1
|
Labra B, Parag-Sharma K, Powers JJ, Srivastava S, Walker JR, Kirkland TA, Brennan CK, Prescher JA, Amelio AL. Optimized in vivo multispectral bioluminescent imaging of tumor biology using engineered BRET reporters. iScience 2024; 27:110655. [PMID: 39252965 PMCID: PMC11381837 DOI: 10.1016/j.isci.2024.110655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/30/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024] Open
Abstract
The ability to visualize and track multiple biological processes in vivo in real time is highly desirable. Bioluminescence imaging (BLI) has emerged as an attractive modality for non-invasive cell tracking, with various luciferase reporters enabling parallel monitoring of several processes. However, simultaneous multiplexed imaging in vivo is challenging due to suboptimal reporter intensities and the need to image one luciferase at a time. We report a multiplexed BLI approach using a single substrate that leverages bioluminescence resonance energy transfer (BRET)-based reporters with distinct spectral profiles for triple-color BLI. These luciferase-fluorophore fusion reporters address light transmission challenges and use optimized coelenterazine substrates. Comparing BRET reporters across two substrate analogs identified a green-yellow-orange combination that allows simultaneous imaging of three distinct cell populations in vitro and in vivo. These tools provide a template for imaging other biological processes in vivo during a single BLI session using a single reporter substrate.
Collapse
Affiliation(s)
- Bryan Labra
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kshitij Parag-Sharma
- Graduate Curriculum in Cell Biology & Physiology, Biological & Biomedical Sciences Program, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John J Powers
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Sonal Srivastava
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | | | - Thomas A Kirkland
- Promega Biosciences, LLC, San Luis Obispo, CA, USA
- Promega Corporation, Madison, WI, USA
| | - Caroline K Brennan
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Antonio L Amelio
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Cancer Cell Biology Program, Lineberger Comprehensive Cancer Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
2
|
Suárez T, Montaño DF, Suárez R. Construction of amino acids reduced alphabets from molecular descriptors for interpretation of N-carbamylase, luciferase and PI3K mutations. Biosystems 2024; 246:105331. [PMID: 39260761 DOI: 10.1016/j.biosystems.2024.105331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
The classification of amino acids has proven to be a useful tool for understanding the importance of sequence in protein function. The reduced amino acid alphabets are an example of these classifications, which, when built from physicochemical, structural and quantum characteristics of the amino acids, allow it to simplify the representation of the sequences, being useful in the modelling, design and understanding of proteins. So, an objective selection of amino acids properties is important, due classes formed in a reduced alphabet depend on the descriptors used for classification. In this research, based on a careful selection of descriptors for the 20 amino acids, through techniques such as the information content index and hierarchical cluster analysis with ties in proximity, 20,871,586 reduced amino acid alphabets were constructed. This large collection of reduced alphabets was been used to interpret alterations in the function of three proteins: N-carbamylase, Luciferase, and PI3K, caused by amino acid changes in their sequences. For this, the similar and different descriptors linked to these mutations were studied. Properties such as volume, hydrophobicity, charge and autocorrelation can be associated with variations in the behaviour of these proteins, while the frequency in specific secondary structures, the Gibbs free energy and some topological and quantum properties can be considered as the causes of preventing the deactivation of protein function. This work offers the most complete collection of reduced alphabets that promise to be a useful tool for the interpretation of alterations caused by amino acid mutations in the protein sequence.
Collapse
Affiliation(s)
- Tatiana Suárez
- CHIMA Grupo de Química Matemática, Universidad de Pamplona, Km 1 Vía Bucaramanga, Pamplona, Colombia
| | - Diego F Montaño
- Departamento de Química, Universidad de Pamplona, Km 1 Vía Bucaramanga, Pamplona, Colombia
| | - Rosana Suárez
- CHIMA Grupo de Química Matemática, Universidad de Pamplona, Km 1 Vía Bucaramanga, Pamplona, Colombia
| |
Collapse
|
3
|
Ugarova NN, Lomakina GY. The role of protein globule in firefly luciferase catalysis. Photochem Photobiol 2024; 100:1191-1199. [PMID: 38235806 DOI: 10.1111/php.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
The important role of the dynamic structure of firefly luciferase in enzyme functioning is a subject of this literature review. Due to the domain alternation, the optimal configuration of the active site is created for each stage of the luciferin oxidation. The diversity of bioluminescence spectra is explained by the combined emission of several coexisting forms of electronically excited oxyluciferin. The superposition of two or three emitter forms recorded in the bioluminescence spectra indicates that different luciferase conformers coexist in the reaction medium in dynamic equilibrium. The relationship between the thermal stability of the protein globule and the bioluminescence spectra is also discussed.
Collapse
Affiliation(s)
- Natalia N Ugarova
- Faculty of Chemistry, Lomonossov Moscow State University, Moscow, Russia
| | - Galina Yu Lomakina
- Faculty of Chemistry, Lomonossov Moscow State University, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| |
Collapse
|
4
|
Beyond luciferase-luciferin system: Modification, improved imaging and biomedical application. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
5
|
Martínez-Pérez-Cejuela H, Gregucci D, Calabretta MM, Simó-Alfonso EF, Herrero-Martínez JM, Michelini E. Novel Nanozeolitic Imidazolate Framework (ZIF-8)-Luciferase Biocomposite for Nanosensing Applications. Anal Chem 2022; 95:2540-2547. [PMID: 36473148 PMCID: PMC9893222 DOI: 10.1021/acs.analchem.2c05001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The identification of new strategies to improve the stability of proteins is of utmost importance for a number of applications, from biosensing to biocatalysis. Metal-organic frameworks (MOFs) have been shown as a versatile host platform for the immobilization of proteins, with the potential to protect proteins in harsh conditions. In this work, a new thermostable luciferase mutant has been selected as a bioluminescent protein model to investigate the suitability of MOFs to improve its stability and prompt its applications in real-world applications, for example, ATP detection in portable systems. The luciferase has been immobilized onto zeolitic imidazolate framework-8 (ZIF-8) to obtain a bioluminescent biocomposite with enhanced performance. The biocomposite ZIF-8@luc has been characterized in harsh conditions (e.g., high temperature, non-native pH, etc.). Bioluminescence properties confirmed that MOF enhanced the luciferase stability at acidic pH, in the presence of organic solvents, and at -20 °C. To assess the feasibility of this approach, the recyclability, storage stability, precision, and Michaelis-Menten constants (Km) for ATP and d-luciferin have been also evaluated. As a proof of principle, the suitability for ATP detection was investigated and the biocomposite outperformed the free enzyme in the same experimental conditions, achieving a limit of detection for ATP down to 0.2 fmol.
Collapse
Affiliation(s)
- Héctor Martínez-Pérez-Cejuela
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy,Department
of Analytical Chemistry, University of Valencia, C/Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Denise Gregucci
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy,Center
for Applied Biomedical Research (CRBA), Azienda Ospedaliero-Universitaria Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | - Maria Maddalena Calabretta
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy,Center
for Applied Biomedical Research (CRBA), Azienda Ospedaliero-Universitaria Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | | | | | - Elisa Michelini
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy,Center
for Applied Biomedical Research (CRBA), Azienda Ospedaliero-Universitaria Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy,Health
Sciences and Technologies Interdepartmental Center for Industrial
Research (HSTICIR), University of Bologna, 40126 Bologna, Italy,. Tel: +39 051 20 9 9533
| |
Collapse
|
6
|
A Luciferase Mutant with Improved Brightness and Stability for Whole-Cell Bioluminescent Biosensors and In Vitro Biosensing. BIOSENSORS 2022; 12:bios12090742. [PMID: 36140127 PMCID: PMC9496056 DOI: 10.3390/bios12090742] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
The availability of new bioluminescent proteins with tuned properties, both in terms of emission wavelength, kinetics and protein stability, is highly valuable in the bioanalytical field, with the potential to improve the sensitivity and analytical performance of the currently used methods for ATP detection, whole-cell biosensors, and viability assays among others. We present a new luciferase mutant, called BgLuc, suitable for developing whole-cell biosensors and in vitro biosensors characterized by a bioluminescence maximum of 548 nm, narrow emission bandwidth, favorable kinetic properties, and excellent pH- and thermo-stabilities at 37 and 45 °C and pH from 5.0 to 8.0. We assessed the suitability of this new luciferase for whole-cell biosensing with a cell-based bioreporter assay for Nuclear Factor-kappa B (NF-kB) signal transduction pathway using 2D and 3D human embryonic kidney (HEK293T) cells, and for ATP detection with the purified enzyme. In both cases the luciferase showed suitable for sensitive detection of the target analytes, with better or similar performance than the commercial counterparts.
Collapse
|
7
|
Liu YJ. Understanding the complete bioluminescence cycle from a multiscale computational perspective: A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Jathoul AP, Branchini BR, Anderson JC, Murray JAH. A higher spectral range of beetle bioluminescence with infraluciferin. Front Bioeng Biotechnol 2022; 10:897272. [PMID: 36091447 PMCID: PMC9459109 DOI: 10.3389/fbioe.2022.897272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Coleopteran bioluminescence is unique in that beetle luciferases emit colors ranging between green (ca.550 nm) and red (ca.600 nm), including intermediate colors such as yellow and orange, allowing up to 3 simultaneous parameters to be resolved in vitro with natural luciferin (D-LH2). Here, we report a more than doubling of the maximum bioluminescence wavelength range using a single synthetic substrate, infraluciferin (iLH2). We report that different luciferases can emit colors ranging from visible green to near-infrared (nIR) with iLH2, including in human cells. iLH2 was designed for dual color far-red to nIR bioluminescence imaging (BLI) in small animals and has been utilized in different mouse models of cancer (including a metastatic hepatic model showing detailed hepatic morphology) and for robust dual parameter imaging in vivo (including in systemic hematological models). Here, we report the properties of different enzymes with iLH2: Lampyrid wild-type (WT) Photinus pyralis (Ppy) firefly luciferase, Ppy-based derivatives previously engineered to be thermostable with D-LH2, and also color-shifted Elaterid-based enzymes: blue-shifted Pyrearinus termitilluminans derivative Eluc (reported D-LH2 λmax = 538 nm) and red-shifted Pyrophorus plagiopthalamus derivative click beetle red (CBR) luciferase (D-LH2 λmax = 618 nm). As purified enzyme, in bacteria or in human cells, Eluc emitted green light (λmax = 536 nm) with DL-iLH2 whereas Ppy Fluc (λmax = 689 nm), x2 Fluc (λmax = 704 nm), x5 Fluc (λmax = 694 nm), x11 Fluc (λmax = 694 nm) and CBR (λmax = 721 nm) produced far-red to nIR peak wavelengths. Therefore, with iLH2, enzyme λmaxes can be separated by ca.185nm, giving almost non-overlapping spectra. This is the first report of single-substrate bioluminescence color emission ranging from visible green to nIR in cells and may help shed light on the color tuning mechanism of beetle luciferases. We also report on the reason for the improvement in activity of x11 Fluc with iLH2 and engineer an improved infraluciferase (iluc) based on this mutant.
Collapse
Affiliation(s)
- Amit P Jathoul
- School of Biosciences, University of Cardiff, Cardiff, United Kingdom.,Bioflares Ltd., Trowbridge, Wiltshire, United Kingdom
| | | | - James C Anderson
- Department of Chemistry, University College London, London, United Kingdom
| | - James A H Murray
- School of Biosciences, University of Cardiff, Cardiff, United Kingdom
| |
Collapse
|
9
|
Manni I, de Latouliere L, Piaggio G. Bioluminescence and Optical Imaging: Principles and Applications. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
10
|
Truong DJJ, Armbrust N, Geilenkeuser J, Lederer EM, Santl TH, Beyer M, Ittermann S, Steinmaßl E, Dyka M, Raffl G, Phlairaharn T, Greisle T, Živanić M, Grosch M, Drukker M, Westmeyer GG. Intron-encoded cistronic transcripts for minimally invasive monitoring of coding and non-coding RNAs. Nat Cell Biol 2022; 24:1666-1676. [PMID: 36344775 PMCID: PMC9643161 DOI: 10.1038/s41556-022-00998-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
Despite their fundamental role in assessing (patho)physiological cell states, conventional gene reporters can follow gene expression but leave scars on the proteins or substantially alter the mature messenger RNA. Multi-time-point measurements of non-coding RNAs are currently impossible without modifying their nucleotide sequence, which can alter their native function, half-life and localization. Thus, we developed the intron-encoded scarless programmable extranuclear cistronic transcript (INSPECT) as a minimally invasive transcriptional reporter embedded within an intron of a gene of interest. Post-transcriptional excision of INSPECT results in the mature endogenous RNA without sequence alterations and an additional engineered transcript that leaves the nucleus by hijacking the nuclear export machinery for subsequent translation into a reporter or effector protein. We showcase its use in monitoring interleukin-2 (IL2) after T cell activation and tracking the transcriptional dynamics of the long non-coding RNA (lncRNA) NEAT1 during CRISPR interference-mediated perturbation. INSPECT is a method for monitoring gene transcription without altering the mature lncRNA or messenger RNA of the target of interest.
Collapse
Affiliation(s)
- Dong-Jiunn Jeffery Truong
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Niklas Armbrust
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Julian Geilenkeuser
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Eva-Maria Lederer
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Tobias Heinrich Santl
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Maren Beyer
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Sebastian Ittermann
- grid.4567.00000 0004 0483 2525Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Emily Steinmaßl
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Mariya Dyka
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Gerald Raffl
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Teeradon Phlairaharn
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Tobias Greisle
- grid.4567.00000 0004 0483 2525Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Milica Živanić
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Markus Grosch
- grid.4567.00000 0004 0483 2525Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Micha Drukker
- grid.4567.00000 0004 0483 2525Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gil Gregor Westmeyer
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Neuherberg, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
11
|
Azad T, Singaravelu R, Fekete EE, Taha Z, Rezaei R, Arulanandam R, Boulton S, Diallo JS, Ilkow CS, Bell JC. SARS-CoV-2 S1 NanoBiT: A nanoluciferase complementation-based biosensor to rapidly probe SARS-CoV-2 receptor recognition. Biosens Bioelectron 2021; 180:113122. [PMID: 33706157 PMCID: PMC7921772 DOI: 10.1016/j.bios.2021.113122] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 12/28/2022]
Abstract
As the COVID-19 pandemic continues, there is an imminent need for rapid diagnostic tools and effective antivirals targeting SARS-CoV-2. We have developed a novel bioluminescence-based biosensor to probe a key host-virus interaction during viral entry: the binding of SARS-CoV-2 viral spike (S) protein to its receptor, angiotensin-converting enzyme 2 (ACE2). Derived from Nanoluciferase binary technology (NanoBiT), the biosensor is composed of Nanoluciferase split into two complementary subunits, Large BiT and Small BiT, fused to the Spike S1 domain of the SARS-CoV-2 S protein and ACE2 ectodomain, respectively. The ACE2-S1 interaction results in reassembly of functional Nanoluciferase, which catalyzes a bioluminescent reaction that can be assayed in a highly sensitive and specific manner. We demonstrate the biosensor's large dynamic range, enhanced thermostability and pH tolerance. In addition, we show the biosensor's versatility towards the high-throughput screening of drugs which disrupt the ACE2-S1 interaction, as well as its ability to act as a surrogate virus neutralization assay. Results obtained with our biosensor correlate well with those obtained with a Spike-pseudotyped lentivirus assay. This rapid in vitro tool does not require infectious virus and should enable the timely development of antiviral modalities targeting SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Taha Azad
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Ragunath Singaravelu
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Emily E.F. Fekete
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Zaid Taha
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Reza Rezaei
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | | | - Stephen Boulton
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Jean-Simon Diallo
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Carolina S. Ilkow
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - John C. Bell
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada,Corresponding author. Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| |
Collapse
|
12
|
Mutant firefly luciferase enzymes resistant to the inhibition by sodium chloride. Biotechnol Lett 2021; 43:1585-1594. [PMID: 33945054 DOI: 10.1007/s10529-021-03109-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/26/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Firefly luciferase, one of the most extensively studied enzymes, has numerous applications. However, luciferase activity is inhibited by sodium chloride. This study was aimed at obtaining mutant luciferase enzymes resistant to the sodium chloride inhibition. RESULTS We first obtained two mutant luciferase enzymes whose inhibition were alleviated and determined the mutations to be Val288Ile and Glu488Val. Under medical dialysis condition (140 mM sodium chloride), the wild type was inhibited to 44% of its original activity level. In contrast, the single mutants, Val288Ile and Glu488Val, retained 67% and 79% of their original activity, respectively. Next, we introduced Val288Ile and Glu488Val mutations into wild-type luciferase to create a double mutant using site-directed mutagenesis. Notably, the double mutant retained its activity more than 95% of that in the absence of sodium chloride. CONCLUSIONS The mutant luciferase, named luciferase CR, was found to retain its activity in various concentrations of sodium chloride. The luciferase CR may be extensively useful in any bioassay which includes firefly luciferase and is employed in the presence of sodium chloride.
Collapse
|
13
|
Truong DJJ, Phlairaharn T, Eßwein B, Gruber C, Tümen D, Baligács E, Armbrust N, Vaccaro FL, Lederer EM, Beck EM, Geilenkeuser J, Göppert S, Krumwiede L, Grätz C, Raffl G, Schwarz D, Zirngibl M, Živanić M, Beyer M, Körner JD, Santl T, Evsyukov V, Strauß T, Schwarz SC, Höglinger GU, Heutink P, Doll S, Conrad M, Giesert F, Wurst W, Westmeyer GG. Non-invasive and high-throughput interrogation of exon-specific isoform expression. Nat Cell Biol 2021; 23:652-663. [PMID: 34083785 PMCID: PMC8189919 DOI: 10.1038/s41556-021-00678-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/01/2021] [Indexed: 02/05/2023]
Abstract
Expression of exon-specific isoforms from alternatively spliced mRNA is a fundamental mechanism that substantially expands the proteome of a cell. However, conventional methods to assess alternative splicing are either consumptive and work-intensive or do not quantify isoform expression longitudinally at the protein level. Here, we therefore developed an exon-specific isoform expression reporter system (EXSISERS), which non-invasively reports the translation of exon-containing isoforms of endogenous genes by scarlessly excising reporter proteins from the nascent polypeptide chain through highly efficient, intein-mediated protein splicing. We applied EXSISERS to quantify the inclusion of the disease-associated exon 10 in microtubule-associated protein tau (MAPT) in patient-derived induced pluripotent stem cells and screened Cas13-based RNA-targeting effectors for isoform specificity. We also coupled cell survival to the inclusion of exon 18b of FOXP1, which is involved in maintaining pluripotency of embryonic stem cells, and confirmed that MBNL1 is a dominant factor for exon 18b exclusion. EXSISERS enables non-disruptive and multimodal monitoring of exon-specific isoform expression with high sensitivity and cellular resolution, and empowers high-throughput screening of exon-specific therapeutic interventions.
Collapse
Affiliation(s)
- Dong-Jiunn Jeffery Truong
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Teeradon Phlairaharn
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Bianca Eßwein
- grid.4567.00000 0004 0483 2525Institute of Developmental Genetics, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Christoph Gruber
- grid.4567.00000 0004 0483 2525Institute of Developmental Genetics, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Deniz Tümen
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.411941.80000 0000 9194 7179Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Enikő Baligács
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Niklas Armbrust
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Francesco Leandro Vaccaro
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Eva-Maria Lederer
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Eva Magdalena Beck
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Julian Geilenkeuser
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Simone Göppert
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Luisa Krumwiede
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Grätz
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Gerald Raffl
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Dominic Schwarz
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Zirngibl
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Milica Živanić
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Maren Beyer
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Johann Dietmar Körner
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Tobias Santl
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Valentin Evsyukov
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.6936.a0000000123222966Department of Neurology, Technical University Munich, Munich, Germany ,grid.10423.340000 0000 9529 9877Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Tabea Strauß
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.6936.a0000000123222966Department of Neurology, Technical University Munich, Munich, Germany
| | - Sigrid C. Schwarz
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.6936.a0000000123222966Department of Neurology, Technical University Munich, Munich, Germany
| | - Günter U. Höglinger
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.6936.a0000000123222966Department of Neurology, Technical University Munich, Munich, Germany ,grid.10423.340000 0000 9529 9877Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Peter Heutink
- grid.10392.390000 0001 2190 1447Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Sebastian Doll
- grid.4567.00000 0004 0483 2525Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Marcus Conrad
- grid.4567.00000 0004 0483 2525Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.78028.350000 0000 9559 0613Laboratory of Experimental Oncology, National Research Medical University, Moscow, Russia
| | - Florian Giesert
- grid.4567.00000 0004 0483 2525Institute of Developmental Genetics, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Wolfgang Wurst
- grid.4567.00000 0004 0483 2525Institute of Developmental Genetics, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.6936.a0000000123222966TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gil Gregor Westmeyer
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
14
|
Endo M, Ozawa T. Advanced Bioluminescence System for In Vivo Imaging with Brighter and Red-Shifted Light Emission. Int J Mol Sci 2020; 21:E6538. [PMID: 32906768 PMCID: PMC7555964 DOI: 10.3390/ijms21186538] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 01/04/2023] Open
Abstract
In vivo bioluminescence imaging (BLI), which is based on luminescence emitted by the luciferase-luciferin reaction, has enabled continuous monitoring of various biochemical processes in living animals. Bright luminescence with a high signal-to-background ratio, ideally red or near-infrared light as the emission maximum, is necessary for in vivo animal experiments. Various attempts have been undertaken to achieve this goal, including genetic engineering of luciferase, chemical modulation of luciferin, and utilization of bioluminescence resonance energy transfer (BRET). In this review, we overview a recent advance in the development of a bioluminescence system for in vivo BLI. We also specifically examine the improvement in bioluminescence intensity by mutagenic or chemical modulation on several beetle and marine luciferase bioluminescence systems. We further describe that intramolecular BRET enhances luminescence emission, with recent attempts for the development of red-shifted bioluminescence system, showing great potency in in vivo BLI. Perspectives for future improvement of bioluminescence systems are discussed.
Collapse
Affiliation(s)
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| |
Collapse
|
15
|
Zaw Thin M, Allan H, Bofinger R, Kostelec TD, Guillaume S, Connell JJ, Patrick PS, Hailes HC, Tabor AB, Lythgoe MF, Stuckey DJ, Kalber TL. Multi-modal imaging probe for assessing the efficiency of stem cell delivery to orthotopic breast tumours. NANOSCALE 2020; 12:16570-16585. [PMID: 32749427 PMCID: PMC7586303 DOI: 10.1039/d0nr03237a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/09/2020] [Indexed: 05/05/2023]
Abstract
Stem cells have been utilised as anti-cancer agents due to their ability to home to and integrate within tumours. Methods to augment stem cell homing to tumours are being investigated with the goal of enhancing treatment efficacy. However, it is currently not possible to evaluate both cell localisation and cell viability after engraftment, hindering optimisation of therapy. In this study, luciferase-expressing human adipocyte-derived stem cells (ADSCs) were incubated with Indium-111 radiolabelled iron oxide nanoparticles to produce cells with tri-modal imaging capabilities. ADSCs were administered intravenously (IV) or intracardially (IC) to mice bearing orthotopic breast tumours. Cell fate was monitored using bioluminescence imaging (BLI) as a measure of cell viability, magnetic resonance imaging (MRI) for cell localisation and single photon emission computer tomography (SPECT) for cell quantification. Serial monitoring with multi-modal imaging showed the presence of viable ADSCs within tumours as early as 1-hour post IC injection and the percentage of ADSCs within tumours to be 2-fold higher after IC than IV. Finally, histological analysis was used to validate engraftment of ADSC within tumour tissue. These findings demonstrate that multi-modal imaging can be used to evaluate the efficiency of stem cell delivery to tumours and that IC cell administration is more effective for tumour targeting.
Collapse
Affiliation(s)
- May Zaw Thin
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK.
| | - Helen Allan
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Robin Bofinger
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Tomas D Kostelec
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Simon Guillaume
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - John J Connell
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK.
| | - P Stephen Patrick
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK.
| | - Helen C Hailes
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Alethea B Tabor
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK.
| | - Daniel J Stuckey
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK.
| | - Tammy L Kalber
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK.
| |
Collapse
|
16
|
Stem cell delivery to kidney via minimally invasive ultrasound-guided renal artery injection in mice. Sci Rep 2020; 10:7514. [PMID: 32372054 PMCID: PMC7200714 DOI: 10.1038/s41598-020-64417-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/10/2020] [Indexed: 12/22/2022] Open
Abstract
Cell-based therapies are promising treatments for various kidney diseases. However, the major hurdle in initiating therapeutic responses is the inefficiency of injection routes to deliver cells to the kidney parenchyma. Systemic injection, such as intravenous injection only delivers a small proportion of cells to the kidney. Whereas direct delivery, such as renal artery injection requires surgical procedures. A minimally invasive renal artery injection was therefore developed to enhance cell delivery to kidney. In this study, luciferase expressing human adipocyte derived stem cells (ADSC) were labelled with gold nanorods (GNR) and injected into the renal artery using ultrasound guidance. The ADSCs were tracked using bioluminescence and photoacoustic imaging serially over 7 days. Imaging confirmed that the majority of signal was within the kidney, indicative of successful injection and that the cells remained viable for 3 days. Histology showed co-localization of GNRs with ADSC staining throughout the kidney with no indication of injury caused by injection. These findings demonstrate that ultrasound-guided renal artery injection is feasible in mice and can successfully deliver a large proportion of cells which are retained within the kidney for 3 days. Therefore, the techniques developed here will be useful for optimising cell therapy in kidney diseases.
Collapse
|
17
|
Branchini BR, Fontaine DM, Southworth TL, Huta BP, Racela A, Patel KD, Gulick AM. Mutagenesis and Structural Studies Reveal the Basis for the Activity and Stability Properties That Distinguish the Photinus Luciferases scintillans and pyralis. Biochemistry 2019; 58:4293-4303. [PMID: 31560532 DOI: 10.1021/acs.biochem.9b00719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The dazzling yellow-green light emission of the common North American firefly Photinus pyralis and other bioluminescent organisms has provided a wide variety of prominent research applications like reporter gene assays and in vivo imaging methods. While the P. pyralis enzyme has been extensively studied, only recently has a second Photinus luciferase been cloned from the species scintillans. Even though the enzymes share very high sequence identity (89.8%), the color of the light they emit, their specific activity and their stability to heat, pH, and chemical denaturation are quite different with the scintillans luciferase being generally more resistant. Through the construction and evaluation of the properties of chimeric domain swapped, single point, and various combined variants, we have determined that only six amino acid changes are necessary to confer all of the properties of the scintillans enzyme to wild-type P. pyralis luciferase. Altered stability properties were attributed to four of the amino acid changes (T214N/S276T/H332N/E354N), and single mutations each predominantly changed emission color (Y255F) and specific activity (A222C). Results of a crystallographic study of the P. pyralis enzyme containing the six changes (Pps6) provide some insight into the structural basis for some of the documented property differences.
Collapse
Affiliation(s)
- Bruce R Branchini
- Department of Chemistry , Connecticut College , New London , Connecticut 06320 , United States
| | - Danielle M Fontaine
- Department of Chemistry , Connecticut College , New London , Connecticut 06320 , United States
| | - Tara L Southworth
- Department of Chemistry , Connecticut College , New London , Connecticut 06320 , United States
| | - Brian P Huta
- Department of Chemistry , Connecticut College , New London , Connecticut 06320 , United States
| | - Allison Racela
- Department of Chemistry , Connecticut College , New London , Connecticut 06320 , United States
| | - Ketan D Patel
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo , Buffalo , New York 14203 , United States
| | - Andrew M Gulick
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo , Buffalo , New York 14203 , United States
| |
Collapse
|
18
|
Su LJ, Lin HH, Wu MS, Pan L, Yadav K, Hsu HH, Ling TY, Chen YT, Chang HC. Intracellular Delivery of Luciferase with Fluorescent Nanodiamonds for Dual-Modality Imaging of Human Stem Cells. Bioconjug Chem 2019; 30:2228-2237. [PMID: 31268690 DOI: 10.1021/acs.bioconjchem.9b00458] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Delivering functional proteins (such as enzymes) into cells is important in various biological studies and is often accomplished indirectly by transfection with DNA or mRNA encoding recombinant proteins. However, the transfection efficiency of conventional plasmid methods is low for primary cells, which are crucial sources of cell therapy. Here, we present a new platform based on the use of fluorescent nanodiamond (FND) as a biocompatible nanocarrier to enable rapid, effective, and homogeneous labeling of human mesenchymal stem cells (MSCs) with luciferase for multiplex assays and ultrasensitive detection. More than 100 pg of FND and 100 million copies of firefly luciferase can be delivered into each MSC through endocytosis. Moreover, these endocytic luciferase molecules are catalytically active for hours, allowing the cells to be imaged and tracked in vitro as well as in vivo by both fluorescence and bioluminescence imaging. Our results demonstrate that luciferase-conjugated FNDs are useful as multifunctional labels of human stem cells for diverse theranostic applications.
Collapse
Affiliation(s)
- Long-Jyun Su
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 106 , Taiwan.,Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | - Hsin-Hung Lin
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 106 , Taiwan
| | - Meng-Shiue Wu
- Department of Pharmacology , National Taiwan University , Taipei 100 , Taiwan
| | - Lei Pan
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 106 , Taiwan
| | - Kanchan Yadav
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | - Hsao-Hsun Hsu
- Department of Surgery, College of Medicine and the Hospital , National Taiwan University , Taipei 100 , Taiwan
| | - Thai-Yen Ling
- Department of Pharmacology , National Taiwan University , Taipei 100 , Taiwan
| | - Yit-Tsong Chen
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 106 , Taiwan.,Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 106 , Taiwan.,Department of Chemical Engineering , National Taiwan University of Science and Technology , Taipei 106 , Taiwan
| |
Collapse
|
19
|
Red-shifted bioluminescence Resonance Energy Transfer: Improved tools and materials for analytical in vivo approaches. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Aswendt M, Vogel S, Schäfer C, Jathoul A, Pule M, Hoehn M. Quantitative in vivo dual-color bioluminescence imaging in the mouse brain. NEUROPHOTONICS 2019; 6:025006. [PMID: 31093514 PMCID: PMC6504011 DOI: 10.1117/1.nph.6.2.025006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/15/2019] [Indexed: 05/03/2023]
Abstract
Bioluminescence imaging (BLI) is an optical imaging method that can be translated from the cell culture dish in vitro to cell tracking in small animal models in vivo. In contrast to the more widely used fluorescence imaging, which requires light excitation, in BLI the light is exclusively generated by the enzyme luciferase. The luciferase gene can be engineered to target and monitor almost every cell and biological process quantitatively in vitro and even from deep tissue in vivo. While initially used for tumor imaging, bioluminescence was recently optimized for mouse brain imaging of neural cells and monitoring of viability or differentiation of grafted stem cells. Here, we describe the use of bright color-shifted firefly luciferases (Flucs) based on the thermostable x5 Fluc that emit red and green for effective and quantitative unmixing of two human cell populations in vitro and after transplantation into the mouse brain in vivo. Spectral unmixing predicts the ratio of luciferases in vitro and a mixture of cells precisely for cortical grafts, however, with less accuracy for striatal grafts. This dual-color approach enables the simultaneous visualization and quantification of two cell populations on the whole brain scale, with particular relevance for translational studies of neurological disorders providing information on stem cell survival and differentiation in one imaging session in vivo.
Collapse
Affiliation(s)
- Markus Aswendt
- Max Planck Institute for Metabolism Research, In-vivo-NMR Laboratory, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
- Address all correspondence to Markus Aswendt, E-mail:
| | - Stefanie Vogel
- Max Planck Institute for Metabolism Research, In-vivo-NMR Laboratory, Cologne, Germany
| | - Cordula Schäfer
- Max Planck Institute for Metabolism Research, In-vivo-NMR Laboratory, Cologne, Germany
| | - Amit Jathoul
- Cardiff School of Biosciences, Molecular Biosciences, Cardiff, United Kingdom
| | - Martin Pule
- University College London, Cancer Institute, Department of Haematology, London, United Kingdom
| | - Mathias Hoehn
- Max Planck Institute for Metabolism Research, In-vivo-NMR Laboratory, Cologne, Germany
- Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands
| |
Collapse
|
21
|
Bofinger R, Zaw‐Thin M, Mitchell NJ, Patrick PS, Stowe C, Gomez‐Ramirez A, Hailes HC, Kalber TL, Tabor AB. Development of lipopolyplexes for gene delivery: A comparison of the effects of differing modes of targeting peptide display on the structure and transfection activities of lipopolyplexes. J Pept Sci 2018; 24:e3131. [PMID: 30325562 PMCID: PMC6282963 DOI: 10.1002/psc.3131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/06/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022]
Abstract
The design, synthesis and formulation of non-viral gene delivery vectors is an area of renewed research interest. Amongst the most efficient non-viral gene delivery systems are lipopolyplexes, in which cationic peptides are co-formulated with plasmid DNA and lipids. One advantage of lipopolyplex vectors is that they have the potential to be targeted to specific cell types by attaching peptide targeting ligands on the surface, thus increasing both the transfection efficiency and selectivity for disease targets such as cancer cells. In this paper, we have investigated two different modes of displaying cell-specific peptide targeting ligands at the surface of lipopolyplexes. Lipopolyplexes formulated with bimodal peptides, with both receptor binding and DNA condensing sequences, were compared with lipopolyplexes with the peptide targeting ligand directly conjugated to one of the lipids. Three EGFR targeting peptide sequences were studied, together with a range of lipid formulations and maleimide lipid structures. The biophysical properties of the lipopolyplexes and their transfection efficiencies in a basal-like breast cancer cell line were investigated using plasmid DNA bearing genes for the expression of firefly luciferase and green fluorescent protein. Fluorescence quenching experiments were also used to probe the macromolecular organisation of the peptide and pDNA components of the lipopolyplexes. We demonstrated that both approaches to lipopolyplex targeting give reasonable transfection efficiencies, and the transfection efficiency of each lipopolyplex formulation is highly dependent on the sequence of the targeting peptide. To achieve maximum therapeutic efficiency, different peptide targeting sequences and lipopolyplex architectures should be investigated for each target cell type.
Collapse
Affiliation(s)
- Robin Bofinger
- Department of ChemistryUniversity College London20, Gordon StreetLondonWC1H 0AJUK
| | - May Zaw‐Thin
- UCL Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
| | - Nicholas J. Mitchell
- Department of ChemistryUniversity College London20, Gordon StreetLondonWC1H 0AJUK
| | - P. Stephen Patrick
- UCL Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
| | - Cassandra Stowe
- UCL Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
| | - Ana Gomez‐Ramirez
- UCL Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
| | - Helen C. Hailes
- Department of ChemistryUniversity College London20, Gordon StreetLondonWC1H 0AJUK
| | - Tammy L. Kalber
- UCL Centre for Advanced Biomedical Imaging, Division of MedicineUniversity College LondonLondonWC1E 6DDUK
| | - Alethea B. Tabor
- Department of ChemistryUniversity College London20, Gordon StreetLondonWC1H 0AJUK
| |
Collapse
|
22
|
Lower SE, Stanger-Hall KF, Hall DW. Molecular variation across populations of a widespread North American firefly, Photinus pyralis, reveals that coding changes do not underlie flash color variation or associated visual sensitivity. BMC Evol Biol 2018; 18:129. [PMID: 30170542 PMCID: PMC6119266 DOI: 10.1186/s12862-018-1251-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/20/2018] [Indexed: 01/22/2023] Open
Abstract
Background Genes underlying signal production and reception are expected to evolve to maximize signal detection in specific environments. Fireflies vary in their light signal color both within and between species, and thus provide an excellent system in which to study signal production and reception in the context of signaling environments. Differences in signal color have been hypothesized to be due to variation in the sequence of luciferase, the enzyme that catalyzes the light reaction. Similarly, differences in visual sensitivity, which are expected to match signal color, have been hypothesized to be due to variation in the sequence of opsins, the protein component of visual pigments. Here we investigated (1) whether sequence variation in luciferase correlates with variation in signal color and (2) whether sequence variation in opsins correlates with inferred matching visual sensitivity across populations of a widespread North American firefly species, Photinus pyralis. We further tested (3) whether selection has acted on these loci by examining their population-level differentiation relative to the distribution of differentiation derived from a genome-wide sample of loci generated by double-digest RADseq. Results We found virtually no coding variation in luciferase or opsins. However, there was extreme divergence in non-coding variation in luciferase across populations relative to a panel of random genomic loci. Conclusions The absence of protein variation at both loci challenges the paradigm that variation in signal color and visual sensitivity in fireflies is exclusively due to coding variation in luciferase and opsin genes. Instead, flash color variation within species must involve other mechanisms, such as abdominal pigmentation or regulation of light organ physiology. Evidence for selection at non-coding variation in luciferase suggests that selection is targeting luciferase regulation and may favor differ expression levels across populations. Electronic supplementary material The online version of this article (10.1186/s12862-018-1251-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah E Lower
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA. .,Present address: Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA.
| | | | - David W Hall
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
23
|
Cheng YY, Liu YJ. Theoretical Development of Near-Infrared Bioluminescent Systems. Chemistry 2018; 24:9340-9352. [PMID: 29710377 DOI: 10.1002/chem.201800416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Indexed: 12/16/2022]
Abstract
The luciferin/luciferase system of the firefly has been used in bioluminescent imaging to monitor biological processes. In order to enhance the efficiency and expand the application range, some efforts have been made to tune the light emission, especially the effort to obtain NIR light. However, those case-by-case studies have not together revealed the nature and mechanism of the color tuning. In this paper, we theoretically investigated the fluorescence of all kinds of typical oxyluciferin analogues. The present systematical modifications of both oxyluciferin and luciferase indicate that the essential factor affecting the emission color is the charge distribution (or the electric dipole moment) on the oxyluciferin, which impacts on the charge transfer to form the light emitter and, subsequently, influence the strength and wavelength of the emission light. More negative charge distributed on the "thiazolone moiety" of the oxyluciferin or its analogues leads to a redshift. Based on this conclusion, we theoretically designed optimal pairs of luciferin analogue and luciferase for emitting NIR light, which could inspire new synthetic procedures and practical applications.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
24
|
Halliwell LM, Jathoul AP, Bate JP, Worthy HL, Anderson JC, Jones DD, Murray JAH. ΔFlucs: Brighter Photinus pyralis firefly luciferases identified by surveying consecutive single amino acid deletion mutations in a thermostable variant. Biotechnol Bioeng 2017; 115:50-59. [PMID: 28921549 DOI: 10.1002/bit.26451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 11/05/2022]
Abstract
The bright bioluminescence catalyzed by Photinus pyralis firefly luciferase (Fluc) enables a vast array of life science research such as bio imaging in live animals and sensitive in vitro diagnostics. The effectiveness of such applications is improved using engineered enzymes that to date have been constructed using amino acid substitutions. We describe ΔFlucs: consecutive single amino acid deletion mutants within six loop structures of the bright and thermostable ×11 Fluc. Deletion mutations are a promising avenue to explore new sequence and functional space and isolate novel mutant phenotypes. However, this method is often overlooked and to date there have been no surveys of the effects of consecutive single amino acid deletions in Fluc. We constructed a large semi-rational ΔFluc library and isolated significantly brighter enzymes after finding ×11 Fluc activity was largely tolerant to deletions. Targeting an "omega-loop" motif (T352-G360) significantly enhanced activity, altered kinetics, reduced Km for D-luciferin, altered emission colors, and altered substrate specificity for redshifted analog DL-infraluciferin. Experimental and in silico analyses suggested remodeling of the Ω-loop impacts on active site hydrophobicity to increase light yields. This work demonstrates the further potential of deletion mutations, which can generate useful Fluc mutants and broaden the palette of the biomedical and biotechnological bioluminescence enzyme toolbox.
Collapse
Affiliation(s)
| | - Amit P Jathoul
- School of Biosciences, University of Cardiff, Cardiff, UK
| | - Jack P Bate
- School of Biosciences, University of Cardiff, Cardiff, UK
| | | | | | - D Dafydd Jones
- School of Biosciences, University of Cardiff, Cardiff, UK
| | | |
Collapse
|
25
|
Jazayeri FS, Amininasab M, Hosseinkhani S. Structural and dynamical insight into thermally induced functional inactivation of firefly luciferase. PLoS One 2017; 12:e0180667. [PMID: 28672033 PMCID: PMC5495494 DOI: 10.1371/journal.pone.0180667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/19/2017] [Indexed: 11/18/2022] Open
Abstract
Luciferase is the key component of light production in bioluminescence process. Extensive and advantageous application of this enzyme in biotechnology is restricted due to its low thermal stability. Here we report the effect of heating up above Tm on the structure and dynamical properties of luciferase enzyme compared to temperature at 298 K. In this way we demonstrate that the number of hydrogen bonds between N- and C-domain is increased for the free enzyme at 325 K. Increased inter domain hydrogen bonds by three at 325 K suggests that inter domain contact is strengthened. The appearance of simultaneous strong salt bridge and hydrogen bond between K529 and D422 and increased existence probability between R533 and E389 could mechanistically explain stronger contact between N- and C-domain. Mutagenesis studies demonstrated the importance of K529 and D422 experimentally. Also the significant reduction in SASA for experimentally important residues K529, D422 and T343 which are involved in active site region was observed. Principle component analysis (PCA) in our study shows that the dynamical behavior of the enzyme is changed upon heating up which mainly originated from the change of motion modes and associated extent of those motions with respect to 298 K. These findings could explain why heating up of the enzyme or thermal fluctuation of protein conformation reduces luciferase activity in course of time as a possible mechanism of thermal functional inactivation. According to these results we proposed two strategies to improve thermal stability of functional luciferase.
Collapse
Affiliation(s)
- Fatemeh S. Jazayeri
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, IRAN
| | - Mehriar Amininasab
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, IRAN
- * E-mail: (MA); (SH)
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IRAN
- * E-mail: (MA); (SH)
| |
Collapse
|
26
|
Surface charge modification increases firefly luciferase rigidity without alteration in bioluminescence spectra. Enzyme Microb Technol 2017; 96:47-59. [DOI: 10.1016/j.enzmictec.2016.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/15/2022]
|
27
|
Modestova Y, Ugarova NN. Color-shifting mutations in the C-domain of L. mingrelica firefly luciferase provide new information about the domain alternation mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1818-1826. [DOI: 10.1016/j.bbapap.2016.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 02/07/2023]
|
28
|
Si M, Xu Q, Jiang L, Huang H. SpyTag/SpyCatcher Cyclization Enhances the Thermostability of Firefly Luciferase. PLoS One 2016; 11:e0162318. [PMID: 27658030 DOI: 10.1371/journal.pone.0162318.g001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/19/2016] [Indexed: 05/26/2023] Open
Abstract
SpyTag can spontaneously form a covalent isopeptide bond with its protein partner SpyCatcher. Firefly luciferase from Photinus pyralis was cyclized in vivo by fusing SpyCatcher at the N terminus and SpyTag at the C terminus. Circular LUC was more thermostable and alkali-tolerant than the wild type, without compromising the specific activity. Structural analysis indicated that the cyclized LUC increased the thermodynamic stability of the structure and remained more properly folded at high temperatures when compared with the wild type. We also prepared an N-terminally and C-terminally shortened form of the SpyCatcher protein and cyclization using this truncated form led to even more thermostability than the original form. Our findings suggest that cyclization with SpyTag and SpyCatcher is a promising and effective strategy to enhance thermostability of enzymes.
Collapse
Affiliation(s)
- Meng Si
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qing Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ling Jiang
- College of Food Sciences and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - He Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
29
|
Si M, Xu Q, Jiang L, Huang H. SpyTag/SpyCatcher Cyclization Enhances the Thermostability of Firefly Luciferase. PLoS One 2016; 11:e0162318. [PMID: 27658030 PMCID: PMC5033358 DOI: 10.1371/journal.pone.0162318] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/19/2016] [Indexed: 12/14/2022] Open
Abstract
SpyTag can spontaneously form a covalent isopeptide bond with its protein partner SpyCatcher. Firefly luciferase from Photinus pyralis was cyclized in vivo by fusing SpyCatcher at the N terminus and SpyTag at the C terminus. Circular LUC was more thermostable and alkali-tolerant than the wild type, without compromising the specific activity. Structural analysis indicated that the cyclized LUC increased the thermodynamic stability of the structure and remained more properly folded at high temperatures when compared with the wild type. We also prepared an N-terminally and C-terminally shortened form of the SpyCatcher protein and cyclization using this truncated form led to even more thermostability than the original form. Our findings suggest that cyclization with SpyTag and SpyCatcher is a promising and effective strategy to enhance thermostability of enzymes.
Collapse
Affiliation(s)
- Meng Si
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qing Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ling Jiang
- College of Food Sciences and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- * E-mail: (LJ); (HH)
| | - He Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
- * E-mail: (LJ); (HH)
| |
Collapse
|
30
|
Stowe C, Pizzey A, Kalber T, Badar A, Lythgoe M, Pule M. Flow-Based Single Cell Deposition for High-Throughput Screening of Protein Libraries. PLoS One 2015; 10:e0140730. [PMID: 26536118 PMCID: PMC4633160 DOI: 10.1371/journal.pone.0140730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022] Open
Abstract
The identification and engineering of proteins having refined or novel characteristics is an important area of research in many scientific fields. Protein modelling has enabled the rational design of unique proteins, but high-throughput screening of large libraries is still required to identify proteins with potentially valuable properties. Here we report on the development and evaluation of a novel fluorescent activated cell sorting based screening platform. Single bacterial cells, expressing a protein library to be screened, are electronically sorted and deposited onto plates containing solid nutrient growth media in a dense matrix format of between 44 and 195 colonies/cm2. We show that this matrix format is readily applicable to machine interrogation (<30 seconds per plate) and subsequent bioinformatic analysis (~60 seconds per plate) thus enabling the high-throughput screening of the protein library. We evaluate this platform and show that bacteria containing a bioluminescent protein can be spectrally analysed using an optical imager, and a rare clone (0.5% population) can successfully be identified, picked and further characterised. To further enhance this screening platform, we have developed a prototype electronic sort stream multiplexer, that when integrated into a commercial flow cytometric sorter, increases the rate of colony deposition by 89.2% to 24 colonies per second. We believe that the screening platform described here is potentially the foundation of a new generation of high-throughput screening technologies for proteins.
Collapse
Affiliation(s)
- Cassandra Stowe
- Cancer Institute, Department of Haematology, Division of Medicine, University College London, London, United Kingdom
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Arnold Pizzey
- Cancer Institute, Department of Haematology, Division of Medicine, University College London, London, United Kingdom
- * E-mail:
| | - Tammy Kalber
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Adam Badar
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Mark Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Martin Pule
- Cancer Institute, Department of Haematology, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
31
|
Naderi M, Moosavi-Movahedi AA, Hosseinkhani S, Nazari M, Bohlooli M, Hong J, Hadi-Alijanvand H, Sheibani N. Implication of disulfide bridge induced thermal reversibility, structural and functional stability for luciferase. Protein Pept Lett 2015; 22:23-30. [PMID: 25159509 DOI: 10.2174/0929866521666140827112816] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 11/22/2022]
Abstract
Firefly luciferase is a relatively unstable protein and commonly loses its activity at room temperature because of structural changes. The structural and functional stability of this protein is critical for its enzymatic applications. Different approaches are applied to increase the stability of this enzyme such as designing of covalent cross-links (disulfide bonds). In this study, luciferase mutants containing one or two disulfide bonds were compared to the native protein for their for their structural, thermodynamic, and functional properties. Mutant forms of P. Pyralis luciferase A²⁹⁶C-A³²⁶C and A²⁹⁶C-A³²⁶C/P⁴⁵¹C-V⁴⁶⁹C were used. Thermodynamic and biophysical studies were carried out using UV-Vis, fluorescence, circular dichroism, luminescence spectroscopy and differential scanning calorimetry (DSC). We observed that both mutant forms of the protein were more stable than the wild-type enzyme. However, the single disulfide bond containing mutant was structurally and functionally more stable than the mutant protein containing two disulfide bonds. Furthermore, the enzymatic activity of the single disulfide bond containing mutant protein was 7-folds greater than the wild type and the double disulfide bond proteins. The A²⁹⁶C-A³²⁶C mutation also increased the reversibility and disaggregation of the protein. The enhanced activity of the single disulfide bond mutant protein was contributed to the expansion of its active site cleft, which was confirmed by bioinformatics tools.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nader Sheibani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
32
|
Saito K, Nagai T. Recent progress in luminescent proteins development. Curr Opin Chem Biol 2015; 27:46-51. [PMID: 26094043 DOI: 10.1016/j.cbpa.2015.05.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 01/10/2023]
Abstract
Bioimaging requires not only high sensitivity but also minimal invasiveness. Bioimaging using luminescent proteins is potentially free from problems such as photo-induced damage or an undesirable physical reaction to the sample, which are often caused by illumination with an external light required in fluorescence imaging. The recent development of several luminescent proteins and substrates have greatly improved the brightness of luminescence imaging, facilitating its application by many researchers. In this short review, we summarize recent advances in development of luminescent proteins, substrates, and indicators.
Collapse
Affiliation(s)
- Kenta Saito
- The Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Takeharu Nagai
- The Institute of Scientific and Industrial Research, Osaka University, 8-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| |
Collapse
|
33
|
Jathoul AP, Grounds H, Anderson JC, Pule MA. A dual-color far-red to near-infrared firefly luciferin analogue designed for multiparametric bioluminescence imaging. Angew Chem Int Ed Engl 2014; 53:13059-63. [PMID: 25266918 PMCID: PMC4501308 DOI: 10.1002/anie.201405955] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/03/2014] [Indexed: 11/23/2022]
Abstract
Red-shifted bioluminescent emitters allow improved in vivo tissue penetration and signal quantification, and have led to the development of beetle luciferin analogues that elicit red-shifted bioluminescence with firefly luciferase (Fluc). However, unlike natural luciferin, none have been shown to emit different colors with different luciferases. We have synthesized and tested the first dual-color, far-red to near-infrared (nIR) emitting analogue of beetle luciferin, which, akin to natural luciferin, exhibits pH dependent fluorescence spectra and emits bioluminescence of different colors with different engineered Fluc enzymes. Our analogue produces different far-red to nIR emission maxima up to λ(max)=706 nm with different Fluc mutants. This emission is the most red-shifted bioluminescence reported without using a resonance energy transfer acceptor. This improvement should allow tissues to be more effectively probed using multiparametric deep-tissue bioluminescence imaging.
Collapse
Affiliation(s)
- Amit P Jathoul
- Department of Haematology, UCL Cancer Institute and NIHR University College London Hospitals Biomedical Research CentreLondon, WC1E 6BT (UK)
| | - Helen Grounds
- Department of Chemistry, University College LondonLondon, WC1E 6BT (UK)
| | - James C Anderson
- Department of Chemistry, University College LondonLondon, WC1E 6BT (UK)
| | - Martin A Pule
- Department of Haematology, UCL Cancer Institute and NIHR University College London Hospitals Biomedical Research CentreLondon, WC1E 6BT (UK)
| |
Collapse
|
34
|
Yu H, Zhao Y, Guo C, Gan Y, Huang H. The role of proline substitutions within flexible regions on thermostability of luciferase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:65-72. [PMID: 25448017 DOI: 10.1016/j.bbapap.2014.10.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/19/2014] [Accepted: 10/21/2014] [Indexed: 11/18/2022]
Abstract
Improving the stability of firefly luciferase has been a critical issue for its wider industrial applications. Studies about hyperthermophile proteins show that flexibility could be an effective indicator to find out weak spots to engineering thermostability of proteins. However, the relationship among flexibility, activity and stability in most of proteins is unclear. Proline is the most rigid residue and can be introduced to rigidify flexible regions to enhance thermostability of proteins. We firstly apply three different methods, molecular dynamics (MD) simulation, B-FITTER and framework rigidity optimized dynamics algorithm (FRODA) to determine the flexible regions of Photinus pyralis luciferase: Fragment 197-207; Fragment 471-481 and Fragment 487-495. Then, introduction of proline is used to rigidify these flexible regions. Two mutants D476P and H489P within most flexible regions are finally designed. In the results, H489P mutant shows improved thermostability while maintaining its catalytic efficiency compared to that of wild type luciferase. Flexibility analysis confirms that the overall rigidity and local rigidity of H489P mutant are greatly strengthened. D476P mutant shows decreased thermosatbility and the reason for this is elucidated at the molecular level. S307P mutation is randomly chosen outside the flexible regions as a control. Thermostability analysis shows that S307P mutation has decreased kinetic stability and enhanced thermodynamic stability.
Collapse
Affiliation(s)
- Haoran Yu
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin PR China
| | - Yang Zhao
- National Institutes for Food and Drug Control (NIFDC), Beijing 100050, PR China
| | - Chao Guo
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin PR China
| | - Yiru Gan
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin PR China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin PR China.
| |
Collapse
|
35
|
Koksharov MI, Ugarova NN. Strategy of mutual compensation of green and red mutants of firefly luciferase identifies a mutation of the highly conservative residue E457 with a strong red shift of bioluminescence. Photochem Photobiol Sci 2014; 12:2016-27. [PMID: 24057044 DOI: 10.1039/c3pp50242b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioluminescence spectra of firefly luciferases demonstrate highly pH-sensitive spectra changing the color from green to red light when pH is lowered from alkaline to acidic. This reflects a change of ratio of the green and red emitters in the bimodal spectra of bioluminescence. We show that the mutations strongly stabilizing green (Y35N) or red (H433Y) emission compensate each other leading to the WT color of firefly luciferase. We further used this compensating ability of Y35N to search for strong red-shifting mutations in the C-domain of firefly luciferase by random mutagenesis. The discovered mutation E457K substantially increased the contribution of the red emitter and caused a 12 nm red shift of the green emitter as well. E457 is highly conservative not only in beetle luciferases but also in a whole ANL superfamily of adenylating enzymes and forms a conservative structural hydrogen bond with V471. Our results suggest that the removal of this hydrogen bond only mildly affects luciferase properties and that most of the effect of E457K is caused by the introduction of positive charge. E457 forms a salt bridge with R534 in most ANL enzymes including pH-insensitive luciferases which is absent in pH-sensitive firefly luciferases. The mutant A534R shows that this salt bridge is not important for pH-sensitivity but considerably improves in vivo thermostability. Although E457 is located far from the oxyluciferin-binding site, the properties of the mutant E457K suggest that it affects color by influencing the AMP binding.
Collapse
Affiliation(s)
- Mikhail I Koksharov
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | |
Collapse
|
36
|
Jathoul AP, Grounds H, Anderson JC, Pule MA. A Dual-Color Far-Red to Near-Infrared Firefly Luciferin Analogue Designed for Multiparametric Bioluminescence Imaging. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405955] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Abstract
Taking advantage of BRET, a mutant firefly luciferase with higher pH- and thermo-stability than the wild-type could be coupled with the red-emitting fluorescent protein of mCherry in both a fused and unfused format. The BRET pair allows >40% of the light emitted to be red shifted over 600 nm to the mCherry acceptor wavelength. Taking the expected quantum yield for mCherry (0.22), a good fit to predicted light transfer is shown, with no other losses. Two measurements are considered for ATP determination: (a) a ratiometric technique for ATP measurement using both donor and acceptor emission intensities, making the calibration slope independent of protein concentration in a broad range. This measurement was limited by the BRET efficiency and the low quantum yield of the mCherry acceptor, but this detection limit might be improved with other fluorescent proteins with higher quantum yield. The fused BRET pair also resulted in a small increase in the BRET ratio. (b) An ATP dependent shift in the wavelength maximum using just the acceptor mCherry emission was also proposed for ATP determination. This did not require a high BRET efficiency and only uses emission above 600 nm to obtain the acceptor emission maximum, but not its intensity; it is independent of protein concentration across a broad range. This offers a novel and robust method for determination of ATP between 10(-11) to 10(-5) M with an easy baseline calibration with ATP concentration >10(-4) M.
Collapse
Affiliation(s)
- Golnaz Borghei
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, UK.
| | | |
Collapse
|
38
|
Modestova Y, Koksharov MI, Ugarova NN. Point mutations in firefly luciferase C-domain demonstrate its significance in green color of bioluminescence. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1463-71. [PMID: 24802181 DOI: 10.1016/j.bbapap.2014.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/26/2014] [Accepted: 04/28/2014] [Indexed: 11/28/2022]
Abstract
Firefly luciferase is a two-domain enzyme that catalyzes the bioluminescent reaction of firefly luciferin oxidation. Color of the emitted light depends on the structure of the enzyme, yet the exact color-tuning mechanism remains unknown by now, and the role of the C-domain in it is rarely discussed, because a very few color-shifting mutations in the C-domain were described. Recently we reported a strong red-shifting mutation E457K in the C-domain; the bioluminescence spectra of this enzyme were independent of temperature or pH. In the present study we investigated the role of the residue E457 in the enzyme using the Luciola mingrelica luciferase with a thermostabilized N-domain as a parent enzyme for site-directed mutagenesis. We obtained a set of mutants and studied their catalytic properties, thermal stability and bioluminescence spectra. Experimental spectra were represented as a sum of two components (bioluminescence spectra of putative "red" and "green" emitters); λmax of these components were constant for all the mutants, but the ratio of these emitters was defined by temperature and mutations in the C-domain. We suggest that each emitter is stabilized by a specific conformation of the active site; thus, enzymes with two forms of the active site coexist in the reactive media. The rigid structure of the C-domain is crucial for maintaining the conformation corresponding to the "green" emitter. We presume that the emitters are the keto- and enol forms of oxyluciferin.
Collapse
Affiliation(s)
- Yulia Modestova
- Department of Chemical Enzymology, Faculty of Chemistry, Moscow State University, Moscow, 119991 Russia.
| | - Mikhail I Koksharov
- Department of Chemical Enzymology, Faculty of Chemistry, Moscow State University, Moscow, 119991 Russia
| | - Natalia N Ugarova
- Department of Chemical Enzymology, Faculty of Chemistry, Moscow State University, Moscow, 119991 Russia
| |
Collapse
|
39
|
Nazari M, Hosseinkhani S, Hassani L. Step-wise addition of disulfide bridge in firefly luciferase controls color shift through a flexible loop: a thermodynamic perspective. Photochem Photobiol Sci 2013; 12:298-308. [DOI: 10.1039/c2pp25140j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Koksharov MI, Ugarova NN. Approaches to engineer stability of beetle luciferases. Comput Struct Biotechnol J 2012; 2:e201209004. [PMID: 24688645 PMCID: PMC3962189 DOI: 10.5936/csbj.201209004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/09/2012] [Accepted: 09/14/2012] [Indexed: 01/22/2023] Open
Abstract
Luciferase enzymes from fireflies and other beetles have many important applications in molecular biology, biotechnology, analytical chemistry and several other areas. Many novel beetle luciferases with promising properties have been reported in the recent years. However, actual and potential applications of wild-type beetle luciferases are often limited by insufficient stability or decrease in activity of the enzyme at the conditions of a particular assay. Various examples of genetic engineering of the enhanced beetle luciferases have been reported that successfully solve or alleviate many of these limitations. This mini-review summarizes the recent advances in development of mutant luciferases with improved stability and activity characteristics. It discusses the common limitations of wild-type luciferases in different applications and presents the efficient approaches that can be used to address these problems.
Collapse
Affiliation(s)
- Mikhail I Koksharov
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Natalia N Ugarova
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
41
|
Moradi M, Hosseinkhani S, Emamzadeh R. Implication of an unfavorable residue (Thr346) in intrinsic flexibility of firefly luciferase. Enzyme Microb Technol 2012; 51:186-92. [DOI: 10.1016/j.enzmictec.2012.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/09/2012] [Accepted: 06/12/2012] [Indexed: 11/25/2022]
|
42
|
Karimzadeh S, Moradi M, Hosseinkhani S. Delicate balance of electrostatic interactions and disulfide bridges in thermostability of firefly luciferase. Int J Biol Macromol 2012; 51:837-44. [PMID: 22750581 DOI: 10.1016/j.ijbiomac.2012.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 10/28/2022]
Abstract
The wild type Photinus pyralis luciferase does not have any disulfide bridge. Disulfide bridges are determinant in inherent stability of protein at moderate temperatures. Meanwhile, arginin is responsible for thermostability at higher temperatures. In this study, by concomitant introduction of disulfide bridge and a surface arginin in a mutant (A296C-A326C/I232R), the contribution of disulfide bridge introduction and surface hydrophilic residue on activity and global stability of P. pyralis luciferase is investigated. In addition to the mentioned mutant; I232R, A296C-A326C and wild type luciferases are characterized. Though addition of Arg caused stability against proteolysis but in combination with disulfide bridge resulted in decreased thermal stability compared to A296C-A326C mutant. In spite of long distance of two different mutations (A296C-A326C and I232R) from each other in the three-dimensional structure, combination of their effects on the stability of luciferase was not cumulative.
Collapse
Affiliation(s)
- Somayeh Karimzadeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | |
Collapse
|
43
|
Amini-Bayat Z, Hosseinkhani S, Jafari R, Khajeh K. Relationship between stability and flexibility in the most flexible region of Photinus pyralis luciferase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:350-8. [PMID: 22155276 DOI: 10.1016/j.bbapap.2011.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/20/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
Abstract
Firefly luciferase is a protein with a large N-terminal and a small C-terminal domain. B-factor analysis shows that its C-terminal is much more flexible than its N-terminal. Studies on hyperthermophile proteins have been shown that the increased thermal stability of hyperthermophile proteins is due to their enhanced conformational rigidity and the relationship between flexibility, stability and function in most of proteins is on debate. Two mutations (D474K and D476N) in the most flexible region of firefly luciferase were designed. Thermostability analysis shows that D476N mutation doesn't have any significant effect but D474K mutation destabilized protein. On the other hand, flexibility analysis using dynamic quenching and limited proteolysis demonstrates that D474K mutation became much more flexible than wild type although D476N doesn't have any significant difference. Intrinsic and ANS fluorescence studies demonstrate that D476N mutation is brought about by structural changes without significant effect on thermostability and flexibility. Molecular modeling reveals that disruption of a salt bridge between D(474) and K(445) accompanying with some H-bond deletion may be involved in destabilization of D474K mutant.
Collapse
Affiliation(s)
- Zahra Amini-Bayat
- Department of Biochemistry, Tarbiat Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
44
|
Koksharov MI, Ugarova NN. Thermostabilization of firefly luciferase by in vivo directed evolution. Protein Eng Des Sel 2011; 24:835-44. [PMID: 21900306 DOI: 10.1093/protein/gzr044] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Firefly luciferase is widely used in a number of areas of biotechnology and molecular biology. However, rapid inactivation of wild-type (WT) luciferases at elevated temperatures often hampers their application. A simple non-lethal in vivo screening scheme was used to identify thermostable mutants of luciferase in Escherichia coli colonies. This scheme allowed carrying out each cycle of mutagenesis in a rapid and efficient manner. Four rounds of directed evolution were conducted on a part of the gene coding for amino acid residues 130-390 of Luciola mingrelica luciferase. The resultant mutant designated 4TS had a half-life of 10 h at 42°C, which is 65-fold higher compared with the WT luciferase. Moreover, the mutant 4TS showed a 1.9-fold increase in specific activity, 5.7-fold reduction of K(m) for ATP and a higher-temperature optimum compared with the WT enzyme. 4TS contains eight mutations, four of which are suggested to be mainly responsible for the enhancement of thermostability: R211L, A217V, E356K and S364C. Thus, directed evolution with non-lethal colony screening for in vivo bioluminescence activity proved to be an effective and efficient approach for increasing thermal stability of luciferase while retaining high catalytic activity.
Collapse
Affiliation(s)
- Mikhail I Koksharov
- Division of Chemical Enzymology, Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
| | | |
Collapse
|
45
|
Czupryna J, Tsourkas A. Firefly luciferase and RLuc8 exhibit differential sensitivity to oxidative stress in apoptotic cells. PLoS One 2011; 6:e20073. [PMID: 21603648 PMCID: PMC3094452 DOI: 10.1371/journal.pone.0020073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 04/25/2011] [Indexed: 12/19/2022] Open
Abstract
Over the past decade, firefly Luciferase (fLuc) has been used in a wide range of biological assays, providing insight into gene regulation, protein-protein interactions, cell proliferation, and cell migration. However, it has also been well established that fLuc activity can be highly sensitive to its surrounding environment. In this study, we found that when various cancer cell lines (HeLa, MCF-7, and 293T) stably expressing fLuc were treated with staurosporine (STS), there was a rapid loss in bioluminescence. In contrast, a stable variant of Renilla luciferase (RLuc), RLuc8, exhibited significantly prolonged functionality under the same conditions. To identify the specific underlying mechanism(s) responsible for the disparate sensitivity of RLuc8 and fLuc to cellular stress, we conducted a series of inhibition studies that targeted known intracellular protein degradation/modification pathways associated with cell death. Interestingly, these studies suggested that reactive oxygen species, particularly hydrogen peroxide (H(2)O(2)), was responsible for the diminution of fLuc activity. Consistent with these findings, the direct application of H(2)O(2) to HeLa cells also led to a reduction in fLuc bioluminescence, while H(2)O(2) scavengers stabilized fLuc activity. Comparatively, RLuc8 was far less sensitive to ROS. These observations suggest that fLuc activity can be substantially altered in studies where ROS levels become elevated and can potentially lead to ambiguous or misleading findings.
Collapse
Affiliation(s)
- Julie Czupryna
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | |
Collapse
|
46
|
Niwa K, Ichino Y, Kumata S, Nakajima Y, Hiraishi Y, Kato DI, Viviani VR, Ohmiya Y. Quantum yields and kinetics of the firefly bioluminescence reaction of beetle luciferases. Photochem Photobiol 2011; 86:1046-9. [PMID: 20663080 DOI: 10.1111/j.1751-1097.2010.00777.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quantum yields of firefly bioluminescence reactions were determined for beetle luciferases from the three main families of luminous beetles emitting different bioluminescence colors. Quantum yield (QY) was significantly correlated with luminescence spectrum. The green light-emitting luciferase of the Brazilian click beetle, Pyrearinus termitilluminans, whose luminescence spectrum had the shortest peak wavelength of all the luciferases investigated, had the highest QY (0.61). Mutant analyses of active site-substituted Pyrocoelia miyako luciferases showed that, although k(cat) was decreased by the mutations, the QY was not significantly affected.
Collapse
Affiliation(s)
- Kazuki Niwa
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology(AIST), Tsukuba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Koksharov MI, Ugarova NN. Triple substitution G216N/A217L/S398M leads to the active and thermostable Luciola mingrelica firefly luciferase. Photochem Photobiol Sci 2011; 10:931-8. [DOI: 10.1039/c0pp00318b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Gandelman OA, Church VL, Moore CA, Kiddle G, Carne CA, Parmar S, Jalal H, Tisi LC, Murray JAH. Novel bioluminescent quantitative detection of nucleic acid amplification in real-time. PLoS One 2010; 5:e14155. [PMID: 21152399 PMCID: PMC2994769 DOI: 10.1371/journal.pone.0014155] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 10/18/2010] [Indexed: 11/18/2022] Open
Abstract
Background The real-time monitoring of polynucleotide amplification is at the core of most molecular assays. This conventionally relies on fluorescent detection of the amplicon produced, requiring complex and costly hardware, often restricting it to specialised laboratories. Principal Findings Here we report the first real-time, closed-tube luminescent reporter system for nucleic acid amplification technologies (NAATs) enabling the progress of amplification to be continuously monitored using simple light measuring equipment. The Bioluminescent Assay in Real-Time (BART) continuously reports through bioluminescent output the exponential increase of inorganic pyrophosphate (PPi) produced during the isothermal amplification of a specific nucleic acid target. BART relies on the coupled conversion of inorganic pyrophosphate (PPi) produced stoichiometrically during nucleic acid synthesis to ATP by the enzyme ATP sulfurylase, and can therefore be coupled to a wide range of isothermal NAATs. During nucleic acid amplification, enzymatic conversion of PPi released during DNA synthesis into ATP is continuously monitored through the bioluminescence generated by thermostable firefly luciferase. The assay shows a unique kinetic signature for nucleic acid amplifications with a readily identifiable light output peak, whose timing is proportional to the concentration of original target nucleic acid. This allows qualitative and quantitative analysis of specific targets, and readily differentiates between negative and positive samples. Since quantitation in BART is based on determination of time-to-peak rather than absolute intensity of light emission, complex or highly sensitive light detectors are not required. Conclusions The combined chemistries of the BART reporter and amplification require only a constant temperature maintained by a heating block and are shown to be robust in the analysis of clinical samples. Since monitoring the BART reaction requires only a simple light detector, the iNAAT-BART combination is ideal for molecular diagnostic assays in both laboratory and low resource settings.
Collapse
|
49
|
Signore A, Mather SJ, Piaggio G, Malviya G, Dierckx RA. Molecular imaging of inflammation/infection: nuclear medicine and optical imaging agents and methods. Chem Rev 2010; 110:3112-45. [PMID: 20415479 DOI: 10.1021/cr900351r] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- A Signore
- Nuclear Medicine Unit, II Faculty of Medicine and Surgery, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | |
Collapse
|
50
|
Li X, Nakajima Y, Niwa K, Viviani VR, Ohmiya Y. Enhanced red-emitting railroad worm luciferase for bioassays and bioimaging. Protein Sci 2010; 19:26-33. [PMID: 19866487 DOI: 10.1002/pro.279] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A luciferase from the railroad worm (Phrixothrix hirtus) is the only red-emitting bioluminescent enzyme in nature that is advantageous in multicolor luciferase assays and in bioluminescence imaging (BLI). However, it is not used widely in scientific or industrial applications because of its low activity and stability. By using site-directed mutagenesis, we produced red-emitting mutants with higher activity and better stability. Compared with the wild-type (WT), the luminescent activities from extracts of cultured mammalian cells expressing mutant luciferase were 9.8-fold in I212L/N351K, 8.4-fold in I212L, and 7.8-fold in I212L/S463R; and the cell-based activities were 3.6-fold in I212L/N351K and 3.4-fold in N351K. The remaining activities after incubation at 37 degrees C for 10 min were 50.0% for I212L/S463R, 31.8% for I212L, and 23.0% for I212L/N351K, but only 5.2% for WT. To demonstrate an application of I212L/N351K, cell-based BLI was performed, and the luminescence signal was 3.6-fold higher than in WT. These results indicate that the mutants might improve the practicability of this signaling in bioassays and BLI.
Collapse
Affiliation(s)
- Xueyan Li
- Cell Dynamics Research Group, Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
| | | | | | | | | |
Collapse
|