1
|
Procknow SS, Kozel BA. Emerging mechanisms of elastin transcriptional regulation. Am J Physiol Cell Physiol 2022; 323:C666-C677. [PMID: 35816641 PMCID: PMC9448287 DOI: 10.1152/ajpcell.00228.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022]
Abstract
Elastin provides recoil to tissues that stretch such as the lung, blood vessels, and skin. It is deposited in a brief window starting in the prenatal period and extending to adolescence in vertebrates, and then slowly turns over. Elastin insufficiency is seen in conditions such as Williams-Beuren syndrome and elastin-related supravalvar aortic stenosis, which are associated with a range of vascular and connective tissue manifestations. Regulation of the elastin (ELN) gene occurs at multiple levels including promoter activation/inhibition, mRNA stability, interaction with microRNAs, and alternative splicing. However, these mechanisms are incompletely understood. Better understanding of the processes controlling ELN gene expression may improve medicine's ability to intervene in these rare conditions, as well as to replace age-associated losses by re-initiating elastin production. This review describes what is known about the ELN gene promoter structure, transcriptional regulation by cytokines and transcription factors, and posttranscriptional regulation via mRNA stability and micro-RNA and highlights new approaches that may influence regenerative medicine.
Collapse
Affiliation(s)
- Sara S Procknow
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Beth A Kozel
- Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
2
|
Reichheld SE, Muiznieks LD, Huynh Q, Wang N, Ing C, Miao M, Sitarz EE, Pomès R, Sharpe S, Keeley FW. The evolutionary background and functional consequences of the rs2071307 polymorphism in human tropoelastin. Biopolymers 2020; 112:e23414. [PMID: 33351193 DOI: 10.1002/bip.23414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/01/2023]
Abstract
Elastin is a major polymeric protein of the extracellular matrix, providing critical properties of extensibility and elastic recoil. The rs2071307 genomic polymorphism, resulting in the substitution of a serine for a glycine residue in a VPG motif in tropoelastin, has an unusually high minor allele frequency in humans. A consequence of such allelic heterozygosity would be the presence of a heterogeneous elastin polymer in up to 50% of the population, a situation which appears to be unique to Homo sapiens. VPG motifs are extremely common in hydrophobic domains of tropoelastins and are the sites of transient β-turns that are essential for maintaining the conformational flexibility required for its function as an entropic elastomer. Earlier data demonstrated that single amino acid substitutions in tropoelastin can have functional consequences for polymeric elastin, particularly when present in mixed polymers. Here, using NMR and molecular dynamics approaches, we show the rs2071307 polymorphism reduces local propensity for β-turn formation, with a consequent increase in polypeptide hydration and an expansion of the conformational ensemble manifested as an increased hydrodynamic radius, radius of gyration and asphericity. Furthermore, this substitution affects functional properties of polymeric elastin, particularly in heterogeneous polymers mimicking allelic heterozygosity. We discuss whether such effects, together with the unusually high minor allele frequency of the polymorphism, could imply some some evolutionary advantage for the heterozygous state.
Collapse
Affiliation(s)
- Sean E Reichheld
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA
| | - Lisa D Muiznieks
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA.,Elvesys Microfluidics Innovation Center, 172 rue de Charonne, 75011, Paris, France
| | - Quang Huynh
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA
| | - Nick Wang
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA.,135 W 52nd St. Apt 20A, 10019-7691, New York, New York, USA
| | - Christopher Ing
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA.,ProteinQure, Suite 304, 119 Spadina Avenue, M5V2L1, Toronto, Ontario, Canada
| | - Ming Miao
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA
| | - Eva E Sitarz
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA
| | - Régis Pomès
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Simon Sharpe
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Fred W Keeley
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Vindin H, Mithieux SM, Weiss AS. Elastin architecture. Matrix Biol 2019; 84:4-16. [DOI: 10.1016/j.matbio.2019.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 11/15/2022]
|
4
|
Kozel BA, Mecham RP. Elastic fiber ultrastructure and assembly. Matrix Biol 2019; 84:31-40. [PMID: 31669522 DOI: 10.1016/j.matbio.2019.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/22/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
Studies over the years have described a filamentous structure to mature elastin that suggests a complicated packing arrangement of tropoelastin subunits. The currently accepted mechanism for tropoelastin assembly requires microfibrils to serve as a physical extracellular scaffold for alignment of tropoelastin monomers during and before crosslinking. However, recent evidence suggests that the initial stages of tropoelastin assembly occur within the cell or at unique assembly sites on the plasma membrane where tropoelastin self assembles to form elastin aggregates. Outside the cell, elastin aggregates transfer to growing elastic fibers in the extracellular matrix where tensional forces on microfibrils generated through cell movement help shape the growing fiber. Overall, these observations challenge the widely held idea that interaction between monomeric tropoelastin and microfibrils is a requirement for elastin assembly, and point to self-assembly of tropoelastin as a driving force in elastin maturation.
Collapse
Affiliation(s)
- Beth A Kozel
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, Campus Box 8228, 660 South Euclid Ave, St. Louis, MO, 63110, USA.
| |
Collapse
|
5
|
Duque Lasio ML, Kozel BA. Elastin-driven genetic diseases. Matrix Biol 2018; 71-72:144-160. [PMID: 29501665 DOI: 10.1016/j.matbio.2018.02.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 02/08/2023]
Abstract
Elastic fibers provide recoil to tissues that undergo repeated deformation, such as blood vessels, lungs and skin. Composed of elastin and its accessory proteins, the fibers are produced within a restricted developmental window and are stable for decades. Their eventual breakdown is associated with a loss of tissue resiliency and aging. Rare alteration of the elastin (ELN) gene produces disease by impacting protein dosage (supravalvar aortic stenosis, Williams Beuren syndrome and Williams Beuren region duplication syndrome) and protein function (autosomal dominant cutis laxa). This review highlights aspects of the elastin molecule and its assembly process that contribute to human disease and also discusses potential therapies aimed at treating diseases of elastin insufficiency.
Collapse
Affiliation(s)
| | - Beth A Kozel
- National Institutes of Health, National Heart Lung and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
6
|
Lee P, Yeo GC, Weiss AS. A cell adhesive peptide from tropoelastin promotes sequential cell attachment and spreading via distinct receptors. FEBS J 2017; 284:2216-2230. [DOI: 10.1111/febs.14114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/30/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Pearl Lee
- School of Life and Environmental Sciences University of Sydney Australia
- Bosch Institute University of Sydney Australia
- Charles Perkins Centre University of Sydney Australia
| | - Giselle C. Yeo
- School of Life and Environmental Sciences University of Sydney Australia
- Charles Perkins Centre University of Sydney Australia
- Applied and Plasma Physics School of Physics University of Sydney Australia
| | - Anthony S. Weiss
- School of Life and Environmental Sciences University of Sydney Australia
- Bosch Institute University of Sydney Australia
- Charles Perkins Centre University of Sydney Australia
| |
Collapse
|
7
|
Sato F, Seino-Sudo R, Okada M, Sakai H, Yumoto T, Wachi H. Lysyl Oxidase Enhances the Deposition of Tropoelastin through the Catalysis of Tropoelastin Molecules on the Cell Surface. Biol Pharm Bull 2017; 40:1646-1653. [DOI: 10.1248/bpb.b17-00027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Fumiaki Sato
- Department of Analytical Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Ryo Seino-Sudo
- Department of Tissue Regeneration, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Mami Okada
- Department of Clinical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Hiroyasu Sakai
- Department of Analytical Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Tetsuro Yumoto
- Department of Analytical Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Hiroshi Wachi
- Department of Tissue Regeneration, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| |
Collapse
|
8
|
Pilecki B, Holm AT, Schlosser A, Moeller JB, Wohl AP, Zuk AV, Heumüller SE, Wallis R, Moestrup SK, Sengle G, Holmskov U, Sorensen GL. Characterization of Microfibrillar-associated Protein 4 (MFAP4) as a Tropoelastin- and Fibrillin-binding Protein Involved in Elastic Fiber Formation. J Biol Chem 2015; 291:1103-14. [PMID: 26601954 DOI: 10.1074/jbc.m115.681775] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 11/06/2022] Open
Abstract
MFAP4 (microfibrillar-associated protein 4) is an extracellular glycoprotein found in elastic fibers without a clearly defined role in elastic fiber assembly. In the present study, we characterized molecular interactions between MFAP4 and elastic fiber components. We established that MFAP4 primarily assembles into trimeric and hexameric structures of homodimers. Binding analysis revealed that MFAP4 specifically binds tropoelastin and fibrillin-1 and -2, as well as the elastin cross-linking amino acid desmosine, and that it co-localizes with fibrillin-1-positive fibers in vivo. Site-directed mutagenesis disclosed residues Phe(241) and Ser(203) in MFAP4 as being crucial for type I collagen, elastin, and tropoelastin binding. Furthermore, we found that MFAP4 actively promotes tropoelastin self-assembly. In conclusion, our data identify MFAP4 as a new ligand of microfibrils and tropoelastin involved in proper elastic fiber organization.
Collapse
Affiliation(s)
- Bartosz Pilecki
- From the Department of Cancer and Inflammation Research, Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense C, Denmark
| | - Anne T Holm
- From the Department of Cancer and Inflammation Research, Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense C, Denmark
| | - Anders Schlosser
- From the Department of Cancer and Inflammation Research, Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense C, Denmark
| | - Jesper B Moeller
- From the Department of Cancer and Inflammation Research, Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense C, Denmark
| | | | | | - Stefanie E Heumüller
- the Center for Biochemistry, Faculty of Medicine and the Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Russell Wallis
- the Department of Infection, Immunity and Inflammation, and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom, and
| | - Soren K Moestrup
- From the Department of Cancer and Inflammation Research, Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense C, Denmark, the Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense C, Denmark
| | - Gerhard Sengle
- the Center for Biochemistry, Faculty of Medicine and the Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Uffe Holmskov
- From the Department of Cancer and Inflammation Research, Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense C, Denmark
| | - Grith L Sorensen
- From the Department of Cancer and Inflammation Research, Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense C, Denmark,
| |
Collapse
|
9
|
Lee P, Bax DV, Bilek MMM, Weiss AS. A novel cell adhesion region in tropoelastin mediates attachment to integrin αVβ5. J Biol Chem 2013; 289:1467-77. [PMID: 24293364 DOI: 10.1074/jbc.m113.518381] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tropoelastin protein monomers assemble to form elastin. Cellular integrin αVβ3 binds RKRK at the C-terminal tail of tropoelastin. We probed cell interactions with tropoelastin by deleting the RKRK sequence to identify other cell-binding interactions within tropoelastin. We found a novel human dermal fibroblast attachment and spreading site on tropoelastin that is located centrally in the molecule. Inhibition studies demonstrated that this cell adhesion was not mediated by either elastin-binding protein or glycosaminoglycans. Cell interactions were divalent cation-dependent, indicating integrin dependence. Function-blocking monoclonal antibodies revealed that αV integrin(s) and integrin αVβ5 specifically were critical for cell adhesion to this part of tropoelastin. These data reveal a common αV integrin-binding theme for tropoelastin: αVβ3 at the C terminus and αVβ5 at the central region of tropoelastin. Each αV region contributes to fibroblast attachment and spreading, but they differ in their effects on cytoskeletal assembly.
Collapse
Affiliation(s)
- Pearl Lee
- From the School of Molecular Bioscience
| | | | | | | |
Collapse
|
10
|
Kay P, Yang YC, Paraoan L. Directional protein secretion by the retinal pigment epithelium: roles in retinal health and the development of age-related macular degeneration. J Cell Mol Med 2013; 17:833-43. [PMID: 23663427 PMCID: PMC3822888 DOI: 10.1111/jcmm.12070] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/24/2013] [Indexed: 11/29/2022] Open
Abstract
The structural and functional integrity of the retinal pigment epithelium (RPE) is fundamental for maintaining the function of the neuroretina. These specialized cells form a polarized monolayer that acts as the retinal–blood barrier, separating two distinct environments with highly specialized functions: photoreceptors of the neuroretina at the apical side and Bruch's membrane/highly vascularized choriocapillaris at the basal side. The polarized nature of the RPE is essential for the health of these two regions, not only in nutrient and waste transport but also in the synthesis and directional secretion of proteins required in maintaining retinal homoeostasis and function. Although multiple malfunctions within the RPE cells have been associated with development of age-related macular degeneration (AMD), the leading cause of legal blindness, clear causative processes have not yet been conclusively characterized at the molecular and cellular level. This article focuses on the involvement of directionally secreted RPE proteins in normal functioning of the retina and on the potential association of incorrect RPE protein secretion with development of AMD. Understanding the importance of RPE polarity and the correct secretion of essential structural and regulatory components emerge as critical factors for the development of novel therapeutic strategies targeting AMD.
Collapse
Affiliation(s)
- Paul Kay
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
11
|
Uitto J, Li Q, Urban Z. The complexity of elastic fibre biogenesis in the skin--a perspective to the clinical heterogeneity of cutis laxa. Exp Dermatol 2012; 22:88-92. [PMID: 23088642 DOI: 10.1111/exd.12025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2012] [Indexed: 11/28/2022]
Abstract
Elastic fibres are critical connective tissue components providing elasticity and resilience to skin and other tissues. These fibres are composed of elastin and a number of elastin-associated microfibrillar proteins that assemble in a complex fibre network in a multi-step process. Multiple cellular processes, including mitochondrial function, specific molecules in the secretory pathways and temporally and spatially ordered production of elastic fibre components, are required for the biogenesis of functional elastic fibres. Abnormalities in these processes can lead to loss of functional elastic fibres manifesting phenotypically as a skin disease. The paradigm of elastic fibre diseases affecting the skin is cutis laxa, a clinically and genetically heterogeneous group of disorders characterized by loose and sagging skin, frequently associated with extracutaneous manifestations in the lungs and the arterial blood vessels. The complexity of cutis laxa is emphasized by the fact that as many as 10 distinct genes can harbour mutations in this and related disorders. Understanding of the pathomechanistic pathways involved in perturbed elastic fibre assembly in cutis laxa provides information potentially helpful for the development of molecular strategies towards treatment of these, currently intractable, diseases.
Collapse
Affiliation(s)
- Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
12
|
Yeo GC, Baldock C, Tuukkanen A, Roessle M, Dyksterhuis LB, Wise SG, Matthews J, Mithieux SM, Weiss AS. Tropoelastin bridge region positions the cell-interactive C terminus and contributes to elastic fiber assembly. Proc Natl Acad Sci U S A 2012; 109:2878-83. [PMID: 22328151 PMCID: PMC3286909 DOI: 10.1073/pnas.1111615108] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tropoelastin monomer undergoes stages of association by coacervation, deposition onto microfibrils, and cross-linking to form elastic fibers. Tropoelastin consists of an elastic N-terminal coil region and a cell-interactive C-terminal foot region linked together by a highly exposed bridge region. The bridge region is conveniently positioned to modulate elastic fiber assembly through association by coacervation and its proximity to dominant cross-linking domains. Tropoelastin constructs that either modify or remove the entire bridge and downstream regions were assessed for elastogenesis. These constructs focused on a single alanine substitution (R515A) and a truncation (M155n) at the highly conserved arginine 515 site that borders the bridge. Each form displayed less efficient coacervation, impaired hydrogel formation, and decreased dermal fibroblast attachment compared to wild-type tropoelastin. The R515A mutant protein additionally showed reduced elastic fiber formation upon addition to human retinal pigmented epithelium cells and dermal fibroblasts. The small-angle X-ray scattering nanostructure of the R515A mutant protein revealed greater conformational flexibility around the bridge and C-terminal regions. This increased flexibility of the R515A mutant suggests that the tropoelastin R515 residue stabilizes the structure of the bridge region, which is critical for elastic fiber assembly.
Collapse
Affiliation(s)
- Giselle C Yeo
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yeo GC, Keeley FW, Weiss AS. Coacervation of tropoelastin. Adv Colloid Interface Sci 2011; 167:94-103. [PMID: 21081222 DOI: 10.1016/j.cis.2010.10.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/13/2010] [Accepted: 10/15/2010] [Indexed: 12/14/2022]
Abstract
The coacervation of tropoelastin represents the first major stage of elastic fiber assembly. The process has been modeled in vitro by numerous studies, initially with mixtures of solubilized elastin, and subsequently with synthetic elastin peptides that represent hydrophobic repeat units, isolated hydrophobic domains, segments of alternating hydrophobic and cross-linking domains, or the full-length monomer. Tropoelastin coacervation in vitro is characterized by two stages: an initial phase separation, which involves a reversible inverse temperature transition of monomer to n-mer; and maturation, which is defined by the irreversible coalescence of coacervates into large species with fibrillar structures. Coacervation is an intrinsic ability of tropoelastin. It is primarily influenced by the number, sequence, and contextual arrangement of hydrophobic domains, although hydrophilic sequences can also affect the behavior of the hydrophobic domains and thus affect coacervation. External conditions including ionic strength, pH, and temperature also directly influence the propensity of tropoelastin to self-associate. Coacervation is an endothermic, entropically-driven process driven by the cooperative interactions of hydrophobic domains following destabilization of the clathrate-like water shielding these regions. The formation of such assemblies is believed to follow a helical nucleation model of polymerization. Coacervation is closely associated with conformational transitions of the monomer, such as increased β-structures in hydrophobic domains and α-helices in cross-linking domains. Tropoelastin coacervation in vivo is thought to mainly involve the central hydrophobic domains. In addition, cell-surface glycosaminoglycans and microfibrillar proteins may regulate the process. Coacervation is essential for progression to downstream elastogenic stages, and impairment of the process can result in elastin haploinsufficiency disorders such as supravalvular aortic stenosis.
Collapse
|
14
|
Affiliation(s)
- Hiroshi Wachi
- Department of Clinical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| |
Collapse
|
15
|
Yanagisawa H, Schluterman MK, Brekken RA. Fibulin-5, an integrin-binding matricellular protein: its function in development and disease. J Cell Commun Signal 2009; 3:337-47. [PMID: 19798595 PMCID: PMC2778585 DOI: 10.1007/s12079-009-0065-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 08/31/2009] [Indexed: 01/03/2023] Open
Abstract
Interactions between the extracellular matrix (ECM) and cells are critical in embryonic development, tissue homeostasis, physiological remodeling, and tumorigenesis. Matricellular proteins, a group of ECM components, mediate cell-ECM interactions. One such molecule, Fibulin-5 is a 66-kDa glycoprotein secreted by various cell types, including vascular smooth muscle cells (SMCs), fibroblasts, and endothelial cells. Fibulin-5 contributes to the formation of elastic fibers by binding to structural components including tropoelastin and fibrillin-1, and to cross-linking enzymes, aiding elastic fiber assembly. Mice deficient in the fibulin-5 gene (Fbln5) exhibit systemic elastic fiber defects with manifestations of loose skin, tortuous aorta, emphysematous lung and genital prolapse. Although Fbln5 expression is down-regulated after birth, following the completion of elastic fiber formation, expression is reactivated upon tissue injury, affecting diverse cellular functions independent of its elastogenic function. Fibulin-5 contains an evolutionally conserved arginine-glycine-aspartic acid (RGD) motif in the N-terminal region, which mediates binding to a subset of integrins, including alpha5beta1, alphavbeta3, and alphavbeta5. Fibulin-5 enhances substrate attachment of endothelial cells, while inhibiting migration and proliferation in a cell type- and context-dependent manner. The antagonistic function of fibulin-5 in angiogenesis has been demonstrated in vitro and in vivo; fibulin-5 may block angiogenesis by inducing the anti-angiogenic molecule thrompospondin-1, by antagonizing VEGF(165)-mediated signaling, and/or by antagonizing fibronectin-mediated signaling through directly binding and blocking the alpha5beta1 fibronectin receptor. The overall effect of fibulin-5 on tumor growth depends on the balance between the inhibitory property of fibulin-5 on angiogenesis and the direct effect of fibulin-5 on proliferation and migration of tumor cells. However, the effect of tumor-derived versus host microenvironment-derived fibulin-5 remains to be evaluated.
Collapse
Affiliation(s)
- Hiromi Yanagisawa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148 USA
| | - Marie K. Schluterman
- Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8593 USA
| | - Rolf A. Brekken
- Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8593 USA
| |
Collapse
|
16
|
Lin YP, Lee DW, McDonough SP, Nicholson LK, Sharma Y, Chang YF. Repeated domains of leptospira immunoglobulin-like proteins interact with elastin and tropoelastin. J Biol Chem 2009; 284:19380-91. [PMID: 19473986 DOI: 10.1074/jbc.m109.004531] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Leptospira spp., the causative agents of leptospirosis, adhere to components of the extracellular matrix, a pivotal role for colonization of host tissues during infection. Previously, we and others have shown that Leptospira immunoglobulin-like proteins (Lig) of Leptospira spp. bind to fibronectin, laminin, collagen, and fibrinogen. In this study, we report that Leptospira can be immobilized by human tropoelastin (HTE) or elastin from different tissues, including lung, skin, and blood vessels, and that Lig proteins can bind to HTE or elastin. Moreover, both elastin and HTE bind to the same LigB immunoglobulin-like domains, including LigBCon4, LigBCen7'-8, LigBCen9, and LigBCen12 as demonstrated by enzyme-linked immunosorbent assay (ELISA) and competition ELISAs. The LigB immunoglobulin-like domain binds to the 17th to 27th exons of HTE (17-27HTE) as determined by ELISA (LigBCon4, K(D) = 0.50 microm; LigBCen7'-8, K(D) = 0.82 microm; LigBCen9, K(D) = 1.54 microm; and LigBCen12, K(D) = 0.73 microm). The interaction of LigBCon4 and 17-27HTE was further confirmed by steady state fluorescence spectroscopy (K(D) = 0.49 microm) and ITC (K(D) = 0.54 microm). Furthermore, the binding was enthalpy-driven and affected by environmental pH, indicating it is a charge-charge interaction. The binding affinity of LigBCon4D341N to 17-27HTE was 4.6-fold less than that of wild type LigBCon4. In summary, we show that Lig proteins of Leptospira spp. interact with elastin and HTE, and we conclude this interaction may contribute to Leptospira adhesion to host tissues during infection.
Collapse
Affiliation(s)
- Yi-Pin Lin
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | | | | | | | | | | |
Collapse
|
17
|
Onoue S, Nonaka R, Sato F, Koide C, Hayashi A, Wachi H. Involvement of Reactive Oxygen Species in Abnormal Tropoelastin Deposition Induced by UVA-Photosensitizers. ACTA ACUST UNITED AC 2009. [DOI: 10.1248/jhs.55.946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Risa Nonaka
- Department of Clinical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University
| | - Fumiaki Sato
- Department of Clinical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University
| | | | | | - Hiroshi Wachi
- Department of Clinical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University
| |
Collapse
|
18
|
Rahn DD, Acevedo JF, Roshanravan S, Keller PW, Davis EC, Marmorstein LY, Word RA. Failure of pelvic organ support in mice deficient in fibulin-3. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 174:206-15. [PMID: 19095964 DOI: 10.2353/ajpath.2009.080212] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fibulin-5 is crucial for normal elastic fiber synthesis in the vaginal wall; more than 90% of fibulin-5-knockout mice develop pelvic organ prolapse by 20 weeks of age. In contrast, fibulin-1 and -2 deficiencies do not result in similar pathologies, and fibulin-4-knockout mice die shortly after birth. EFEMP1 encodes fibulin-3, an extracellular matrix protein important in the maintenance of abdominal fascia. Herein, we evaluated the role of fibulin-3 in pelvic organ support. Pelvic organ support was impaired significantly in female Efemp1 knockout mice (Fbln3(-[supi]/-)), and overt vaginal, perineal, and rectal prolapse occurred in 26.9% of animals. Prolapse severity increased with age but not parity. Fibulin-5 was up-regulated in vaginal tissues from Fbln3(-[supi]/-) mice regardless of prolapse. Despite increased expression of fibulin-5 in the vaginal wall, pelvic organ support failure occurred in Fbln3(-[supi]/-) animals, suggesting that factors related to aging led to prolapse. Elastic fiber abnormalities in vaginal tissues from young Fbln3(-[supi]/-) mice progressed to severe elastic fiber disruption with age, and vaginal matrix metalloprotease activity was increased significantly in Fbln3(-[supi]/-) animals with prolapse compared with Fbln3(-[supi]/-) mice without prolapse. Overall, these results indicate that both fibulin-3 and -5 are important in maintaining pelvic organ support in mice. We suggest that increased vaginal protease activity and abnormal elastic fibers in the vaginal wall are important components in the pathogenesis of pelvic organ prolapse.
Collapse
Affiliation(s)
- David D Rahn
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9032, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Exon 26-coded polypeptide: An isolated hydrophobic domain of human tropoelastin able to self-assemble in vitro. Matrix Biol 2008; 27:441-50. [DOI: 10.1016/j.matbio.2008.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/07/2008] [Accepted: 02/20/2008] [Indexed: 11/18/2022]
|
20
|
Sato F, Wachi H, Ishida M, Nonaka R, Onoue S, Urban Z, Starcher BC, Seyama Y. Distinct steps of cross-linking, self-association, and maturation of tropoelastin are necessary for elastic fiber formation. J Mol Biol 2007; 369:841-51. [PMID: 17459412 DOI: 10.1016/j.jmb.2007.03.060] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Revised: 03/19/2007] [Accepted: 03/23/2007] [Indexed: 10/23/2022]
Abstract
Elastic fibers play an important role in the characteristic resilience of many tissues. The assembly of tropoelastin into a fibrillar matrix is a complex stepwise process and the deposition and cross-linking of tropoelastin are believed to be key steps of elastic fiber formation. However, the detailed mechanisms of elastic fiber assembly have not been defined yet. Here, we demonstrate the relationship between deposition and the cross-linking/maturation of tropoelastin. Our data show that a C-terminal half-fragment of tropoelastin encoded by exons 16-36 (BH) is deposited onto microfibrils, yet we detect very limited amounts of the cross-linking amino acid, desmosine, an indicator of maturation, whereas the N-terminal half-fragment encoded by exons 2-15 (FH) was deficient for both deposition and cross-linking, suggesting that elastic fiber formation requires full-length tropoelastin molecules. A series of experiments using mutant BH fragments, lacking either exon 16 or 30, or a deletion of both exons showed that self-association of tropoelastin polypeptides was an early step in elastic fiber assembly. Immunofluorescence and Western blot assay showed that the treatment of cell culture medium or conditioned medium with beta-aminopropionitrile to inhibit cross-linking, prevented both the deposition and polymerization of tropoelastin. In conclusion, our present results support the view that self-association and oxidation by lysyl oxidase precedes tropoelastin deposition onto microfibrils and the entire molecule of tropoelastin is required for this following maturation process.
Collapse
Affiliation(s)
- Fumiaki Sato
- Department of Clinical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|