1
|
Complex Relationships between HIV-1 Integrase and Its Cellular Partners. Int J Mol Sci 2022; 23:ijms232012341. [PMID: 36293197 PMCID: PMC9603942 DOI: 10.3390/ijms232012341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
RNA viruses, in pursuit of genome miniaturization, tend to employ cellular proteins to facilitate their replication. HIV-1, one of the most well-studied retroviruses, is not an exception. There is numerous evidence that the exploitation of cellular machinery relies on nucleic acid-protein and protein-protein interactions. Apart from Vpr, Vif, and Nef proteins that are known to regulate cellular functioning via interaction with cell components, another viral protein, integrase, appears to be crucial for proper virus-cell dialog at different stages of the viral life cycle. The goal of this review is to summarize and systematize existing data on known cellular partners of HIV-1 integrase and their role in the HIV-1 life cycle.
Collapse
|
2
|
Rocchi C, Gouet P, Parissi V, Fiorini F. The C-Terminal Domain of HIV-1 Integrase: A Swiss Army Knife for the Virus? Viruses 2022; 14:v14071397. [PMID: 35891378 PMCID: PMC9316232 DOI: 10.3390/v14071397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/31/2022] Open
Abstract
Retroviral integrase is a multimeric enzyme that catalyzes the integration of reverse-transcribed viral DNA into the cellular genome. Beyond integration, the Human immunodeficiency virus type 1 (HIV-1) integrase is also involved in many other steps of the viral life cycle, such as reverse transcription, nuclear import, virion morphogenesis and proviral transcription. All these additional functions seem to depend on the action of the integrase C-terminal domain (CTD) that works as a molecular hub, interacting with many different viral and cellular partners. In this review, we discuss structural issues concerning the CTD, with particular attention paid to its interaction with nucleic acids. We also provide a detailed map of post-translational modifications and interaction with molecular partners.
Collapse
Affiliation(s)
- Cecilia Rocchi
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
| | - Patrice Gouet
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
| | - Vincent Parissi
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
- Fundamental Microbiology and Pathogenicity (MFP), CNRS, University of Bordeaux, UMR5234, 33405 Bordeaux, France
| | - Francesca Fiorini
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
- Correspondence: ; Tel.: +33-4-72722624; Fax: +33-4-72722616
| |
Collapse
|
3
|
Song Y, Zhang H, Wang Y, Guo J, Tang S, Wang L, Peng K, Dong CS. Importin KPNA2 confers HIV-1 pre-integration complex nuclear import by interacting with the capsid protein. Antiviral Res 2022; 200:105289. [PMID: 35301060 DOI: 10.1016/j.antiviral.2022.105289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 11/19/2022]
Abstract
For human immunodeficiency virus 1 (HIV-1) to infect non-dividing cells, pre-integration complex (PIC) must be transported into the nucleus within the replication cycle. We previously reported that the karyopherin β1 (KPNB1)-nucleoporin Pom121 pathway, related to the downstream process of PIC nuclear import, mediates efficient HIV-1 PIC nuclear import. Further, our earlier RNA transcriptome sequencing revealed that karyopherin α2 (KPNA2) was among the differentially expressed importin family members during monocyte to macrophage differentiation. Although PIC transport into the nucleus in HIV-1 has been widely studied, much remains to be understood about it. In this study, we confirmed our previous RNA sequencing results and found that HIV-1 replication was significantly lower in 293T cells with siRNA-mediated KPNA2 knockdown and higher in KPNA2-upregulated cells. Quantitative PCR indicated that viral replication was impaired during cDNA nuclear import. The N-terminal of the capsid protein p24 interacted with KPNA2, and KPNB1 participated in KPNA2-mediated PIC nuclear import. Disruption of the capsid-KPNA2 binding by overexpression of full-length p24 or p24 N-terminal impaired the PIC nuclear import. These results indicate that KPNA2 is an important upstream adaptor of the KPNB1-Pom121 axis, thereby mediating HIV-1 PIC nuclear transportation. KPNA2 is thus a potential target for HIV-1 antiviral treatment.
Collapse
Affiliation(s)
- Yanhui Song
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, China.
| | - Hongguang Zhang
- The Institutes of Biology and Medical Sciences, Soochow University, China
| | - Yinmiao Wang
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, China
| | - Jin Guo
- The Institutes of Biology and Medical Sciences, Soochow University, China
| | - Shengjie Tang
- The Institutes of Biology and Medical Sciences, Soochow University, China
| | - Lu Wang
- The Institutes of Biology and Medical Sciences, Soochow University, China
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, China
| | - Chun-Sheng Dong
- The Institutes of Biology and Medical Sciences, Soochow University, China.
| |
Collapse
|
4
|
Martin AJ, Jans DA. Antivirals that target the host IMPα/β1-virus interface. Biochem Soc Trans 2021; 49:281-295. [PMID: 33439253 PMCID: PMC7925013 DOI: 10.1042/bst20200568] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/22/2022]
Abstract
Although transport into the nucleus mediated by the importin (IMP) α/β1-heterodimer is central to viral infection, small molecule inhibitors of IMPα/β1-dependent nuclear import have only been described and shown to have antiviral activity in the last decade. Their robust antiviral activity is due to the strong reliance of many different viruses, including RNA viruses such as human immunodeficiency virus-1 (HIV-1), dengue (DENV), and Zika (ZIKV), on the IMPα/β1-virus interface. High-throughput compound screens have identified many agents that specifically target this interface. Of these, agents targeting IMPα/β1 directly include the FDA-approved macrocyclic lactone ivermectin, which has documented broad-spectrum activity against a whole range of viruses, including HIV-1, DENV1-4, ZIKV, West Nile virus (WNV), Venezuelan equine encephalitis virus, chikungunya, and most recently, SARS-CoV-2 (COVID-19). Ivermectin has thus far been tested in Phase III human clinical trials for DENV, while there are currently close to 80 trials in progress worldwide for SARS-CoV-2; preliminary results for randomised clinical trials (RCTs) as well as observational/retrospective studies are consistent with ivermectin affording clinical benefit. Agents that target the viral component of the IMPα/β1-virus interface include N-(4-hydroxyphenyl) retinamide (4-HPR), which specifically targets DENV/ZIKV/WNV non-structural protein 5 (NS5). 4-HPR has been shown to be a potent inhibitor of infection by DENV1-4, including in an antibody-dependent enhanced animal challenge model, as well as ZIKV, with Phase II clinical challenge trials planned. The results from rigorous RCTs will help determine the therapeutic potential of the IMPα/β1-virus interface as a target for antiviral development.
Collapse
Affiliation(s)
- Alexander J. Martin
- Nuclear Signaling Lab., Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - David A. Jans
- Nuclear Signaling Lab., Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| |
Collapse
|
5
|
Bedwell GJ, Engelman AN. Factors that mold the nuclear landscape of HIV-1 integration. Nucleic Acids Res 2021; 49:621-635. [PMID: 33337475 PMCID: PMC7826272 DOI: 10.1093/nar/gkaa1207] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022] Open
Abstract
The integration of retroviral reverse transcripts into the chromatin of the cells that they infect is required for virus replication. Retroviral integration has far-reaching consequences, from perpetuating deadly human diseases to molding metazoan evolution. The lentivirus human immunodeficiency virus 1 (HIV-1), which is the causative agent of the AIDS pandemic, efficiently infects interphase cells due to the active nuclear import of its preintegration complex (PIC). To enable integration, the PIC must navigate the densely-packed nuclear environment where the genome is organized into different chromatin states of varying accessibility in accordance with cellular needs. The HIV-1 capsid protein interacts with specific host factors to facilitate PIC nuclear import, while additional interactions of viral integrase, the enzyme responsible for viral DNA integration, with cellular nuclear proteins and nucleobases guide integration to specific chromosomal sites. HIV-1 integration favors transcriptionally active chromatin such as speckle-associated domains and disfavors heterochromatin including lamina-associated domains. In this review, we describe virus-host interactions that facilitate HIV-1 PIC nuclear import and integration site targeting, highlighting commonalities among factors that participate in both of these steps. We moreover discuss how the nuclear landscape influences HIV-1 integration site selection as well as the establishment of active versus latent virus infection.
Collapse
Affiliation(s)
- Gregory J Bedwell
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
NKNK: a New Essential Motif in the C-Terminal Domain of HIV-1 Group M Integrases. J Virol 2020; 94:JVI.01035-20. [PMID: 32727879 DOI: 10.1128/jvi.01035-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/17/2020] [Indexed: 11/20/2022] Open
Abstract
Using coevolution network interference based on comparison of two phylogenetically distantly related isolates, one from the main group M and the other from the minor group O of HIV-1, we identify, in the C-terminal domain (CTD) of integrase, a new functional motif constituted by four noncontiguous amino acids (N222K240N254K273). Mutating the lysines abolishes integration through decreased 3' processing and inefficient nuclear import of reverse-transcribed genomes. Solution of the crystal structures of wild-type (wt) and mutated CTDs shows that the motif generates a positive surface potential that is important for integration. The number of charges in the motif appears more crucial than their position within the motif. Indeed, the positions of the K's could be permutated or additional K's could be inserted in the motif, generally without affecting integration per se Despite this potential genetic flexibility, the NKNK arrangement is strictly conserved in natural sequences, indicative of an effective purifying selection exerted at steps other than integration. Accordingly, reverse transcription was reduced even in the mutants that retained wt integration levels, indicating that specifically the wt sequence is optimal for carrying out the multiple functions that integrase exerts. We propose that the existence of several amino acid arrangements within the motif, with comparable efficiencies of integration per se, might have constituted an asset for the acquisition of additional functions during viral evolution.IMPORTANCE Intensive studies of HIV-1 have revealed its extraordinary ability to adapt to environmental and immunological challenges, an ability that is also at the basis of antiviral treatment escape. Here, by deconvoluting the different roles of the viral integrase in the various steps of the infectious cycle, we report how the existence of alternative equally efficient structural arrangements for carrying out one function opens up the possibility of adapting to the optimization of further functionalities exerted by the same protein. Such a property provides an asset to increase the efficiency of the infectious process. On the other hand, though, the identification of this new motif provides a potential target for interfering simultaneously with multiple functions of the protein.
Collapse
|
7
|
El-Saber Batiha G, Alqahtani A, Ilesanmi OB, Saati AA, El-Mleeh A, Hetta HF, Magdy Beshbishy A. Avermectin Derivatives, Pharmacokinetics, Therapeutic and Toxic Dosages, Mechanism of Action, and Their Biological Effects. Pharmaceuticals (Basel) 2020; 13:E196. [PMID: 32824399 PMCID: PMC7464486 DOI: 10.3390/ph13080196] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Avermectins are a group of drugs that occurs naturally as a product of fermenting Streptomyces avermitilis, an actinomycetes, isolated from the soil. Eight different structures, including ivermectin, abamectin, doramectin, eprinomectin, moxidectin, and selamectin, were isolated and divided into four major components (A1a, A2a, B1a and B2a) and four minor components (A1b, A2b, B1b, and B2b). Avermectins are generally used as a pesticide for the treatment of pests and parasitic worms as a result of their anthelmintic and insecticidal properties. Additionally, they possess anticancer, anti-diabetic, antiviral, antifungal, and are used for treatment of several metabolic disorders. Avermectin generally works by preventing the transmission of electrical impulse in the muscle and nerves of invertebrates, by amplifying the glutamate effects on the invertebrates-specific gated chloride channel. Avermectin has unwanted effects or reactions, especially when administered indiscriminately, which include respiratory failure, hypotension, and coma. The current review examines the mechanism of actions, biosynthesis, safety, pharmacokinetics, biological toxicity and activities of avermectins.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Omotayo B. Ilesanmi
- Department of Biochemistry, Faculty of Science, Federal University Otuoke, Otuoke 561, Nigeria;
| | - Abdullah A. Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University Makkah, Mecca 24382, Saudi Arabia;
| | - Amany El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shibin Al Kawm 32511, Egypt;
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45221, USA
| | - Amany Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro 080-8555, Hokkaido, Japan
| |
Collapse
|
8
|
Kosyna FK, Depping R. Controlling the Gatekeeper: Therapeutic Targeting of Nuclear Transport. Cells 2018; 7:cells7110221. [PMID: 30469340 PMCID: PMC6262578 DOI: 10.3390/cells7110221] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 12/11/2022] Open
Abstract
Nuclear transport receptors of the karyopherin superfamily of proteins transport macromolecules from one compartment to the other and are critical for both cell physiology and pathophysiology. The nuclear transport machinery is tightly regulated and essential to a number of key cellular processes since the spatiotemporally expression of many proteins and the nuclear transporters themselves is crucial for cellular activities. Dysregulation of the nuclear transport machinery results in localization shifts of specific cargo proteins and associates with the pathogenesis of disease states such as cancer, inflammation, viral illness and neurodegenerative diseases. Therefore, inhibition of the nuclear transport system has future potential for therapeutic intervention and could contribute to the elucidation of disease mechanisms. In this review, we recapitulate clue findings in the pathophysiological significance of nuclear transport processes and describe the development of nuclear transport inhibitors. Finally, clinical implications and results of the first clinical trials are discussed for the most promising nuclear transport inhibitors.
Collapse
Affiliation(s)
- Friederike K Kosyna
- Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.
| | - Reinhard Depping
- Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.
| |
Collapse
|
9
|
Wagstaff KM, Headey S, Telwatte S, Tyssen D, Hearps AC, Thomas DR, Tachedjian G, Jans DA. Molecular dissection of an inhibitor targeting the HIV integrase dependent preintegration complex nuclear import. Cell Microbiol 2018; 21:e12953. [PMID: 30216959 PMCID: PMC6585680 DOI: 10.1111/cmi.12953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 08/26/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus (HIV) continues to be a major contributor to morbidity and mortality worldwide, particularly in developing nations where high cost and logistical issues severely limit the use of current HIV therapeutics. This, combined HIV's high propensity to develop resistance, means that new antiviral agents against novel targets are still urgently required. We previously identified novel anti-HIV agents directed against the nuclear import of the HIV integrase (IN) protein, which plays critical roles in the HIV lifecycle inside the cell nucleus, as well as in transporting the HIV preintegration complex (PIC) into the nucleus. Here we investigate the structure activity relationship of a series of these compounds for the first time, including a newly identified anti-IN compound, budesonide, showing that the extent of binding to the IN core domain correlates directly with the ability of the compound to inhibit IN nuclear transport in a permeabilised cell system. Importantly, compounds that inhibited the nuclear transport of IN were found to significantly decrease HIV viral replication, even in a dividing cell system. Significantly, budesonide or its analogue flunisolide, were able to effect a significant reduction in the presence of specific nuclear forms of the HIV DNA (2-LTR circles), suggesting that the inhibitors work though blocking IN, and potentially PIC, nuclear import. The work presented here represents a platform for further development of these specific inhibitors of HIV replication with therapeutic and prophylactic potential.
Collapse
Affiliation(s)
- Kylie M Wagstaff
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Stephen Headey
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | | | - David Tyssen
- Life Science Division, Burnet Institute, Melbourne, Australia
| | - Anna C Hearps
- Life Science Division, Burnet Institute, Melbourne, Australia.,Department of Infectious Diseases, Melbourne University, Melbourne, Australia
| | - David R Thomas
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | | | - David A Jans
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| |
Collapse
|
10
|
Nup153 Unlocks the Nuclear Pore Complex for HIV-1 Nuclear Translocation in Nondividing Cells. J Virol 2018; 92:JVI.00648-18. [PMID: 29997211 DOI: 10.1128/jvi.00648-18] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/20/2018] [Indexed: 12/27/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) displays the unique ability to infect nondividing cells. The capsid of HIV-1 is the viral determinant for viral nuclear import. To understand the cellular factors involved in the ability of HIV-1 to infect nondividing cells, we sought to find capsid mutations that allow the virus to infect dividing but not nondividing cells. Because the interaction of capsid with the nucleoporin protein 153 (Nup153) is important for nuclear import of HIV-1, we solved new crystal structures of hexameric HIV-1 capsid in complex with a Nup153-derived peptide containing a phenylalanine-glycine repeat (FG repeat), which we used to guide structure-based mutagenesis of the capsid-binding interface. HIV-1 viruses with mutations in these capsid residues were tested for their ability to infect dividing and nondividing cells. HIV-1 viruses with capsid N57 substitutions infected dividing but not nondividing cells. Interestingly, HIV-1 viruses with N57 mutations underwent reverse transcription but not nuclear translocation. The mutant capsids also lost the ability to interact with Nup153 and CPSF6. The use of small molecules PF74 and BI-2 prevented the interaction of FG-containing nucleoporins (Nups), such as Nup153, with the HIV-1 core. Analysis of integration sites in HIV-1 viruses with N57 mutations revealed diminished integration into transcriptionally active genes in a manner resembling that of HIV-1 in CPSF6 knockout cells or that of HIV-1-N74D. The integration pattern of the N57 mutant HIV-1 can be explained by loss of capsid interaction with CPSF6, whereas capsid interaction with Nup153 is required for HIV-1 to infect nondividing cells. Additionally, the observed viral integration profiles suggested that integration site selection is a multiparameter process that depends upon nuclear factors and the state of the cellular chromatin.IMPORTANCE One of the key advantages that distinguish lentiviruses, such as HIV-1, from all other retroviruses is its ability to infect nondividing cells. Interaction of the HIV-1 capsid with Nup153 and CPSF6 is important for nuclear entry and integration; however, the contribution of each of these proteins to nuclear import and integration is not clear. Using genetics, we demonstrated that these proteins contribute to different processes: Nup153 is essential for the HIV-1 nuclear import in nondividing cells, and CPSF6 is important for HIV-1 integration. In addition, nuclear factors such as CPSF6 and the state of the chromatin are known to be important for integration site selection; nevertheless, the preferential determinant influencing integration site selection is not known. This work demonstrates that integration site selection is a multiparameter process that depends upon nuclear factors and the state of the cellular chromatin.
Collapse
|
11
|
Elucidating the in vivo interactome of HIV-1 RNA by hybridization capture and mass spectrometry. Sci Rep 2017; 7:16965. [PMID: 29208937 PMCID: PMC5717263 DOI: 10.1038/s41598-017-16793-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/17/2017] [Indexed: 02/05/2023] Open
Abstract
HIV-1 replication requires myriad interactions between cellular proteins and the viral unspliced RNA. These interactions are important in archetypal RNA processes such as transcription and translation as well as for more specialized functions including alternative splicing and packaging of unspliced genomic RNA into virions. We present here a hybridization capture strategy for purification of unspliced full-length HIV RNA-protein complexes preserved in vivo by formaldehyde crosslinking, and coupled with mass spectrometry to identify HIV RNA-protein interactors in HIV-1 infected cells. One hundred eighty-nine proteins were identified to interact with unspliced HIV RNA including Rev and Gag/Gag-Pol, 24 host proteins previously shown to bind segments of HIV RNA, and over 90 proteins previously shown to impact HIV replication. Further analysis using siRNA knockdown techniques against several of these proteins revealed significant changes to HIV expression. These results demonstrate the utility of the approach for the discovery of host proteins involved in HIV replication. Additionally, because this strategy only requires availability of 30 nucleotides of the HIV-RNA for hybridization with a capture oligonucleotide, it is readily applicable to any HIV system of interest regardless of cell type, HIV-1 virus strain, or experimental perturbation.
Collapse
|
12
|
Microbial Natural Product Alternariol 5-O-Methyl Ether Inhibits HIV-1 Integration by Blocking Nuclear Import of the Pre-Integration Complex. Viruses 2017; 9:v9050105. [PMID: 28489061 PMCID: PMC5454418 DOI: 10.3390/v9050105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/19/2017] [Accepted: 05/05/2017] [Indexed: 02/07/2023] Open
Abstract
While Highly Active Antiretroviral Therapy (HAART) has significantly decreased the mortality of human immunodeficiency virus (HIV)-infected patients, emerging drug resistance to approved HIV-1 integrase inhibitors highlights the need to develop new antivirals with novel mechanisms of action. In this study, we screened a library of microbial natural compounds from endophytic fungus Colletotrichum sp. and identified alternariol 5-O-methyl ether (AME) as a compound that inhibits HIV-1 pre-integration steps. Time-of addition analysis, quantitative real-time PCR, confocal microscopy, and WT viral replication assay were used to elucidate the mechanism. As opposed to the approved integrase inhibitor Raltegravir, AME reduced both the integrated viral DNA and the 2-long terminal repeat (2-LTR) circular DNA, which suggests that AME impairs the nuclear import of viral DNA. Further confocal microscopy studies showed that AME specifically blocks the nuclear import of HIV-1 integrase and pre-integration complex without any adverse effects on the importin α/β and importin β-mediated nuclear import pathway in general. Importantly, AME inhibited Raltegravir-resistant HIV-1 strains and exhibited a broad anti-HIV-1 activity in diverse cell lines. These data collectively demonstrate the potential of AME for further development into a new HIV inhibitor, and suggest the utility of viral DNA nuclear import as a target for anti-HIV drug discovery.
Collapse
|
13
|
Nuclear Trafficking of the Rabies Virus Interferon Antagonist P-Protein Is Regulated by an Importin-Binding Nuclear Localization Sequence in the C-Terminal Domain. PLoS One 2016; 11:e0150477. [PMID: 26939125 PMCID: PMC4777398 DOI: 10.1371/journal.pone.0150477] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 02/14/2016] [Indexed: 12/25/2022] Open
Abstract
Rabies virus P-protein is expressed as five isoforms (P1-P5) which undergo nucleocytoplasmic trafficking important to roles in immune evasion. Although nuclear import of P3 is known to be mediated by an importin (IMP)-recognised nuclear localization sequence in the N-terminal region (N-NLS), the mechanisms underlying nuclear import of other P isoforms in which the N-NLS is inactive or has been deleted have remained unresolved. Based on the previous observation that mutation of basic residues K214/R260 of the P-protein C-terminal domain (P-CTD) can result in nuclear exclusion of P3, we used live cell imaging, protein interaction analysis and in vitro nuclear transport assays to examine in detail the nuclear trafficking properties of this domain. We find that the effect of mutation of K214/R260 on P3 is largely dependent on nuclear export, suggesting that nuclear exclusion of mutated P3 involves the P-CTD-localized nuclear export sequence (C-NES). However, assays using cells in which nuclear export is pharmacologically inhibited indicate that these mutations significantly inhibit P3 nuclear accumulation and, importantly, prevent nuclear accumulation of P1, suggestive of effects on NLS-mediated import activity in these isoforms. Consistent with this, molecular binding and transport assays indicate that the P-CTD mediates IMPα2/IMPβ1-dependent nuclear import by conferring direct binding to the IMPα2/IMPβ1 heterodimer, as well as to a truncated form of IMPα2 lacking the IMPβ-binding autoinhibitory domain (ΔIBB-IMPα2), and IMPβ1 alone. These properties are all dependent on K214 and R260. This provides the first evidence that P-CTD contains a genuine IMP-binding NLS, and establishes the mechanism by which P-protein isoforms other than P3 can be imported to the nucleus. These data underpin a refined model for P-protein trafficking that involves the concerted action of multiple NESs and IMP-binding NLSs, and highlight the intricate regulation of P-protein subcellular localization, consistent with important roles in infection.
Collapse
|
14
|
Abstract
The human genome encodes seven isoforms of importin α which are grouped into three subfamilies known as α1, α2 and α3. All isoforms share a fundamentally conserved architecture that consists of an N-terminal, autoinhibitory, importin-β-binding (IBB) domain and a C-terminal Arm (Armadillo)-core that associates with nuclear localization signal (NLS) cargoes. Despite striking similarity in amino acid sequence and 3D structure, importin-α isoforms display remarkable substrate specificity in vivo. In the present review, we look at key differences among importin-α isoforms and provide a comprehensive inventory of known viral and cellular cargoes that have been shown to associate preferentially with specific isoforms. We illustrate how the diversification of the adaptor importin α into seven isoforms expands the dynamic range and regulatory control of nucleocytoplasmic transport, offering unexpected opportunities for pharmacological intervention. The emerging view of importin α is that of a key signalling molecule, with isoforms that confer preferential nuclear entry and spatiotemporal specificity on viral and cellular cargoes directly linked to human diseases.
Collapse
|
15
|
Comparison Between Several Integrase-defective Lentiviral Vectors Reveals Increased Integration of an HIV Vector Bearing a D167H Mutant. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 3:e213. [PMID: 25462529 PMCID: PMC4272407 DOI: 10.1038/mtna.2014.65] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 10/09/2014] [Indexed: 01/20/2023]
Abstract
HIV-1 derived vectors are among the most efficient for gene transduction in mammalian tissues. As the parent virus, they carry out vector genome insertion into the host cell chromatin. Consequently, their preferential integration in transcribed genes raises several conceptual and safety issues. To address part of these questions, HIV-derived vectors have been engineered to be nonintegrating. This was mainly achieved by mutating HIV-1 integrase at functional hotspots of the enzyme enabling the development of streamlined nuclear DNA circles functional for transgene expression. Few integrase mutant vectors have been successfully tested so far for gene transfer. They are cleared with time in mitotic cells, but stable within nondividing retina cells or neurons. Here, we compared six HIV vectors carrying different integrases, either wild type or with different mutations (D64V, D167H, Q168A, K186Q+Q214L+Q216L, and RRK262-264AAH) shown to modify integrase enzymatic activity, oligomerization, or interaction with key cellular cofactor of HIV DNA integration as LEDGF/p75 or TNPO3. We show that these mutations differently affect the transduction efficiency as well as rates and patterns of integration of HIV-derived vectors suggesting their different processing in the nucleus. Surprisingly and most interestingly, we report that an integrase carrying the D167H substitution improves vector transduction efficiency and integration in both HEK-293T and primary CD34+ cells.
Collapse
|
16
|
An K, Fang L, Luo R, Wang D, Xie L, Yang J, Chen H, Xiao S. Quantitative proteomic analysis reveals that transmissible gastroenteritis virus activates the JAK-STAT1 signaling pathway. J Proteome Res 2014; 13:5376-90. [PMID: 25357264 DOI: 10.1021/pr500173p] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transmissible gastroenteritis virus (TGEV), a porcine enteropathogenic coronavirus, causes lethal watery diarrhea and severe dehydration in piglets. In this study, liquid chromatography-tandem mass spectrometry coupled to isobaric tags for relative and absolute quantification labeling was used to quantitatively identify differentially expressed cellular proteins after TGEV infection in PK-15 cells. In total, 162 differentially expressed cellular proteins were identified, including 60 upregulated proteins and 102 downregulated proteins. These differentially expressed proteins were involved in the cell cycle, cellular growth and proliferation, the innate immune response, etc. Interestingly, many upregulated proteins were associated with interferon signaling, especially signal transducer and activator of transcription 1 (STAT1) and interferon-stimulated genes (ISGs). Immunoblotting and real-time quantitative reverse transcription polymerase chain reaction demonstrated that TGEV infection induces STAT1 phosphorylation and nuclear translocation, as well as ISG expression. This study for the first time reveals that TGEV induces interferon signaling from the point of proteomic analysis.
Collapse
Affiliation(s)
- Kang An
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, Hubei China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
De Houwer S, Demeulemeester J, Thys W, Rocha S, Dirix L, Gijsbers R, Christ F, Debyser Z. The HIV-1 integrase mutant R263A/K264A is 2-fold defective for TRN-SR2 binding and viral nuclear import. J Biol Chem 2014; 289:25351-61. [PMID: 25063804 DOI: 10.1074/jbc.m113.533281] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Transportin-SR2 (Tnpo3, TRN-SR2), a human karyopherin encoded by the TNPO3 gene, has been identified as a cellular cofactor of HIV-1 replication, specifically interacting with HIV-1 integrase (IN). Whether this interaction mediates the nuclear import of HIV remains controversial. We previously characterized the TRN-SR2 binding interface in IN and introduced mutations at these positions to corroborate the biological relevance of the interaction. The pleiotropic nature of IN mutations complicated the interpretation. Indeed, all previously tested IN interaction mutants also affected RT. Here we report on a virus with a pair of IN mutations, IN(R263A/K264A), that significantly reduce interaction with TRN-SR2. The virus retains wild-type reverse transcription activity but displays a block in nuclear import and integration, as measured by quantitative PCR. The defect in integration of this mutant resulted in a smaller increase in the number of two-long terminal repeat circles than for virus specifically blocked at integration by raltegravir or catalytic site mutations (IN(D64N/D116N/E152Q)). Finally, using an eGFP-IN-labeled HIV fluorescence-based import assay, the defect in nuclear import was corroborated. These data altogether underscore the importance of the HIV-IN TRN-SR2 protein-protein interaction for HIV nuclear import and validate the IN/TRN-SR2 interaction interface as a promising target for future antiviral therapy.
Collapse
Affiliation(s)
- Stéphanie De Houwer
- From the Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Jonas Demeulemeester
- From the Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Wannes Thys
- From the Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Susana Rocha
- From the Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Lieve Dirix
- From the Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Rik Gijsbers
- From the Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Frauke Christ
- From the Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Zeger Debyser
- From the Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| |
Collapse
|
18
|
Le Sage V, Mouland AJ, Valiente-Echeverría F. Roles of HIV-1 capsid in viral replication and immune evasion. Virus Res 2014; 193:116-29. [PMID: 25036886 DOI: 10.1016/j.virusres.2014.07.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 02/07/2023]
Abstract
The primary roles of the human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein are to encapsidate and protect the viral RNA genome. It is becoming increasing apparent that HIV-1 CA is a multifunctional protein that acts early during infection to coordinate uncoating, reverse transcription, nuclear import of the pre-integration complex and integration of double stranded viral DNA into the host genome. Additionally, numerous recent studies indicate that CA is playing a crucial function in HIV-1 immune evasion. Here we summarize the current knowledge on HIV-1 CA and its interactions with the host cell to promote infection. The fact that CA engages in a number of different protein-protein interactions with the host makes it an interesting target for the development of new potent antiviral agents.
Collapse
Affiliation(s)
- Valerie Le Sage
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T1E2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T1E2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada; Department of Microbiology and Immunology, McGill University, Montréal, Québec, H3A2B4, Canada
| | - Fernando Valiente-Echeverría
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T1E2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada.
| |
Collapse
|
19
|
Overlapping binding sites for importin β1 and suppressor of fused (SuFu) on glioma-associated oncogene homologue 1 (Gli1) regulate its nuclear localization. Biochem J 2014; 461:469-76. [DOI: 10.1042/bj20130709] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The hedgehog signalling protein Gli1 has overlapping binding sites for the proteins importin β1 and SuFu at its N-terminus. These proteins compete to regulate the nuclear/cytoplasmic localization of Gli1, with importin β promoting nuclear import and SuFu preventing it.
Collapse
|
20
|
Suárez-Sánchez R, Aguilar A, Wagstaff KM, Velez G, Azuara-Medina PM, Gomez P, Vásquez-Limeta A, Hernández-Hernández O, Lieu KG, Jans DA, Cisneros B. Nucleocytoplasmic shuttling of the Duchenne muscular dystrophy gene product dystrophin Dp71d is dependent on the importin α/β and CRM1 nuclear transporters and microtubule motor dynein. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:985-1001. [PMID: 24486332 DOI: 10.1016/j.bbamcr.2014.01.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 12/17/2013] [Accepted: 01/24/2014] [Indexed: 01/08/2023]
Abstract
Even though the Duchenne muscular dystrophy (DMD) gene product Dystrophin Dp71d is involved in various key cellular processes through its role as a scaffold for structural and signalling proteins at the plasma membrane as well as the nuclear envelope, its subcellular trafficking is poorly understood. Here we map the nuclear import and export signals of Dp71d by truncation and point mutant analysis, showing for the first time that Dp71d shuttles between the nucleus and cytoplasm mediated by the conventional nuclear transporters, importin (IMP) α/β and the exportin CRM1. Binding was confirmed in cells using pull-downs, while in vitro binding assays showed direct, high affinity (apparent dissociation coefficient of c. 0.25nM) binding of Dp71d to IMPα/β. Interestingly, treatment of cells with the microtubule depolymerizing reagent nocodazole or the dynein inhibitor EHNA both decreased Dp71d nuclear localization, implying that Dp71d nuclear import may be facilitated by microtubules and the motor protein dynein. The role of Dp71d in the nucleus appears to relate in part to interaction with the nuclear envelope protein emerin, and maintenance of the integrity of the nuclear architecture. The clear implication is that Dp71d's previously unrecognised nuclear transport properties likely contribute to various, important physiological roles.
Collapse
Affiliation(s)
- R Suárez-Sánchez
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México D.F, Mexico; Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México D.F, Mexico
| | - A Aguilar
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México D.F, Mexico
| | - K M Wagstaff
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - G Velez
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México D.F, Mexico
| | - P M Azuara-Medina
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México D.F, Mexico
| | - P Gomez
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México D.F, Mexico
| | - A Vásquez-Limeta
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México D.F, Mexico
| | - O Hernández-Hernández
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México D.F, Mexico
| | - K G Lieu
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - D A Jans
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| | - B Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México D.F, Mexico.
| |
Collapse
|
21
|
Importins and exportins regulating allergic immune responses. Mediators Inflamm 2014; 2014:476357. [PMID: 24733961 PMCID: PMC3964845 DOI: 10.1155/2014/476357] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 12/21/2022] Open
Abstract
Nucleocytoplasmic shuttling of macromolecules is a well-controlled process involving importins and exportins. These karyopherins recognize and bind to receptor-mediated intracellular signals through specific signal sequences that are present on cargo proteins and transport into and out of the nucleus through nuclear pore complexes. Nuclear localization signals (NLS) present on cargo molecules to be imported while nuclear export signals (NES) on the molecules to be exported are recognized by importins and exportins, respectively. The classical NLS are found on many transcription factors and molecules that are involved in the pathogenesis of allergic diseases. In addition, several immune modulators, including corticosteroids and vitamin D, elicit their cellular responses by regulating the expression and activity of importin molecules. In this review article, we provide a comprehensive list of importin and exportin molecules and their specific cargo that shuttled between cytoplasm and the nucleus. We also critically review the role and regulation of specific importin and exportin involved in the transport of activated transcription factors in allergic diseases, the underlying molecular mechanisms, and the potential target sites for developing better therapeutic approaches.
Collapse
|
22
|
Nuclear trafficking of the HIV-1 pre-integration complex depends on the ADAM10 intracellular domain. Virology 2014; 454-455:60-6. [PMID: 24725932 DOI: 10.1016/j.virol.2014.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/06/2013] [Accepted: 02/06/2014] [Indexed: 12/25/2022]
Abstract
Previously, we showed that ADAM10 is necessary for HIV-1 replication in primary human macrophages and immortalized cell lines. Silencing ADAM10 expression interrupted the HIV-1 life cycle prior to nuclear translocation of viral cDNA. Furthermore, our data indicated that HIV-1 replication depends on the expression of ADAM15 and γ-secretase, which proteolytically processes ADAM10. Silencing ADAM15 or γ-secretase expression inhibits HIV-1 replication between reverse transcription and nuclear entry. Here, we show that ADAM10 expression also supports replication in CD4(+) T lymphocytes. The intracellular domain (ICD) of ADAM10 associates with the HIV-1 pre-integration complex (PIC) in the cytoplasm and immunoprecipitates and co-localizes with HIV-1 integrase, a key component of PIC. Taken together, our data support a model whereby ADAM15/γ-secretase processing of ADAM10 releases the ICD, which then incorporates into HIV-1 PIC to facilitate nuclear trafficking. Thus, these studies suggest ADAM10 as a novel therapeutic target for inhibiting HIV-1 prior to nuclear entry.
Collapse
|
23
|
Lundberg L, Pinkham C, Baer A, Amaya M, Narayanan A, Wagstaff KM, Jans DA, Kehn-Hall K. Nuclear import and export inhibitors alter capsid protein distribution in mammalian cells and reduce Venezuelan Equine Encephalitis Virus replication. Antiviral Res 2013; 100:662-72. [PMID: 24161512 DOI: 10.1016/j.antiviral.2013.10.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 11/22/2022]
Abstract
Targeting host responses to invading viruses has been the focus of recent antiviral research. Venezuelan Equine Encephalitis Virus (VEEV) is able to modulate host transcription and block nuclear trafficking at least partially due to its capsid protein forming a complex with the host proteins importin α/β1 and CRM1. We hypothesized that disrupting the interaction of capsid with importin α/β1 or the interaction of capsid with CRM1 would alter capsid localization, thereby lowering viral titers in vitro. siRNA mediated knockdown of importin α, importin β1, and CRM1 altered capsid localization, confirming their role in modulating capsid trafficking. Mifepristone and ivermectin, inhibitors of importin α/β-mediated import, were able to reduce nuclear-associated capsid, while leptomycin B, a potent CRM1 inhibitor, confined capsid to the nucleus. In addition to altering the level and distribution of capsid, the three inhibitors were able to reduce viral titers in a relevant mammalian cell line with varying degrees of efficacy. The inhibitors were also able to reduce the cytopathic effects associated with VEEV infection, hinting that nuclear import inhibitors may be protecting cells from apoptosis in addition to disrupting the function of an essential viral protein. Our results confirm that VEEV uses host importins and exportins during part of its life cycle. Further, it suggests that temporarily targeting host proteins that are hijacked for use by viruses is a viable antiviral therapy.
Collapse
Affiliation(s)
- Lindsay Lundberg
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Nuclear trafficking of retroviral RNAs and Gag proteins during late steps of replication. Viruses 2013; 5:2767-95. [PMID: 24253283 PMCID: PMC3856414 DOI: 10.3390/v5112767] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 10/31/2013] [Accepted: 11/12/2013] [Indexed: 11/16/2022] Open
Abstract
Retroviruses exploit nuclear trafficking machinery at several distinct stages in their replication cycles. In this review, we will focus primarily on nucleocytoplasmic trafficking events that occur after the completion of reverse transcription and proviral integration. First, we will discuss nuclear export of unspliced viral RNA transcripts, which serves two essential roles: as the mRNA template for the translation of viral structural proteins and as the genome for encapsidation into virions. These full-length viral RNAs must overcome the cell's quality control measures to leave the nucleus by co-opting host factors or encoding viral proteins to mediate nuclear export of unspliced viral RNAs. Next, we will summarize the most recent findings on the mechanisms of Gag nuclear trafficking and discuss potential roles for nuclear localization of Gag proteins in retrovirus replication.
Collapse
|
25
|
Deng S, Zhou Y, Ouyang D, Xiong J, Zhang L, Tu C, Zhang K, Song Z, Zhang F. The effect of dexamethasone on lentiviral vector infection is associated with importin α. Biomed Rep 2013; 2:137-141. [PMID: 24649085 DOI: 10.3892/br.2013.194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/30/2013] [Indexed: 02/02/2023] Open
Abstract
Importin α (Imα) plays an important role during the shuttling of the HIV-1 preintegration complex (PIC) from the cytoplasm to the nucleus. Imα may bind to the glucocorticoid receptor (GR), which is localized to nucleus following hormone binding. However, it remains unclear whether the binding of dexamethasone (Dex) to GR affects the Imα redistribution and, thus, alters PIC import. In our study, 293T cells were transfected with the lentiviral vector (LV) carrying the luciferase (Luci) gene following Dex or RU486 pretreatment. The Luci activity (LucA) in the Dex or RU486 group was significantly higher compared to that in the control group (P≤0.01). The effects of Dex and RU486 were inhibited by the Imα inhibitor Bimax1 (P≤0.01), although the inhibitory effect of Bimax1 was alleviated by increasing the Dex dose. Furthermore, it was observed that the LucA in the 30-min Dex treatment group was lower compared to that in the 30-min Dex pretreatment group (P≤0.01). These results suggested that Dex may improve PIC import via increasing the cytoplasmic Imα levels. Kunming mice were transfected in vivo with the LV, either 30 min or 15 h following an intraperitoneal injection of Dex. The LucA in the liver of the 30-min group mice was significantly lower compared to that of the 15-h group mice (P≤0.01), suggesting that the effect of Dex on LV infection depends mainly on the suppression of immune and inflammatory responses in vivo. Taken together, our data indicated that the effect of Dex on LV infection may be associated with Imα, constituting a novel signaling pathway mediating the effects of Dex on HIV-1 infection.
Collapse
Affiliation(s)
- Shengchang Deng
- School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ying Zhou
- School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dong Ouyang
- Jiangxi Police College, Nanchang, Jiangxi 330103, P.R. China
| | - Junping Xiong
- School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lei Zhang
- School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Changchun Tu
- School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Keping Zhang
- School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zengliang Song
- Department of Neurosurgery, The Third People's Hospital of Nanchang, Nanchang, Jiangxi 330009, P.R. China
| | - Fanglin Zhang
- School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
26
|
Viral subversion of the nuclear pore complex. Viruses 2013; 5:2019-42. [PMID: 23959328 PMCID: PMC3761240 DOI: 10.3390/v5082019] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/29/2013] [Accepted: 08/08/2013] [Indexed: 12/17/2022] Open
Abstract
The nuclear pore complex (NPC) acts as a selective barrier between the nucleus and the cytoplasm and is responsible for mediating communication by regulating the transport of RNA and proteins. Numerous viral pathogens have evolved different mechanisms to hijack the NPC in order to regulate trafficking of viral proteins, genomes and even capsids into and out of the nucleus thus promoting virus replication. The present review examines the different strategies and the specific nucleoporins utilized during viral infections as a means of promoting their life cycle and inhibiting host viral defenses.
Collapse
|
27
|
Kono K, Takeda E, Tsutsui H, Kuroishi A, Hulme AE, Hope TJ, Nakayama EE, Shioda T. Slower uncoating is associated with impaired replicative capability of simian-tropic HIV-1. PLoS One 2013; 8:e72531. [PMID: 23967315 PMCID: PMC3742594 DOI: 10.1371/journal.pone.0072531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) productively infects only humans and chimpanzees, but not Old World monkeys, such as rhesus and cynomolgus (CM) monkeys. To establish a monkey model of HIV-1/AIDS, several HIV-1 derivatives have been constructed. We previously generated a simian-tropic HIV-1 that replicates efficiently in CM cells. This virus encodes a capsid protein (CA) with SIVmac239-derived loops between α-helices 4 and 5 (L4/5) and between α-helices 6 and 7 (L6/7), along with the entire vif from SIVmac239 (NL-4/5S6/7SvifS). These SIVmac239-derived sequences were expected to protect the virus from HIV-1 restriction factors in monkey cells. However, the replicative capability of NL-4/5S6/7SvifS in human cells was severely impaired. By long-term cultivation of human CEM-SS cells infected with NL-4/5S6/7SvifS, we succeeded in partially rescuing the impaired replicative capability of the virus in human cells. This adapted virus encoded a G-to-E substitution at the 116th position of the CA (NL-4/5SG116E6/7SvifS). In the work described here, we explored the mechanism by which the replicative capability of NL-4/5S6/7SvifS was impaired in human cells. Quantitative analysis (by real-time PCR) of viral DNA synthesis from infected cells revealed that NL-4/5S6/7SvifS had a major defect in nuclear entry. Mutations in CA are known to affect viral core stability and result in deleterious effects in HIV-1 infection; therefore, we measured the kinetics of uncoating of these viruses. The uncoating of NL-4/5S6/7SvifS was significantly slower than that of wild type HIV-1 (WT), whereas the uncoating of NL-4/5SG116E6/7SvifS was similar to that of WT. Our results suggested that the lower replicative capability of NL-4/5S6/7SvifS in human cells was, at least in part, due to the slower uncoating of this virus.
Collapse
Affiliation(s)
- Ken Kono
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Eri Takeda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hiromi Tsutsui
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Ayumu Kuroishi
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Amy E. Hulme
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Thomas J. Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Emi E. Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
28
|
Walker EJ, Younessi P, Fulcher AJ, McCuaig R, Thomas BJ, Bardin PG, Jans DA, Ghildyal R. Rhinovirus 3C protease facilitates specific nucleoporin cleavage and mislocalisation of nuclear proteins in infected host cells. PLoS One 2013; 8:e71316. [PMID: 23951130 PMCID: PMC3737158 DOI: 10.1371/journal.pone.0071316] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/28/2013] [Indexed: 12/18/2022] Open
Abstract
Human Rhinovirus (HRV) infection results in shut down of essential cellular processes, in part through disruption of nucleocytoplasmic transport by cleavage of the nucleoporin proteins (Nups) that make up the host cell nuclear pore. Although the HRV genome encodes two proteases (2A and 3C) able to cleave host proteins such as Nup62, little is known regarding the specific contribution of each. Here we use transfected as well as HRV-infected cells to establish for the first time that 3C protease is most likely the mediator of cleavage of Nup153 during HRV infection, while Nup62 and Nup98 are likely to be targets of HRV2A protease. HRV16 3C protease was also able to elicit changes in the appearance and distribution of the nuclear speckle protein SC35 in transfected cells, implicating it as a key mediator of the mislocalisation of SC35 in HRV16-infected cells. In addition, 3C protease activity led to the redistribution of the nucleolin protein out of the nucleolus, but did not affect nuclear localisation of hnRNP proteins, implying that complete disruption of nucleocytoplasmic transport leading to relocalisation of hnRNP proteins from the nucleus to the cytoplasm in HRV-infected cells almost certainly requires 2A in addition to 3C protease. Thus, a specific role for HRV 3C protease in cleavage and mislocalisation of host cell nuclear proteins, in concert with 2A, is implicated for the first time in HRV pathogenesis.
Collapse
Affiliation(s)
- Erin J. Walker
- Centre for Research in Therapeutic Solutions, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Parisa Younessi
- Centre for Research in Therapeutic Solutions, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Alex J. Fulcher
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Robert McCuaig
- Centre for Research in Therapeutic Solutions, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Belinda J. Thomas
- Monash Institute of Medical Research and Monash Lung & Sleep, Monash Medical Centre, Clayton, Victoria, Australia
| | - Philip G. Bardin
- Monash Institute of Medical Research and Monash Lung & Sleep, Monash Medical Centre, Clayton, Victoria, Australia
| | - David A. Jans
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Reena Ghildyal
- Centre for Research in Therapeutic Solutions, University of Canberra, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
29
|
Structural and functional insights into foamy viral integrase. Viruses 2013; 5:1850-66. [PMID: 23872492 PMCID: PMC3738965 DOI: 10.3390/v5071850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 02/06/2023] Open
Abstract
Successful integration of retroviral DNA into the host chromosome is an essential step for viral replication. The process is mediated by virally encoded integrase (IN) and orchestrated by 3'-end processing and the strand transfer reaction. In vitro reaction conditions, such as substrate specificity, cofactor usage, and cellular binding partners for such reactions by the three distinct domains of prototype foamy viral integrase (PFV-IN) have been described well in several reports. Recent studies on the three-dimensional structure of the interacting complexes between PFV-IN and DNA, cofactors, binding partners, or inhibitors have explored the mechanistic details of such interactions and shown its utilization as an important target to develop anti-retroviral drugs. The presence of a potent, non-transferable nuclear localization signal in the PFV C-terminal domain extends its use as a model for investigating cellular trafficking of large molecular complexes through the nuclear pore complex and also to identify novel cellular targets for such trafficking. This review focuses on recent advancements in the structural analysis and in vitro functional aspects of PFV-IN.
Collapse
|
30
|
Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication. Virology 2013; 440:8-18. [PMID: 23523133 DOI: 10.1016/j.virol.2013.02.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/31/2013] [Accepted: 02/02/2013] [Indexed: 12/13/2022]
Abstract
The early steps of HIV-1 replication involve the entry of HIV-1 into the nucleus, which is characterized by viral interactions with nuclear pore components. HIV-1 developed an evolutionary strategy to usurp the nuclear pore machinery and chromatin in order to integrate and efficiently express viral genes. In the current work, we studied the role of nucleoporins 153 and 98 (Nup153 and Nup98) in infection of human Jurkat lymphocytes by HIV-1. We showed that Nup153-depleted cells exhibited a defect in nuclear import, while depletion of Nup 98 caused a slight defect in HIV integration. To explore the biochemical viral determinants for the requirement of Nup153 and Nup98 during HIV-1 infection, we tested the ability of these nucleoporins to interact with HIV-1 cores. Our findings showed that both nucleoporins bind HIV-1 cores suggesting that this interaction is important for HIV-1 nuclear import and/or integration. Distribution analysis of integration sites in Nup153-depleted cells revealed a reduced tendency of HIV-1 to integrate in intragenic sites, which in part could account for the large infectivity defect observed in Nup153-depleted cells. Our work strongly supports a role for Nup153 in HIV-1 nuclear import and integration.
Collapse
|
31
|
Larue R, Gupta K, Wuensch C, Shkriabai N, Kessl JJ, Danhart E, Feng L, Taltynov O, Christ F, Van Duyne GD, Debyser Z, Foster MP, Kvaratskhelia M. Interaction of the HIV-1 intasome with transportin 3 protein (TNPO3 or TRN-SR2). J Biol Chem 2012; 287:34044-58. [PMID: 22872640 PMCID: PMC3464514 DOI: 10.1074/jbc.m112.384669] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/01/2012] [Indexed: 01/14/2023] Open
Abstract
Transportin 3 (TNPO3 or TRN-SR2) has been shown to be an important cellular factor for early steps of lentiviral replication. However, separate studies have implicated distinct mechanisms for TNPO3 either through its interaction with HIV-1 integrase or capsid. Here we have carried out a detailed biophysical characterization of TNPO3 and investigated its interactions with viral proteins. Biophysical analyses including circular dichroism, analytical ultracentrifugation, small-angle x-ray scattering, and homology modeling provide insight into TNPO3 architecture and indicate that it is highly structured and exists in a monomer-dimer equilibrium in solution. In vitro biochemical binding assays argued against meaningful direct interaction between TNPO3 and the capsid cores. Instead, TNPO3 effectively bound to the functional intasome but not to naked viral DNA, suggesting that TNPO3 can directly engage the HIV-1 IN tetramer prebound to the cognate DNA. Mass spectrometry-based protein footprinting and site-directed mutagenesis studies have enabled us to map several interacting amino acids in the HIV-1 IN C-terminal domain and the cargo binding domain of TNPO3. Our findings provide important information for future genetic analysis to better understand the role of TNPO3 and its interacting partners for HIV-1 replication.
Collapse
Affiliation(s)
- Ross Larue
- From the Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy and
| | - Kushol Gupta
- the Department of Biochemistry and Biophysics and The Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Christiane Wuensch
- From the Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy and
| | - Nikolozi Shkriabai
- From the Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy and
| | - Jacques J. Kessl
- From the Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy and
| | - Eric Danhart
- the Department of Chemistry,The Ohio State University, Columbus, Ohio 43210
| | - Lei Feng
- From the Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy and
| | - Oliver Taltynov
- the Division of Molecular Medicine, Katholieke Universiteit Leuven, Leuven, Flanders 3000, Belgium
| | - Frauke Christ
- the Division of Molecular Medicine, Katholieke Universiteit Leuven, Leuven, Flanders 3000, Belgium
| | - Gregory D. Van Duyne
- the Department of Biochemistry and Biophysics and The Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Zeger Debyser
- the Division of Molecular Medicine, Katholieke Universiteit Leuven, Leuven, Flanders 3000, Belgium
| | - Mark P. Foster
- the Department of Chemistry,The Ohio State University, Columbus, Ohio 43210
| | - Mamuka Kvaratskhelia
- From the Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy and
| |
Collapse
|
32
|
Abstract
Retroviral infections cause a variety of cancers in animals and a number of diverse diseases in humans such as leukemia and acquired immune deficiency syndrome. Productive and efficient proviral integration is critical for retroviral function and is the key step in establishing a stable and productive infection, as well as the mechanism by which host genes are activated in leukemogenesis. Host factors are widely anticipated to be involved in all stages of the retroviral life cycle, and the identification of integrase interacting factors has the potential to increase our understanding of mechanisms by which the incoming virus might appropriate cellular proteins to target and capture host DNA sequences. Identification of MoMLV integrase interacting host factors may be key to designing efficient and benign retroviral-based gene therapy vectors; key to understanding the basic mechanism of integration; and key in designing efficient integrase inhibitors. In this review, we discuss current progress in the field of MoMLV integrase interacting proteins and possible roles for these proteins in integration.
Collapse
|
33
|
Santos S, Obukhov Y, Nekhai S, Bukrinsky M, Iordanskiy S. Virus-producing cells determine the host protein profiles of HIV-1 virion cores. Retrovirology 2012; 9:65. [PMID: 22889230 PMCID: PMC3432596 DOI: 10.1186/1742-4690-9-65] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/15/2012] [Indexed: 11/10/2022] Open
Abstract
Background Upon HIV entry into target cells, viral cores are released and rearranged into reverse transcription complexes (RTCs), which support reverse transcription and also protect and transport viral cDNA to the site of integration. RTCs are composed of viral and cellular proteins that originate from both target and producer cells, the latter entering the target cell within the viral core. However, the proteome of HIV-1 viral cores in the context of the type of producer cells has not yet been characterized. Results We examined the proteomic profiles of the cores purified from HIV-1 NL4-3 virions assembled in Sup-T1 cells (T lymphocytes), PMA and vitamin D3 activated THP1 (model of macrophages, mMΦ), and non-activated THP1 cells (model of monocytes, mMN) and assessed potential involvement of identified proteins in the early stages of infection using gene ontology information and data from genome-wide screens on proteins important for HIV-1 replication. We identified 202 cellular proteins incorporated in the viral cores (T cells: 125, mMΦ: 110, mMN: 90) with the overlap between these sets limited to 42 proteins. The groups of RNA binding (29), DNA binding (17), cytoskeleton (15), cytoskeleton regulation (21), chaperone (18), vesicular trafficking-associated (12) and ubiquitin-proteasome pathway-associated proteins (9) were most numerous. Cores of the virions from SupT1 cells contained twice as many RNA binding proteins as cores of THP1-derived virus, whereas cores of virions from mMΦ and mMN were enriched in components of cytoskeleton and vesicular transport machinery, most probably due to differences in virion assembly pathways between these cells. Spectra of chaperones, cytoskeletal proteins and ubiquitin-proteasome pathway components were similar between viral cores from different cell types, whereas DNA-binding and especially RNA-binding proteins were highly diverse. Western blot analysis showed that within the group of overlapping proteins, the level of incorporation of some RNA binding (RHA and HELIC2) and DNA binding proteins (MCM5 and Ku80) in the viral cores from T cells was higher than in the cores from both mMΦ and mMN and did not correlate with the abundance of these proteins in virus producing cells. Conclusions Profiles of host proteins packaged in the cores of HIV-1 virions depend on the type of virus producing cell. The pool of proteins present in the cores of all virions is likely to contain factors important for viral functions. Incorporation ratio of certain RNA- and DNA-binding proteins suggests their more efficient, non-random packaging into virions in T cells than in mMΦ and mMN.
Collapse
Affiliation(s)
- Steven Santos
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall, Washington, DC 20037, USA
| | | | | | | | | |
Collapse
|
34
|
Cellular cofactors of lentiviral integrase: from target validation to drug discovery. Mol Biol Int 2012; 2012:863405. [PMID: 22928108 PMCID: PMC3420096 DOI: 10.1155/2012/863405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/03/2012] [Accepted: 06/27/2012] [Indexed: 01/30/2023] Open
Abstract
To accomplish their life cycle, lentiviruses make use of host proteins, the so-called cellular cofactors. Interactions between host cell and viral proteins during early stages of lentiviral infection provide attractive new antiviral targets. The insertion of lentiviral cDNA in a host cell chromosome is a step of no return in the replication cycle, after which the host cell becomes a permanent carrier of the viral genome and a producer of lentiviral progeny. Integration is carried out by integrase (IN), an enzyme playing also an important role during nuclear import. Plenty of cellular cofactors of HIV-1 IN have been proposed. To date, the lens epithelium-derived growth factor (LEDGF/p75) is the best studied cofactor of HIV-1 IN. Moreover, small molecules that block the LEDGF/p75-IN interaction have recently been developed for the treatment of HIV infection. The nuclear import factor transportin-SR2 (TRN-SR2) has been proposed as another interactor of HIV IN-mediating nuclear import of the virus. Using both proteins as examples, we will describe approaches to be taken to identify and validate novel cofactors as new antiviral targets. Finally, we will highlight recent advances in the design and the development of small-molecule inhibitors binding to the LEDGF/p75-binding pocket in IN (LEDGINs).
Collapse
|
35
|
De Houwer S, Demeulemeester J, Thys W, Taltynov O, Zmajkovicova K, Christ F, Debyser Z. Identification of residues in the C-terminal domain of HIV-1 integrase that mediate binding to the transportin-SR2 protein. J Biol Chem 2012; 287:34059-68. [PMID: 22872638 DOI: 10.1074/jbc.m112.387944] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transportin-SR2 (TRN-SR2 and TNPO3) is a cellular cofactor of HIV replication that has been implicated in the nuclear import of HIV. TRN-SR2 was originally identified in a yeast two-hybrid screen as an interaction partner of HIV integrase (IN) and in two independent siRNA screens as a cofactor of viral replication. We have now studied the interaction of TRN-SR2 and HIV IN in molecular detail and identified the TRN-SR2 interacting regions of IN. A weak interaction with the catalytic core domain (CCD) and a strong interaction with the C-terminal domain (CTD) of IN were detected. By dissecting the catalytic core domain (CCD) of IN into short structural fragments, we identified a peptide (INIP(1), amino acids (170)EHLKTAVQMAVFIHNFKRKGGI(191)) retaining the ability to interact with TRN-SR2. By dissecting the C-terminal domain (CTD) of IN, we could identify two interacting peptides (amino acids (214)QKQITKIQNFRVYYR(228) and (262)RRKVKIIRDYGK(273)) that come together in the CTD tertiary structure to form an exposed antiparallel β-sheet. Through site-specific mutagenesis, we defined the following sets of amino acids in IN as important for the interaction with TRN-SR2: Phe-185/Lys-186/Arg-187/Lys-188 in the CCD and Arg-262/Arg-263/Lys-264 and Lys-266/Arg-269 in the CTD. An HIV-1 strain carrying K266A/R269A in IN was replication-defective due to a block in reverse transcription, confounding the study of nuclear import. Insight into the IN/TRN-SR2 interaction interface is necessary to guide drug discovery efforts targeting the nuclear entry step of replication.
Collapse
Affiliation(s)
- Stephanie De Houwer
- Laboratory for Molecular Virology and Gene Therapy, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
36
|
The Role of TNPO3 in HIV-1 Replication. Mol Biol Int 2012; 2012:868597. [PMID: 22888429 PMCID: PMC3409535 DOI: 10.1155/2012/868597] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 12/12/2022] Open
Abstract
TNPO3, transportin-SR2 or Tnp3, a member of the karyopherin β superfamily of proteins, is important for the ability of human immunodeficiency virus (HIV-1) to achieve productive infection, as TNPO3 depletion in human cells leads to a dramatic reduction of infection. Here we describe and discuss recent findings suggesting that TNPO3 assists HIV-1 replication in the nucleus and in fact that TNPO3 may assist PIC maturation in the nucleus. In addition, the viral determinant for the requirement of TNPO3 in HIV-1 infection is discussed. This paper summarizes the most significant recent discoveries about this important host factor and its role in HIV-1 replication.
Collapse
|
37
|
Levin A, Hayouka Z, Friedler A, Loyter A. Transportin 3 and importin α are required for effective nuclear import of HIV-1 integrase in virus-infected cells. Nucleus 2012; 1:422-31. [PMID: 21326825 DOI: 10.4161/nucl.1.5.12903] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/02/2010] [Accepted: 07/07/2010] [Indexed: 01/25/2023] Open
Abstract
Unlike other retroviruses, human immunodeficiency virus type-1 (HIV-1) can infect terminally differentiated cells, due to the ability of its pre-integration complex (PIC) to translocate via the host nuclear pore complex (NPC). The PIC Nuclear import has been suggested to be mediated by the viral integrase protein (IN), via either the importin α or transportin 3 (TNPO3/transportin-SR2) pathways.We show that in virus-infected cells, IN interacts with both importin α and TNPO3, simultaneously or separately, suggesting a multiple use of nuclear import pathways. Disruption of either the IN-importin α or IN-TNPO3 complexes in virus-infected cells by specific cell-permeable-peptides resulted in inhibition of IN and viral cDNA nuclear import. Here we show that peptides which disrupt either one of these complexes block virus infection, indicating involvement of both pathways in efficient viral replication. Formation of IN-importin α and IN-TNPO3 complexes has also been observed in IN-transfected cultured cells. Using specific peptides, we demonstrate that in transfected cells but not in virus infected cells the importin α pathway overrides that of TNPO3. The IN-importin α and IN-TNPO3 complexes were not observed in virus-infected Rev-expressing cells, indicating the Rev protein's ability to disrupt both complexes.Our work suggests that IN nuclear import requires the involvement of both importin α and TNPO3. The ability to inhibit nuclear import of the IN-DNA complex and consequently, virus infection by peptides that interrupt IN's interaction with either importin α or TNPO3 indicates that for efficient infection, nuclear import of IN should be mediated by both nuclear-import receptors.
Collapse
Affiliation(s)
- Aviad Levin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
38
|
Caly L, Wagstaff KM, Jans DA. Nuclear trafficking of proteins from RNA viruses: potential target for antivirals? Antiviral Res 2012; 95:202-6. [PMID: 22750233 DOI: 10.1016/j.antiviral.2012.06.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/08/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
Abstract
A key aspect of the infectious cycle of many viruses is the transport of specific viral proteins into the host cell nucleus to perturb the antiviral response. Examples include a number of RNA viruses that are significant human pathogens, such as human immunodeficiency virus (HIV)-1, influenza A, dengue, respiratory syncytial virus and rabies, as well agents that predominantly infect livestock, such as Rift valley fever virus and Venezuelan equine encephalitis virus. Inhibiting the nuclear trafficking of viral proteins as a therapeutic strategy offers an attractive possibility, with important recent progress having been made with respect to HIV-1 and dengue. The results validate nuclear protein import as an antiviral target, and suggest the identification and development of nuclear transport inhibitors as a viable therapeutic approach for a range of human and zoonotic pathogenic viruses.
Collapse
Affiliation(s)
- Leon Caly
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, VIC, Australia
| | | | | |
Collapse
|
39
|
Paterson CP, Ayalew LE, Tikoo SK. Mapping of nuclear import signal and importin α3 binding regions of 52K protein of bovine adenovirus-3. Virology 2012; 432:63-72. [PMID: 22739443 DOI: 10.1016/j.virol.2012.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/24/2012] [Accepted: 05/24/2012] [Indexed: 11/19/2022]
Abstract
The L1 region of bovine adenovirus (BAdV)-3 encodes a non-structural protein designated 52K. Anti-52K serum detected a protein of 40kDa, which localized to the nucleus but not to the nucleolus in BAdV-3-infected or transfected cells. Analysis of mutant 52K proteins suggested that three basic residues ((105)RKR(107)) of the identified domain (amino acids (102)GMPRKRVLT(110)) are essential for nuclear localization of 52K. The nuclear import of a GST-52K fusion protein utilizes the classical importin α/β-dependent nuclear transport pathway. The 52K protein is preferentially bound to the cellular nuclear import receptor importin α3. Although deletion of amino acid 102-110 is sufficient to abrogate the nuclear localization of 52K, amino acid 90-133 are required for interaction with importin-α3 and localizing a cytoplasmic protein to the nucleus. These results suggest that 52K contains a bipartite NLS, which preferentially utilize an importin α3 nuclear import receptor-mediated pathway to transport 52K to the nucleus.
Collapse
Affiliation(s)
- Carolyn P Paterson
- Vaccine & Infectious Disease Organization-International Vaccine Center, University of Saskatchewan, Saskatoon, SK S7N 5E3 Canada
| | | | | |
Collapse
|
40
|
Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem J 2012; 443:851-6. [PMID: 22417684 PMCID: PMC3327999 DOI: 10.1042/bj20120150] [Citation(s) in RCA: 484] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The movement of proteins between the cytoplasm and nucleus mediated by the importin superfamily of proteins is essential to many cellular processes, including differentiation and development, and is critical to disease states such as viral disease and oncogenesis. We recently developed a high-throughput screen to identify specific and general inhibitors of protein nuclear import, from which ivermectin was identified as a potential inhibitor of importin α/β-mediated transport. In the present study, we characterized in detail the nuclear transport inhibitory properties of ivermectin, demonstrating that it is a broad-spectrum inhibitor of importin α/β nuclear import, with no effect on a range of other nuclear import pathways, including that mediated by importin β1 alone. Importantly, we establish for the first time that ivermectin has potent antiviral activity towards both HIV-1 and dengue virus, both of which are strongly reliant on importin α/β nuclear import, with respect to the HIV-1 integrase and NS5 (non-structural protein 5) polymerase proteins respectively. Ivermectin would appear to be an invaluable tool for the study of protein nuclear import, as well as the basis for future development of antiviral agents.
Collapse
|
41
|
Jayappa KD, Ao Z, Yao X. The HIV-1 passage from cytoplasm to nucleus: the process involving a complex exchange between the components of HIV-1 and cellular machinery to access nucleus and successful integration. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 3:70-85. [PMID: 22509482 PMCID: PMC3325773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/22/2012] [Indexed: 05/31/2023]
Abstract
The human immunodeficiency virus 1 (HIV-1) synthesizes its genomic DNA in cytoplasm as soon as it enters the cell. The newly synthesized DNA remains associated with viral/cellular proteins as a high molecular weight pre-integration complex (PIC), which precludes passive diffusion across intact nuclear membrane. However, HIV-1 successfully overcomes nuclear membrane barrier by actively delivering its DNA into nucleus with the help of host nuclear import machinery. Such ability allows HIV-1 to productively infect non-dividing cells as well as dividing cells at interphase. Further, HIV-1 nuclear import is also found important for the proper integration of viral DNA. Thus, nuclear import plays a crucial role in establishment of infection and disease progression. While several viral components, including matrix, viral protein R, integrase, capsid, and central DNA flap are implicated in HIV-1 nuclear import, their molecular mechanism remains poorly understood. In this review, we will elaborate the role of individual viral factors and some of current insights on their molecular mechanism(s) associated with HIV-1 nuclear import. In addition, we will discuss the importance of nuclear import for subsequent step of viral DNA integration. Hereby we aim to further our understanding on molecular mechanism of HIV-1 nuclear import and its potential usefulness for anti-HIV-1 strategies.
Collapse
Affiliation(s)
- Kallesh Danappa Jayappa
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba Winnipeg, MB, Canada
| | | | | |
Collapse
|
42
|
Cribier A, Ségéral E, Delelis O, Parissi V, Simon A, Ruff M, Benarous R, Emiliani S. Mutations affecting interaction of integrase with TNPO3 do not prevent HIV-1 cDNA nuclear import. Retrovirology 2011; 8:104. [PMID: 22176773 PMCID: PMC3286403 DOI: 10.1186/1742-4690-8-104] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/16/2011] [Indexed: 12/23/2022] Open
Abstract
Background Integration of human immunodeficiency virus type 1 (HIV-1) into a host cell chromosome is an essential step under the control of the viral integrase (IN). Although this enzyme is necessary and sufficient to catalyze the integration reaction in vitro, cellular cofactors are involved in the process in vivo. The chromatin-associated factor LEDGF/p75 interacts with IN and promotes integration to transcription units of the host genome. HIV-1 IN also binds the karyopherin TNPO3, however the significance of this interaction during viral replication remains to be explored. Results Here we present a functional analysis of IN mutants impaired for LEDGF/p75 and TNPO3 interaction. Among them, IN W131A and IN Q168L, that were previously identified to be deficient for LEDGF/p75 interaction, were also partially impaired for TNPO3 binding. We observed that mutations abolishing IN ability to form tetramers resulted in a severe reduction in LEDGF/p75 binding. In sharp contrast, no correlation could be found between the ability of IN to multimerize and TNPO3 interaction. Most of the mutant viruses were essentially impaired for the integration step whereas the amount of 2-LTR circles, reflecting the nuclear import of the viral DNA, was not significantly affected. Conclusion Our functional analysis of HIV-1 IN mutants reveals distinct structural basis for TNPO3 interaction and suggests that the interaction between IN and TNPO3 is not a major determinant of nuclear import but could take place at a nuclear step prior to integration.
Collapse
|
43
|
De Iaco A, Luban J. Inhibition of HIV-1 infection by TNPO3 depletion is determined by capsid and detectable after viral cDNA enters the nucleus. Retrovirology 2011; 8:98. [PMID: 22145813 PMCID: PMC3267670 DOI: 10.1186/1742-4690-8-98] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/06/2011] [Indexed: 01/01/2023] Open
Abstract
Background HIV-1 infects non-dividing cells. This implies that the virus traverses the nuclear pore before it integrates into chromosomal DNA. Recent studies demonstrated that TNPO3 is required for full infectivity of HIV-1. The fact that TNPO3 is a karyopherin suggests that it acts by directly promoting nuclear entry of HIV-1. Some studies support this hypothesis, while others have failed to do so. Additionally, some studies suggest that TNPO3 acts via HIV-1 Integrase (IN), and others indicate that it acts via capsid (CA). Results To shed light on the mechanism by which TNPO3 contributes to HIV-1 infection we engineered a panel of twenty-seven single-cycle HIV-1 vectors each bearing a different CA mutation and characterized them for the ability to transduce cells in which TNPO3 had been knocked down (KD). Fourteen CA mutants were relatively TNPO3-independent, as compared to wild-type (WT) HIV-1. Two mutants were more TNPO3-dependent than the WT, and eleven mutants were actually inhibited by TNPO3. The efficiency of the synthesis of viral cDNA, 2-LTR circles, and proviral DNA was then assessed for WT HIV-1 and three select CA mutants. Controls included rescue of TNPO3 KD with non-targetable coding sequence, RT- and IN- mutant viruses, and pharmacologic inhibitors of RT and IN. TNPO3 KD blocked transduction and establishment of proviral DNA by wild-type HIV-1 with no significant effect on the level of 2-LTR circles. PCR results were confirmed by achieving TNPO3 KD using two different methodologies (lentiviral vector and siRNA oligonucleotide transfection); by challenging three different cell types; by using two different challenge viruses, each necessitating different sets of PCR primers; and by pseudotyping virus with VSV G or using HIV-1 Env. Conclusion TNPO3 promotes HIV-1 infectivity at a step in the virus life cycle that is detectable after the preintegration complex arrives in the nucleus and CA is the viral determinant for TNPO3 dependence.
Collapse
Affiliation(s)
- Alberto De Iaco
- Department of Microbiology and Molecular Medicine, University of Geneva, 1 Rue Michel Servet, CH-1211 Geneva, Switzerland
| | | |
Collapse
|
44
|
Identification of critical motifs within HIV-1 integrase required for importin α3 interaction and viral cDNA nuclear import. J Mol Biol 2011; 410:847-62. [PMID: 21763491 DOI: 10.1016/j.jmb.2011.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 12/29/2022]
Abstract
The viral cDNA nuclear import is an important requirement for human immunodeficiency virus type 1 (HIV-1) replication in dividing and nondividing cells. Our recent study identified a specific interaction of importin α3 (Impα3) with HIV-1 integrase (IN) and its involvement in viral cDNA nuclear import. In this study, we have performed a more detailed investigation on the molecular mechanism of how HIV-1 IN interacts with Impα3. Our results revealed a reduced interaction between the two IN mutants INKK215,9AA (IN215,9) and INRK263,4AA (IN263,4) with Impα3, while an IN double mutant, IN215,9/263,4, was severely impaired for its Impα3-binding ability, even though it was still found interacting with other cofactors, IN interactor I and Transportin3. Immunostaining and fractionation analysis have shown that YFP-IN215,9/263,4 failed to localize in the nucleus of transfected cells. Also, we found that both major and minor nuclear localization signal binding grooves of Impα3 are involved in interaction with IN. All of these results suggest a cargo protein-import receptor type of interaction. Finally, the effect of IN215,9/263,4 mutations on HIV-1 replication was evaluated, and real-time quantitative PCR analysis showed that, while mutant virus (v215,9/263,4) had a slightly lowered total viral DNA, the 2-long-terminal-repeat DNA, a marker for nuclear import, was greatly reduced during v215,9/263,4 infection in both dividing and nondividing cells. Also, by cell fractionation assay, we found that a significant proportion of viral cDNA was still retained in cytoplasmic fraction of v215,9/263,4-infected cells. Overall, our study provides strong evidence that (211)KELQKQITK and (262)RRKAK regions of IN C-terminal domain are required for Impα3 interaction and HIV-1 cDNA nuclear import.
Collapse
|
45
|
Ly-Huynh JD, Lieu KG, Major AT, Whiley PAF, Holt JE, Loveland KL, Jans DA. Importin alpha2-interacting proteins with nuclear roles during mammalian spermatogenesis. Biol Reprod 2011; 85:1191-202. [PMID: 21900684 DOI: 10.1095/biolreprod.111.091686] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Spermatogenesis, the process of generating haploid sperm capable of fertilizing the female gamete, requires the timely transport into the nucleus of transcription and chromatin-remodeling factors, mediated by members of the importin (IMP) superfamily. Previous IMP expression profiling implies a role for IMPalpha2 in testicular germ cells late in spermatogenesis. To identify interacting proteins of IMPalpha2 that are potential drivers of germ cell development, we performed yeast two-hybrid screening of an adult mouse testis library. IMPalpha2 interactions were verified by coimmunoprecipitation approaches, whereas immunohistochemical staining of testis sections confirmed their coexpression with IMPalpha2 in specific testicular cell types. Key interactors identified were a novel isoform of a cysteine and histidine rich protein (Chrp), a protein inhibitor of activated STAT (PIAS) family member involved in transcriptional regulation and sumoylation, Androgen receptor interacting protein 3 (Arip3), and Homologous protein 2 (Hop2), known to be involved in homologous chromosome pairing and recombination, all of which are highly expressed in the testis and show mRNA expression profiles similar to that of IMPalpha2 throughout testicular development. This is the first study to identify binding partners of IMPalpha2 in the developmental context of germ line development, and we propose that the regulated expression and timely IMPalpha2-mediated nuclear transport of these proteins may coordinate events during spermatogenesis, with IMPalpha2-mediated nuclear localization representing a potentially critical developmental switch in the testis.
Collapse
Affiliation(s)
- Jennifer D Ly-Huynh
- Nuclear Signalling Laboratory, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
46
|
Coupling viruses to dynein and kinesin-1. EMBO J 2011; 30:3527-39. [PMID: 21878994 DOI: 10.1038/emboj.2011.283] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/21/2011] [Indexed: 12/13/2022] Open
Abstract
It is now clear that transport on microtubules by dynein and kinesin family motors has an important if not critical role in the replication and spread of many different viruses. Understanding how viruses hijack dynein and kinesin motors using a limited repertoire of proteins offers a great opportunity to determine the molecular basis of motor recruitment. In this review, we discuss the interactions of dynein and kinesin-1 with adenovirus, the α herpes viruses: herpes simplex virus (HSV1) and pseudorabies virus (PrV), human immunodeficiency virus type 1 (HIV-1) and vaccinia virus. We highlight where the molecular links to these opposite polarity motors have been defined and discuss the difficulties associated with identifying viral binding partners where the basis of motor recruitment remains to be established. Ultimately, studying microtubule-based motility of viruses promises to answer fundamental questions as to how the activity and recruitment of the dynein and kinesin-1 motors are coordinated and regulated during bi-directional transport.
Collapse
|
47
|
Friedrich BM, Dziuba N, Li G, Endsley MA, Murray JL, Ferguson MR. Host factors mediating HIV-1 replication. Virus Res 2011; 161:101-14. [PMID: 21871504 DOI: 10.1016/j.virusres.2011.08.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 10/17/2022]
Abstract
Human immunodeficiency virus type 1(HIV-1) infection is the leading cause of death worldwide in adults attributable to infectious diseases. Although the majority of infections are in sub-Saharan Africa and Southeast Asia, HIV-1 is also a major health concern in most countries throughout the globe. While current antiretroviral treatments are generally effective, particularly in combination therapy, limitations exist due to drug resistance occurring among the drug classes. Traditionally, HIV-1 drugs have targeted viral proteins, which are mutable targets. As cellular genes mutate relatively infrequently, host proteins may prove to be more durable targets than viral proteins. HIV-1 replication is dependent upon cellular proteins that perform essential roles during the viral life cycle. Maraviroc is the first FDA-approved antiretroviral drug to target a cellular factor, HIV-1 coreceptor CCR5, and serves to intercept viral-host protein-protein interactions mediating entry. Recent large-scale siRNA and shRNA screens have revealed over 1000 candidate host factors that potentially support HIV-1 replication, and have implicated new pathways in the viral life cycle. These host proteins and cellular pathways may represent important targets for future therapeutic discoveries. This review discusses critical cellular factors that facilitate the successive steps in HIV-1 replication.
Collapse
Affiliation(s)
- Brian M Friedrich
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas 77555-0435, United States.
| | | | | | | | | | | |
Collapse
|
48
|
Taouji S, Dahan S, Bossé R, Chevet E. Current Screens Based on the AlphaScreen Technology for Deciphering Cell Signalling Pathways. Curr Genomics 2011; 10:93-101. [PMID: 19794881 PMCID: PMC2699825 DOI: 10.2174/138920209787847041] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 01/08/2009] [Accepted: 01/20/2009] [Indexed: 11/22/2022] Open
Abstract
Global deciphering of signal transduction pathways represents a new challenge of the post-genomic era. However, for the majority of these signaling pathways the role(s), the function(s) and the interaction(s) of the signaling intermediates remain to be characterized in an integrated fashion. The global molecular study of cell signaling pathways and networks consequently requires sensitive, robust technologies which may allow in addition multi-parallel and highthroughput applications. The Alphascreen™ technology, relying on a bead-based homogenous approach, constitutes a valuable tool to detect and quantify a wide range of signaling events such as enzymatic activities or biomolecular interactions. In this article, we exhaustively review the literature and report the broad spectrum of Alphascreen™-based applications in the study of signal transduction pathways.
Collapse
|
49
|
Wagstaff KM, Rawlinson SM, Hearps AC, Jans DA. An AlphaScreen®-based assay for high-throughput screening for specific inhibitors of nuclear import. ACTA ACUST UNITED AC 2011; 16:192-200. [PMID: 21297106 DOI: 10.1177/1087057110390360] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Specific viral proteins enter the nucleus of infected cells to perform essential functions, as part of the viral life cycle. The integrase (IN) molecule of human immunodeficiency virus (HIV)-1 is of particular interest in this context due to its integral role in integrating the HIV genome into that of the infected host cell. Most IN-based antiviral compounds target the IN/DNA interaction, but since IN must first enter the nucleus before it can perform these critical functions, nuclear transport of IN is also an attractive target for therapeutic intervention. Here the authors describe a novel high-throughput screening assay for identifying inhibitors of nuclear import, particularly IN, based on amplified luminescent proximity homogeneous assay (AlphaScreen(®)) technology, which is high throughput, requires low amounts of material, and is efficient and cost-effective. The authors use the assay to screen for specific inhibitors of the interaction between IN and its nuclear transport receptor importin α/β, successfully identifying several inhibitors of the IN/importin α/β interaction. Importantly, they demonstrate that one of the identified compounds, mifepristone, is effective in preventing active nuclear transport of IN in transfected cells and hence may represent a useful anti-HIV therapeutic. The screen also identified broad-spectrum importin α/β inhibitors such as ivermectin, which may represent useful tools for nuclear transport research in the future. The authors validate the activity and specificity of mifepristone and ivermectin in inhibiting nuclear protein import in living cells, underlining the utility of the screening approach.
Collapse
Affiliation(s)
- Kylie M Wagstaff
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
50
|
Thys W, De Houwer S, Demeulemeester J, Taltynov O, Vancraenenbroeck R, Gérard M, De Rijck J, Gijsbers R, Christ F, Debyser Z. Interplay between HIV entry and transportin-SR2 dependency. Retrovirology 2011; 8:7. [PMID: 21276267 PMCID: PMC3041740 DOI: 10.1186/1742-4690-8-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 01/30/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Transportin-SR2 (TRN-SR2, TNPO3, transportin 3) was previously identified as an interaction partner of human immunodeficiency virus type 1 (HIV-1) integrase and functions as a nuclear import factor of HIV-1. A possible role of capsid in transportin-SR2-mediated nuclear import was recently suggested by the findings that a chimeric HIV virus, carrying the murine leukemia virus (MLV) capsid and matrix proteins, displayed a transportin-SR2 independent phenotype, and that the HIV-1 N74D capsid mutant proved insensitive to transportin-SR2 knockdown. RESULTS Our present analysis of viral specificity reveals that TRN-SR2 is not used to the same extent by all lentiviruses. The DNA flap does not determine the TRN-SR2 requirement of HIV-1. We corroborate the TRN-SR2 independent phenotype of the chimeric HIV virus carrying the MLV capsid and matrix proteins. We reanalyzed the HIV-1 N74D capsid mutant in cells transiently or stably depleted of transportin-SR2 and confirm that the N74D capsid mutant is independent of TRN-SR2 when pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G). Remarkably, although somewhat less dependent on TRN-SR2 than wild type virus, the N74D capsid mutant carrying the wild type HIV-1 envelope required TRN-SR2 for efficient replication. By pseudotyping with envelopes that mediate pH-independent viral uptake including HIV-1, measles virus and amphotropic MLV envelopes, we demonstrate that HIV-1 N74D capsid mutant viruses retain partial dependency on TRN-SR2. However, this dependency on TRN-SR2 is lost when the HIV N74D capsid mutant is pseudotyped with envelopes mediating pH-dependent endocytosis, such as the VSV-G and Ebola virus envelopes. CONCLUSION Here we discover a link between the viral entry of HIV and its interaction with TRN-SR2. Our data confirm the importance of TRN-SR2 in HIV-1 replication and argue for careful interpretation of experiments performed with VSV-G pseudotyped viruses in studies on early steps of HIV replication including the role of capsid therein.
Collapse
Affiliation(s)
- Wannes Thys
- Laboratory of Molecular Virology and Gene Therapy, Katholieke Universiteit Leuven, Kapucijnenvoer 33, VCTB+5, B-3000 Leuven, Flanders, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|