1
|
Zablon HA, VonHandorf A, Puga A. Mechanisms of chromate carcinogenesis by chromatin alterations. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 96:1-23. [PMID: 36858770 DOI: 10.1016/bs.apha.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a dynamic environment, organisms must constantly mount an adaptive response to new environmental conditions in order to survive. Novel patterns of gene expression, driven by attendant changes in chromatin architecture, aid in adaptation and survival. Critical mechanisms in the control of gene transcription govern new spatiotemporal chromatin-chromatin interactions that make regulatory DNA elements accessible to the transcription factors that control the response. Consequently, agents that disrupt chromatin structure are likely to have a direct impact on the transcriptional programs of cells and organisms and to drive alterations in fundamental physiological processes. In this regard, hexavalent chromium (Cr(VI)) is of special interest because it interacts directly with cellular proteins, DNA, and other macromolecules, and is likely to upset cell functions that may cause generalized damage to the organism. Here, we will highlight chromium-mediated mechanisms that disrupt chromatin architecture and discuss how these mechanisms are integral to its carcinogenic properties. Emerging evidence indicates that Cr(VI) targets euchromatin, particularly in genomic locations flanking the binding sites of the essential transcription factors CTCF and AP1, and, in so doing, they disrupt nucleosomal architecture. Ultimately, the ensuing changes, if occurring in critical regulatory domains, may establish a new chromatin state, either toxic or adaptive, that will be governed by the corresponding gene transcription changes in key biological processes associated with that state.
Collapse
Affiliation(s)
- Hesbon A Zablon
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew VonHandorf
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Alvaro Puga
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
2
|
Karhib MM, El-Sayed RA, Ghanem NF, El-Demerdash FM. Nephroprotective role of Echinacea purpurea against potassium dichromate-induced oxidative stress, inflammation, and apoptosis in rats. ENVIRONMENTAL TOXICOLOGY 2022; 37:2324-2334. [PMID: 35670025 DOI: 10.1002/tox.23599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/20/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Environmental and occupational exposure to chromium compounds, especially hexavalent chromium [Cr(VI)], is widely recognized as a potential nephrotoxic in humans and animals. Its toxicity is associated with the overproduction of free radicals, which induces oxidative damage. Echinacea purpurea (L.) Moench is an herbaceous perennial plant rich in phenolic components and frequently used for its medicinal benefits. The current work evaluated the effectiveness of E. purpurea (EP) against oxidative stress and nephrotoxicity induced by potassium dichromate in male rats. Male Wistar rats were divided into four groups: control, E. purpurea (EP; 50 mg/kg; once daily for 3 weeks), hexavalent chromium (Cr(VI); 15 mg/kg; single intraperitoneal dose), and EP + Cr(VI) where rats were pretreated with EP for 3 weeks before receiving CrVI, respectively. Results revealed that rats exposed to Cr(VI) showed a significant increase in PC, TBARS, and H2 O2 , kidney function biomarkers (Urea, creatinine, and uric acid), lactate dehydrogenase activity (LDH), TNF-α, IL-18, nuclear factor kappa B (NFκB), and IGF-1 (Insulin-like growth factor-1) levels as well as a considerable decline in metallothionein (MT), glutathione (GSH) content, enzymatic antioxidants (SOD, CAT, GPx, GR, and GST), alkaline phosphatase (ALP) activities, and protein content. Cr(VI) induced apoptosis in kidney tissues as revealed by upregulation of Bax and caspase 3 and downregulation of Bcl-2. Furthermore, EP treatment ameliorated the Cr(VI)-induced histopathological and ultrastructure variations of kidney tissue, which was confirmed by the biochemical and molecular data. It is clear from the results of this study that EP exerts nephroprotective effects by improving the redox state, suppressing inflammatory reaction and cell apoptosis as well as ameliorating the performance of kidney tissue architecture, which is eventually reflected by the improvement of kidney function in rats.
Collapse
Affiliation(s)
- Mustafa M Karhib
- Department of Medical Laboratory Technique, Al-Mustaqbal University College, Babylon, Hillah, Iraq
| | - Raghda A El-Sayed
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Nora F Ghanem
- Department of Zoology, Faculty of Science, Kafr ElSheikh University, Kafr ElSheikh, Egypt
| | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
VonHandorf A, Zablon HA, Puga A. Hexavalent chromium disrupts chromatin architecture. Semin Cancer Biol 2021; 76:54-60. [PMID: 34274487 PMCID: PMC8627925 DOI: 10.1016/j.semcancer.2021.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022]
Abstract
Accessibility of DNA elements and the orchestration of spatiotemporal chromatin-chromatin interactions are critical mechanisms in the regulation of gene transcription. Thus, in an ever-changing milieu, cells mount an adaptive response to environmental stimuli by modulating gene expression that is orchestrated by coordinated changes in chromatin architecture. Correspondingly, agents that alter chromatin structure directly impact transcriptional programs in cells. Heavy metals, including hexavalent chromium (Cr(VI)), are of special interest because of their ability to interact directly with cellular protein, DNA and other macromolecules, resulting in general damage or altered function. In this review we highlight the chromium-mediated mechanisms that promote disruption of chromatin architecture and how these processes are integral to its carcinogenic properties. Emerging evidence shows that Cr(VI) targets nucleosomal architecture in euchromatin, particularly in genomic locations flanking binding sites of the essential transcription factors CTCF and AP1. Ultimately, these changes contribute to an altered chromatin state in critical gene regulatory regions, which disrupts gene transcription in functionally relevant biological processes.
Collapse
Affiliation(s)
- Andrew VonHandorf
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH, 45267, USA
| | - Hesbon A Zablon
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH, 45267, USA
| | - Alvaro Puga
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH, 45267, USA.
| |
Collapse
|
4
|
Otsuka F. [Transcription Factor MTF-1 Involved in the Cellular Response to Zinc]. YAKUGAKU ZASSHI 2021; 141:857-867. [PMID: 34078794 DOI: 10.1248/yakushi.20-00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heavy metals, both toxic and essential, have long been an important research focus in life science. To investigate the intracellular actions of heavy metals at the molecular level, I have been exploring protein factors involved in induction of metallothionein (MT) genes by heavy metals that specifically bind to a metal responsive element (MRE) in the region upstream of the human MT-IIA gene. Purification of a zinc-dependent MRE-binding factor, and cloning of its cDNA identified a sequence identical to that of metal-responsive transcription factor-1 (MTF-1). MTF-1, which is characterized by six tandem repeats of the C2H2 type zinc finger motif, is indispensable for induction of MT gene expression by multiple types of heavy metal, but zinc is the only metal that can directly activate MTF-1 binding to the MRE, indicating that other heavy metal signals act through zinc as a second messenger. Functional analysis of various MTF-1 point mutants revealed several cysteine (Cys) residues critical for DNA binding and/or transactivation activity. Interestingly, six finger motifs seem to mediate several MTF-1 functions other than DNA binding. Immunohistochemical analyses of various mouse tissues revealed selective expression of MTF-1 in spermatocytes among the testicular cells, suggesting roles relevant to spermatogenesis. The zinc regulon, under the control of MTF-1, will likely provide good clues to aid in unraveling novel functions of intracellular zinc ions.
Collapse
Affiliation(s)
- Fuminori Otsuka
- Laboratory of Molecular Environmental Health, Faculty of Pharma-Sciences, Teikyo University
| |
Collapse
|
5
|
Ogushi S, Yoshida Y, Nakanishi T, Kimura T. CpG Site-Specific Regulation of Metallothionein-1 Gene Expression. Int J Mol Sci 2020; 21:E5946. [PMID: 32824906 PMCID: PMC7503544 DOI: 10.3390/ijms21175946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 01/13/2023] Open
Abstract
Metal-binding inducible proteins called metallothioneins (MTs) protect cells from heavy-metal toxicity. Their transcription is regulated by metal response element (MRE)-binding transcription factor-1 (MTF1), which is strongly recruited to MREs in the MT promoters, in response to Zn and Cd. Mouse Mt1 gene promoter contains 5 MREs (a-e), and MTF1 has the highest affinity to MREd. Epigenetic changes like DNA methylation might affect transcription and, therefore, the cytoprotective function of MT genes. To reveal the CpG site(s) critical for Mt1 transcription, we analyzed the methylation status of CpG dinucleotides in the Mt1 gene promoter through bisulfite sequencing in P1798 mouse lymphosarcoma cells, with high or low MT expression. We found demethylated CpG sites near MREd and MREe, in cells with high expression. Next, we compared Mt1 gene-promoter-driven Lucia luciferase gene expression in unmethylated and methylated reporter vectors. To clarify the effect of complete and partial CpG methylation, we used M.SssI (CG→5mCG) and HhaI (GCGC→G5mCGC)-methylated reporter vectors. Point mutation analysis revealed that methylation of a CpG site near MREd and MREe strongly inhibited Mt1 gene expression. Our results suggest that the methylation status of this site is important for the regulation of Mt1 gene expression.
Collapse
Affiliation(s)
- Shoko Ogushi
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa 572-8508, Japan;
| | - Yuya Yoshida
- Department of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata 573-0101, Japan;
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu 501-1196, Japan;
| | - Tomoki Kimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa 572-8508, Japan;
| |
Collapse
|
6
|
Metagenomics-Guided Discovery of Potential Bacterial Metallothionein Genes from the Soil Microbiome That Confer Cu and/or Cd Resistance. Appl Environ Microbiol 2020; 86:AEM.02907-19. [PMID: 32111593 DOI: 10.1128/aem.02907-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/15/2020] [Indexed: 12/18/2022] Open
Abstract
Metallothionein (MT) genes are valuable genetic materials for developing metal bioremediation tools. Currently, a limited number of prokaryotic MTs have been experimentally identified, which necessitates the expansion of bacterial MT diversity. In this study, we conducted a metagenomics-guided analysis for the discovery of potential bacterial MT genes from the soil microbiome. More specifically, we combined resistance gene enrichment through diversity loss, metagenomic mining with a dedicated MT database, evolutionary trace analysis, DNA chemical synthesis, and functional genomic validation to identify novel MTs. Results showed that Cu stress induced a compositional change in the soil microbiome, with an enrichment of metal-resistant bacteria in soils with higher Cu concentrations. Shotgun metagenomic sequencing was performed to obtain the gene pool of environmental DNA (eDNA), which was subjected to a local BLAST search against an MT database for detecting putative MT genes. Evolutional trace analysis led to the identification of 27 potential MTs with conserved cysteine/histidine motifs different from those of known prokaryotic MTs. Following chemical synthesis of these 27 potential MT genes and heterologous expression in Escherichia coli, six of them were found to improve the hosts' growth substantially and enhanced the hosts' sorption of Cu, Cd, and Zn, among which MT5 led to a 13.7-fold increase in Cd accumulation. Furthermore, four of them restored Cu and/or Cd resistance in two metal-sensitive E. coli strains.IMPORTANCE The metagenomics-guided procedure developed here bypasses the difficulties encountered in classic PCR-based approaches and led to the discovery of novel MT genes, which may be useful in developing bioremediation tools. The procedure used here expands our knowledge on the diversity of bacterial MTs in the environment and may also be applicable to identify other functional genes from eDNA.
Collapse
|
7
|
Kimura T, Hosaka T, Nakanishi T, Aozasa O. Long-term cadmium exposure enhances metallothionein-1 induction after subsequent exposure to high concentrations of cadmium in P1798 mouse lymphosarcoma cells. J Toxicol Sci 2019; 44:309-316. [PMID: 30944283 DOI: 10.2131/jts.44.309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cadmium, a ubiquitous heavy metal, is a toxic industrial and environmental pollutant. The initial biological response to cadmium exposure is induction of metallothioneins (MTs), a family of cysteine-rich, low-molecular-weight proteins that bind primarily zinc, cadmium, or both. This MT induction protects against cadmium toxicity by quenching cadmium. However, the effects of long-term cadmium exposure on MT1 gene expression are largely unknown. To investigate these effects, we used P1798 mouse lymphosarcoma cells, in which the MT1 gene is suppressed. As previously reported, MT1 expression remained unchanged after cadmium treatment. However, MT1 induction was observed in cells treated with 0.1 µM cadmium for 7 days, then exposed to 10 µM cadmium for 3 hr. In cells treated with 0.1 µM cadmium for 7 days, the transfected MT1 promoter reporter gene transcription and the cadmium incorporation in response to 10 µM cadmium induction were similar to those in untreated P1798 cells. Bisulfite genomic sequencing revealed that 7 day treatment with 0.1 µM cadmium slightly decreased CpG methylation in the 5´ flanking region of the MT1 gene. Our results together show that cadmium treatment results in MT1 induction and epigenetic modification of the MT1 gene.
Collapse
Affiliation(s)
- Tomoki Kimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University
| | - Takuomi Hosaka
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Setsunan University.,Present address: Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University
| | - Osamu Aozasa
- Department of Life Science, Faculty of Science and Engineering, Setsunan University
| |
Collapse
|
8
|
Zablon HA, VonHandorf A, Puga A. Chromium exposure disrupts chromatin architecture upsetting the mechanisms that regulate transcription. Exp Biol Med (Maywood) 2019; 244:752-757. [PMID: 30935235 PMCID: PMC6567585 DOI: 10.1177/1535370219839953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
IMPACT STATEMENT This mini-review highlights current evidence on the mechanisms through which hexavalent chromium (Cr(VI)) disrupts transcriptional regulation, an emerging area of interest and one of the central processes by which chromium induces carcinogenesis. Several studies have shown that Cr(VI) causes widespread DNA damage and disrupts epigenetic signatures, suggesting that chromatin may be a direct Cr(VI) target. The findings discussed here suggest that Cr(VI) disrupts transcriptional regulation by causing genomic architecture changes.
Collapse
Affiliation(s)
- Hesbon A Zablon
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Andrew VonHandorf
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Alvaro Puga
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
9
|
Abstract
Epigenetics is the study of heritable changes in gene expression that occur without alterations in the DNA sequence. Several studies have shown that environmental chemicals can alter epigenetic modifications, including histone modifications and DNA methylation. Environmental chemicals may show toxic effects via epigenetic mechanism-regulated changes in gene expression. Previously, we reported that zinc treatment rapidly decreased Lys(4)-trimethylated and Lys(9)-acetylated histone H3 in the metallothionein (MT) promoter, and also decreased total histone H3. The chromatin structure in the MT promoter may be locally disrupted by zinc-induced nucleosome removal. We also showed that chromium (VI) inhibited MT gene transcription by modifying the transcription potential of the co-activator p300. MT is a small cysteine-rich protein that is active in zinc homeostasis, cadmium detoxification, and protection against reactive oxygen species. Epigenetic changes might influence the cytoprotective function of the MT gene. In this review, I briefly summarize the results of previous studies and discuss the mechanisms and toxicological significance of metal-mediated epigenetic modifications.
Collapse
Affiliation(s)
- Tomoki Kimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University
| |
Collapse
|
10
|
Liu L, Yan Y, Wang J, Wu W, Xu L. Generation of mt:egfp transgenic zebrafish biosensor for the detection of aquatic zinc and cadmium. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2066-2073. [PMID: 26752424 DOI: 10.1002/etc.3362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 12/13/2015] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Zebrafish embryo toxicity testing has become a popular method for detecting environmental pollutions. However, the present research showed that zebrafish embryos exhibited no visible paramorphia, malformation, or mortality when exposed to heavy metals in a range above environmental standard limits, indicating that zebrafish embryos are an imprecise model for monitoring environmental heavy metals concentrations above regulatory limits. Aiming to obtain a biosensor for aquatic heavy metals, a metal-sensitive vector including zebrafish metallothionein (MT) promoter and enhanced green fluorescent protein (EGFP) was reconstructed and microinjected into 1-cell stage zebrafish embryos. The authors obtained an mt:egfp transgenic zebrafish line sensitive to aquatic zinc and cadmium. A quantitative experiment showed that zinc and cadmium treatment significantly induced the expression of EGFP in a dose- and time-dependent manner. In particular, EGFP messenger RNA levels increased remarkably when exposed to heavy metals above the standard limits. The results suggest that the transgenic zebrafish is a highly sensitive biosensor for detecting environmental levels of zinc and cadmium. Environ Toxicol Chem 2016;35:2066-2073. © 2016 SETAC.
Collapse
Affiliation(s)
- Lili Liu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanchun Yan
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Wang
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Wu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Xu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Kimura T, Kambe T. The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective. Int J Mol Sci 2016; 17:336. [PMID: 26959009 PMCID: PMC4813198 DOI: 10.3390/ijms17030336] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/18/2022] Open
Abstract
Around 3000 proteins are thought to bind zinc in vivo, which corresponds to ~10% of the human proteome. Zinc plays a pivotal role as a structural, catalytic, and signaling component that functions in numerous physiological processes. It is more widely used as a structural element in proteins than any other transition metal ion, is a catalytic component of many enzymes, and acts as a cellular signaling mediator. Thus, it is expected that zinc metabolism and homeostasis have sophisticated regulation, and elucidating the underlying molecular basis of this is essential to understanding zinc functions in cellular physiology and pathogenesis. In recent decades, an increasing amount of evidence has uncovered critical roles of a number of proteins in zinc metabolism and homeostasis through influxing, chelating, sequestrating, coordinating, releasing, and effluxing zinc. Metallothioneins (MT) and Zrt- and Irt-like proteins (ZIP) and Zn transporters (ZnT) are the proteins primarily involved in these processes, and their malfunction has been implicated in a number of inherited diseases such as acrodermatitis enteropathica. The present review updates our current understanding of the biological functions of MTs and ZIP and ZnT transporters from several new perspectives.
Collapse
Affiliation(s)
- Tomoki Kimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan.
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
12
|
Kimura T, Onodera A, Okumura F, Nakanishi T, Itoh N. Chromium (VI)-induced transformation is enhanced by Zn deficiency in BALB/c 3T3 cells. J Toxicol Sci 2015; 40:383-7. [PMID: 25972198 DOI: 10.2131/jts.40.383] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Hexavalent chromium [Cr(VI)] is a carcinogenic heavy metal that is reduced to intermediate oxidation states, such as Cr(V) and Cr(IV), in the process of forming stable Cr(III) forms; it is these intermediate forms that are thought to be responsible for much of the DNA damage and mutations that are induced by Cr(VI). Metallothionein (MT), a heavy metal-binding protein, is induced by zinc and other heavy metals and protects cells from the toxic effects of these metals by sequestering them. MT cannot bind Cr, but by scavenging reactive oxygen species through its cysteine residues, it may act as a protective factor against Cr(VI)-induced DNA lesions by reducing Cr(VI) directly to Cr(III), thereby avoiding the creation of the toxic intermediates. Here, we showed that Zn deficiency decreased MT expression in BALB/3T3 clone A31-1-1 cells and caused them to become highly susceptible to Cr(VI)-induced transformation. To obtain Zn-deficient cultures, cells were cultured in medium supplemented with 10% Chelex(®)-100 chelating resin-treated FBS. The increase in susceptibility to transformation was abolished by culturing the cells with supplemental Zn (50 µM). Previously, we reported that Cr(VI) inhibits MT transcription by preventing the zinc-dependent formation of a complex of metal response element-binding transcription factor-1 (MTF-1) and the co-activator p300. Our results suggest that the carcinogenicity of Cr(VI) is enhanced by MTF-1 dysfunction.
Collapse
Affiliation(s)
- Tomoki Kimura
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Setsunan University
| | | | | | | | | |
Collapse
|
13
|
Bin BH, Hojyo S, Hosaka T, Bhin J, Kano H, Miyai T, Ikeda M, Kimura-Someya T, Shirouzu M, Cho EG, Fukue K, Kambe T, Ohashi W, Kim KH, Seo J, Choi DH, Nam YJ, Hwang D, Fukunaka A, Fujitani Y, Yokoyama S, Superti-Furga A, Ikegawa S, Lee TR, Fukada T. Molecular pathogenesis of spondylocheirodysplastic Ehlers-Danlos syndrome caused by mutant ZIP13 proteins. EMBO Mol Med 2014; 6:1028-42. [PMID: 25007800 PMCID: PMC4154131 DOI: 10.15252/emmm.201303809] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 01/06/2023] Open
Abstract
The zinc transporter protein ZIP13 plays critical roles in bone, tooth, and connective tissue development, and its dysfunction is responsible for the spondylocheirodysplastic form of Ehlers-Danlos syndrome (SCD-EDS, OMIM 612350). Here, we report the molecular pathogenic mechanism of SCD-EDS caused by two different mutant ZIP13 proteins found in human patients: ZIP13(G64D), in which Gly at amino acid position 64 is replaced by Asp, and ZIP13(ΔFLA), which contains a deletion of Phe-Leu-Ala. We demonstrated that both the ZIP13(G64D) and ZIP13(ΔFLA) protein levels are decreased by degradation via the valosin-containing protein (VCP)-linked ubiquitin proteasome pathway. The inhibition of degradation pathways rescued the protein expression levels, resulting in improved intracellular Zn homeostasis. Our findings uncover the pathogenic mechanisms elicited by mutant ZIP13 proteins. Further elucidation of these degradation processes may lead to novel therapeutic targets for SCD-EDS.
Collapse
Affiliation(s)
- Bum-Ho Bin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry Showa University, Shinagawa, Japan
| | - Shintaro Hojyo
- Laboratory for Homeostatic Network, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan Deutsches Rheuma-Forschungszentrum, Berlin, Osteoimmunology, Berlin, Germany
| | - Toshiaki Hosaka
- RIKEN Systems and Structural Biology Center, Yokohama, Japan Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Jinhyuk Bhin
- Department of Chemical Engineering, POSTECH, Pohang, Republic of Korea
| | - Hiroki Kano
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Tomohiro Miyai
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mariko Ikeda
- RIKEN Systems and Structural Biology Center, Yokohama, Japan Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Tomomi Kimura-Someya
- RIKEN Systems and Structural Biology Center, Yokohama, Japan Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, Yokohama, Japan Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Eun-Gyung Cho
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Kazuhisa Fukue
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Wakana Ohashi
- Laboratory for Homeostatic Network, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kyu-Han Kim
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Juyeon Seo
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Dong-Hwa Choi
- Gyeonggi Bio Center, Gyeonggi Institute of Science & Technology Promotion, Suwon, Republic of Korea
| | - Yeon-Ju Nam
- Gyeonggi Bio Center, Gyeonggi Institute of Science & Technology Promotion, Suwon, Republic of Korea
| | - Daehee Hwang
- Center for Systems Biology of Plant Senescence and Life History, Institute for Basic Science, Daegu, Republic of Korea
| | - Ayako Fukunaka
- Center for Beta-Cell Biology and Regeneration, Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshio Fujitani
- Center for Beta-Cell Biology and Regeneration, Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Yokohama, Japan RIKEN Structural Biology Laboratory, Yokohama, Japan
| | - Andrea Superti-Furga
- Department of Pediatrics, Centre Hospitalier Universitaire Vaudois University of Lausanne, Lausanne, Switzerland
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Tae Ryong Lee
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Toshiyuki Fukada
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry Showa University, Shinagawa, Japan Laboratory for Homeostatic Network, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
14
|
Methods to Evaluate Zinc Transport into and out of the Secretory and Endosomal–Lysosomal Compartments in DT40 Cells. Methods Enzymol 2014; 534:77-92. [DOI: 10.1016/b978-0-12-397926-1.00005-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Fujimoto S, Itsumura N, Tsuji T, Anan Y, Tsuji N, Ogra Y, Kimura T, Miyamae Y, Masuda S, Nagao M, Kambe T. Cooperative functions of ZnT1, metallothionein and ZnT4 in the cytoplasm are required for full activation of TNAP in the early secretory pathway. PLoS One 2013; 8:e77445. [PMID: 24204829 PMCID: PMC3799634 DOI: 10.1371/journal.pone.0077445] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/05/2013] [Indexed: 11/18/2022] Open
Abstract
The activation process of secretory or membrane-bound zinc enzymes is thought to be a highly coordinated process involving zinc transport, trafficking, transfer and coordination. We have previously shown that secretory and membrane-bound zinc enzymes are activated in the early secretory pathway (ESP) via zinc-loading by the zinc transporter 5 (ZnT5)-ZnT6 hetero-complex and ZnT7 homo-complex (zinc transport complexes). However, how other proteins conducting zinc metabolism affect the activation of these enzymes remains unknown. Here, we investigated this issue by disruption and re-expression of genes known to be involved in cytoplasmic zinc metabolism, using a zinc enzyme, tissue non-specific alkaline phosphatase (TNAP), as a reporter. We found that TNAP activity was significantly reduced in cells deficient in ZnT1, Metallothionein (MT) and ZnT4 genes (ZnT1(-/-) MT(-/-) ZnT4(-/-) cells), in spite of increased cytosolic zinc levels. The reduced TNAP activity in ZnT1(-/-) MT(-/-) ZnT4(-/-) cells was not restored when cytosolic zinc levels were normalized to levels comparable with those of wild-type cells, but was reversely restored by extreme zinc supplementation via zinc-loading by the zinc transport complexes. Moreover, the reduced TNAP activity was adequately restored by re-expression of mammalian counterparts of ZnT1, MT and ZnT4, but not by zinc transport-incompetent mutants of ZnT1 and ZnT4. In ZnT1(-/-) MT(-/-) ZnT4(-/-) cells, the secretory pathway normally operates. These findings suggest that cooperative zinc handling of ZnT1, MT and ZnT4 in the cytoplasm is required for full activation of TNAP in the ESP, and present clear evidence that the activation process of zinc enzymes is elaborately controlled.
Collapse
Affiliation(s)
- Shigeyuki Fujimoto
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Naoya Itsumura
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tokuji Tsuji
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yasumi Anan
- Laboratory of Chemical Toxicology and Environmental Health, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Natsuko Tsuji
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yasumitsu Ogra
- Laboratory of Chemical Toxicology and Environmental Health, Showa Pharmaceutical University, Machida, Tokyo, Japan
- High Technology Research Center, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Tomoki Kimura
- Department of Toxicology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Yusaku Miyamae
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Seiji Masuda
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masaya Nagao
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
16
|
Mehany HA, Abo-youssef AM, Ahmed LA, Arafa ESA, Abd El-Latif HA. Protective effect of vitamin E and atorvastatin against potassium dichromate-induced nephrotoxicity in rats. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2013. [DOI: 10.1016/j.bjbas.2013.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
17
|
Ciacci C, Barmo C, Gallo G, Maisano M, Cappello T, D'Agata A, Leonzio C, Mauceri A, Fasulo S, Canesi L. Effects of sublethal, environmentally relevant concentrations of hexavalent chromium in the gills of Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 120-121:109-118. [PMID: 22673405 DOI: 10.1016/j.aquatox.2012.04.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/26/2012] [Accepted: 04/24/2012] [Indexed: 06/01/2023]
Abstract
Hexavalent chromium Cr(VI) is an important contaminant released from both domestic and industrial effluents, and represents the predominant chemical form of the metal in aquatic ecosystems. In the marine bivalve Mytilus galloprovincialis exposure to non-toxic, environmentally relevant concentrations of Cr(VI) was shown to modulate functional parameters and gene expression in both the digestive gland and hemocytes. In this work, the effects of exposure to Cr(VI) (0.1-1-10 μg L(-1) animal(-1) for 96 h) in mussel gills were investigated. Gill morphology and immunolocalization of GSH-transferase (GST), of components involved in cholinergic (AChE and ChAT), adrenergic (TH) and serotoninergic (5-HT(3) receptor) systems, regulating gill motility, were evaluated. Total glutathione content, activities of GSH-related enzymes (glutathione reductase - GSR, GST), of catalase, and of key glycolytic enzymes (phosphofructokinase - PFK and pyruvate kinase - PK) were determined. Moreover, mRNA expression of selected Mytilus genes (GST-π, metallothionein isoforms MT10 and MT20, HSP70 and 5-HT receptor) was assessed by RT-q-PCR. Cr(VI) exposure induced progressive changes in gill morphology and in immunoreactivity to components involved in neurotransmission that were particularly evident at the highest concentration tested, and associated with large metal accumulation. Cr(VI) increased the activities of GST and GSR, and total glutathione content to a different extent at different metal concentrations, this suggesting Cr(VI) detoxication/reduction at the site of metal entry. Cr(VI) exposure also increased the activity of glycolytic enzymes, indicating modulation of carbohydrate metabolism. Significant changes in transcription of different genes were observed. In particular, the mRNA level for the 5-HTR was increased, whereas both decreases and increases were observed for GST-π, MT10, MT20 and HSP70 mRNAs, showing sex- and concentration-related differences. The results demonstrate that Cr(VI) significantly affected functional and molecular parameters in mussel gills, and indicate that this tissue represents the major target of exposure to environmentally relevant concentrations of the metal.
Collapse
Affiliation(s)
- Caterina Ciacci
- DISTEVA, Dipartimento di Scienze della Terra, della Vita e dell'Ambiente, Università Carlo Bo di Urbino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Günther V, Lindert U, Schaffner W. The taste of heavy metals: gene regulation by MTF-1. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1416-25. [PMID: 22289350 DOI: 10.1016/j.bbamcr.2012.01.005] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/08/2012] [Accepted: 01/11/2012] [Indexed: 11/22/2022]
Abstract
The metal-responsive transcription factor-1 (MTF-1, also termed MRE-binding transcription factor-1 or metal regulatory transcription factor-1) is a pluripotent transcriptional regulator involved in cellular adaptation to various stress conditions, primarily exposure to heavy metals but also to hypoxia or oxidative stress. MTF-1 is evolutionarily conserved from insects to humans and is the main activator of metallothionein genes, which encode small cysteine-rich proteins that can scavenge toxic heavy metals and free radicals. MTF-1 has been suggested to act as an intracellular metal sensor but evidence for direct metal sensing was scarce. Here we review recent advances in our understanding of MTF-1 regulation with a focus on the mechanism underlying heavy metal responsiveness and transcriptional activation mediated by mammalian or Drosophila MTF-1. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Viola Günther
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
19
|
Kimura T, Yoshida K, Yamamoto C, Suzuki M, Uno T, Isobe M, Naka H, Yasuike S, Satoh M, Kaji T, Uchiyama M. Bis(L-cysteinato)zincate(lI) as a coordination compound that induces metallothionein gene transcription without inducing cell-stress-related gene transcription. J Inorg Biochem 2012; 117:140-6. [PMID: 23085594 DOI: 10.1016/j.jinorgbio.2012.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 07/25/2012] [Accepted: 07/31/2012] [Indexed: 11/16/2022]
Abstract
Zinc is an essential micronutrient, deficiency of which results in growth retardation, immunodeficiency, and neurological diseases such as dysgeusia. Several zinc coordination compounds are used for zinc supplementation; however, supplemented zinc ions have no specificity and interact with various groups of molecules. Here, we found that, from a library of 30 zinc coordination compounds, bis(L-cysteinato)zincate(II), designated Z01, functioned as a metallothionein (MT) inducer. Z01 induced MT expression mediated by the transcription factor MTF-1, without inducing cell-stress-related heme oxygenase-1 gene expression at specific concentration. The zinc ion was necessary for the MT induction. (65)Zn incorporation following treatment with (65)Zn-labeled Z01 suggested that Z01 did not act as zinc ionophore despite its hydrophilicity. Electrophoretic mobility shift assays revealed that Z01 facilitates MTF-1-MRE complex formation, and, by inference, transfer of zinc from Z01 to MTF-1. Phosphorylated ERK levels were increased by ZnSO(4) treatment but not by Z01. Although our data do not definitely prove that Z01 is an MTF-1-specific activator, our observations suggest that zinc coordination compounds can regulate zinc distribution and act as zinc donors for specific molecules.
Collapse
Affiliation(s)
- Tomoki Kimura
- Department of Toxicology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Barmo C, Ciacci C, Fabbri R, Olivieri S, Bianchi N, Gallo G, Canesi L. Pleiotropic effects of hexavalent chromium (CrVI) in Mytilus galloprovincialis digestive gland. CHEMOSPHERE 2011; 83:1087-1095. [PMID: 21316074 DOI: 10.1016/j.chemosphere.2011.01.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/11/2011] [Accepted: 01/14/2011] [Indexed: 05/30/2023]
Abstract
Hexavalent Chromium Cr(VI) is an important contaminant considered as a model oxidative toxicant released from both domestic and industrial effluents, and represents the predominant chemical form of the metal in aquatic ecosystems. On the other hand, in mammals the reduced form Cr(III) is considered an essential microelement, involved in regulation of lipid and carbohydrate metabolism; moreover, recent evidence suggests that Cr may have endocrine effects. In this work, the effects of Cr(VI) were investigated in the digestive gland of the marine bivalve Mytilus galloprovincialis. Mussels were exposed to 0.1-1-10-100 μg Cr(VI) L(-1) animal(-1) for 96 h. At 100 μg L(-1), a large increase in total Cr tissue content was observed; in these conditions, the lysosomal membranes were completely destabilized, whereas other lysosomal biomarkers (neutral lipids-NL and lipofuscin-LF), as well as different enzyme activities and gene expression were unaffected, this indicating severe stress conditions in the tissue. On the other hand, at lower concentrations, changes in other histochemical, biochemical and molecular endpoints were observed. In particular, at both 1 and 10 μg L(-1), lysosomal destabilization was associated with significant NL and LF accumulation; however, no changes in catalase and GSH transferase (GST) activities were observed. At the same concentrations, GSSG reductase (GSR) activity was significantly increased, this probably reflecting the recycling of GSSG produced in the GSH-mediated intracellular reduction of Cr(VI). Increased activities of the key glycolytic enzymes PFK (phosphofructokinase) and PK (pyruvate kinase) were also observed, indicating that Cr(VI) could affect carbohydrate metabolism. Cr(VI) induced downregulation or no effects on the expression of metallothioneins MT10 and MT20, except for an increase in MT20 transcription in males. Moreover, significant up-regulation of the Mytilus estrogen receptor MeER2 and serotonin receptor (5-HTR) were observed in both sexes. The results demonstrate that exposure to Cr(VI) in the low ppb range did not result in strong toxicity or oxidative stress conditions in mussel digestive gland. On the other hand, our data support the hypothesis that low concentrations of the metal can exert pleiotropic effects on mussel physiology, from modulation of lipid and carbohydrate metabolism, to effects on the expression of estrogen-responsive genes.
Collapse
Affiliation(s)
- Cristina Barmo
- Dipartimento di Biologia, Università di Genova, Corso Europa 26, 16132 Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Kimura T, Okumura F, Onodera A, Nakanishi T, Itoh N, Isobe M. Chromium (VI) inhibits mouse metallothionein-I gene transcription by modifying the transcription potential of the co-activator p300. J Toxicol Sci 2011; 36:173-80. [PMID: 21467744 DOI: 10.2131/jts.36.173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The production of the heavy metal-binding proteins, the metallothioneins (MTs), is induced by heavy metals such as Zn, Cd, and Hg. MTs maintain Zn homeostasis and attenuate heavy metal-induced cytotoxicity by sequestering these metals and lowering their intracellular concentrations. Previously, we had reported that Zn induced the formation of a co-activator complex containing metal response element-binding transcription factor-1 (MTF-1) and the histone acetyltransferase (HAT), p300, which plays an essential role in the activation of MT-1 transcription. In addition, we had shown that Cr(VI) inhibits Zn-induced MT-1 transcription by preventing the Zn-dependent formation of the MTF-1-p300 complex. In the current study, we have shown that the inhibition by Cr(VI) was partially overcome by the overexpression of p300 or MTF-1 in an MT-I promoter-driven luciferase reporter assay system and have used real-time RT-PCR to determine MT-I mRNA levels. It has been reported that Cr(VI) inhibits CYP1A1 transcription by crosslinking histone deacetylase (HDAC) to the promoter. The crosslink inhibits the recruitment of p300 to the MT-1 promoter and blocks HAT-dependent transactivation by p300. However, our results demonstrate that trichostatin A, an HDAC inhibitor, could not block the inhibitory effects of Cr(VI) on MT-1 transcription and that there were no significant differences in the in vitro inhibitory effects of Cr(VI), Cr(III), and Zn on p300 HAT activity. This suggests that the inhibitory effects of Cr(VI) on MT-I transcription may be due to its effects on the HAT-independent transactivation ability rather than the HAT-dependent, HDAC release-related transactivation ability of p300.
Collapse
Affiliation(s)
- Tomoki Kimura
- Department of Toxicology, Faculty of Pharmaceutical Sciences, Setsunan University, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Okumura F, Li Y, Itoh N, Nakanishi T, Isobe M, Andrews GK, Kimura T. The zinc-sensing transcription factor MTF-1 mediates zinc-induced epigenetic changes in chromatin of the mouse metallothionein-I promoter. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1809:56-62. [PMID: 21035574 DOI: 10.1016/j.bbagrm.2010.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 10/10/2010] [Accepted: 10/18/2010] [Indexed: 10/18/2022]
Abstract
Metallothionein (MT) is a small, cysteine-rich protein active in zinc homeostasis, cadmium detoxification, and protection against reactive oxygen species. Mouse MT-I gene transcription is regulated by metal response element-binding transcription factor-1 (MTF-1), which is recruited to the promoter by zinc. We examined alterations in the chromatin structure of the MT-I promoter associated with enhanced transcriptional activation. MTF-1 proved essential for zinc-induced epigenetic changes in the MT-I promoter. Chromatin immunoprecipitation assays demonstrated that zinc treatment rapidly decreased Lys⁴-trimethylated and Lys⁹-acetylated histone H3 in the promoter and decreased total histone H3 but not histone H3.3. Micrococcal nuclease sensitivity of the MT-I promoter was increased by zinc. Thus, the chromatin structure in the promoter may be locally disrupted by zinc-induced nucleosome removal. Without MTF-1 these changes were not observed, and an MTF-1 deletion mutant recruited to the MT-I promoter by zinc that did not recruit the coactivator p300 or activate MT-I transcription did not affect histone H3 in the MT-I promoter in response to zinc. Interleukin-6, which induces MT-I transcription independently of MTF-1, did not reduce histone H3 levels in the promoter. Rapid disruption of nucleosome structure at the MT-I promoter is mediated by zinc-responsive recruitment of an active MTF-1-coactivator complex.
Collapse
Affiliation(s)
- Fumika Okumura
- Department of Toxicology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Soudani N, Sefi M, Ben Amara I, Boudawara T, Zeghal N. Protective effects of Selenium (Se) on Chromium (VI) induced nephrotoxicity in adult rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:671-678. [PMID: 19913299 DOI: 10.1016/j.ecoenv.2009.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/28/2009] [Accepted: 10/12/2009] [Indexed: 05/28/2023]
Abstract
Chromium is a toxic metal implicated in human diseases. This study was focused on investigating the possible protective effect of Se against K(2)Cr(2)O(7). Female Wistar rats, used in this study, were divided into four groups of six animals each: group I served as control which received standard diet; group II received orally only K(2)Cr(2)O(7) (700 ppm equivalent to 67 mg/kgbw); group III received both K(2)Cr(2)O(7) and Se (0.5 mg/kg of diet); group IV received Se (0.5mg Na(2)SeO(3)/kg of diet). The exposure of rats to K(2)Cr(2)O(7) for 21 days provoked renal damages with a significant increase in kidney malondialdehyde, superoxide dismutase, plasma creatinine, and uric acid levels, while catalase, glutathione peroxidase, non-protein thiol, Metallothionein and plasma urea levels decreased. Coadministration of Se in the diet of chromium-treated group improved malondialdehyde, renal biomarkers levels and antioxidant enzyme activities. Kidney histological studies confirmed biochemical parameters and the beneficial role of selenium.
Collapse
Affiliation(s)
- Nejla Soudani
- Animal Physiology Laboratory, Life Sciences Department, UR/08-73 Sfax Faculty of Sciences, BP 1171, 3000 Sfax, Tunisia
| | | | | | | | | |
Collapse
|
24
|
Shi Y, Amin K, Sato BG, Samuelsson SJ, Sambucetti L, Haroon ZA, Laderoute K, Murphy BJ. The metal-responsive transcription factor-1 protein is elevated in human tumors. Cancer Biol Ther 2010; 9:469-76. [PMID: 20087061 PMCID: PMC3039317 DOI: 10.4161/cbt.9.6.10979] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We previously identified metal-responsive transcription factor-1 (MTF-1) as a positive contributor to mouse fibrosarcoma growth through effects on cell survival, proliferation, tumor angiogenesis and extracellular matrix remodeling. In the present study, we investigated MTF-1 protein expression in human tissues by specific immunostaining of both normal and tumor tissue samples. Immunohistochemical (IHC) staining of a human tissue microarray (TMA), using a unique anti-human MTF-1 antibody, indicated constitutive MTF-1 expression in most normal tissues, with liver and testis displaying comparatively high levels of expression. Nevertheless, MTF-1 protein levels were found to be significantly elevated in diverse human tumor types, including breast, lung and cervical carcinomas. IHC analysis of a separate panel of full-size tissue sections of human breast cancers, including tumor and normal adjacent, surrounding tissue, confirmed and extended the results of the TMA analysis. Taken with our previous findings, this new study suggests a role for MTF-1 in human tumor development, growth or spread. Moreover, the study suggests that MTF-1 could be a novel therapeutic target that offers the opportunity to manipulate metal or redox homeostasis in tumor cells.
Collapse
Affiliation(s)
- Yihui Shi
- Biosciences Division, SRI International, Menlo Park, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kimura T. Molecular Mechanisms of Zinc-mediated Induction and Chromium(VI)-mediated Inhibition of Mouse Metallothionein-I Gene Transcription. ACTA ACUST UNITED AC 2010. [DOI: 10.1248/jhs.56.161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tomoki Kimura
- Department of Toxicology, Faculty of Pharmaceutical Sciences, Setsunan University
| |
Collapse
|
26
|
Ferencz A, Hermesz E. Identification of a splice variant of the metal-responsive transcription factor MTF-1 in common carp. Comp Biochem Physiol C Toxicol Pharmacol 2009; 150:113-7. [PMID: 19345278 DOI: 10.1016/j.cbpc.2009.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/25/2009] [Accepted: 03/28/2009] [Indexed: 10/21/2022]
Abstract
Transactivation of the expression of metallothionein genes involves the Metal-responsive Transcription Factor (MTF-1). We report here the identification of mtf-1.1a, the first known splice variant of mtf-1.1 mRNA, in common carp (Cyprinus carpio). The lack of a 103 nt internal segment results in a frame shift, causing the early termination of translation. mtf-1.1a mRNA encodes a protein consisting of the first 349 amino acids of MTF-1.1 plus an additional 64 amino acids, with no significant similarity to any of the proteins in the databases. The predicted MTF-1.1a protein carries the Zn-finger domain and the nuclear exporting and nuclear localization signals, and lacks the transcription activation domains. mtf-1.1a was detected in all tissues examined but the liver, with the highest level in the brain. Arsenic alters the levels of both mtf-1.1 and mtf-1.1a transcripts, in an isoform- and tissue-specific manner.
Collapse
Affiliation(s)
- Agnes Ferencz
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Szeged, Szeged, Hungary
| | | |
Collapse
|
27
|
Cho YS, Lee SY, Kim KY, Nam YK. Two metallothionein genes from mud loach Misgurnus mizolepis (Teleostei; Cypriniformes): gene structure, genomic organization, and mRNA expression analysis. Comp Biochem Physiol B Biochem Mol Biol 2009; 153:317-26. [PMID: 19383548 DOI: 10.1016/j.cbpb.2009.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 04/04/2009] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
Abstract
Two metallothionein genes, MLMT-IA and MLMT-IB, were isolated and characterized from the mud loach Misgurnus mizolepis (Teleostei; Cypriniformes). For these MTs, we determined a tandem "tail-to-head" genomic organizational pattern, identified conserved genomic features, showed high sequence identities in the coding regions, and examined the closest phylogenetic affiliation, suggesting their divergence by a recent gene duplication event. However, the 5'-flanking upstream regions in MLMT-IA and MLMT-IB exposed large differences in the composition and distribution patterns of various transcription factor binding motifs, especially regarding the organization of the metal response element clusters. Real-time RT-PCR assays showed that mRNA levels of both MLMT-IA and MLMT-IB isoforms were variable among tissues and the ratios between them were also variable across tissues, although the MLMT-IA was always predominant in every adult tissue tested. We also found that the MLMT-IA and MLMT-IB mRNA expression levels were regulated dynamically during embryonic and larval development stages, in which the basal expression level of MLMT-IA was also consistently higher than that of MLMT-IB. Upon acute in vivo metal exposure to cadmium, chromium, copper, iron, manganese, nickel, or zinc at 5 microM for 48 h, the transcriptional modulations of MLMT-IA and MLMT-IB were quite different from each other and the type of response was affected significantly by the kind of metals and tissues.
Collapse
Affiliation(s)
- Young Sun Cho
- Department of Aquaculture, Pukyong National University, Busan 608-737, Republic of Korea
| | | | | | | |
Collapse
|
28
|
Kimura T, Itoh N, Andrews GK. Mechanisms of Heavy Metal Sensing by Metal Response Element-binding Transcription Factor-1. ACTA ACUST UNITED AC 2009. [DOI: 10.1248/jhs.55.484] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tomoki Kimura
- Department of Toxicology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Norio Itoh
- Department of Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Glen K. Andrews
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center
| |
Collapse
|