - Stéphane Lolignier
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, France.,Institut Analgesia, Faculté de Médecine, Clermont-Ferrand, France
| | - Guillaume P Grolez
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, Lille, France
| | - Alexis Bavencoffe
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, Lille, France
| | - Georges Shapovalov
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, Lille, France
| | - Dmitri Gordienko
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, Lille, France
| | - Artem Kondratskyi
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, Lille, France.,Department of Neuromuscular Physiology, Bogomoletz Institute of Physiology NASU, Kyiv, Ukraine
| | - Mathieu Meleine
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, France.,Institut Analgesia, Faculté de Médecine, Clermont-Ferrand, France
| | - Laetitia Prival
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, France.,Institut Analgesia, Faculté de Médecine, Clermont-Ferrand, France
| | - Eric Chapuy
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, France.,Institut Analgesia, Faculté de Médecine, Clermont-Ferrand, France
| | - Monique Etienne
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, France.,Institut Analgesia, Faculté de Médecine, Clermont-Ferrand, France
| | - Alain Eschalier
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, France.,Institut Analgesia, Faculté de Médecine, Clermont-Ferrand, France
| | - Yaroslav Shuba
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, Lille, France.,Department of Neuromuscular Physiology, Bogomoletz Institute of Physiology NASU, Kyiv, Ukraine
| | - Roman Skryma
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, Lille, France
| | - Jérôme Busserolles
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, France.,Institut Analgesia, Faculté de Médecine, Clermont-Ferrand, France
| | | |
Collapse
|
35
|
Sołtys K, Ożyhar A. Ordered structure-forming properties of the intrinsically disordered AB region of hRXRγ and its ability to promote liquid-liquid phase separation. J Steroid Biochem Mol Biol 2020; 198:105571. [PMID: 31881311 DOI: 10.1016/j.jsbmb.2019.105571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022]
Abstract
The retinoid X receptor (RXR) is a member of the nuclear receptor (NR) superfamily that occupies the central position among other NRs by forming both homodimers and heterodimers with other representatives of the family. RXR shares similar structural domains with other members of NRs. The major differences in the subtypes and isoforms of RXR are in the AB region. To date, there have been no data concerning the molecular properties of the AB region of hRXRγ (AB_hRXG). Here, we describe the biochemical and biophysical properties of the recombinant AB_hRXG. The results indicate that AB_hRXG shows the structural and functional characteristics of the pre-molten globule-like (PMG-like) group of intrinsically disordered proteins (IDPs) and also has a significant propensity for folding. We also present the first experimental evidence showing that the AB region of NRs promotes the formation of liquid-liquid phase separation (LLPS).
Collapse
Affiliation(s)
- Katarzyna Sołtys
- Department of Biochemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland.
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
36
|
Regression of castration-resistant prostate cancer by a novel compound QW07 targeting androgen receptor N-terminal domain. Cell Biol Toxicol 2020; 36:399-416. [PMID: 32002708 DOI: 10.1007/s10565-020-09511-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022]
Abstract
Androgen deprivation therapy (ADT) via surgical or chemical castration frequently fails to halt lethal castration-resistant prostate cancer (CRPC), which is induced by multiple mechanisms involving constitutive androgen receptor (AR) splice variants, AR mutation, and/or de novo androgen synthesis. The AR N-terminal domain (NTD) possesses most transcriptional activity and is proposed as a potential target for CRPC drug development. We constructed a screening system targeting AR-NTD transcription activity to screening a compound library and identified a novel small molecule compound named QW07. The function evaluation and mechanism investigation of QW07 were carried out in vitro and in vivo. QW07 bound to AR-NTD directly, blocked the transactivation of AR-NTD, blocked interactions between co-regulatory proteins and androgen response elements (AREs), inhibited the expression of genes downstream of AR, and inhibited prostate cancer growth in vitro and in vivo. QW07 was demonstrated as an AR-NTD-specific antagonist with the potential to inhibit both canonical and variant-mediated AR signaling to regress the CRPC xenografts and is proposed as a lead compound for a specific antagonist targeting AR-NTD.
Collapse
|
37
|
Guillien M, le Maire A, Mouhand A, Bernadó P, Bourguet W, Banères JL, Sibille N. IDPs and their complexes in GPCR and nuclear receptor signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:105-155. [DOI: 10.1016/bs.pmbts.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Liu B, Goodwin JE. The Effect of Glucocorticoids on Angiogenesis in the Treatment of Solid Tumors. JOURNAL OF CELLULAR SIGNALING 2020; 1:42-49. [PMID: 32728672 PMCID: PMC7388649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glucocorticoids are steroid hormones produced by the adrenal cortex in a circadian manner and they participate in many physiological and pathological processes. Synthetic glucocorticoids have been universally applied to treat inflammatory diseases and immune disorders. Due to their angiostatic property, glucocorticoids are often added to regimens for cancer treatment. In the current review, we summarize how glucocorticoids influence angiogenesis in common solid tumors based on literature from the last ten years. Usage of glucocorticoids can be a double-edged sword in the treatment of some malignancies. There are still unanswered questions about the role of glucocorticoids in the treatment regimens of some common cancers. Therefore, we suggest prudent and restricted administration of glucocorticoids to treat solid tumors.
Collapse
Affiliation(s)
- Bing Liu
- Department of Pediatrics, Yale University School of Medicine, New Haven CT 06520, USA,Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven CT 06520, USA
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven CT 06520, USA,Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven CT 06520, USA,Correspondence should be addressed to Julie E. Goodwin;
| |
Collapse
|
39
|
Wu MD, Cheng MJ, Chen YL, Liu TWD, Chen KP. Screening of Azaphilone Derivatives From Monascus pilosus-Fermented Rice (Red Yeast Rice) and Their Evaluation as Nonsteroidal Androgen Receptor Antagonists. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19878918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Monascus pilosus BCRC 38093 is a mutant strain of M. pilosus BCRC 38072. The 95% ethanol extract of red yeast rice fermented by M. pilosus BCRC 38093 showed 4 major signals on high performance liquid chromatography (HPLC) examination. The extraction of metabolites and chromatography of the ethyl acetate crude extract on silica gel yielded 2 azaphilone derivatives, monascin (1) and monascinol (2), and 2 monacolin-type derivatives, acid-form monacolin K (3) and lactone-form monacolin K (4). Their structural characterization was elucidated by spectroscopic techniques ultraviolet-visible (UV), infrared spectroscopy (IR), and two dimensional-nuclear magnetic resonance (2D-NMR) and mass spectrometry. These compounds were assayed for their anti-androgen activity; monascinol (2) exhibited strong activity.
Collapse
Affiliation(s)
- Ming-Der Wu
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute (FIRDI), Hsinchu 300, Taiwan
| | - Ming-Jen Cheng
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute (FIRDI), Hsinchu 300, Taiwan
| | - Yen-Lin Chen
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute (FIRDI), Hsinchu 300, Taiwan
| | - Tai-Wei D. Liu
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute (FIRDI), Hsinchu 300, Taiwan
| | - Kai-Ping Chen
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute (FIRDI), Hsinchu 300, Taiwan
| |
Collapse
|
40
|
Liu B, Zhang TN, Knight JK, Goodwin JE. The Glucocorticoid Receptor in Cardiovascular Health and Disease. Cells 2019; 8:cells8101227. [PMID: 31601045 PMCID: PMC6829609 DOI: 10.3390/cells8101227] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022] Open
Abstract
The glucocorticoid receptor is a member of the nuclear receptor family that controls many distinct gene networks, governing various aspects of development, metabolism, inflammation, and the stress response, as well as other key biological processes in the cardiovascular system. Recently, research in both animal models and humans has begun to unravel the profound complexity of glucocorticoid signaling and convincingly demonstrates that the glucocorticoid receptor has direct effects on the heart and vessels in vivo and in vitro. This research has contributed directly to improving therapeutic strategies in human disease. The glucocorticoid receptor is activated either by the endogenous steroid hormone cortisol or by exogenous glucocorticoids and acts within the cardiovascular system via both genomic and non-genomic pathways. Polymorphisms of the glucocorticoid receptor are also reported to influence the progress and prognosis of cardiovascular disease. In this review, we provide an update on glucocorticoid signaling and highlight the critical role of this signaling in both physiological and pathological conditions of the cardiovascular system. With increasing in-depth understanding of glucocorticoid signaling, the future is promising for the development of targeted glucocorticoid treatments and improved clinical outcomes.
Collapse
Affiliation(s)
- Bing Liu
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Tie-Ning Zhang
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Jessica K Knight
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Julie E Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
41
|
Fancher AT, Hua Y, Strock CJ, Johnston PA. Assays to Interrogate the Ability of Compounds to Inhibit the AF-2 or AF-1 Transactivation Domains of the Androgen Receptor. Assay Drug Dev Technol 2019; 17:364-386. [PMID: 31502857 DOI: 10.1089/adt.2019.940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is the leading cause of cancer and second leading cause of cancer-related death in men in the United States. Twenty percent of patients receiving the standard of care androgen deprivation therapy (ADT) eventually progress to metastatic and incurable castration-resistant prostate cancer (CRPC). Current FDA-approved drugs for CRPC target androgen receptor (AR) binding or androgen production, but only provide a 2- to 5-month survival benefit due to the emergence of resistance. Overexpression of AR coactivators and the emergence of AR splice variants, both promote continued transcriptional activation under androgen-depleted conditions and represent drug resistance mechanisms that contribute to CRPC progression. The AR contains two transactivation domains, activation function 2 (AF-2) and activation function 1 (AF-1), which serve as binding surfaces for coactivators involved in the transcriptional activation of AR target genes. Full-length AR contains both AF-2 and AF-1 surfaces, whereas AR splice variants only have an AF-1 surface. We have recently prosecuted a high-content screening campaign to identify hit compounds that can inhibit or disrupt the protein-protein interactions (PPIs) between AR and transcriptional intermediary factor 2 (TIF2), one of the coactivators implicated in CRPC disease progression. Since an ideal inhibitor/disruptor of AR-coactivator PPIs would target both the AF-2 and AF-1 surfaces, we describe here the development and validation of five AF-2- and three AF-1-focused assays to interrogate and prioritize hits that disrupt both transactivation surfaces. The assays were validated using a test set of seven known AR modulator compounds, including three AR antagonists and one androgen synthesis inhibitor that are FDA-approved ADTs, two investigational molecules that target the N-terminal domain of AR, and an inhibitor of the Hsp90 (heat shock protein) molecular chaperone.
Collapse
Affiliation(s)
- Ashley T Fancher
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yun Hua
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Paul A Johnston
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania.,Head and Neck Cancer, and Skin Cancer Specialized Programs of Research Excellence, University of Pittsburgh Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
Rowińska-Żyrek M, Wiȩch A, Wa Tły J, Wieczorek R, Witkowska D, Ożyhar A, Orłowski M. Copper(II)-Binding Induces a Unique Polyproline Type II Helical Structure within the Ion-Binding Segment in the Intrinsically Disordered F-Domain of Ecdysteroid Receptor from Aedes aegypti. Inorg Chem 2019; 58:11782-11792. [PMID: 31433630 DOI: 10.1021/acs.inorgchem.9b01826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reproduction of the dominant vector of Zika and dengue diseases, Aedes aegypti mosquito, is controlled by an active heterodimer complex composed of the 20-hydroxyecdysone receptor (EcR) and ultraspiracle protein. Although A. aegypti EcR shares the structural and functional organization with other nuclear receptors, its C-terminus has an additional long F domain (AaFEcR). Recently, we showed that the full length AaFEcR is intrinsically disordered with the ability to specifically bind divalent metal ions. Here, we describe the details of the exhaustive structural and thermodynamic properties of Zn2+- and Cu2+-complexes with the AaFEcR domain, based on peptide models of its two putative metal binding sites (Ac-HGPHPHPHG-NH2 and Ac-QQLTPNQQQHQQQHSQLQQVHANGS-NH2). Unexpectedly, only in the presence of increasing concentrations of Cu2+ ions, the Ac-HGPHPHPHG-NH2 peptide gained a metal ion-induced poly-l-proline type II helical structure, which is unique for members of the family of nuclear receptors.
Collapse
Affiliation(s)
| | - Anna Wiȩch
- Department of Biochemistry, Faculty of Chemistry , Wrocław University of Science and Technology , 50-370 Wrocław , Poland
| | - Joanna Wa Tły
- Faculty of Chemistry , University of Wrocław , 50-383 Wrocław , Poland
| | - Robert Wieczorek
- Faculty of Chemistry , University of Wrocław , 50-383 Wrocław , Poland
| | - Danuta Witkowska
- Public Higher Medical Professional School in Opole , Katowicka 68 , 45-060 Opole , Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry , Wrocław University of Science and Technology , 50-370 Wrocław , Poland
| | - Marek Orłowski
- Department of Biochemistry, Faculty of Chemistry , Wrocław University of Science and Technology , 50-370 Wrocław , Poland
| |
Collapse
|
43
|
Shamilov R, Aneskievich BJ. Intrinsic Disorder in Nuclear Receptor Amino Termini: From Investigational Challenge to Therapeutic Opportunity. NUCLEAR RECEPTOR RESEARCH 2019. [DOI: 10.32527/2019/101417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Rambon Shamilov
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA
| |
Collapse
|
44
|
Elshan NGRD, Rettig MB, Jung ME. Molecules targeting the androgen receptor (AR) signaling axis beyond the AR-Ligand binding domain. Med Res Rev 2019; 39:910-960. [PMID: 30565725 PMCID: PMC6608750 DOI: 10.1002/med.21548] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is the second most common cause of cancer-related mortality in men in the United States. The androgen receptor (AR) and the physiological pathways it regulates are central to the initiation and progression of PCa. As a member of the nuclear steroid receptor family, it is a transcription factor with three distinct functional domains (ligand-binding domain [LBD], DNA-binding domain [DBD], and transactivation domain [TAD]) in its structure. All clinically approved drugs for PCa ultimately target the AR-LBD. Clinically active drugs that target the DBD and TAD have not yet been developed due to multiple factors. Despite these limitations, the last several years have seen a rise in the discovery of molecules that could successfully target these domains. This review aims to present and comprehensively discuss such molecules that affect AR signaling through direct or indirect interactions with the AR-TAD or the DBD. The compounds discussed here include hairpin polyamides, niclosamide, marine sponge-derived small molecules (eg, EPI compounds), mahanine, VPC compounds, JN compounds, and bromodomain and extraterminal domain inhibitors. We highlight the significant in vitro and in vivo data found for each compound and the apparent limitations and/or potential for further development of these agents as PCa therapies.
Collapse
Affiliation(s)
| | - Matthew B. Rettig
- . Division of Hematology/Oncology, VA Greater Los Angeles Healthcare System West LA, Los Angeles, CA, United States
- . Departments of Medicine and Urology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Michael E. Jung
- . Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, United States
| |
Collapse
|
45
|
Foussier L, Vitellius G, Bouligand J, Amazit L, Bouvattier C, Young J, Trabado S, Lombès M. Functional Characterization of Glucocorticoid Receptor Variants Is Required to Avoid Misinterpretation of NGS Data. J Endocr Soc 2019; 3:865-881. [PMID: 31008420 PMCID: PMC6467410 DOI: 10.1210/js.2019-00028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/28/2019] [Indexed: 01/23/2023] Open
Abstract
Recent advances in genetic analysis technologies such as next-generation sequencing (NGS) have considerably increased the incidental discovery of genetic abnormalities. Six heterozygous missense mutations of the human glucocorticoid receptor (GR; encoded by the NR3C1 gene) have been identified in the context of genetic screening of endocrine pathologies. GR, a nuclear receptor, hormone-induced transcription factor, is involved in many physiological processes. Nevertheless, the pathogenic significance of incidentally discovered mutations remains obscure. The aim of this work was to characterize these variants by evaluating their functional impact on GR signaling. Six original GR variants, located in exon 2, led to amino acid substitutions of the N-terminal domain of GR (F65V, M86V, A229T, A304E, N374S, and R386Q), excluding mainly the activation function tau core 1 domain, the potential site of functional interaction with transcriptional coregulators. Transient cotransfection in HEK293T cells of mutated GR-expressing vectors and a luciferase reporter established dose-response curves for dexamethasone. This excluded any major transactivation abnormality of the mutated GRs (ligand concentration leading to 50% maximal transactivation capacity ≈ 0.2 nM), with maximal transactivation capacity identical to that of the wild-type (WT) GR and without modification of the potentiation of transcriptional coactivator steroid receptor coactivator 2 except in N374S. Moreover, protein expression of mutated GRs and their cytonuclear translocation studied by immunocytochemistry were almost unchanged compared with WT GR. These results underline the silent nature of these missense GR variants and call for cautious interpretation of the discovery of genetic incidentalomas by NGS in the absence of detailed characterization in order to appropriately assess their functional impact on a particular signaling pathway.
Collapse
Affiliation(s)
- Loïc Foussier
- INSERM UMR_S U1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Géraldine Vitellius
- INSERM UMR_S U1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Jérôme Bouligand
- INSERM UMR_S U1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France.,Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpitaux Universitaires Paris Sud, AH-HP, CHU Bicêtre, France
| | - Larbi Amazit
- INSERM UMR_S U1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France.,Unité Mixte de Service 32 (UMS-32), Institut Biomédical de Bicêtre, Le Kremlin-Bicêtre, France
| | - Claire Bouvattier
- Service d'Endocrinologie Pédiatrique, Assistance publique des hôpitaux de Paris, Hôpitaux Universitaires Paris Sud, AH-HP, CHU Bicêtre, France
| | - Jacques Young
- INSERM UMR_S U1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France.,Service d'Endocrinologie et des Maladies de la Reproduction, Hôpitaux Universitaires Paris Sud, AH-HP, CHU Bicêtre, Le Kremlin Bicêtre, France
| | - Séverine Trabado
- INSERM UMR_S U1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France.,Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpitaux Universitaires Paris Sud, AH-HP, CHU Bicêtre, France
| | - Marc Lombès
- INSERM UMR_S U1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France.,Service d'Endocrinologie et des Maladies de la Reproduction, Hôpitaux Universitaires Paris Sud, AH-HP, CHU Bicêtre, Le Kremlin Bicêtre, France
| |
Collapse
|
46
|
Fuller PJ, Yang J, Young MJ. Mechanisms of Mineralocorticoid Receptor Signaling. VITAMINS AND HORMONES 2019; 109:37-68. [DOI: 10.1016/bs.vh.2018.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
A Metastable Contact and Structural Disorder in the Estrogen Receptor Transactivation Domain. Structure 2018; 27:229-240.e4. [PMID: 30581045 DOI: 10.1016/j.str.2018.10.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/06/2018] [Accepted: 10/25/2018] [Indexed: 11/23/2022]
Abstract
The N-terminal transactivation domain (NTD) of estrogen receptor alpha, a well-known member of the family of intrinsically disordered proteins, mediates the receptor's transactivation function. However, an accurate molecular dissection of NTD's structure-function relationships remains elusive. Here, we show that the NTD adopts a mostly disordered, unexpectedly compact conformation that undergoes structural expansion on chemical denaturation. By combining small-angle X-ray scattering, hydroxyl radical protein footprinting, and computational modeling, we derive the ensemble-structures of the NTD and determine its ensemble-contact map revealing metastable long-range contacts, e.g., between residues I33 and S118. We show that mutation at S118, a known phosphorylation site, promotes conformational changes and increases coactivator binding. We further demonstrate via fluorine-19 (19F) nuclear magnetic resonance that mutations near I33 alter 19F chemical shifts at S118, confirming the proposed I33-S118 contact in the ensemble of structural disorder. These findings extend our understanding of how specific contact metastability mediates critical functions of disordered proteins.
Collapse
|
48
|
Weikum ER, Liu X, Ortlund EA. The nuclear receptor superfamily: A structural perspective. Protein Sci 2018; 27:1876-1892. [PMID: 30109749 PMCID: PMC6201731 DOI: 10.1002/pro.3496] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 12/28/2022]
Abstract
Nuclear receptors (NRs) are a family of transcription factors that regulate numerous physiological processes such as metabolism, reproduction, inflammation, as well as the circadian rhythm. NRs sense changes in lipid metabolite levels to drive differential gene expression, producing distinct physiologic effects. This is an allosteric process whereby binding a cognate ligand and specific DNA sequences drives the recruitment of diverse transcriptional co-regulators at chromatin and ultimately transactivation or transrepression of target genes. Dysregulation of NR signaling leads to various malignances, metabolic disorders, and inflammatory disease. Given their important role in physiology and ability to respond to small lipophilic ligands, NRs have emerged as valuable therapeutic targets. Here, we summarize and discuss the recent progress on understanding the complex mechanism of action of NRs, primarily from a structural perspective. Finally, we suggest future studies to improve our understanding of NR signaling and better design drugs by integrating multiple structural and biophysical approaches.
Collapse
Affiliation(s)
- Emily R. Weikum
- Department of BiochemistryEmory School of MedicineAtlanta30322Georgia
| | - Xu Liu
- Department of BiochemistryEmory School of MedicineAtlanta30322Georgia
| | - Eric A. Ortlund
- Department of BiochemistryEmory School of MedicineAtlanta30322Georgia
| |
Collapse
|
49
|
Li J, Hilser VJ. Assessing Allostery in Intrinsically Disordered Proteins With Ensemble Allosteric Model. Methods Enzymol 2018; 611:531-557. [PMID: 30471699 DOI: 10.1016/bs.mie.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Intrinsically disordered (ID) proteins have been shown to play a major role in signaling in a broad range of proteins, using a process known as allostery, wherein the protein can integrate one or a number of inputs to regulate its function. The disorder-mediated allostery can be understood energetically with ensemble allosteric model (EAM). In this model, the molecule without effectors is considered as an ensemble of preexisting conformations, and effector binding is treated as an energetic perturbation of the ensemble to redistribute the microstates that are favorable or unfavorable to the second binding partner. As it only considers the intrinsic energetics of the system and does not depend on a crystallographic structure, it can be applied to both structured proteins, ID proteins, and mixed proteins with both structured and ID domains. Simulation with EAM on the basis of experimental data can help quantitatively explain experimental observations, as well as to make predictions to direct future research. This has recently been illustrated with the case of human glucocorticoid receptor, a multidomain transcription factor that contains both structured and disordered regions. In this chapter, we describe the assays for measuring the transcriptional activity, binding affinity to cognate DNA, conformational stability, either on single domain or tandem coupled domains in the GR two-domain isoforms. We then explain how these data are utilized as input parameters or constraints in the EAM for quantitative estimates of stabilities and coupling energies for each domain through global minimization method.
Collapse
Affiliation(s)
- Jing Li
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Vincent J Hilser
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States; Department of Biology, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
50
|
Penney J, Taylor T, MacLusky N, Lu R. LUMAN/CREB3 Plays a Dual Role in Stress Responses as a Cofactor of the Glucocorticoid Receptor and a Regulator of Secretion. Front Mol Neurosci 2018; 11:352. [PMID: 30337854 PMCID: PMC6179040 DOI: 10.3389/fnmol.2018.00352] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/07/2018] [Indexed: 12/22/2022] Open
Abstract
LUMAN/CREB3, originally identified through its interaction with a cell cycle regulator HCFC1, is a transcription factor involved in the unfolded protein response during endoplasmic reticulum stress. Previously using gene knockout mouse models, we have shown that LUMAN modulates the glucocorticoid (GC) response leading to enhanced glucocorticoid receptor (GR) activity and lower circulating GC levels. Consequently, the stress response is dysregulated, leading to a blunted stress response in the Luman-deficient mice. One question that remained was how LUMAN deficiency affected the stress response at the cellular level leading to the changes in the physiological stress response. Here, we found that LUMAN interacts with GR through a putative nuclear receptor box site and can activate GR in the absence of a ligand. Further investigation showed that, when activated, LUMAN binds to the glucocorticoid response element (GRE), increasing the activity of GR exponentially compared to GR-ligand binding alone. On the other hand, we also found that in the absence of LUMAN, cells were more sensitive to cellular stress, exhibiting decreased secretory capacity. Hence our current data suggest that LUMAN may function both as a transcriptional cofactor of GR and a hormone secretion regulator, and through this, plays a role in stress sensitivity and reactivity to stress.
Collapse
Affiliation(s)
- Jenna Penney
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Tiegh Taylor
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Neil MacLusky
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Ray Lu
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|