1
|
Tang J, Deng H, Wang Z, Zha H, Liao Q, Zhu C, Chen X, Sun X, Jia S, Ouyang G, Liu X, Xiao W. EGLN1 prolyl hydroxylation of hypoxia-induced transcription factor HIF1α is repressed by SET7-catalyzed lysine methylation. J Biol Chem 2022; 298:101961. [PMID: 35452683 PMCID: PMC9123262 DOI: 10.1016/j.jbc.2022.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022] Open
Abstract
Egg laying defective nine 1 (EGLN1) functions as an oxygen sensor to catalyze prolyl hydroxylation of the transcription factor hypoxia-inducible factor-1 α (HIF1α) under normoxia conditions, leading to its proteasomal degradation. Thus, EGLN1 plays a central role in the HIF-mediated hypoxia signaling pathway; however, the post-translational modifications that control EGLN1 function remain largely unknown. Here, we identified that a lysine monomethylase, SET7, catalyzes EGLN1 methylation on lysine 297, resulting in the repression of EGLN1 activity in catalyzing prolyl hydroxylation of HIF1α. Notably, we demonstrate that the methylation mimic mutant of EGLN1 loses the capability to suppress the hypoxia signaling pathway, leading to the enhancement of cell proliferation and the oxygen consumption rate. Collectively, our data identify a novel modification of EGLN1 that is critical for inhibiting its enzymatic activity, and which may benefit cellular adaptation to conditions of hypoxia.
Collapse
Affiliation(s)
- Jinhua Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongyan Deng
- College of Life Science, Wuhan University, Wuhan, 430072, P. R. China
| | - Zixuan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huangyuan Zha
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences
| | - Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoyun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xueyi Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuke Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, P. R. China.
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, 100049, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, P. R. China; Hubei Hongshan Laboratory, Wuhan, 430070, P. R. China.
| |
Collapse
|
2
|
Cappabianca L, Farina AR, Di Marcotullio L, Infante P, De Simone D, Sebastiano M, Mackay AR. Discovery, characterization and potential roles of a novel NF-YAx splice variant in human neuroblastoma. J Exp Clin Cancer Res 2019; 38:482. [PMID: 31805994 PMCID: PMC6896337 DOI: 10.1186/s13046-019-1481-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Identification of novel cancer-associated splice variants is of potential diagnostic, prognostic and therapeutic importance. NF-Y transcription factor is comprised of NF-YA, NF-YB and NF-YC subunits, binds inverted CCAAT-boxes in ≈70% of gene promoters, regulates > 1000 cancer-associated genes and proteins involved in proliferation, staminality, differentiation, apoptosis, metabolism and is subject to component alternative splicing. RT-PCR evaluation of alternative NF-YA splicing in primary human neuroblastomas (NBs), led to discovery of a novel NF-YAx splice variant, also expressed during mouse embryo development and induced by doxorubicin in NB cells. Here, we report the discovery and characterisation of NF-YAx and discus its potential roles in NB. METHODS NF-YAx cDNA was RT-PCR-cloned from a stage 3 NB (provided by the Italian Association of Haematology and Paediatric Oncology, Genova, IT), sequenced and expressed as a protein using standard methods and compared to known fully-spliced NF-YAl and exon B-skipped NF-YAs isoforms in: EMSAs for capacity to form NF-Y complexes; by co-transfection, co-immunoprecipitation and Western blotting for capacity to bind Sp1; by IF for localisation; in AO/EtBr cell-death and colony formation assays for relative cytotoxicity, and by siRNA knockdown, use of inhibitors and Western blotting for potential mechanisms of action. Stable SH-SY5Y transfectants of all three NF-YA isoforms were also propagated and compared by RT-PCR and Western blotting for differences in cell-death and stem cell (SC)-associated gene expression, in cell-death assays for sensitivity to doxorubicin and in in vitro proliferation, substrate-independent growth and in vivo tumour xenograft assays for differences in growth and tumourigenic capacity. RESULTS NF-YAx was characterized as a novel variant with NF-YA exons B, D and partial F skipping, detected in 20% of NF-YA positive NBs, was the exclusive isoform in a stage 3 NB, expressed in mouse stage E11.5-14 embryos and induced by doxorubicin in SH-SY5Y NB cells. The NF-YAx protein exhibited nuclear localisation, competed with other isoforms in CCAAT box-binding NF-Y complexes but, in contrast to other isoforms, did not bind Sp1. NF-YAx expression in neural-related progenitor and NB cells repressed Bmi1 expression, induced KIF1Bβ expression and promoted KIF1Bβ-dependent necroptosis but in NB cells also selected tumourigenic, doxorubicin-resistant, CSC-like sub-populations, resistant to NF-YAx cytotoxicity. CONCLUSIONS The discovery of NF-YAx in NBs, its expression in mouse embryos and induction by doxorubicin in NB cells, unveils a novel NF-YA splice mechanism and variant, regulated by and involved in development, genotoxic-stress and NB. NF-YAx substitution of other isoforms in NF-Y complexes and loss of capacity to bind Sp1, characterises this novel isoform as a functional modifier of NF-Y and its promotion of KIF1Bβ-dependent neural-lineage progenitor and NB cell necroptosis, association with doxorubicin-induced necroptosis and expression in mouse embryos coinciding with KIF1Bβ-dependent sympathetic neuroblast-culling, confirm a cytotoxic function and potential role in suppressing NB initiation. On the other hand, the in vitro selection of CSC-like NB subpopulations resistant to NF-YAx cytotoxicity not only helps to explain high-level exclusive NF-YAx expression in a stage 3 NB but also supports a role for NF-YAx in disease progression and identifies a potential doxorubicin-inducible mechanism for post-therapeutic relapse.
Collapse
Affiliation(s)
- Lucia Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy
| | - Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, La Sapienza University of Rome, 00161 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, La Sapienza University of Rome, 00161 Rome, Italy
| | - Paola Infante
- Center for Life Nanoscience @ Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Daniele De Simone
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy
| |
Collapse
|
3
|
Prolyl 4-Hydroxylase Domain Protein 3-Inhibited Smooth-Muscle-Cell Dedifferentiation Improves Cardiac Perivascular Fibrosis Induced by Obstructive Sleep Apnea. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9174218. [PMID: 31346526 PMCID: PMC6621170 DOI: 10.1155/2019/9174218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/10/2019] [Accepted: 06/02/2019] [Indexed: 12/13/2022]
Abstract
Background Intermittent hypoxia (IH) induced by obstructive sleep apnea (OSA) is a leading factor affecting cardiovascular fibrosis. Under IH condition, smooth muscle cells (SMAs) respond by dedifferentiation, which is associated with vascular remodelling. The expression of prolyl 4-hydroxylase domain protein 3 (PHD3) increases under hypoxia. However, the role of PHD3 in OSA-induced SMA dedifferentiation and cardiovascular fibrosis remains uncertain. Methods We explored the mechanism of cardiovascular remodelling in C57BL/6 mice exposed to IH for 3 months and investigated the mechanism of PHD3 in improving the remodelling in vivo and vitro. Results In vivo remodelling showed that IH induced cardiovascular fibrosis via SMC dedifferentiation and that fibrosis improved when PHD3 was overexpressed. In vitro remodelling showed that IH induced SMA dedifferentiation, which secretes much collagen I. PHD3 overexpression in cultured SMCs reversed the dedifferentiation by degrading and inactivating HIF-1α. Conclusion OSA-induced cardiovascular fibrosis was associated with SMC dedifferentiation, and PHD3 overexpression may benefit its prevention by reversing the dedifferentiation. Therefore, PHD3 overexpression has therapeutic potential in disease treatment.
Collapse
|
4
|
Siswanto FM, Jawi IM, Kartiko BH. The role of E3 ubiquitin ligase seven in absentia homolog in the innate immune system: An overview. Vet World 2018; 11:1551-1557. [PMID: 30587887 PMCID: PMC6303497 DOI: 10.14202/vetworld.2018.1551-1557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/03/2018] [Indexed: 12/27/2022] Open
Abstract
The innate immune system has been considered as an ancient system and less important than the adaptive immune system. However, the interest in innate immunity has grown significantly in the past few years marked by the identification of Toll-like receptors, a member of pattern recognition receptors (PRRs). The PRRs are crucial for the identification of self- and non-self-antigen and play a role in the initiation of signaling events that activate the effective immune response. These sensor signals through interweaving signaling cascades which result in the production of interferons and cytokines as the effector of immune system. Ubiquitin and ubiquitin-like modifiers (UBLs) actively mediate the rapid and versatile regulatory processes that initiate the activation of the innate immune system cascade. The seven in absentia homolog (SIAH) is a potent RING finger E3 ubiquitin ligase that is known to involve in several stress responses, including hypoxia, oxidative stress, DNA damage stress, and inflammation. In this review, the role of SIAH will be discussed as an E3 ubiquitin ligase on the regulation of innate immune.
Collapse
Affiliation(s)
- Ferbian Milas Siswanto
- Department of Biochemistry, Faculty of Health Science and Technology, Dhyana Pura University, Badung, Indonesia
| | - I Made Jawi
- Department of Pharmacology, Faculty of Medicine, Udayana University, Denpasar, Indonesia
| | - Bambang Hadi Kartiko
- Department of Biochemistry, Faculty of Health Science and Technology, Dhyana Pura University, Badung, Indonesia
| |
Collapse
|
5
|
Neckář J, Hsu A, Hye Khan MA, Gross GJ, Nithipatikom K, Cyprová M, Benák D, Hlaváčková M, Sotáková-Kašparová D, Falck JR, Sedmera D, Kolář F, Imig JD. Infarct size-limiting effect of epoxyeicosatrienoic acid analog EET-B is mediated by hypoxia-inducible factor-1α via downregulation of prolyl hydroxylase 3. Am J Physiol Heart Circ Physiol 2018; 315:H1148-H1158. [PMID: 30074840 PMCID: PMC6734065 DOI: 10.1152/ajpheart.00726.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/06/2018] [Accepted: 07/18/2018] [Indexed: 12/27/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) decrease cardiac ischemia-reperfusion injury; however, the mechanism of their protective effect remains elusive. Here, we investigated the cardioprotective action of a novel EET analog, EET-B, in reperfusion and the role of hypoxia-inducible factor (HIF)-1α in such action of EET-B. Adult male rats were subjected to 30 min of left coronary artery occlusion followed by 2 h of reperfusion. Administration of 14,15-EET (2.5 mg/kg) or EET-B (2.5 mg/kg) 5 min before reperfusion reduced infarct size expressed as a percentage of the area at risk from 64.3 ± 1.3% in control to 42.6 ± 1.9% and 46.0 ± 1.6%, respectively, and their coadministration did not provide any stronger effect. The 14,15-EET antagonist 14,15-epoxyeicosa-5( Z)-enoic acid (2.5 mg/kg) inhibited the infarct size-limiting effect of EET-B (62.5 ± 1.1%). Similarly, the HIF-1α inhibitors 2-methoxyestradiol (2.5 mg/kg) and acriflavine (2 mg/kg) completely abolished the cardioprotective effect of EET-B. In a separate set of experiments, the immunoreactivity of HIF-1α and its degrading enzyme prolyl hydroxylase domain protein 3 (PHD3) were analyzed in the ischemic areas and nonischemic septa. At the end of ischemia, the HIF-1α immunogenic signal markedly increased in the ischemic area compared with the septum (10.31 ± 0.78% vs. 0.34 ± 0.08%). After 20 min and 2 h of reperfusion, HIF-1α immunoreactivity decreased to 2.40 ± 0.48% and 1.85 ± 0.43%, respectively, in the controls. EET-B blunted the decrease of HIF-1α immunoreactivity (7.80 ± 0.69% and 6.44 ± 1.37%, respectively) and significantly reduced PHD3 immunogenic signal in ischemic tissue after reperfusion. In conclusion, EET-B provides an infarct size-limiting effect at reperfusion that is mediated by HIF-1α and downregulation of its degrading enzyme PHD3. NEW & NOTEWORTHY The present study shows that EET-B is an effective agonistic 14,15-epoxyeicosatrienoic acid analog, and its administration before reperfusion markedly reduced myocardial infarction in rats. Most importantly, we demonstrate that increased hypoxia-inducible factor-1α levels play a role in cardioprotection mediated by EET-B in reperfusion likely by mechanisms including downregulation of the hypoxia-inducible factor -1α-degrading enzyme prolyl hydroxylase domain protein 3.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- 8,11,14-Eicosatrienoic Acid/therapeutic use
- Animals
- Disease Models, Animal
- Down-Regulation
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor-Proline Dioxygenases/genetics
- Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism
- Male
- Myocardial Infarction/enzymology
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- Myocardial Infarction/prevention & control
- Myocardial Reperfusion Injury/enzymology
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/physiopathology
- Myocardial Reperfusion Injury/prevention & control
- Myocardium/enzymology
- Myocardium/pathology
- Proteolysis
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Jan Neckář
- Department of Pharmacology and Toxicology, Medical College of Wisconsin , Milwaukee, Wisconsin
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine Physiology , Prague , Czech Republic
| | - Anna Hsu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Md Abdul Hye Khan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Garrett J Gross
- Department of Pharmacology and Toxicology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Kasem Nithipatikom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Michaela Cyprová
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Daniel Benák
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Markéta Hlaváčková
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Dita Sotáková-Kašparová
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center , Dallas, Texas
| | - David Sedmera
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University , Prague , Czech Republic
| | - František Kolář
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
6
|
Yonashiro R, Eguchi K, Wake M, Takeda N, Nakayama K. Pyruvate Dehydrogenase PDH-E1β Controls Tumor Progression by Altering the Metabolic Status of Cancer Cells. Cancer Res 2018; 78:1592-1603. [PMID: 29436427 DOI: 10.1158/0008-5472.can-17-1751] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/11/2017] [Accepted: 01/23/2018] [Indexed: 11/16/2022]
Abstract
Downregulation of pyruvate dehydrogenase (PDH) is critical for the aberrant preferential activation of glycolysis in cancer cells under normoxic conditions. Phosphorylation-dependent inhibition of PDH is a relevant event in this process, but it is not durable as it relies on PDH kinases that are activated ordinarily under hypoxic conditions. Thus, it remains unclear how PDH is durably downregulated in cancer cells that are not hypoxic. Building on evidence that PDH activity depends on the stability of a multi-protein PDH complex, we found that the PDH-E1β subunit of the PDH complex is downregulated to inhibit PDH activity under conditions of prolonged hypoxia. After restoration of normoxic conditions, reduced expression of PDH-E1β was sustained such that glycolysis remained highly activated. Notably, PDH-E1β silencing in cancer cells produced a metabolic state strongly resembling the Warburg effect, but inhibited tumor growth. Conversely, enforced exogenous expression of PDH-E1β durably increased PDH activity and promoted the malignant growth of breast cancer cells in vivo Taken together, our results establish the specific mechanism through which PDH acts as an oncogenic factor by tuning glycolytic metabolism in cancer cells.Significance: This seminal study offers a mechanistic explanation for why glycolysis is aberrantly activated in normoxic cancer cells, offering insights into this long-standing hallmark of cancer termed the Warburg effect. Cancer Res; 78(7); 1592-603. ©2018 AACR.
Collapse
Affiliation(s)
- Ryo Yonashiro
- Oxygen Biology Laboratory, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Kayoko Eguchi
- Oxygen Biology Laboratory, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Masaki Wake
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Koh Nakayama
- Oxygen Biology Laboratory, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
7
|
The functional interplay between the HIF pathway and the ubiquitin system - more than a one-way road. Exp Cell Res 2017; 356:152-159. [PMID: 28315321 DOI: 10.1016/j.yexcr.2017.03.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 12/30/2022]
Abstract
The hypoxia inducible factor (HIF) pathway and the ubiquitin system represent major cellular processes that are involved in the regulation of a plethora of cellular signaling pathways and tissue functions. The ubiquitin system controls the ubiquitination of proteins, which is the covalent linkage of one or several ubiquitin molecules to specific targets. This ubiquitination is catalyzed by approximately 1000 different E3 ubiquitin ligases and can lead to different effects, depending on the type of internal ubiquitin chain linkage. The best-studied function is the targeting of proteins for proteasomal degradation. The activity of E3 ligases is antagonized by proteins called deubiquitinases (or deubiquitinating enzymes), which negatively regulate ubiquitin chains. This is performed in most cases by the catalytic removal of these chains from the targeted protein. The HIF pathway is regulated in an oxygen-dependent manner by oxygen-sensing hydroxylases. Covalent modification of HIFα subunits leads to the recruitment of an E3 ligase complex via the von Hippel-Lindau (VHL) protein and the subsequent polyubiquitination and proteasomal degradation of HIFα subunits, demonstrating the regulation of the HIF pathway by the ubiquitin system. This unidirectional effect of an E3 ligase on the HIF pathway is the best-studied example for the interplay between these two important cellular processes. However, additional regulatory mechanisms of the HIF pathway through the ubiquitin system are emerging and, more recently, also the reciprocal regulation of the ubiquitin system through components of the HIF pathway. Understanding these mechanisms and their relevance for the activity of each other is of major importance for the comprehensive elucidation of the oxygen-dependent regulation of cellular processes. This review describes the current knowledge of the functional bidirectional interplay between the HIF pathway and the ubiquitin system on the protein level.
Collapse
|
8
|
Zhao Y, Huang X, Ding TW, Gong Z. Enhanced angiogenesis, hypoxia and neutrophil recruitment during Myc-induced liver tumorigenesis in zebrafish. Sci Rep 2016; 6:31952. [PMID: 27549025 PMCID: PMC4994033 DOI: 10.1038/srep31952] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/01/2016] [Indexed: 01/09/2023] Open
Abstract
Angiogenesis, hypoxia and immune cells are important components in tumor microenvironment affecting tumor growth. Here we employed a zebrafish liver tumor model to investigate the effect of Myc expression on angiogenesis, hypoxia and tumor-infiltrated neutrophils during the tumor initiation stage. We found that induced Myc expression in the liver caused a dramatic increase of liver size with neoplastic features. The tumorigenic liver was accompanied by enhanced angiogenesis and inhibition of angiogenesis by an inhibitor (SU5416 or sunitinib) hindered the tumorigenic growth, suggesting an essential role of angiogenesis in tumorigenic growth of liver tumor in this zebrafish model. Myc induction also caused hypoxia, which could be further enhanced by hypoxia activator, ML228, to lead to a further enlargement of tumorigenic liver. Furthermore, Myc overexpression incurred an increase of liver-infiltrated neutrophils and the increase could be suppressed by angiogenesis inhibitors or by morpholino knockdown inhibition of neutrophil differentiation, leading to a suppression of growth of tumorigenic livers. Finally, the enhanced angiogenesis, hypoxia and tumor-infiltrated neutrophils by Myc overexpression were validated by RT-qPCR examination of expression of relevant biomarker genes. In sum, the current study demonstrated that the Myc-induced liver tumor model in zebrafish provides an excellent platform for study of tumor microenvironment.
Collapse
Affiliation(s)
- Ye Zhao
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Xiaoqian Huang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Tony Weixi Ding
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
9
|
Yang XD, Xiang DX, Yang YY. Role of E3 ubiquitin ligases in insulin resistance. Diabetes Obes Metab 2016; 18:747-54. [PMID: 27097743 DOI: 10.1111/dom.12677] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/09/2016] [Accepted: 04/17/2016] [Indexed: 12/19/2022]
Abstract
E3 ubiquitin ligases are a large family of proteins that catalyse the ubiquitination of many proteins for degradation by the 26S proteasome. E3 ubiquitin ligases play pivotal roles in the process of insulin resistance and diabetes. In this review, we summarize the currently available studies to analyse the potential role of E3 ubiquitin ligases in the development of insulin resistance. We propose two mechanisms by which E3 ubiquitin ligases can affect the process of insulin resistance. First, E3 ubiquitin ligases directly degrade the insulin receptor, insulin receptor substrate and other key insulin signalling molecules via the UPS. Second, E3 ubiquitin ligases indirectly regulate insulin signalling by regulating pro-inflammatory mediators that are involved in the regulation of insulin signalling molecules, such as tumour necrosis factor-α, interleukin (IL)-6, IL-4, IL-13, IL-1β, monocyte chemoattractant protein-1 and hypoxia-inducible factor 1α. Determining the mechanism by which E3 ubiquitin ligases affect the development of insulin resistance can identify a novel strategy to protect against insulin resistance and diabetes.
Collapse
Affiliation(s)
- X-D Yang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - D-X Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Y-Y Yang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Sun J, Zhang X, Han Y, Zhen J, Meng Y, Song M. Overexpression of seven in absentia homolog 2 protein in human breast cancer tissues is associated with the promotion of tumor cell malignant behavior in in vitro. Oncol Rep 2016; 36:1301-12. [PMID: 27459914 DOI: 10.3892/or.2016.4976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/17/2016] [Indexed: 11/06/2022] Open
Abstract
Seven in absentia homolog 2 (SIAH2), a homologue of Drosophila seven in absentia (Sina), has emerged as an oncogene and plays important roles in cancer development and progression. This study further assessed the role of SIAH2 in breast cancer and the underlying molecular events. The data showed that SIAH2 protein was overexpressed in invasive breast cancer (IBC) compared to the expression noted in normal or ductal carcinoma in situ (DCIS) tissues, expression of which is associated with malignant behaviors. SIAH2 may function differently in different molecular subtypes (e.g., luminal- vs. basal-like type) of breast cancer. Manipulation of SIAH2 expression led to a 'cross-talk' of the ERK and PI3K pathway, which could be one of the mechanisms by which SIAH2 regulates viability, apoptosis, and invasion capacity in these breast cancer cell lines.
Collapse
Affiliation(s)
- Jie Sun
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaojuan Zhang
- Intensive Care Unit, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yanchun Han
- Department of Pathology, Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Juan Zhen
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuan Meng
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Min Song
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
11
|
Chen H, Wang N, Yang G, Guo Y, Shen Y, Wang X, Zhang P, Xu Y. The expression and function of E3 ligase SIAH2 in acute T lymphoblastic leukemia. Leuk Res 2016; 42:28-36. [PMID: 26859780 DOI: 10.1016/j.leukres.2016.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/10/2016] [Accepted: 01/24/2016] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The seven in absentia homolog 2 (SIAH2) protein plays a significant role in human cancer by regulating hypoxia-inducible factor-a (HIF-1α); however, its role in T-cell acute lymphoblastic leukemia (T-ALL) is less clear. METHODS Immunofluorescence evaluation of SIAH2 protein expression and location were conducted in Jurkat cell (a T-ALL cell line) as well as in bone marrow mononuclear cells (BMMNCs) from T-ALL and idiopathic thrombocytopenic purpura (ITP) patients. The expression of SIAH2 mRNA was also examined by quantitative real-time PCR (qRT-PCR) in these cells. Lentivirus-packed shRNA targeting on SIAH2 (Lv-shSIAH2) was used to knock down SIAH2 expression in Jurkat cells. Cell proliferation, apoptosis, invasion and protein levels were then determined by CCK-8 assay, annexin V-PI assay, transwell and Western blotting, respectively. RESULTS The mRNA expression of SIAH2 in BMMNCs from primary T-ALL patients was significantly higher than cells from ITP patients (P=0.0312); There were significant positive associations between SIAH2 expression and the extramedullary infiltration (EMI) (P=0.0003), especially with the mediastinal lymph node metastasis (P=0.0168) and the pleural effusion (P=0.014). However, SIAH2 expression in T-ALL BMMNCs was not correlated with age, gender, white cell count or the clinical risk classification. SIAH2 knockdown by shRNA led to increased apoptosis and decreased proliferation, migration and invasion of Jurkat cells. Moreover, Prolyl Hydroxylase (PHD), P27 and Caspase3 were upregulated and HIF-1α, VEGF, VEGF Receptor 2, MMP-13, CyclinE1, C-myc and BCL2 were downregulated in SIAH2 knockdown Jurkat cells. CONCLUSIONS Our results suggest that SIAH2 regulates multi processes in T-ALL and may be an attractive therapeutic target.
Collapse
Affiliation(s)
- Hongxia Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Key Laboratory of Pediatrics in Chongqing, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China
| | - Ning Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Key Laboratory of Pediatrics in Chongqing, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China
| | - Guicun Yang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Key Laboratory of Pediatrics in Chongqing, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China
| | - Yuxia Guo
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Key Laboratory of Pediatrics in Chongqing, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China
| | - Yali Shen
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Key Laboratory of Pediatrics in Chongqing, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China
| | - Xiaojing Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Key Laboratory of Pediatrics in Chongqing, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China
| | - Ping Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Key Laboratory of Pediatrics in Chongqing, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China
| | - Youhua Xu
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Key Laboratory of Pediatrics in Chongqing, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China.
| |
Collapse
|
12
|
Catalytic-independent inhibition of cIAP1-mediated RIP1 ubiquitination by EGLN3. Cell Signal 2015; 28:72-80. [PMID: 26612615 DOI: 10.1016/j.cellsig.2015.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/11/2015] [Accepted: 11/19/2015] [Indexed: 12/30/2022]
Abstract
EGLN3 belongs to the EGLN family of prolyl hydroxylases that are able to catalyze the hydroxylation of proteins such as the α subunits of hypoxia-inducible factor. We and others have shown that EGLN3 negatively regulates the canonical NFκB pathway. Mechanistically, we demonstrated that EGLN3 inhibits ubiquitination of IKKγ (the regulatory subunit of IκB kinase complex) which is vitally important for NFκB activation. Polyubiquitination of the RIP1 (receptor-interacting protein 1) kinase is important for NFκB activation triggered by tumor necrosis factor α. It remains to be determined whether EGLN3 is able to modulate RIP1 ubiquitination catalyzed by cIAP1 (cellular inhibitor of apoptosis protein 1). This study shows that EGLN3 interacts with cIAP1 and suppresses cIAP1-mediated RIP1 ubiquitination via the C-terminal region. The hydroxylase activity is not required for the ability of EGLN3 to restrain RIP1 ubiquitination. Furthermore, EGLN3 is a novel binding protein of RIP1. The C-terminal region of EGLN3 is responsible for its interaction with RIP1. EGLN3 hydroxylase activity is not essential for the EGLN3-RIP1 interaction. EGLN3 interferes with the association between RIP1 and cIAP1, and attenuates RIP1-induced NFκB activation. This study provides novel insight into the mechanism underlying EGLN3 inhibition of NFκB signaling and sheds light on the regulation of RIP1 ubiquitination.
Collapse
|
13
|
Gopalsamy A, Hagen T, Swaminathan K. Investigating the molecular basis of Siah1 and Siah2 E3 ubiquitin ligase substrate specificity. PLoS One 2014; 9:e106547. [PMID: 25202994 PMCID: PMC4159269 DOI: 10.1371/journal.pone.0106547] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/07/2014] [Indexed: 11/19/2022] Open
Abstract
The Siah1 and Siah2 E3 ubiquitin ligases play an important role in diverse signaling pathways and have been shown to be deregulated in cancer. The human Siah1 and Siah2 isoforms share high sequence similarity but possess contrary roles in cancer, with Siah1 more often acting as a tumor suppressor while Siah2 functions as a proto-oncogene. The different function of Siah1 and Siah2 in cancer is likely due to the ubiquitination of distinct substrates. Hence, we decided to investigate the molecular basis of the substrate specificity, utilizing the well-characterized Siah2 substrate PHD3. Using chimeric and mutational approaches, we identified critical residues in Siah2 that promote substrate specificity. Thus, we have found that four residues in the N-terminal region of the Siah2 substrate binding domain (SBD) (Ser132, His150, Pro155, Tyr163) are critical for substrate specificity. In the C-terminal region of the SBD, a single residue, Leu250, was identified to promote the specific binding of Siah2 SBD to PHD3. Our study may help to overcome the challenges in the identification of Siah2 specific inhibitors.
Collapse
Affiliation(s)
- Anupriya Gopalsamy
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
14
|
Yang M, Su H, Soga T, Kranc KR, Pollard PJ. Prolyl hydroxylase domain enzymes: important regulators of cancer metabolism. HYPOXIA 2014; 2:127-142. [PMID: 27774472 PMCID: PMC5045062 DOI: 10.2147/hp.s47968] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hypoxia-inducible factor (HIF) prolyl hydroxylase domain enzymes (PHDs) regulate the stability of HIF protein by post-translational hydroxylation of two conserved prolyl residues in its α subunit in an oxygen-dependent manner. Trans-4-prolyl hydroxylation of HIFα under normal oxygen (O2) availability enables its association with the von Hippel-Lindau (VHL) tumor suppressor pVHL E3 ligase complex, leading to the degradation of HIFα via the ubiquitin-proteasome pathway. Due to the obligatory requirement of molecular O2 as a co-substrate, the activity of PHDs is inhibited under hypoxic conditions, resulting in stabilized HIFα, which dimerizes with HIFβ and, together with transcriptional co-activators CBP/p300, activates the transcription of its target genes. As a key molecular regulator of adaptive response to hypoxia, HIF plays important roles in multiple cellular processes and its overexpression has been detected in various cancers. The HIF1α isoform in particular has a strong impact on cellular metabolism, most notably by promoting anaerobic, whilst inhibiting O2-dependent, metabolism of glucose. The PHD enzymes also seem to have HIF-independent functions and are subject to regulation by factors other than O2, such as by metabolic status, oxidative stress, and abnormal levels of endogenous metabolites (oncometabolites) that have been observed in some types of cancers. In this review, we aim to summarize current understandings of the function and regulation of PHDs in cancer with an emphasis on their roles in metabolism.
Collapse
Affiliation(s)
- Ming Yang
- Cancer Biology and Metabolism Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Huizhong Su
- Cancer Biology and Metabolism Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Mizukami, Tsuruoka, Yamagata, Japan
| | - Kamil R Kranc
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Patrick J Pollard
- Cancer Biology and Metabolism Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Kikuchi D, Minamishima YA, Nakayama K. Prolyl-hydroxylase PHD3 interacts with pyruvate dehydrogenase (PDH)-E1β and regulates the cellular PDH activity. Biochem Biophys Res Commun 2014; 451:288-94. [PMID: 25088999 DOI: 10.1016/j.bbrc.2014.07.114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 01/25/2023]
Abstract
Cells are frequently exposed to hypoxia in physiological and pathophysiological conditions in organisms. Control of energy metabolism is one of the critical functions of the hypoxic response. Hypoxia-Inducible Factor (HIF) is a central transcription factor that regulates the hypoxic response. HIF prolyl-hydroxylase PHDs are the enzymes that hydroxylate the α subunit of HIF and negatively regulate its expression. To further understand the physiological role of PHD3, proteomics were used to identify PHD3-interacting proteins, and pyruvate dehydrogenase (PDH)-E1β was identified as such a protein. PDH catalyzes the conversion of pyruvate to acetyl-coA, thus playing a key role in cellular energy metabolism. PDH activity was significantly decreased in PHD3-depleted MCF7 breast cancer cells and PHD3(-/-) MEFs. PHD3 depletion did not affect the expression of the PDH-E1α, E1β, and E2 subunits, or the phosphorylation status of E1α, but destabilized the PDH complex (PDC), resulting in less functional PDC. Finally, PHD3(-/-) cells were resistant to cell death in prolonged hypoxia with decreased production of ROS. Taken together, the study reveals that PHD3 regulates PDH activity in cells by physically interacting with PDC.
Collapse
Affiliation(s)
- Daisuke Kikuchi
- Oxygen Biology Laboratory, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yoji Andrew Minamishima
- Department of Biochemistry, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Suematsu Gas Biology Project, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Koh Nakayama
- Oxygen Biology Laboratory, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
16
|
Selvaraju V, Parinandi NL, Adluri RS, Goldman JW, Hussain N, Sanchez JA, Maulik N. Molecular mechanisms of action and therapeutic uses of pharmacological inhibitors of HIF-prolyl 4-hydroxylases for treatment of ischemic diseases. Antioxid Redox Signal 2014; 20:2631-65. [PMID: 23992027 PMCID: PMC4026215 DOI: 10.1089/ars.2013.5186] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 08/06/2013] [Accepted: 09/01/2013] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE In this review, we have discussed the efficacy and effect of small molecules that act as prolyl hydroxylase domain inhibitors (PHDIs). The use of these compounds causes upregulation of the pro-angiogenic factors and hypoxia inducible factor-1α and -2α (HIF-1α and HIF-2α) to enhance angiogenic, glycolytic, erythropoietic, and anti-apoptotic pathways in the treatment of various ischemic diseases responsible for significant morbidity and mortality in humans. RECENT ADVANCES Sprouting of new blood vessels from the existing vasculature and surgical intervention, such as coronary bypass and stent insertion, have been shown to be effective in attenuating ischemia. However, the initial reentry of oxygen leads to the formation of reactive oxygen species that cause oxidative stress and result in ischemia/reperfusion (IR) injury. This apparent "oxygen paradox" must be resolved to combat IR injury. During hypoxia, decreased activity of PHDs initiates the accumulation and activation of HIF-1α, wherein the modulation of both PHD and HIF-1α appears as promising therapeutic targets for the pharmacological treatment of ischemic diseases. CRITICAL ISSUES Research on PHDs and HIFs has shown that these molecules can serve as therapeutic targets for ischemic diseases by modulating glycolysis, erythropoiesis, apoptosis, and angiogenesis. Efforts are underway to identify and synthesize safer small-molecule inhibitors of PHDs that can be administered in vivo as therapy against ischemic diseases. FUTURE DIRECTIONS This review presents a comprehensive and current account of the existing small-molecule PHDIs and their use in the treatment of ischemic diseases with a focus on the molecular mechanisms of therapeutic action in animal models.
Collapse
Affiliation(s)
- Vaithinathan Selvaraju
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Narasimham L. Parinandi
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio
| | - Ram Sudheer Adluri
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Joshua W. Goldman
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Naveed Hussain
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, Connecticut
- Division of Neonatal Medicine, Connecticut Children's Medical Center, Hartford, Connecticut
| | - Juan A. Sanchez
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
17
|
Scortegagna M, Kim H, Li JL, Yao H, Brill LM, Han J, Lau E, Bowtell D, Haddad G, Kaufman RJ, Ronai ZA. Fine tuning of the UPR by the ubiquitin ligases Siah1/2. PLoS Genet 2014; 10:e1004348. [PMID: 24809345 PMCID: PMC4014425 DOI: 10.1371/journal.pgen.1004348] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/18/2014] [Indexed: 12/19/2022] Open
Abstract
The endoplasmic reticulum (ER) responds to changes in intracellular homeostasis through activation of the unfolded protein response (UPR). Yet, it is not known how UPR-signaling coordinates adaptation versus cell death. Previous studies suggested that signaling through PERK/ATF4 is required for cell death. We show that high levels of ER stress (i.e., ischemia-like conditions) induce transcription of the ubiquitin ligases Siah1/2 through the UPR transducers PERK/ATF4 and IRE1/sXBP1. In turn, Siah1/2 attenuates proline hydroxylation of ATF4, resulting in its stabilization, thereby augmenting ER stress output. Conversely, ATF4 activation is reduced upon Siah1/2 KD in cultured cells, which attenuates ER stress-induced cell death. Notably, Siah1a(+/-)::Siah2(-/-) mice subjected to neuronal ischemia exhibited smaller infarct volume and were protected from ischemia-induced death, compared with the wild type (WT) mice. In all, Siah1/2 constitutes an obligatory fine-tuning mechanism that predisposes cells to death under severe ER stress conditions.
Collapse
Affiliation(s)
- Marzia Scortegagna
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Hyungsoo Kim
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Jian-Liang Li
- Proteomics Facility, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Hang Yao
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Laurence M. Brill
- Proteomics Facility, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Jaeseok Han
- Degenerative Diseases Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Eric Lau
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - David Bowtell
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Cancer Genomics and Genetics, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Gabriel Haddad
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (RJK); (ZAR)
| | - Ze'ev A. Ronai
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (RJK); (ZAR)
| |
Collapse
|
18
|
Place TL, Domann FE. Prolyl-hydroxylase 3: Evolving Roles for an Ancient Signaling Protein. HYPOXIA 2013; 2013:13-17. [PMID: 24672806 PMCID: PMC3963164 DOI: 10.2147/hp.s50091] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ability of cells to sense oxygen is a highly evolved process that facilitates adaptations to the local oxygen environment and is critical to energy homeostasis. In vertebrates, this process is largely controlled by three intracellular prolyl-4-hydroxylases (PHD) 1–3. These related enzymes share the ability to hydroxylate the hypoxia-inducible transcription factor (HIF), and therefore control the transcription of genes involved in metabolism and vascular recruitment. However, it is becoming increasingly apparent that PHD controls much more than HIF signaling, with PHD3 emerging as an exceptionally unique and functionally diverse PHD isoform. In fact, PHD3-mediated hydroxylation has recently been purported to function in such diverse roles as sympathetic neuronal and muscle development, sepsis, glycolytic metabolism, and cell fate. PHD3 expression is also highly distinct from that of the other PHD enzymes, and varies considerably between different cell types and oxygen concentrations. This review will examine the evolution of oxygen sensing by the HIF family of PHD enzymes, with a specific focus on the complex nature of PHD3 expression and function in mammalian cells.
Collapse
Affiliation(s)
- Trenton L Place
- Molecular and Cellular Biology Program, The University of Iowa, Iowa City, Iowa, USA
| | - Frederick E Domann
- Molecular and Cellular Biology Program, The University of Iowa, Iowa City, Iowa, USA ; Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
19
|
EGLN3 inhibition of NF-κB is mediated by prolyl hydroxylase-independent inhibition of IκB kinase γ ubiquitination. Mol Cell Biol 2013; 33:3050-61. [PMID: 23732909 DOI: 10.1128/mcb.00273-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
NF-κB transcription factors are crucial regulators of inflammation, immunity, stress responses, and cell differentiation. Many studies have demonstrated that ubiquitination of IκB kinase γ (IKKγ), a regulatory subunit of IKK, is instrumental in the activation of IKK and NF-κB. We and others previously identified EGLN3, a member of a family of prolyl hydroxylases, as a negative regulator of the NF-κB pathway. Here we report that EGLN3, but not EGLN1 or -2, interacts with and inhibits K63-linked ubiquitination of IKKγ. The effect appears to be related to inhibition of IKKγ ubiquitination mediated by cIAP1 rather than to stimulation of IKKγ deubiquitination by the deubiquitinases A20 and CYLD (cylindromatosis). EGLN3 does not affect the protein levels of cIAP1 or its E2 ubiquitin-conjugating enzymes UbcH5 and Ubc13. EGLN3 hydroxylase activity is not responsible for its effect on IKKγ ubiquitination and NF-κB signaling. Instead, interaction with IKKγ is required for the ability of EGLN3 to inhibit IKKγ ubiquitination and IKK-NF-κB signaling. EGLN3 competes with cIAP1 for IKKγ binding, leading to inhibition of cIAP1-IKKγ interaction, IKKγ ubiquitination, and IKK-NF-κB signaling. This study provides novel insights into EGLN3 function and sheds new light on the regulation of IKKγ ubiquitination and NF-κB.
Collapse
|
20
|
Baba K, Morimoto H, Imaoka S. Seven in absentia homolog 2 (Siah2) protein is a regulator of NF-E2-related factor 2 (Nrf2). J Biol Chem 2013; 288:18393-405. [PMID: 23645672 DOI: 10.1074/jbc.m112.438762] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Under pathological conditions such as ischemia-reperfusion, Nrf2 acts as a key regulator of cellular oxidative response. Provided that Nrf2 is sensitive to hypoxia during ischemia, Nrf2 may affect reactive oxygen species metabolism during reoxygenation. In this study, hypoxia suppressed Nrf2 protein, and its hypoxic suppression was not recovered with knockdown of the Nrf2 repressor Keap1. Moreover, an Nrf2 mutant lacking the Keap1 binding domain was suppressed under hypoxia, suggesting that Keap1 does not contribute to hypoxic Nrf2 suppression. HIF-1α and Siah2 are both key regulators of hypoxic responses. Hypoxia induced the Siah2 protein. Although inhibition or knockdown of Siah2 prevented the suppression of Nrf2, knockdown of HIF-1α did not. Moreover, Siah2 interacted with Nrf2 through a binding motif, suggesting that Siah2 contributes to the suppression of Nrf2. Some cytosolic kinases also play important roles in Nrf2 regulation. In this study, PKC phosphorylates serine residues of Nrf2 during hypoxia. Knockdown of Siah2 rescued hypoxic decreases in an Nrf2 mutant that mimicked phosphorylation at serine 40 or lacked this phosphorylation site, suggesting that Siah2 contributes to the degradation of Nrf2 irrespective of its phosphorylation status. Moreover, knockdown of Siah2 attenuated ubiquitination of the Nrf2 mutant, suggesting that association of Siah2 with Nrf2 causes proteasome-mediated degradation of Nrf2.
Collapse
Affiliation(s)
- Kazunobu Baba
- Research Center for Environmental Bioscience and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669 1337, Japan
| | | | | |
Collapse
|
21
|
Rantanen K, Pursiheimo JP, Högel H, Miikkulainen P, Sundström J, Jaakkola PM. p62/SQSTM1 regulates cellular oxygen sensing by attenuating PHD3 activity through aggregate sequestration and enhanced degradation. J Cell Sci 2013; 126:1144-54. [PMID: 23345396 DOI: 10.1242/jcs.115667] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The hypoxia-inducible factor (HIF) prolyl hydroxylase PHD3 regulates cellular responses to hypoxia. In normoxia the expression of PHD3 is low and it occurs in cytosolic aggregates. SQSTM1/p62 (p62) recruits proteins into cytosolic aggregates, regulates metabolism and protein degradation and is downregulated by hypoxia. Here we show that p62 determines the localization, expression and activity of PHD3. In normoxia PHD3 interacted with p62 in cytosolic aggregates, and p62 was required for PHD3 aggregation that was lost upon transfer to hypoxia, allowing PHD3 to be expressed evenly throughout the cell. In line with this, p62 enhanced the normoxic degradation of PHD3. Depletion of p62 in normoxia led to elevated PHD3 levels, whereas forced p62 expression in hypoxia downregulated PHD3. The loss of p62 resulted in enhanced interaction of PHD3 with HIF-α and reduced HIF-α levels. The data demonstrate p62 is a critical regulator of the hypoxia response and PHD3 activity, by inducing PHD3 aggregation and degradation under normoxia.
Collapse
Affiliation(s)
- Krista Rantanen
- Turku Centre for Biotechnology, Turku University and Åbo Akademi University, Turku, Finland
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Oxygen-sensing prolyl hydroxylase domain enzymes (PHDs) target hypoxia-inducible factor (HIF)-α subunits for proteasomal degradation in normoxia through hydroxylation. Recently, novel mechanisms of PHD activation and function have been unveiled. Interestingly, PHD3 can unexpectedly amplify HIF signaling through hydroxylation of the glycolytic enzyme pyruvate kinase (PK) muscle isoform 2 (PKM2). Recent studies have also yielded insight into HIF-independent PHD functions, including the control of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking in synaptic transmission and the activation of transient receptor potential cation channel member A1 (TRPA1) ion channels by oxygen levels in sensory nerves. Finally, PHD activation has been shown to involve the iron chaperoning function of poly(rC) binding protein (PCBP)1 and the (R)-enantiomer of 2-hydroxyglutarate (2-HG). The intersection of these regulatory pathways and interactions highlight the complexity of PHD regulation and function.
Collapse
|
23
|
Bondeva T, Heinzig J, Franke S, Wolf G. Angiotensin II differentially regulates Morg1 expression in kidney cells. Am J Nephrol 2012; 35:442-55. [PMID: 22555025 DOI: 10.1159/000337922] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/08/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND The mitogen-activated protein kinase organizer 1 (Morg1) belongs to the WD-40 repeat protein family and is a scaffold molecule for the extracellular regulated kinase signaling pathway. Morg1 also binds to prolyl-hydroxylase 3 (PHD3) and regulates the hypoxia-inducible factor-1α (HIF-1α) expression via PHD3 stabilization. Morg1 has been detected in the kidney as well as in other cell tissues but its expression in renal cells has not been well investigated. It has been widely shown that angiotensin II (ANG II) mediates renal damage. We have previously shown that ANG II downregulates the expression of PHD3 in PC12 cells. The aim of this study was to analyze whether ANG II regulates Morg1 expression in mouse mesangial cells (MMC), mouse proximal tubular cells (MTC) and in differentiated podocytes. The correlation between the expression of Morg1 and PHD3 activity was also addressed. METHODS Effect of ANG II on the Morg1 mRNA expression level was assessed by real-time PCR. Morg1 and HIF-1α cellular localization was analyzed by immunohistochemistry. HIF-1α promoter activity was investigated using a reporter gene system. PHD3 hydroxylase activity test was measured with a hydroxylation-coupled decarboxylation assay. RESULTS ANG II differentially regulates Morg1 expression in MMC, MTC and differentiated podocytes. We detected a biphasic effect of ANG II on Morg1 mRNA expression which was time dependent. While 9-hour ANG II treatment downregulated Morg1 expression in MMC, it induced Morg1 expression in MTC. Conversely, 24-hour ANG II stimulation upregulated the expression of Morg1 mRNA in MMC, but showed an opposite effect in MTC and differentiated podocytes. In addition, we found that ANG II signals mostly through the AT(1) receptor subtype in MMC and via the AT(2) subtype in MTC. PHD3 activity correlated to Morg1 expression patterns. Our data also demonstrate that HIF-1α transcriptional activity in MTC contrasted to PHD3 activity at 9 and 24 h, whereas in the MMC and in podocytes we did not find any correlation between PHD3 HIF-1α hydroxylation ability and HIF-1α transcriptional activation, suggesting a different mechanism of regulation in these cell types. Interestingly, the reduced expression of Morg1 in mesangial cells isolated from Morg1 (+/-) heterozygous mice correlated with a reduced PHD3 enzymatic activity and an increased HIF-1α transcriptional activity compared with mesangial cells originated from wild-type (Morg1 +/+) mice. CONCLUSIONS We show for the first time in various renal cells that ANG II modulates Morg1 expression and HIF-1α transcriptional activity via cell type-specific mechanisms, demonstrating a novel mechanism by which ANG II may contribute to renal disease.
Collapse
Affiliation(s)
- Tzvetanka Bondeva
- Department of Internal Medicine III, Friedrich Schiller University, Jena, Germany
| | | | | | | |
Collapse
|
24
|
Kilroy G, Kirk-Ballard H, Carter LE, Floyd ZE. The ubiquitin ligase Siah2 regulates PPARγ activity in adipocytes. Endocrinology 2012; 153:1206-18. [PMID: 22294748 PMCID: PMC3281538 DOI: 10.1210/en.2011-1725] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Moderate reductions in peroxisome proliferator-activated receptor (PPAR)γ levels control insulin sensitivity as effectively as activation of PPARγ in adipocytes by the thiazolidinediones. That observation suggests that PPARγ activity can be regulated by modulating the amount of PPARγ protein in adipocytes. Activation of PPARγ in adipocytes is linked to changes in PPARγ protein levels via increased degradation of PPARγ proteins by the ubiquitin proteasome system. Identification of the ubiquitin ligase or ligases that recognize ligand bound PPARγ is an essential step in determining the physiological significance of the relationship between activation and ubiquitin-dependent degradation of PPARγ. Using an RNA interference-based screen, we identified five RING (really interesting new gene)-type ubiquitin ligases that alter PPARγ protein levels in adipocytes. Here, we demonstrate that Drosophila seven-in-absentia homolog 2 (Siah2), a mammalian homolog of Drosophila seven-in-absentia, regulates PPARγ ubiquitylation and ligand-dependent activation of PPARγ in adipocytes. We also demonstrate that Siah2 expression is up-regulated during adipogenesis and that PPARγ interacts with Siah2 during adipogenesis. In addition, Siah2 is required for adipogenesis. These data suggest that modulation of PPARγ protein levels by the ubiquitin ligase Siah2 is essential in determining the physiological effects of PPARγ activation in adipocytes.
Collapse
Affiliation(s)
- Gail Kilroy
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana 70808, USA
| | | | | | | |
Collapse
|
25
|
Yi Y, Mikhaylova O, Mamedova A, Bastola P, Biesiada J, Alshaikh E, Levin L, Sheridan RM, Meller J, Czyzyk-Krzeska MF. von Hippel-Lindau-dependent patterns of RNA polymerase II hydroxylation in human renal clear cell carcinomas. Clin Cancer Res 2010; 16:5142-52. [PMID: 20978146 DOI: 10.1158/1078-0432.ccr-09-3416] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE We have previously shown that von Hippel-Lindau (VHL) regulates ubiquitylation and proline 1465 hydroxylation of the large subunit of RNA polymerase II, Rpb1, in human renal clear cell carcinoma (RCC) cell lines. Here, our goal was to determine the effect of this VHL function and the status of P1465 hydroxylation in human RCC tumors. EXPERIMENTAL DESIGN Primary human tumors and matched normal kidney samples were probed for expression levels of the large subunit of RNA polymerase II (Rpb1), Rpb1 hydroxylated on P1465 [Rpb1(OH)], Rpb1 phosphorylated on Ser5 [Rpb1(S5P)], and proline hydroxylases PHD1, PHD2, and PHD3. Results from RCC tumors were categorized according to the status of VHL gene. Mechanistic analysis was performed in orthotopic xenograft model using 786-O RCC cells with wild-type (WT) VHL and knockdown of PHD2, characterized by high levels of Rpb1(OH) and PHD1. RESULTS Levels of Rpb1(OH), PHD1, and PHD2 were significantly higher in RCC tumors compared with normal kidneys. RCC tumors with WT VHL had higher levels of Rpb1(OH) and PHD1 and lower levels of PHD2 than tumors with VHL gene alterations. Levels of Rpb1(OH) significantly correlated with levels of PHD1 in tumors and normal kidneys. Knockdown of PHD2 in 786-O VHL(+) cells resulted in a more malignant phenotype in orthotopic xenografts and higher expression of specific cell cycle regulators (CDC25A, cyclin-dependent kinase 2, CCNA2) compared with VHL(-) RCC cells. CONCLUSIONS Elevated PHD1 concomitant with decreased PHD2 are causatively related to Rpb1 hydroxylation and oncogenesis in human RCC tumors with WT VHL gene. Thus, P1465-hydroxylated Rpb1 and PHD1 represent attractive drug targets for new RCC treatments.
Collapse
Affiliation(s)
- Ying Yi
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abnormalities in oxygen sensing define early and late onset preeclampsia as distinct pathologies. PLoS One 2010; 5:e13288. [PMID: 20967267 PMCID: PMC2953500 DOI: 10.1371/journal.pone.0013288] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 09/06/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The pathogenesis of preeclampsia, a serious pregnancy disorder, is still elusive and its treatment empirical. Hypoxia Inducible Factor-1 (HIF-1) is crucial for placental development and early detection of aberrant regulatory mechanisms of HIF-1 could impact on the diagnosis and management of preeclampsia. HIF-1α stability is controlled by O(2)-sensing enzymes including prolyl hydroxylases (PHDs), Factor Inhibiting HIF (FIH), and E3 ligases Seven In Absentia Homologues (SIAHs). Here we investigated early- (E-PE) and late-onset (L-PE) human preeclamptic placentae and their ability to sense changes in oxygen tension occurring during normal placental development. METHODS AND FINDINGS Expression of PHD2, FIH and SIAHs were significantly down-regulated in E-PE compared to control and L-PE placentae, while HIF-1α levels were increased. PHD3 expression was increased due to decreased FIH levels as demonstrated by siRNA FIH knockdown experiments in trophoblastic JEG-3 cells. E-PE tissues had markedly diminished HIF-1α hydroxylation at proline residues 402 and 564 as assessed with monoclonal antibodies raised against hydroxylated HIF-1α P402 or P564, suggesting regulation by PHD2 and not PHD3. Culturing villous explants under varying oxygen tensions revealed that E-PE, but not L-PE, placentae were unable to regulate HIF-1α levels because PHD2, FIH and SIAHs did not sense a hypoxic environment. CONCLUSION Disruption of oxygen sensing in E-PE vs. L-PE and control placentae is the first molecular evidence of the existence of two distinct preeclamptic diseases and the unique molecular O(2)-sensing signature of E-PE placentae may be of diagnostic value when assessing high risk pregnancies and their severity.
Collapse
|
27
|
Human PRP19 interacts with prolyl-hydroxylase PHD3 and inhibits cell death in hypoxia. Exp Cell Res 2010; 316:2871-82. [DOI: 10.1016/j.yexcr.2010.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/29/2010] [Accepted: 06/23/2010] [Indexed: 11/22/2022]
|
28
|
Loboda A, Jozkowicz A, Dulak J. HIF-1 and HIF-2 transcription factors--similar but not identical. Mol Cells 2010; 29:435-42. [PMID: 20396958 DOI: 10.1007/s10059-010-0067-2] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/04/2010] [Indexed: 12/17/2022] Open
Abstract
Hypoxia inducible factor (HIF)-1 and HIF-2 are heterodimeric transcription factors mediating the cellular response to hypoxia. Recent data indicate that not only ubiquitous HIF-1 alpha, but also more cell-specific HIF-2 alpha, is an important regulator of the hypoxia response. Although both alpha subunits are highly conservative at protein level, share similar domain structure, heterodimerize with HIF-1 beta, and bind to the same DNA sequence called hypoxia responsive element (HRE), their effect on the expression of some genes may vary. In this review we stressed the differences between the isoforms, their structure and expression pattern. Moreover, we described diversity of coactivators and proteins which interact with HIFs, and which are responsible for the specificity of their action. Finally, recent data showing link between HIFs and specific microRNA have been presented.
Collapse
Affiliation(s)
- Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | | | | |
Collapse
|
29
|
High glucose activates HIF-1-mediated signal transduction in glomerular mesangial cells through a carbohydrate response element binding protein. Kidney Int 2010; 78:48-59. [PMID: 20375990 DOI: 10.1038/ki.2010.99] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
High glucose evokes a variety of signals in mesangial cells that alter cellular functions responsible for the development of diabetic glomerulopathy. The hypoxia-inducible factor-1alpha (HIF-1alpha) regulates cellular homeostasis under hypoxic conditions, but it also has pleiotropic effects in response to cellular stresses at normoxia. Here we determined whether HIF-1alpha has a role in the regulation of mesangial cells in hyperglycemia. In the streptozotocin-induced diabetic mouse model, glomerular mesangial cells had a significant increase in HIF-1alpha expression in the nucleus. In cultured mesangial cells, high glucose enhanced the expression of HIF-1alpha and its target genes known to be involved in the development of diabetic glomerulopathy. A glucose-responsive carbohydrate response element binding protein (ChREBP) was found to have a critical role in the transcriptional upregulation of HIF-1alpha and downstream gene expression in mesangial cells exposed to high glucose. Knockdown of HIF-1alpha or ChREBP in mesangial cells abrogated the high glucose-mediated perturbation of gene expression. Our results show that ChREBP and HIF-1alpha mediate gene regulation in mesangial cells. Further studies will be needed to find out whether these findings are relevant to the development of the diabetic nephropathy.
Collapse
|
30
|
Nakayama K. Cellular signal transduction of the hypoxia response. J Biochem 2009; 146:757-65. [PMID: 19864435 DOI: 10.1093/jb/mvp167] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cells induce the hypoxia responses to adapt to the environment when organisms are exposed to a low oxygen environment. The hypoxia response leads to the activation of multiple cellular signalling pathways involved in regulation of respiration, metabolism, cell survival and so forth. Hypoxia-Inducible-Factor (HIF) pathway plays a central role during the hypoxia response as its expression and activity are regulated in an oxygen-dependent manner and it also regulates the expression of multiple hypoxia responsive genes. The expression of HIF is regulated by proline hydroxylation, which is mediated by HIF prolyl-hydroxylase named PHD. The hydroxylated HIF-alpha subunit is degraded via the ubiquitin-proteasome pathway. The PHD activity needs to be strictly regulated to ensure the stabilization of HIF under hypoxic conditions, because PHD leads to HIF degradation. This review describes the regulatory mechanism of HIF stability and activity under normoxia and hypoxic conditions. Furthermore, the role of the HIF-independent pathways during the hypoxia response, which is as important as the HIF pathway, will also be described.
Collapse
Affiliation(s)
- Koh Nakayama
- Medical Top Track program, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
31
|
Yan M, Rayoo M, Takano EA, Thorne H, Fox SB. BRCA1 tumours correlate with a HIF-1alpha phenotype and have a poor prognosis through modulation of hydroxylase enzyme profile expression. Br J Cancer 2009; 101:1168-74. [PMID: 19724277 PMCID: PMC2768103 DOI: 10.1038/sj.bjc.6605287] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background: There are limited data regarding the hypoxia pathway in familial breast cancers. We therefore performed a study of hypoxic factors in BRCA1, BRCA2 and BRCAX breast cancers. Methods: Immunoperoxidase staining for HIF-1α, PHD1, PHD2, PHD3, VEGF and FIH was carried out in 125 (38 BRCA1, 33 BRCA2 and 54 BRCAX) breast carcinomas. These were correlated with clinicopathological parameters and the intrinsic breast cancer phenotypes. Results: BRCA1 tumours correlated with positivity for HIF-1α (P=0.008) and negativity for PHD3 (P=0.037). HIF-1α positivity (P=0.001), PHD3 negativity (P=0.037) and nuclear FIH negativity (P=0.011) was associated with basal phenotype. HIF-1α expression correlated with high tumour grade (P=0.009), negative oestrogen receptor (ER) status (P=0.001) and the absence of lymph node metastasis (P=0.028). Nuclear FIH expression and PHD3 correlated with positive ER expression (P=0.024 and P=0.035, respectively). BRCA1 cancers with positive HIF-1α or cytoplasmic FIH had a significantly shorter relapse-free survival (P=0.007 and P=0.049, respectively). Conclusions: The aggressive nature of BRCA1 and basal-type tumours may be partly explained by an enhanced hypoxic drive and hypoxia driven ER degradation because of suppressed PHD and aberrantly located FIH expression. This may have important implications, as these tumours may respond to compounds directed against HIF-1α or its downstream targets.
Collapse
Affiliation(s)
- M Yan
- Department of Pathology, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria 3002, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Barth S, Edlich F, Berchner-Pfannschmidt U, Gneuss S, Jahreis G, Hasgall PA, Fandrey J, Wenger RH, Camenisch G. Hypoxia-inducible factor prolyl-4-hydroxylase PHD2 protein abundance depends on integral membrane anchoring of FKBP38. J Biol Chem 2009; 284:23046-58. [PMID: 19546213 DOI: 10.1074/jbc.m109.032631] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prolyl-4-hydroxylase domain (PHD) proteins are 2-oxoglutarate and dioxygen-dependent enzymes that mediate the rapid destruction of hypoxia-inducible factor alpha subunits. Whereas PHD1 and PHD3 proteolysis has been shown to be regulated by Siah2 ubiquitin E3 ligase-mediated polyubiquitylation and proteasomal destruction, protein regulation of the main oxygen sensor responsible for hypoxia-inducible factor alpha regulation, PHD2, remained unknown. We recently reported that the FK506-binding protein (FKBP) 38 specifically interacts with PHD2 and determines PHD2 protein stability in a peptidyl-prolyl cis-trans isomerase-independent manner. Using peptide array binding assays, fluorescence spectroscopy, and fluorescence resonance energy transfer analysis, we defined a minimal linear glutamate-rich PHD2 binding domain in the N-terminal part of FKBP38 and showed that this domain forms a high affinity complex with PHD2. Vice versa, PHD2 interacted with a non-linear N-terminal motif containing the MYND (myeloid, Nervy, and DEAF-1)-type Zn(2+) finger domain with FKBP38. Biochemical fractionation and immunofluorescence analysis demonstrated that PHD2 subcellular localization overlapped with FKBP38 in the endoplasmic reticulum and mitochondria. An additional fraction of PHD2 was found in the cytoplasm. In cellulo PHD2/FKBP38 association, as well as regulation of PHD2 protein abundance by FKBP38, is dependent on membrane- anchored FKBP38 localization mediated by the C-terminal transmembrane domain. Mechanistically our data indicate that PHD2 protein stability is regulated by a ubiquitin-independent proteasomal pathway involving FKBP38 as adaptor protein that mediates proteasomal interaction. We hypothesize that FKBP38-bound PHD2 is constantly degraded whereas cytosolic PHD2 is stable and able to function as an active prolyl-4-hydroxylase.
Collapse
Affiliation(s)
- Sandra Barth
- Institute of Physiology and Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Growing evidence indicates that ubiquitin ligases play a critical role in the hypoxia response. Among them, Siah2, a RING finger ligase, is an important regulator of pathways activated under hypoxia. Siah2 regulates prolyl hydroxylases PHD3 and 1 under oxygen concentration of 2% to 5%, thereby allowing accumulation of hypoxia-inducible factor (HIF)-1alpha, a master regulator of the hypoxia response within the range of physiological normoxic to mild hypoxic conditions. Growing evidence also indicates an important function for Siah2 in tumor development and progression based on pancreatic cancer, mammary tumor, and melanoma mouse models. This review summarizes our current understanding of Siah2 regulation and function with emphasis on hypoxia and tumorigenesis.
Collapse
Affiliation(s)
- Koh Nakayama
- Burnham Institute for Medical Research, La Jolla, CA, USA.
| | | | | |
Collapse
|
34
|
Yasumoto KI, Kowata Y, Yoshida A, Torii S, Sogawa K. Role of the intracellular localization of HIF-prolyl hydroxylases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:792-7. [PMID: 19339211 DOI: 10.1016/j.bbamcr.2009.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 01/21/2009] [Accepted: 01/21/2009] [Indexed: 11/19/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a major transcription factor regulating the response of tumor cells to hypoxia and is comprised of HIF-1alpha and Arnt (HIF-1beta). In mammalian cells, HIF-1 protein levels are regulated by three HIF-prolyl hydroxylases, termed PHD1, PHD2 and PHD3. To assess whether intracellular localization of PHD1 and PHD2 affects the hypoxic response via HIF-1, we investigated the localization signal of PHDs. PHD1 possessed at least one nuclear localization signal (NLS), and PHD2 contained a region as essential for nuclear export in their N-terminal region. Treatment of cells with leptomycin B revealed that PHD2 was able to shuttle between the cytoplasm and the nucleus. Reporter assay indicated that differences in the intracellular distribution of PHD1 did not influence on HIF-1alpha activity. However, a PHD2 mutant lacking the region for nuclear export exhibited significantly reduced effect to HIF-1alpha activity compared to wild-type PHD2, suggesting that the regulation of the intracellular distribution of PHD2 is an effective pathway for the control of the hypoxic response.
Collapse
Affiliation(s)
- Ken-ichi Yasumoto
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.
| | | | | | | | | |
Collapse
|
35
|
Calzado MA, de la Vega L, Möller A, Bowtell DDL, Schmitz ML. An inducible autoregulatory loop between HIPK2 and Siah2 at the apex of the hypoxic response. Nat Cell Biol 2008; 11:85-91. [PMID: 19043406 DOI: 10.1038/ncb1816] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 11/01/2008] [Indexed: 11/09/2022]
Abstract
Oxygen deprivation (hypoxia) results in reprogrammed gene expression patterns that induce multifaceted cellular responses. Here we identify a regulated interaction between the serine/threonine kinase HIPK2 and the ubiquitin E3 ligase Siah2 as a mechanism controlling the hypoxic response. Under normoxic conditions, several mechanisms ensure HIPK2 stability: only a fraction of HIPK2 is found in association with Siah2, whereas HIPK2-mediated phosphorylation of this E3 ligase at positions 26, 28 and 68 weakens mutual binding and destabilizes its phosphorylated interaction partner. Hypoxic conditions allow a markedly increased HIPK2/Siah2 interaction and result in efficient polyubiquitylation and proteasomal degradation of the kinase. Accordingly, hypoxia-induced HIPK2 elimination is markedly reduced in Siah2-deficient cells. As HIPK2 has an important role as a negative regulator of gene expression, its elimination from promoter-associated repressor complexes allows the induction of a substantial fraction of hypoxia-induced genes.
Collapse
Affiliation(s)
- Marco A Calzado
- Institute of Biochemistry, Medical Faculty, Friedrichstrasse 24, Justus-Liebig-University, D-35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
36
|
Abstract
Tumor hypoxia induces the upregulation of hypoxia-inducible factor 1alpha (Hif-1alpha), which in turn induces the expression of genes including VEGF to recruit new blood vessel outgrowth, enabling tumor growth and metastasis. Interference with the Hif-1 pathway and neoangiogenesis is an attractive antitumor target. The hydroxylation of Hif-1alpha by prolyl-hydroxylase (PHD) proteins during normoxia serves as a recognition motif for its proteasomal degradation. However, under hypoxic conditions, hydroxylation is inhibited and furthermore, PHD proteins are themselves polyubiquitylated and degraded by Siah ubiquitin ligases. Our data demonstrate for the first time that inhibition of the interaction between Siah and PHD proteins using a fragment derived from a Drosophila protein (phyllopod) interferes with the PHD degradation. Furthermore, cells stably expressing the phyllopod fragment display reduced upregulation of Hif-1alpha protein levels and Hif-1-mediated gene expression under hypoxia. In a syngeneic mouse model of breast cancer, the phyllopod fragment reduced tumor growth and neoangiogenesis and prolonged survival of the mice. In addition, levels of Hif-1alpha and its target Glut-1 are reduced in tumors expressing the phyllopod fragment. These data show, in a proof-of-principle study, that Siah protein, the most upstream component of the hypoxia pathway yet identified, is a viable drug target for antitumor therapies.
Collapse
|
37
|
Berchner-Pfannschmidt U, Tug S, Trinidad B, Oehme F, Yamac H, Wotzlaw C, Flamme I, Fandrey J. Nuclear oxygen sensing: induction of endogenous prolyl-hydroxylase 2 activity by hypoxia and nitric oxide. J Biol Chem 2008; 283:31745-53. [PMID: 18776187 DOI: 10.1074/jbc.m804390200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The abundance of the transcription factor hypoxia-inducible factor is regulated through hydroxylation of its alpha-subunits by a family of prolyl-hydroxylases (PHD1-3). Enzymatic activity of these PHDs is O2-dependent, which enables PHDs to act as cellular O2 sensor enzymes. Herein we studied endogenous PHD activity that was induced in cells grown under hypoxia or in the presence of nitric oxide. Under such conditions nuclear extracts contained much higher PHD activity than the respective cytoplasmic extracts. Although PHD1-3 were abundant in both compartments, knockdown experiments for each isoenzyme revealed that nuclear PHD activity was only due to PHD2. Maximal PHD2 activity was found between 120 and 210 microm O2. PHD2 activity was strongly decreased below 100 microm O2 with a half-maximum activity at 53 +/- 13 microm O2 for the cytosolic and 54 +/- 10 microm O2 for nuclear PHD2 matching the physiological O2 concentration within most cells. Our data suggest a role for PHD2 as a decisive oxygen sensor of the hypoxia-inducible factor degradation pathway within the cell nucleus.
Collapse
|
38
|
Li XY, Takasaki C, Satoh Y, Kimura S, Yasumoto KI, Sogawa K. Expression, Purification and Characterization of Human PHD1 in Escherichia coli. J Biochem 2008; 144:555-61. [DOI: 10.1093/jb/mvn102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
39
|
The von Hippel-Lindau tumor suppressor protein and Egl-9-Type proline hydroxylases regulate the large subunit of RNA polymerase II in response to oxidative stress. Mol Cell Biol 2008; 28:2701-17. [PMID: 18285459 DOI: 10.1128/mcb.01231-07] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human renal clear cell carcinoma (RCC) is frequently associated with loss of the von Hippel-Lindau (VHL) tumor suppressor (pVHL), which inhibits ubiquitylation and degradation of the alpha subunits of hypoxia-inducible transcription factor. pVHL also ubiquitylates the large subunit of RNA polymerase II, Rpb1, phosphorylated on serine 5 (Ser5) within the C-terminal domain (CTD). A hydroxylated proline 1465 within an LXXLAP motif located N-terminal to the CTD allows the interaction of Rpb1 with pVHL. Here we report that in RCC cells, pVHL regulates expression of Rpb1 and is necessary for low-grade oxidative-stress-induced recruitment of Rpb1 to the DNA-engaged fraction and for its P1465 hydroxylation, phosphorylation, and nondegradative ubiquitylation. Egln-9-type prolyl hydroxylases, PHD1 and PHD2, coimmunoprecipitated with Rpb1 in the chromatin fraction of VHL(+) RCC cells in response to oxidative stress, and PHD1 was necessary for P1465 hydroxylation while PHD2 had an inhibitory effect. P1465 hydroxylation was required for oxidative-stress-induced Ser5 phosphorylation of Rpb1. Importantly, overexpression of wild-type Rpb1 stimulated formation of kidney tumors by VHL(+) cells, and this effect was abolished by P1465A mutation of Rpb1. These data indicate that through this novel pathway involving P1465 hydroxylation and Ser5 phosphorylation of Rbp1, pVHL may regulate tumor growth.
Collapse
|
40
|
Myllyharju J. Prolyl 4-hydroxylases, key enzymes in the synthesis of collagens and regulation of the response to hypoxia, and their roles as treatment targets. Ann Med 2008; 40:402-17. [PMID: 19160570 DOI: 10.1080/07853890801986594] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prolyl 4-hydroxylases (P4Hs) have central roles in the synthesis of collagens and the regulation of oxygen homeostasis. The 4-hydroxyproline residues generated by the endoplasmic reticulum (ER) luminal collagen P4Hs (C-P4Hs) are essential for the stability of the collagen triple helix. Vertebrate C-P4Hs are alpha2beta2 tetramers with three isoenzymes differing in their catalytic alpha subunits. Another P4H family, the HIF-P4Hs, hydroxylates specific prolines in the alpha subunit of the hypoxia-inducible transcription factor (HIF), a master regulator of hypoxia-inducible genes, and controls its stability in an oxygen-dependent manner. The HIF-P4Hs are cytoplasmic and nuclear enzymes, likewise with three isoenzymes in vertebrates. A third vertebrate P4H type is an ER transmembrane protein that can act on HIF-alpha but not on collagens. All P4Hs require Fe2+, 2-oxoglutarate, O2, and ascorbate. C-P4Hs are regarded as attractive targets for pharmacological inhibition to control excessive collagen accumulation in fibrotic diseases and severe scarring, while HIF-P4H inhibitors are believed to have beneficial effects in the treatment of diseases such as myocardial infarction, stroke, peripheral vascular disease, diabetes, and severe anemias. Studies with P4H inhibitors in various animal models of fibrosis, anemia, and ischemia and ongoing clinical trials with HIF-P4H inhibitors support this hypothesis by demonstrating efficacy in many applications.
Collapse
|
41
|
Fedulova N, Hanrieder J, Bergquist J, Emrén LO. Expression and purification of catalytically active human PHD3 in Escherichia coli. Protein Expr Purif 2007; 54:1-10. [PMID: 17434750 DOI: 10.1016/j.pep.2007.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 02/16/2007] [Accepted: 02/24/2007] [Indexed: 01/21/2023]
Abstract
Transcription factor HIF-1 is a key regulator in cellular adaptation to hypoxia. HIF prolyl hydroxylases (PHDs) control HIF-1 accumulation by hydroxylation dependent on molecular oxygen. Due to this regulation, PHDs have been pointed out as potential drug targets. We have purified catalytically active human PHD3 after heterologous expression in Escherichia coli. Histidine-tagged enzyme was isolated as monomer by immobilized Ni-affinity chromatography followed by gel filtration. Overexpression of bacterial chaperonins GroEL/ES at 30 degrees C substantially increased the yield of soluble PHD3. High concentrations of salt and reducing agent during purification prevented protein aggregation. The enzyme activity with peptide derived from HIF-1alpha was inhibited by Zn(2+), desferrioxamine and imidazole. The hydroxylation activity was verified by mass spectrometry, and Pro567 in HIF-1alpha was discovered as a new site of hydroxylation.
Collapse
Affiliation(s)
- Natalia Fedulova
- Department of Biochemistry and Organic Chemistry, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
42
|
Siddiq A, Aminova LR, Ratan RR. Hypoxia inducible factor prolyl 4-hydroxylase enzymes: center stage in the battle against hypoxia, metabolic compromise and oxidative stress. Neurochem Res 2007; 32:931-46. [PMID: 17342411 PMCID: PMC2576999 DOI: 10.1007/s11064-006-9268-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 12/20/2006] [Indexed: 01/29/2023]
Abstract
Studies of adaptive mechanisms to hypoxia led to the discovery of the transcription factor called hypoxia inducible factor (HIF). HIF is a ubiquitously expressed, heterodimeric transcription factor that regulates a cassette of genes that can provide compensation for hypoxia, metabolic compromise, and oxidative stress including erythropoietin, vascular endothelial growth factor, or glycolytic enzymes. Diseases associated with oxygen deprivation and consequent metabolic compromise such as stroke or Alzheimer's disease may result from inadequate engagement of adaptive signaling pathways that culminate in HIF activation. The discovery that HIF stability and activation are governed by a family of dioxygenases called HIF prolyl 4 hydroxylases (PHDs) identified a new target to augment the transcriptional activity of HIF and thus the adaptive machinery that governs neuroprotection. PHDs lose activity when cells are deprived of oxygen, iron or 2-oxoglutarate. Inhibition of PHD activity triggers the cellular homeostatic response to oxygen and glucose deprivation by stabilizing HIF and other proteins. Herein, we discuss the possible role of PHDs in regulation of both HIF-dependent and -independent cell survival pathways in the nervous system with particular attention to the co-substrate requirements for these enzymes. The emergence of neuroprotective therapies that modulate genes capable of combating metabolic compromise is an affirmation of elegant studies done by John Blass and colleagues over the past five decades implicating altered metabolism in neurodegeneration.
Collapse
Affiliation(s)
- Ambreena Siddiq
- Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA.
| | | | | |
Collapse
|
43
|
Imaoka S, Muraguchi T, Kinoshita T. Isolation of Xenopus HIF-prolyl 4-hydroxylase and rescue of a small-eye phenotype caused by Siah2 over-expression. Biochem Biophys Res Commun 2007; 355:419-25. [PMID: 17303083 DOI: 10.1016/j.bbrc.2007.01.166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 01/31/2007] [Indexed: 01/24/2023]
Abstract
Hypoxia is an important physiological condition during embryonic development. Hypoxia-inducible factor (HIF) is the mediator of hypoxic response of cells. The prolyl hydroxylase (PHD) of HIF plays a key role in stabilizing of HIF and the oxygen homeostasis of organisms. In this study, we isolated two PHD proteins, PHD45 and PHD28, and characterized them during the embryonic development of Xenopus laevis, which is an excellent model for embryonic development because of the ease of embryonic manipulation and the feasibility of transgenesis. Based on amino acid sequences, Xenopus PHD45 and PHD28 were homologous with human PHD2 and PHD3, respectively. In embryonic development, PHD45 expression was complementary to that of PHD28. xHIF-1alpha protein level was at a maximum around stage 20 when expression of PHD45 disappeared, while expression of PHD28 reached a maximum at stage 20, suggesting that PHD28 is inducible by HIF-1alpha. Recently, Siah2 was found to be an ubiquitin ligase of PHD proteins and to regulate degradation of PHD proteins. Over-expression of xSiah2 decreased PHD45 but not PHD28 and caused the small-eye phenotype of Xenopus. Additional over-expression of PHD47 rescued the abnormality caused by xSiah2, suggesting that the level of expression or activity of PHD proteins is important to the maintenance of homeostasis in embryonic development.
Collapse
Affiliation(s)
- Susumu Imaoka
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan.
| | | | | |
Collapse
|
44
|
Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda AR. p38alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell 2007; 11:191-205. [PMID: 17292829 DOI: 10.1016/j.ccr.2006.12.013] [Citation(s) in RCA: 315] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 10/20/2006] [Accepted: 12/04/2006] [Indexed: 12/14/2022]
Abstract
p38alpha is a stress-activated protein kinase that negatively regulates malignant transformation induced by oncogenic H-Ras, although the mechanisms involved are not fully understood. Here, we show that p38alpha is not a general inhibitor of oncogenic signaling, but that it specifically modulates transformation induced by oncogenes that produce reactive oxygen species (ROS). This inhibitory effect is due to the ROS-induced activation of p38alpha early in the process of transformation, which induces apoptosis and prevents the accumulation of ROS and their carcinogenic effects. Accordingly, highly tumorigenic cancer cell lines have developed a mechanism to uncouple p38alpha activation from ROS production. Our results indicate that oxidative stress sensing plays a key role in the inhibition of tumor initiation by p38alpha.
Collapse
Affiliation(s)
- Ignacio Dolado
- CNIO (Spanish National Cancer Center), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | | | | | | | | | |
Collapse
|