1
|
Mellentine SQ, Brown HN, Ramsey AS, Li J, Tootle TL. Specific prostaglandins are produced in the migratory cells and the surrounding substrate to promote Drosophila border cell migration. Front Cell Dev Biol 2024; 11:1257751. [PMID: 38283991 PMCID: PMC10811798 DOI: 10.3389/fcell.2023.1257751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction: A key regulator of collective cell migration is prostaglandin (PG) signaling. However, it remains largely unclear whether PGs act within the migratory cells or their microenvironment to promote migration. Here we use Drosophila border cell migration as a model to uncover the cell-specific roles of two PGs in collective migration. The border cells undergo a collective and invasive migration between the nurse cells; thus, the nurse cells are the substrate and microenvironment for the border cells. Prior work found PG signaling is required for on-time border cell migration and cluster cohesion. Methods: Confocal microscopy and quantitative image analyses of available mutant alleles and RNAi lines were used to define the roles of the PGE2 and PGF2α synthases in border cell migration. Results: We find that the PGE2 synthase cPGES is required in the substrate, while the PGF2α synthase Akr1B is required in the border cells for on-time migration. Akr1B acts in both the border cells and their substrate to regulate cluster cohesion. One means by which Akr1B may regulate border cell migration and/or cluster cohesion is by promoting integrin-based adhesions. Additionally, Akr1B limits myosin activity, and thereby cellular stiffness, in the border cells, whereas cPGES limits myosin activity in both the border cells and their substrate. Decreasing myosin activity overcomes the migration delays in both akr1B and cPGES mutants, indicating the changes in cellular stiffness contribute to the migration defects. Discussion: Together these data reveal that two PGs, PGE2 and PGF2α, produced in different locations, play key roles in promoting border cell migration. These PGs likely have similar migratory versus microenvironment roles in other collective cell migrations.
Collapse
Affiliation(s)
- Samuel Q. Mellentine
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| | - Hunter N. Brown
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| | - Anna S. Ramsey
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| | - Jie Li
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| | - Tina L. Tootle
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Biology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
2
|
Bülbül B, Ding K, Zhan CG, Çiftçi G, Yelekçi K, Gürboğa M, Özakpınar ÖB, Aydemir E, Baybağ D, Şahin F, Kulabaş N, Helvacıoğlu S, Charehsaz M, Tatar E, Özbey S, Küçükgüzel İ. Novel 1,2,4-triazoles derived from Ibuprofen: synthesis and in vitro evaluation of their mPGES-1 inhibitory and antiproliferative activity. Mol Divers 2023; 27:2185-2215. [PMID: 36331786 DOI: 10.1007/s11030-022-10551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Some novel triazole-bearing ketone and oxime derivatives were synthesized from Ibuprofen. In vitro cytotoxic activities of all synthesized molecules against five cancer lines (human breast cancer MCF-7, human lung cancer A549, human prostate cancer PC-3, human cervix cancer HeLa, and human chronic myelogenous leukemia K562 cell lines) were evaluated by MTT assay. In addition, mouse embryonic fibroblast cells (NIH/3T3) were also evaluated to determine the selectivity. Compounds 18, 36, and 45 were found to be the most cytotoxic, and their IC50 values were in the range of 17.46-68.76 µM, against the tested cancer cells. According to the results, compounds 7 and 13 demonstrated good anti-inflammatory activity against the microsomal enzyme prostaglandin E2 synthase-1 (mPGES-1) enzyme at IC50 values of 13.6 and 4.95 µM. The low cytotoxicity and non-mutagenity of these compounds were found interesting. Also, these compounds significantly prevented tube formation in angiogenesis studies. In conclusion, the anti-inflammatory and angiogenesis inhibitory activities of these compounds without toxicity suggested that they may be promising agents in anti-inflammatory treatment and they may be supportive agents for the cancer treatment.
Collapse
Affiliation(s)
- Bahadır Bülbül
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Düzce University, Konuralp, Düzce, Turkey
- Department of Pharmaceutical Chemistry, Institute of Health Sciences, Marmara University, Dragos, Kartal, 34865, Istanbul, Turkey
| | - Kai Ding
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Gamze Çiftçi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
| | - Kemal Yelekçi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
| | - Merve Gürboğa
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, 34668, Istanbul, Turkey
| | - Özlem Bingöl Özakpınar
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, 34668, Istanbul, Turkey
| | - Esra Aydemir
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayışdağı, Istanbul, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Biruni University, Zeytinburnu, 34010, Turkey
| | - Deniz Baybağ
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayışdağı, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayışdağı, Istanbul, Turkey
| | - Necla Kulabaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Başıbüyük, 34854, Istanbul, Turkey
| | - Sinem Helvacıoğlu
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir, 34750, Istanbul, Turkey
| | - Mohammad Charehsaz
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir, 34750, Istanbul, Turkey
| | - Esra Tatar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Başıbüyük, 34854, Istanbul, Turkey
| | - Süheyla Özbey
- Department of Physics Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - İlkay Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Başıbüyük, 34854, Istanbul, Turkey.
| |
Collapse
|
3
|
Mellentine SQ, Ramsey AS, Li J, Brown HN, Tootle TL. Specific prostaglandins are produced in the migratory cells and the surrounding substrate to promote Drosophila border cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546291. [PMID: 37425965 PMCID: PMC10327004 DOI: 10.1101/2023.06.23.546291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
A key regulator of collective cell migration is prostaglandin (PG) signaling. However, it remains largely unclear whether PGs act within the migratory cells or their microenvironment to promote migration. Here we use Drosophila border cell migration as a model to uncover the cell-specific roles of two PGs in collective migration. Prior work shows PG signaling is required for on-time migration and cluster cohesion. We find that the PGE2 synthase cPGES is required in the substrate, while the PGF2α synthase Akr1B is required in the border cells for on-time migration. Akr1B acts in both the border cells and their substrate to regulate cluster cohesion. One means by which Akr1B regulates border cell migration is by promoting integrin-based adhesions. Additionally, Akr1B limits myosin activity, and thereby cellular stiffness, in the border cells, whereas cPGES limits myosin activity in both the border cells and their substrate. Together these data reveal that two PGs, PGE2 and PGF2α, produced in different locations, play key roles in promoting border cell migration. These PGs likely have similar migratory versus microenvironment roles in other collective cell migrations.
Collapse
Affiliation(s)
- Samuel Q. Mellentine
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Anna S. Ramsey
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Jie Li
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Hunter N. Brown
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Tina L. Tootle
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| |
Collapse
|
4
|
Venuta A, Nasso R, Gisonna A, Iuliano R, Montesarchio S, Acampora V, Sepe L, Avagliano A, Arcone R, Arcucci A, Ruocco MR. Celecoxib, a Non-Steroidal Anti-Inflammatory Drug, Exerts a Toxic Effect on Human Melanoma Cells Grown as 2D and 3D Cell Cultures. Life (Basel) 2023; 13:life13041067. [PMID: 37109596 PMCID: PMC10141119 DOI: 10.3390/life13041067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Cutaneous melanoma (CM) remains one of the leading causes of tumor mortality due to its high metastatic spread. CM growth is influenced by inflammation regulated by prostaglandins (PGs) whose synthesis is catalyzed by cyclooxygenases (COXs). COX inhibitors, including non-steroidal anti-inflammatory drugs (NSAIDs), can inhibit tumor development and growth. In particular, in vitro experiments have shown that celecoxib, a NSAID, inhibits the growth of some tumor cell lines. However, two-dimensional (2D) cell cultures, used in traditional in vitro anticancer assays, often show poor efficacy due to a lack of an in vivo like cellular environment. Three-dimensional (3D) cell cultures, such as spheroids, are better models because they can mimic the common features displayed by human solid tumors. Hence, in this study, we evaluated the anti-neoplastic potential of celecoxib, in both 2D and 3D cell cultures of A2058 and SAN melanoma cell lines. In particular, celecoxib reduced the cell viability and migratory capability and triggered the apoptosis of melanoma cells grown as 2D cultures. When celecoxib was tested on 3D melanoma cell cultures, the drug exerted an inhibitory effect on cell outgrowth from spheroids and reduced the invasiveness of melanoma cell spheroids into the hydrogel matrix. This work suggests that celecoxib could represent a new potential therapeutic approach in melanoma therapy.
Collapse
Affiliation(s)
- Alessandro Venuta
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Rosarita Nasso
- Department of Movement Sciences and Wellness, University of Naples "Parthenope", 80133 Naples, Italy
| | - Armando Gisonna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Roberta Iuliano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Sara Montesarchio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Vittoria Acampora
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Leandra Sepe
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Rosaria Arcone
- Department of Movement Sciences and Wellness, University of Naples "Parthenope", 80133 Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
5
|
Synthesis, in vitro and in silico studies on novel 3-aryloxymethyl-5-[(2-oxo-2-arylethyl)sulfanyl]-1,2,4-triazoles and their oxime derivatives as potent inhibitors of mPGES-1. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Ning W, Marti TM, Dorn P, Peng RW. Non-genetic adaptive resistance to KRAS G12C inhibition: EMT is not the only culprit. Front Oncol 2022; 12:1004669. [PMID: 36483040 PMCID: PMC9722758 DOI: 10.3389/fonc.2022.1004669] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/31/2022] [Indexed: 08/13/2023] Open
Abstract
Adaptions to therapeutic pressures exerted on cancer cells enable malignant progression of the tumor, culminating in escape from programmed cell death and development of resistant diseases. A common form of cancer adaptation is non-genetic alterations that exploit mechanisms already present in cancer cells and do not require genetic modifications that can also lead to resistance mechanisms. Epithelial-to-mesenchymal transition (EMT) is one of the most prevalent mechanisms of adaptive drug resistance and resulting cancer treatment failure, driven by epigenetic reprogramming and EMT-specific transcription factors. A recent breakthrough in cancer treatment is the development of KRASG12C inhibitors, which herald a new era of therapy by knocking out a unique substitution of an oncogenic driver. However, these highly selective agents targeting KRASG12C, such as FDA-approved sotorasib (AMG510) and adagrasib (MRTX849), inevitably encounter multiple mechanisms of drug resistance. In addition to EMT, cancer cells can hijack or rewire the sophisticated signaling networks that physiologically control cell proliferation, growth, and differentiation to promote malignant cancer cell phenotypes, suggesting that inhibition of multiple interconnected signaling pathways may be required to block tumor progression on KRASG12C inhibitor therapy. Furthermore, the tumor microenvironment (TME) of cancer cells, such as tumor-infiltrating lymphocytes (TILs), contribute significantly to immune escape and tumor progression, suggesting a therapeutic approach that targets not only cancer cells but also the TME. Deciphering and targeting cancer adaptions promises mechanistic insights into tumor pathobiology and improved clinical management of KRASG12C-mutant cancer. This review presents recent advances in non-genetic adaptations leading to resistance to KRASG12C inhibitors, with a focus on oncogenic pathway rewiring, TME, and EMT.
Collapse
Affiliation(s)
- Wenjuan Ning
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Thomas M. Marti
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Patrick Dorn
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Ochiai T, Honsawa T, Sasaki Y, Hara S. Prostacyclin Synthase as an Ambivalent Regulator of Inflammatory Reactions. Biol Pharm Bull 2022; 45:979-984. [DOI: 10.1248/bpb.b22-00370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tsubasa Ochiai
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University
| | - Toshiya Honsawa
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University
| | - Yuka Sasaki
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University
| |
Collapse
|
8
|
Zhang YY, Yao YD, Luo JF, Liu ZQ, Huang YM, Wu FC, Sun QH, Liu JX, Zhou H. Microsomal prostaglandin E 2 synthase-1 and its inhibitors: Molecular mechanisms and therapeutic significance. Pharmacol Res 2021; 175:105977. [PMID: 34798265 DOI: 10.1016/j.phrs.2021.105977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/17/2022]
Abstract
Inflammation is closely linked to the abnormal phospholipid metabolism chain of cyclooxygenase-2/microsomal prostaglandin E2 synthase-1/prostaglandin E2 (COX-2/mPGES-1/PGE2). In clinical practice, non-steroidal anti-inflammatory drugs (NSAIDs) as upstream COX-2 enzyme activity inhibitors are widely used to block COX-2 cascade to relieve inflammatory response. However, NSAIDs could also cause cardiovascular and gastrointestinal side effects due to its inhibition on other prostaglandins generation. To avoid this, targeting downstream mPGES-1 instead of upstream COX is preferable to selectively block overexpressed PGE2 in inflammatory diseases. Some mPGES-1 inhibitor candidates including synthetic compounds, natural products and existing anti-inflammatory drugs have been proved to be effective in in vitro experiments. After 20 years of in-depth research on mPGES-1 and its inhibitors, ISC 27864 have completed phase II clinical trial. In this review, we intend to summarize mPGES-1 inhibitors focused on their inhibitory specificity with perspectives for future drug development.
Collapse
Affiliation(s)
- Yan-Yu Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Jin-Fang Luo
- Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang City, Guizhou Province 550025, PR China
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510006, PR China
| | - Yu-Ming Huang
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, PR China
| | - Fei-Chi Wu
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, PR China
| | - Qin-Hua Sun
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua City, Hunan Province 418000, PR China.
| | - Jian-Xin Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province 310053, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510006, PR China; Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province 519000, PR China.
| |
Collapse
|
9
|
Wu SY, Xing F, Sharma S, Wu K, Tyagi A, Liu Y, Zhao D, Deshpande RP, Shiozawa Y, Ahmed T, Zhang W, Chan M, Ruiz J, Lycan TW, Dothard A, Watabe K. Nicotine promotes brain metastasis by polarizing microglia and suppressing innate immune function. J Exp Med 2021; 217:151838. [PMID: 32496556 PMCID: PMC7398164 DOI: 10.1084/jem.20191131] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/09/2019] [Accepted: 03/02/2020] [Indexed: 12/15/2022] Open
Abstract
Up to 40% of lung cancer patients develop brain metastasis, and the median survival of these patients remains less than 6 months. Smoking is associated with lung cancer. However, how smoking impacts the development of brain metastasis remains elusive. We examined 281 lung cancer patients with distant metastasis and found that smokers exhibited a significantly high incidence of brain metastasis. We found that nicotine enhanced brain metastasis, while a depletion of microglia suppressed this effect in vivo. Nicotine skewed the polarity of microglia to the M2 phenotype, thereby increasing the secretion of IGF-1 and CCL20, which promoted tumor progression and stemness. Importantly, nicotine enhanced the expression of SIRPα in microglia and restricted their phagocytic ability. We also identified a compound, parthenolide, that suppressed brain metastasis by blocking M2 polarization. Our results indicate that nicotine promotes brain metastasis by skewing the polarity of M2 microglia, which enhances metastatic tumor growth. Our results also highlight a potential risk of using nicotine for tobacco cessation.
Collapse
Affiliation(s)
- Shih-Ying Wu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Fei Xing
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Sambad Sharma
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Kerui Wu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Abhishek Tyagi
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Yin Liu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Dan Zhao
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | | | - Yusuke Shiozawa
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Tamjeed Ahmed
- Department of Medicine, Section of Oncology and Hematology, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Wei Zhang
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Michael Chan
- Department of Radiation Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Jimmy Ruiz
- Department of Medicine, Section of Oncology and Hematology, Wake Forest Baptist Medical Center, Winston-Salem, NC.,Section of Hematology and Oncology, W.G. (Bill) Hefner VA Medical Center, Salisbury, NC
| | - Thomas W Lycan
- Department of Medicine, Section of Oncology and Hematology, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Andrew Dothard
- Department of Medicine, Section of Oncology and Hematology, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC
| |
Collapse
|
10
|
Abstract
BACKGROUND Clinical studies have shown that celecoxib can significantly inhibit the development of tumors, and basic experiments and in vitro experiments also provide a certain basis, but it is not clear how celecoxib inhibits tumor development in detail. METHODS A literature search of all major academic databases was conducted (PubMed, China National Knowledge Internet (CNKI), Wan-fang, China Science and Technology Journal Database (VIP), including the main research on the mechanisms of celecoxib on tumors. RESULTS Celecoxib can intervene in tumor development and reduce the formation of drug resistance through multiple molecular mechanisms. CONCLUSION Celecoxib mainly regulates the proliferation, migration, and invasion of tumor cells by inhibiting the cyclooxygenases-2/prostaglandin E2 signal axis and thereby inhibiting the phosphorylation of nuclear factor-κ-gene binding, Akt, signal transducer and activator of transcription and the expression of matrix metalloproteinase 2 and matrix metalloproteinase 9. Meanwhile, it was found that celecoxib could promote the apoptosis of tumor cells by enhancing mitochondrial oxidation, activating mitochondrial apoptosis process, promoting endoplasmic reticulum stress process, and autophagy. Celecoxib can also reduce the occurrence of drug resistance by increasing the sensitivity of cancer cells to chemotherapy drugs.
Collapse
|
11
|
Bakshi HA, Zoubi MSA, Faruck HL, Aljabali AAA, Rabi FA, Hafiz AA, Al-Batanyeh KM, Al-Trad B, Ansari P, Nasef MM, Charbe NB, Satija S, Mehta M, Mishra V, Gupta G, Abobaker S, Negi P, Azzouz IM, Dardouri AAK, Dureja H, Prasher P, Chellappan DK, Dua K, Silva MWD, Tanani ME, McCarron PA, M. Tambuwala M. Dietary Crocin is Protective in Pancreatic Cancer while Reducing Radiation-Induced Hepatic Oxidative Damage. Nutrients 2020; 12:nu12061901. [PMID: 32604971 PMCID: PMC7353213 DOI: 10.3390/nu12061901] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is one of the fatal causes of global cancer-related deaths. Although surgery and chemotherapy are standard treatment options, post-treatment outcomes often end in a poor prognosis. In the present study, we investigated anti-pancreatic cancer and amelioration of radiation-induced oxidative damage by crocin. Crocin is a carotenoid isolated from the dietary herb saffron, a prospect for novel leads as an anti-cancer agent. Crocin significantly reduced cell viability of BXPC3 and Capan-2 by triggering caspase signaling via the downregulation of Bcl-2. It modulated the expression of cell cycle signaling proteins P53, P21, P27, CDK2, c-MYC, Cyt-c and P38. Concomitantly, crocin treatment-induced apoptosis by inducing the release of cytochrome c from mitochondria to cytosol. Microarray analysis of the expression signature of genes induced by crocin showed a substantial number of genes involved in cell signaling pathways and checkpoints (723) are significantly affected by crocin. In mice bearing pancreatic tumors, crocin significantly reduced tumor burden without a change in body weight. Additionally, it showed significant protection against radiation-induced hepatic oxidative damage, reduced the levels of hepatic toxicity and preserved liver morphology. These findings indicate that crocin has a potential role in the treatment, prevention and management of pancreatic cancer.
Collapse
Affiliation(s)
- Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, UK; (M.W.D.S.); (P.A.M.)
- Correspondence: or (H.A.B.); (H.L.F.); (M.M.T.)
| | - Mazhar S Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 566, Jordan;
| | - Hakkim L. Faruck
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah 211, Oman
- Correspondence: or (H.A.B.); (H.L.F.); (M.M.T.)
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 566, Jordan;
| | - Firas A. Rabi
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| | - Amin A. Hafiz
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21421, Saudi Arabia;
| | - Khalid M Al-Batanyeh
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 566, Jordan; (K.M.A.-B.); (B.A.-T.)
| | - Bahaa Al-Trad
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 566, Jordan; (K.M.A.-B.); (B.A.-T.)
| | - Prawej Ansari
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK;
| | - Mohamed M. Nasef
- Department of Pharmacy and Biomedical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD13DH, UK;
| | - Nitin B. Charbe
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins, Santiago 340, Región Metropolitana, Chile;
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.S.); (M.M.); (V.M.)
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.S.); (M.M.); (V.M.)
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.S.); (M.M.); (V.M.)
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, Rajasthan 302017, India;
| | - Salem Abobaker
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus Virchow, Klinikum Charite-Universitatmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, Bajhol, Sultanpur, Solan, Himachal Pradesh 173229, India;
| | - Ibrahim M. Azzouz
- Department of Dermatology, Venerology, and Allergology, Charite-Universitatsmedizin Berlin, Corporate Member of Freie Universitat Berlin, Chariteplatz1, 10117 Berlin, Germany;
| | - Ashref Ali K Dardouri
- Department of Forensic Science, School of Applied Sciences, University of Huddersfield, Huddersfield HD13DH, UK;
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India;
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun 248007, India;
| | - Dinesh K. Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia;
- School of Pharmaceutical Sciences, Shoolini University, Bajhol, Sultanpur, Solan, Himachal Pradesh 173229, India;
| | - Mateus Webba Da Silva
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, UK; (M.W.D.S.); (P.A.M.)
| | - Mohamed El Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan;
| | - Paul A. McCarron
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, UK; (M.W.D.S.); (P.A.M.)
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, UK; (M.W.D.S.); (P.A.M.)
- Correspondence: or (H.A.B.); (H.L.F.); (M.M.T.)
| |
Collapse
|
12
|
A review on mPGES-1 inhibitors: From preclinical studies to clinical applications. Prostaglandins Other Lipid Mediat 2019; 147:106383. [PMID: 31698145 DOI: 10.1016/j.prostaglandins.2019.106383] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Prostaglandin E2 (PGE2) is a lipid mediator of inflammation and cancer progression. It is mainly formed via metabolism of arachidonic acid by cyclooxygenases (COX) and the terminal enzyme microsomal prostaglandin E synthase-1 (mPGES-1). Widely used non-steroidal anti-inflammatory drugs (NSAIDs) inhibit COX activity, resulting in decreased PGE2 production and symptomatic relief. However, NSAIDs block the production of many other lipid mediators that have important physiological and resolving actions, and these drugs cause gastrointestinal bleeding and/or increase the risk for severe cardiovascular events. Selective inhibition of downstream mPGES-1 for reduction in only PGE2 biosynthesis is suggested as a safer therapeutic strategy. This review covers the recent advances in characterization of new mPGES-1 inhibitors in preclinical models and their future clinical applications.
Collapse
|
13
|
Terzuoli E, Costanza F, Ciccone V, Ziche M, Morbidelli L, Donnini S. mPGES-1 as a new target to overcome acquired resistance to gefitinib in non-small cell lung cancer cell lines. Prostaglandins Other Lipid Mediat 2019; 143:106344. [PMID: 31207300 DOI: 10.1016/j.prostaglandins.2019.106344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/18/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) as gefitinib are standard treatment of non-small cell lung cancer (NSCLC), but resistance often occurs. This study demonstrates that NSCLC cells resistant to gefitinib (GR cells) displayed a significantly higher microsomal prostaglandin E synthase-1 (mPGES-1) expression and activity than parental cells. Overexpression of mPGES-1/prostaglandin E-2 (PGE-2) signaling in GR cells was associated with acquisition of mesenchymal and stem-like cell properties, nuclear EGFR translocation and tolerance to cisplatin. mPGES-1 inhibition reduced mesenchymal and stem-like properties, and nuclear EGFR translocation in GR cells. Consistently, inhibition of mPGES-1 activity enhanced sensitivity to cisplatin and responsiveness to gefitinib in GR cells. We propose the mPGES-1/PGE-2 signaling as a potential target for treating aggressive and resistant lung cancers.
Collapse
Affiliation(s)
- Erika Terzuoli
- Department of Medical and Surgical Sciences and Neurosciences, University of Siena, Via A. Moro, 2, 53100, Siena, Italy.
| | - Filomena Costanza
- Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100, Siena, Italy.
| | - Valerio Ciccone
- Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100, Siena, Italy.
| | - Marina Ziche
- Department of Medical and Surgical Sciences and Neurosciences, University of Siena, Via A. Moro, 2, 53100, Siena, Italy.
| | - Lucia Morbidelli
- Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100, Siena, Italy.
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100, Siena, Italy.
| |
Collapse
|
14
|
Bergqvist F, Ossipova E, Idborg H, Raouf J, Checa A, Englund K, Englund P, Khoonsari PE, Kultima K, Wheelock CE, Larsson K, Korotkova M, Jakobsson PJ. Inhibition of mPGES-1 or COX-2 Results in Different Proteomic and Lipidomic Profiles in A549 Lung Cancer Cells. Front Pharmacol 2019; 10:636. [PMID: 31231223 PMCID: PMC6567928 DOI: 10.3389/fphar.2019.00636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/17/2019] [Indexed: 12/23/2022] Open
Abstract
Pharmacological inhibition of microsomal prostaglandin E synthase (mPGES)-1 for selective reduction in prostaglandin E2 (PGE2) biosynthesis is protective in experimental models of cancer and inflammation. Targeting mPGES-1 is envisioned as a safer alternative to traditional non-steroidal anti-inflammatory drugs (NSAIDs). Herein, we compared the effects of mPGES-1 inhibitor Compound III (CIII) with the cyclooxygenase (COX)-2 inhibitor NS-398 on protein and lipid profiles in interleukin (IL)-1β-induced A549 lung cancer cells using mass spectrometry. Inhibition of mPGES-1 decreased PGE2 production and increased PGF2α and thromboxane B2 (TXB2) formation, while inhibition of COX-2 decreased the production of all three prostanoids. Our proteomics results revealed that CIII downregulated multiple canonical pathways including eIF2, eIF4/P70S6K, and mTOR signaling, compared to NS-398 that activated these pathways. Moreover, pathway analysis predicted that CIII increased cell death of cancer cells (Z = 3.8, p = 5.1E-41) while NS-398 decreased the same function (Z = -5.0, p = 6.5E-35). In our lipidomics analyses, we found alterations in nine phospholipids between the two inhibitors, with a stronger alteration in the lysophospholipid (LPC) profile with NS-398 compared to CIII. Inhibition of mPGES-1 increased the concentration of sphinganine and dihydroceramide (C16:0DhCer), while inhibition of COX-2 caused a general decrease in most ceramides, again suggesting different effects on cell death between the two inhibitors. We showed that CIII decreased proliferation and potentiated the cytotoxic effect of the cytostatic drugs cisplatin, etoposide, and vincristine when investigated in a live cell imaging system. Our results demonstrate differences in protein and lipid profiles after inhibition of mPGES-1 or COX-2 with important implications on the therapeutic potential of mPGES-1 inhibitors as adjuvant treatment in cancer. We encourage further investigations to illuminate the clinical benefit of mPGES-1 inhibitors in cancer.
Collapse
Affiliation(s)
- Filip Bergqvist
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Elena Ossipova
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Helena Idborg
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Joan Raouf
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Antonio Checa
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Karin Englund
- Department of Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Petter Englund
- Department of Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Payam Emami Khoonsari
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Karin Larsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Marina Korotkova
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
15
|
Inhibition of Microsomal Prostaglandin E Synthase-1 in Cancer-Associated Fibroblasts Suppresses Neuroblastoma Tumor Growth. EBioMedicine 2018; 32:84-92. [PMID: 29804818 PMCID: PMC6021299 DOI: 10.1016/j.ebiom.2018.05.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/26/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022] Open
Abstract
Despite recent progress in diagnosis and treatment, survival for children with high-risk metastatic neuroblastoma is still poor. Prostaglandin E2 (PGE2)-driven inflammation promotes tumor growth, immune suppression, angiogenesis and resistance to established cancer therapies. In neuroblastoma, cancer-associated fibroblasts (CAFs) residing in the tumor microenvironment are the primary source of PGE2. However, clinical targeting of PGE2 with current non-steroidal anti-inflammatory drugs or cyclooxygenase inhibitors has been limited due to risk of adverse side effects. By specifically targeting microsomal prostaglandin E synthase-1 (mPGES-1) activity with a small molecule inhibitor we could block CAF-derived PGE2 production leading to reduced tumor growth, impaired angiogenesis, inhibited CAF migration and infiltration, reduced tumor cell proliferation and a favorable shift in the M1/M2 macrophage ratio. In this study, we provide proof-of-principle of the benefits of targeting mPGES-1 in neuroblastoma, applicable to a wide variety of tumors. This non-toxic single drug treatment targeting infiltrating stromal cells opens up for combination treatment options with established cancer therapies. Prostaglandin E2 nourishes neuroblastoma tumor growth via cancer-associated fibroblasts. mPGES-1 inhibitor limits tumor growth, angiogenesis, infiltration of cancer-associated fibroblasts and immune suppression. mPGES-1 constitutes a drug target for neuroblastoma treatment.
Cancer is the leading cause of death in children in high-income countries and the survival rate has almost been unchanged during the last decade. Further treatment intensification to improve survival rate may further increase the risk of side-effects. Therapies targeting the microenvironment have been suggested to improve survival and quality of life for these children. High-risk neuroblastomas present an immunosuppressive microenvironment and infiltrating cancer-associated fibroblasts are responsible for oncogenic prostaglandin E2 production. Here we show that selective inhibition of prostaglandin E2 biosynthesis and its role in the crosstalk between cells of the microenvironment provides a promising therapeutic strategy in neuroblastoma.
Collapse
|
16
|
Terzuoli E, Donnini S, Finetti F, Nesi G, Villari D, Hanaka H, Radmark O, Giachetti A, Ziche M. Linking microsomal prostaglandin E Synthase-1/PGE-2 pathway with miR-15a and -186 expression: Novel mechanism of VEGF modulation in prostate cancer. Oncotarget 2018; 7:44350-44364. [PMID: 27322147 PMCID: PMC5190102 DOI: 10.18632/oncotarget.10051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/01/2016] [Indexed: 12/29/2022] Open
Abstract
Prostaglandin E-2 (PGE-2) promotes tumor angiogenesis via paracrine secretion of pro-angiogenic growth factors, such as vascular endothelial growth factor (VEGF). Since miRNAs regulate several cell processes, including angiogenesis, we sought to determine whether they would influence PGE-2-induced VEGF. We compared DU145 and PC3 prostate cancer cells bearing the mPGES-1 enzyme (mPGES-1+/+) and producing PGE-2, with those in which the enzyme was silenced or deleted (mPGES-1-/-). We demonstrated that mPGES-1/PGE-2 signaling decreased Dicer expression and miRNA biogenesis. Genome-wide sequencing of miRNAs revealed that miR-15a and miR-186, associated with expression of VEGF and hypoxia inducible factor-1α (HIF-1α), were down-regulated in mPGES-1+/+ cells. As a consequence, mPGES-1+/+ tumor cells expressed high levels of VEGF and HIF-1α, induced endothelial cells activation and formed highly vascularized tumors. Mir-186 mimic inhibited VEGF expression in mPGES-1+/+ tumor xenografts and reduced tumor growth. In human prostate cancer specimens, mPGES-1 was over-expressed in tumors with high Gleason score, elevated expression of VEGF and HIF-1α, high microvessel density and decreased expression of Dicer, miR15a and miR-186. Thus, clear evidence for regulating miRNA processing and VEGF output by intrinsic PGE-2 production provides a means to distinguish between aggressive and indolent prostate tumors and suggests a potential target for controlling tumor progression.
Collapse
Affiliation(s)
- Erika Terzuoli
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, 53100, Siena, Italy.,Istituto Toscano Tumori (ITT), 50136, Florence, Italy
| | - Federica Finetti
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
| | - Gabriella Nesi
- Department of Surgery and Translational Medicine, University of Florence, 50136, Florence, Italy
| | - Donata Villari
- Department of Clinical and Experimental Medicine, University of Florence, 50136, Florence, Italy
| | - Hiromi Hanaka
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77, Stockholm, Sweden
| | - Olof Radmark
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77, Stockholm, Sweden
| | - Antonio Giachetti
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
| | - Marina Ziche
- Department of Life Sciences, University of Siena, 53100, Siena, Italy.,Istituto Toscano Tumori (ITT), 50136, Florence, Italy
| |
Collapse
|
17
|
Sasaki Y, Ochiai T, Takamura M, Kondo Y, Yokoyama C, Hara S. Role of prostacyclin synthase in carcinogenesis. Prostaglandins Other Lipid Mediat 2017; 133:49-52. [DOI: 10.1016/j.prostaglandins.2017.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 12/19/2022]
|
18
|
Psarra A, Nikolaou A, Kokotou MG, Limnios D, Kokotos G. Microsomal prostaglandin E2 synthase-1 inhibitors: a patent review. Expert Opin Ther Pat 2017. [DOI: 10.1080/13543776.2017.1344218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Anastasia Psarra
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Nikolaou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Maroula G Kokotou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Limnios
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
19
|
Misra S, Saini M, Ojha H, Sharma D, Sharma K. Pharmacophore modelling, atom-based 3D-QSAR generation and virtual screening of molecules projected for mPGES-1 inhibitory activity. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:17-39. [PMID: 28094550 DOI: 10.1080/1062936x.2016.1273971] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
COX-2 inhibitors exhibit anticancer effects in various cancer models but due to the adverse side effects associated with these inhibitors, targeting molecules downstream of COX-2 (such as mPGES-1) has been suggested. Even after calls for mPGES-1 inhibitor design, to date there are only a few published inhibitors targeting the enzyme and displaying anticancer activity. In the present study, we have deployed both ligand and structure-based drug design approaches to hunt novel drug-like candidates as mPGES-1 inhibitors. Fifty-four compounds with tested mPGES-1 inhibitory value were used to develop a model with four pharmacophoric features. 3D-QSAR studies were undertaken to check the robustness of the model. Statistical parameters such as r2 = 0.9924, q2 = 0.5761 and F test = 1139.7 indicated significant predictive ability of the proposed model. Our QSAR model exhibits sites where a hydrogen bond donor, hydrophobic group and the aromatic ring can be substituted so as to enhance the efficacy of the inhibitor. Furthermore, we used our validated pharmacophore model as a three-dimensional query to screen the FDA-approved Lopac database. Finally, five compounds were selected as potent mPGES-1 inhibitors on the basis of their docking energy and pharmacokinetic properties such as ADME and Lipinski rule of five.
Collapse
Affiliation(s)
- S Misra
- a Division of Metabolic Cell Signaling Research , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| | - M Saini
- b Division of Radio Protective Drug Development Research , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| | - H Ojha
- b Division of Radio Protective Drug Development Research , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| | - D Sharma
- b Division of Radio Protective Drug Development Research , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| | - K Sharma
- a Division of Metabolic Cell Signaling Research , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| |
Collapse
|
20
|
HARA S. Prostaglandin terminal synthases as novel therapeutic targets. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:703-723. [PMID: 29129850 PMCID: PMC5743848 DOI: 10.2183/pjab.93.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) exert their anti-inflammatory and anti-tumor effects by reducing prostaglandin (PG) production via the inhibition of cyclooxygenase (COX). However, the gastrointestinal, renal and cardiovascular side effects associated with the pharmacological inhibition of the COX enzymes have focused renewed attention onto other potential targets for NSAIDs. PGH2, a COX metabolite, is converted to each PG species by species-specific PG terminal synthases. Because of their potential for more selective modulation of PG production, PG terminal synthases are now being investigated as a novel target for NSAIDs. In this review, I summarize the current understanding of PG terminal synthases, with a focus on microsomal PGE synthase-1 (mPGES-1) and PGI synthase (PGIS). mPGES-1 and PGIS cooperatively exacerbate inflammatory reactions but have opposing effects on carcinogenesis. mPGES-1 and PGIS are expected to be attractive alternatives to COX as therapeutic targets for several diseases, including inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Shuntaro HARA
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| |
Collapse
|
21
|
Boutaud O, Sosa IR, Amin T, Oram D, Adler D, Hwang HS, Crews BC, Milne G, Harris BK, Hoeksema M, Knollmann BC, Lammers PE, Marnett LJ, Massion PP, Oates JA. Inhibition of the Biosynthesis of Prostaglandin E2 By Low-Dose Aspirin: Implications for Adenocarcinoma Metastasis. Cancer Prev Res (Phila) 2016; 9:855-865. [PMID: 27554763 PMCID: PMC5093073 DOI: 10.1158/1940-6207.capr-16-0094] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/15/2016] [Indexed: 12/21/2022]
Abstract
Meta-analyses have demonstrated that low-dose aspirin reduces the risk of developing adenocarcinoma metastasis, and when colon cancer is detected during aspirin treatment, there is a remarkable 83% reduction in risk of metastasis. As platelets participate in the metastatic process, the antiplatelet action of low-dose aspirin likely contributes to its antimetastatic effect. Cycloxooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) also contributes to metastasis, and we addressed the hypothesis that low-dose aspirin also inhibits PGE2 biosynthesis. We show that low-dose aspirin inhibits systemic PGE2 biosynthesis by 45% in healthy volunteers (P < 0.0001). Aspirin is found to be more potent in colon adenocarcinoma cells than in the platelet, and in lung adenocarcinoma cells, its inhibition is equivalent to that in the platelet. Inhibition of COX by aspirin in colon cancer cells is in the context of the metastasis of colon cancer primarily to the liver, the organ exposed to the same high concentrations of aspirin as the platelet. We find that the interaction of activated platelets with lung adenocarcinoma cells upregulates COX-2 expression and PGE2 biosynthesis, and inhibition of platelet COX-1 by aspirin inhibits PGE2 production by the platelet-tumor cell aggregates. In conclusion, low-dose aspirin has a significant effect on extraplatelet cyclooxygenase and potently inhibits COX-2 in lung and colon adenocarcinoma cells. This supports a hypothesis that the remarkable prevention of metastasis from adenocarcinomas, and particularly from colon adenocarcinomas, by low-dose aspirin results from its effect on platelet COX-1 combined with inhibition of PGE2 biosynthesis in metastasizing tumor cells. Cancer Prev Res; 9(11); 855-65. ©2016 AACR.
Collapse
Affiliation(s)
- Olivier Boutaud
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee.
| | - I. Romina Sosa
- Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602,Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Taneem Amin
- Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| | - Denise Oram
- Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| | - David Adler
- Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| | - Hyun S. Hwang
- Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| | - Brenda C. Crews
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| | - Ginger Milne
- Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| | - Bradford K. Harris
- Department of Cancer Biology, the Thoracic Program, Vanderbilt Ingram Cancer Center, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| | - Megan Hoeksema
- Department of Cancer Biology, the Thoracic Program, Vanderbilt Ingram Cancer Center, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| | - Bjorn C. Knollmann
- Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| | - Philip E. Lammers
- Department of Cancer Biology, the Thoracic Program, Vanderbilt Ingram Cancer Center, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602,Department of Medicine, Meharry Medical College, Nashville, TN 37208
| | - Lawrence J. Marnett
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| | - Pierre P. Massion
- Department of Cancer Biology, the Thoracic Program, Vanderbilt Ingram Cancer Center, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| | - John A. Oates
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602,Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN, 37232-6602
| |
Collapse
|
22
|
Saito T, Ichimura Y, Taguchi K, Suzuki T, Mizushima T, Takagi K, Hirose Y, Nagahashi M, Iso T, Fukutomi T, Ohishi M, Endo K, Uemura T, Nishito Y, Okuda S, Obata M, Kouno T, Imamura R, Tada Y, Obata R, Yasuda D, Takahashi K, Fujimura T, Pi J, Lee MS, Ueno T, Ohe T, Mashino T, Wakai T, Kojima H, Okabe T, Nagano T, Motohashi H, Waguri S, Soga T, Yamamoto M, Tanaka K, Komatsu M. p62/Sqstm1 promotes malignancy of HCV-positive hepatocellular carcinoma through Nrf2-dependent metabolic reprogramming. Nat Commun 2016; 7:12030. [PMID: 27345495 PMCID: PMC4931237 DOI: 10.1038/ncomms12030] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 05/24/2016] [Indexed: 12/19/2022] Open
Abstract
p62/Sqstm1 is a multifunctional protein involved in cell survival, growth and death, that is degraded by autophagy. Amplification of the p62/Sqstm1 gene, and aberrant accumulation and phosphorylation of p62/Sqstm1, have been implicated in tumour development. Herein, we reveal the molecular mechanism of p62/Sqstm1-dependent malignant progression, and suggest that molecular targeting of p62/Sqstm1 represents a potential chemotherapeutic approach against hepatocellular carcinoma (HCC). Phosphorylation of p62/Sqstm1 at Ser349 directs glucose to the glucuronate pathway, and glutamine towards glutathione synthesis through activation of the transcription factor Nrf2. These changes provide HCC cells with tolerance to anti-cancer drugs and proliferation potency. Phosphorylated p62/Sqstm1 accumulates in tumour regions positive for hepatitis C virus (HCV). An inhibitor of phosphorylated p62-dependent Nrf2 activation suppresses the proliferation and anticancer agent tolerance of HCC. Our data indicate that this Nrf2 inhibitor could be used to make cancer cells less resistant to anticancer drugs, especially in HCV-positive HCC patients.
Collapse
Affiliation(s)
- Tetsuya Saito
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.,Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshinobu Ichimura
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.,Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Keiko Taguchi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tsunehiro Mizushima
- Department of Life Science, Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1, Hyogo 678-1297, Japan
| | - Kenji Takagi
- Department of Life Science, Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1, Hyogo 678-1297, Japan
| | - Yuki Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Tetsuro Iso
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Toshiaki Fukutomi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Maki Ohishi
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Japan
| | - Keiko Endo
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Japan
| | - Takefumi Uemura
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Yasumasa Nishito
- Core Technology and Research Center, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Shujiro Okuda
- Bioinformatics Laboratory, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Miki Obata
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Tsuguka Kouno
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Riyo Imamura
- The University of Tokyo, Drug Discovery Initiative, University of Tokyo, Tokyo 113-0033, Japan
| | - Yukio Tada
- The University of Tokyo, Drug Discovery Initiative, University of Tokyo, Tokyo 113-0033, Japan
| | - Rika Obata
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Daisuke Yasuda
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Kyoko Takahashi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Tsutomu Fujimura
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Jingbo Pi
- Institute for Chemical Safety Sciences, Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709-2137, USA
| | - Myung-Shik Lee
- Severance Biomedical Science Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Takashi Ueno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Tomoyuki Ohe
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Tadahiko Mashino
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Hirotatsu Kojima
- The University of Tokyo, Drug Discovery Initiative, University of Tokyo, Tokyo 113-0033, Japan
| | - Takayoshi Okabe
- The University of Tokyo, Drug Discovery Initiative, University of Tokyo, Tokyo 113-0033, Japan
| | - Tetsuo Nagano
- The University of Tokyo, Drug Discovery Initiative, University of Tokyo, Tokyo 113-0033, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| |
Collapse
|
23
|
Corso G, Alisi MA, Cazzolla N, Coletta I, Furlotti G, Garofalo B, Mangano G, Mancini F, Vitiello M, Ombrato R. A Novel Multi-step Virtual Screening for the Identification of Human and Mouse mPGES-1 Inhibitors. Mol Inform 2016; 35:358-68. [PMID: 27546040 DOI: 10.1002/minf.201600024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/21/2016] [Indexed: 11/06/2022]
Abstract
We present here the development of a novel virtual screening protocol combining Structure-based and Ligand-based drug design approaches for the identification of mouse mPGES-1 inhibitors. We used the existing 3D structural data of the murine enzyme to hypothesize the inhibitors binding mode, which was the starting point for docking simulations, shape screening, and pharmacophore hypothesis screening. The protocol allowed the identification of 16 mouse mPGES-1 inhibitors with low micromolar activity, which, notably, also inhibit the human enzyme in the same concentration range. The inhibitors predicted binding mode is expected to be the base for the rational drug design of new potent dual species inhibitors of human and murine mPGES-1.
Collapse
Affiliation(s)
- G Corso
- Angelini Research Center, Angelini S.p.A. P.le della Stazione, snc, I-00071 S. Palomba - Pomezia (RM) -, Italy .
| | - M A Alisi
- Angelini Research Center, Angelini S.p.A. P.le della Stazione, snc, I-00071 S. Palomba - Pomezia (RM) -, Italy
| | - N Cazzolla
- Angelini Research Center, Angelini S.p.A. P.le della Stazione, snc, I-00071 S. Palomba - Pomezia (RM) -, Italy
| | - I Coletta
- Angelini Research Center, Angelini S.p.A. P.le della Stazione, snc, I-00071 S. Palomba - Pomezia (RM) -, Italy
| | - G Furlotti
- Angelini Research Center, Angelini S.p.A. P.le della Stazione, snc, I-00071 S. Palomba - Pomezia (RM) -, Italy
| | - B Garofalo
- Angelini Research Center, Angelini S.p.A. P.le della Stazione, snc, I-00071 S. Palomba - Pomezia (RM) -, Italy
| | - G Mangano
- Angelini Research Center, Angelini S.p.A. P.le della Stazione, snc, I-00071 S. Palomba - Pomezia (RM) -, Italy
| | - F Mancini
- Angelini Research Center, Angelini S.p.A. P.le della Stazione, snc, I-00071 S. Palomba - Pomezia (RM) -, Italy
| | - M Vitiello
- Angelini Research Center, Angelini S.p.A. P.le della Stazione, snc, I-00071 S. Palomba - Pomezia (RM) -, Italy
| | - Rosella Ombrato
- Angelini Research Center, Angelini S.p.A. P.le della Stazione, snc, I-00071 S. Palomba - Pomezia (RM) -, Italy
| |
Collapse
|
24
|
Matsuda H, Hosono K, Tsuru S, Kurashige C, Sekiguchi K, Akira S, Uematsu S, Okamoto H, Majima M. Roles of mPGES-1, an inducible prostaglandin E synthase, in enhancement of LPS-induced lymphangiogenesis in a mouse peritonitis model. Life Sci 2015; 142:1-7. [DOI: 10.1016/j.lfs.2015.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/11/2015] [Accepted: 10/08/2015] [Indexed: 11/29/2022]
|
25
|
Sasaki Y, Kamiyama S, Kamiyama A, Matsumoto K, Akatsu M, Nakatani Y, Kuwata H, Ishikawa Y, Ishii T, Yokoyama C, Hara S. Genetic-deletion of Cyclooxygenase-2 Downstream Prostacyclin Synthase Suppresses Inflammatory Reactions but Facilitates Carcinogenesis, unlike Deletion of Microsomal Prostaglandin E Synthase-1. Sci Rep 2015; 5:17376. [PMID: 26611322 PMCID: PMC4661703 DOI: 10.1038/srep17376] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022] Open
Abstract
Prostacyclin synthase (PGIS) and microsomal prostaglandin E synthase-1 (mPGES-1) are prostaglandin (PG) terminal synthases that function downstream of inducible cyclooxygenase (COX)-2 in the PGI2 and PGE2 biosynthetic pathways, respectively. mPGES-1 has been shown to be involved in various COX-2-related diseases such as inflammatory diseases and cancers, but it is not yet known how PGIS is involved in these COX-2-related diseases. Here, to clarify the pathophysiological role of PGIS, we investigated the phenotypes of PGIS and mPGES-1 individual knockout (KO) or double KO (DKO) mice. The results indicate that a thioglycollate-induced exudation of leukocytes into the peritoneal cavity was suppressed by the genetic-deletion of PGIS. In the PGIS KO mice, lipopolysaccharide-primed pain nociception (as assessed by the acetic acid-induced writhing reaction) was also reduced. Both of these reactions were suppressed more effectively in the PGIS/mPGES-1 DKO mice than in the PGIS KO mice. On the other hand, unlike mPGES-1 deficiency (which suppressed azoxymethane-induced colon carcinogenesis), PGIS deficiency up-regulated both aberrant crypt foci formation at the early stage of carcinogenesis and polyp formation at the late stage. These results indicate that PGIS and mPGES-1 cooperatively exacerbate inflammatory reactions but have opposing effects on carcinogenesis, and that PGIS-derived PGI2 has anti-carcinogenic effects.
Collapse
Affiliation(s)
- Yuka Sasaki
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Shuhei Kamiyama
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Azusa Kamiyama
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Konomi Matsumoto
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Moe Akatsu
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Yoshihito Nakatani
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Hiroshi Kuwata
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Yukio Ishikawa
- Pathology Section, Itabashi Medical Laboratory, Tokyo 174-0051, Japan
| | - Toshiharu Ishii
- Department of Pathology, Saiseikai Yokohama City Tobu Hospital, Yokohama 230-8765, Japan
| | | | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| |
Collapse
|
26
|
Finetti F, Terzuoli E, Giachetti A, Santi R, Villari D, Hanaka H, Radmark O, Ziche M, Donnini S. mPGES-1 in prostate cancer controls stemness and amplifies epidermal growth factor receptor-driven oncogenicity. Endocr Relat Cancer 2015; 22:665-78. [PMID: 26113609 PMCID: PMC4526795 DOI: 10.1530/erc-15-0277] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/23/2015] [Indexed: 02/06/2023]
Abstract
There is evidence that an inflammatory microenvironment is associated with the development and progression of prostate cancer (PCa), although the determinants of intrinsic inflammation in PCa cells are not completely understood. Here we investigated whether expression of intrinsic microsomal PGE synthase-1 (mPGES-1) enhanced aggressiveness of PCa cells and might be critical for epidermal growth factor receptor (EGFR)-mediated tumour progression. In PCa, overexpression of EGFR promotes metastatic invasion and correlates with a high Gleason score, while prostaglandin E2 (PGE2) has been reported to modulate oncogenic EGFR-driven oncogenicity. Immunohistochemical studies revealed that mPGES-1 in human prostate tissues is correlated with EGFR expression in advanced tumours. In DU145 and PC-3 cell lines expressing mPGES-1 (mPGES-1(SC) cells), we demonstrate that silencing or 'knock down' of mPGES-1 (mPGES-1(KD)) or pharmacological inhibition by MF63 strongly attenuates overall oncogenic drive. Indeed, mPGES-1(SC) cells express stem-cell-like features (high CD44, β1-integrin, Nanog and Oct4 and low CD24 and α6-integrin) as well as mesenchymal transition markers (high vimentin, high fibronectin, low E-cadherin). They also show increased capacity to survive irrespective of anchorage condition, and overexpress EGFR compared to mPGES-1(KD) cells. mPGES-1 expression correlates with increased in vivo tumour growth and metastasis. Although EGFR inhibition reduces mPGES-1(SC) and mPGES-1(KD) cell xenograft tumour growth, we show that mPGES-1/PGE2 signalling sensitizes tumour cells to EGFR inhibitors. We propose mPGES-1 as a possible new marker of tumour aggressiveness in PCa.
Collapse
Affiliation(s)
- Federica Finetti
- Department of Life SciencesUniversity of Siena, Via Aldo Moro 2, 53100 Siena, ItalyDepartment of Surgery and Translational MedicineUniversity of Florence, Largo Brambilla 3, 50134 Firenze, ItalyDepartment of Clinical and Experimental MedicineUniversity of Florence, Viale Pieraccini 18, 50139 Firenze, ItalyDepartment of Medical Biochemistry and BiophysicsKarolinska Institutet, SE-171 77 Stockholm, SwedenIstituto Toscano Tumori (ITT)Firenze, Italy
| | - Erika Terzuoli
- Department of Life SciencesUniversity of Siena, Via Aldo Moro 2, 53100 Siena, ItalyDepartment of Surgery and Translational MedicineUniversity of Florence, Largo Brambilla 3, 50134 Firenze, ItalyDepartment of Clinical and Experimental MedicineUniversity of Florence, Viale Pieraccini 18, 50139 Firenze, ItalyDepartment of Medical Biochemistry and BiophysicsKarolinska Institutet, SE-171 77 Stockholm, SwedenIstituto Toscano Tumori (ITT)Firenze, Italy
| | - Antonio Giachetti
- Department of Life SciencesUniversity of Siena, Via Aldo Moro 2, 53100 Siena, ItalyDepartment of Surgery and Translational MedicineUniversity of Florence, Largo Brambilla 3, 50134 Firenze, ItalyDepartment of Clinical and Experimental MedicineUniversity of Florence, Viale Pieraccini 18, 50139 Firenze, ItalyDepartment of Medical Biochemistry and BiophysicsKarolinska Institutet, SE-171 77 Stockholm, SwedenIstituto Toscano Tumori (ITT)Firenze, Italy
| | - Raffaella Santi
- Department of Life SciencesUniversity of Siena, Via Aldo Moro 2, 53100 Siena, ItalyDepartment of Surgery and Translational MedicineUniversity of Florence, Largo Brambilla 3, 50134 Firenze, ItalyDepartment of Clinical and Experimental MedicineUniversity of Florence, Viale Pieraccini 18, 50139 Firenze, ItalyDepartment of Medical Biochemistry and BiophysicsKarolinska Institutet, SE-171 77 Stockholm, SwedenIstituto Toscano Tumori (ITT)Firenze, Italy
| | - Donata Villari
- Department of Life SciencesUniversity of Siena, Via Aldo Moro 2, 53100 Siena, ItalyDepartment of Surgery and Translational MedicineUniversity of Florence, Largo Brambilla 3, 50134 Firenze, ItalyDepartment of Clinical and Experimental MedicineUniversity of Florence, Viale Pieraccini 18, 50139 Firenze, ItalyDepartment of Medical Biochemistry and BiophysicsKarolinska Institutet, SE-171 77 Stockholm, SwedenIstituto Toscano Tumori (ITT)Firenze, Italy
| | - Hiromi Hanaka
- Department of Life SciencesUniversity of Siena, Via Aldo Moro 2, 53100 Siena, ItalyDepartment of Surgery and Translational MedicineUniversity of Florence, Largo Brambilla 3, 50134 Firenze, ItalyDepartment of Clinical and Experimental MedicineUniversity of Florence, Viale Pieraccini 18, 50139 Firenze, ItalyDepartment of Medical Biochemistry and BiophysicsKarolinska Institutet, SE-171 77 Stockholm, SwedenIstituto Toscano Tumori (ITT)Firenze, Italy
| | - Olof Radmark
- Department of Life SciencesUniversity of Siena, Via Aldo Moro 2, 53100 Siena, ItalyDepartment of Surgery and Translational MedicineUniversity of Florence, Largo Brambilla 3, 50134 Firenze, ItalyDepartment of Clinical and Experimental MedicineUniversity of Florence, Viale Pieraccini 18, 50139 Firenze, ItalyDepartment of Medical Biochemistry and BiophysicsKarolinska Institutet, SE-171 77 Stockholm, SwedenIstituto Toscano Tumori (ITT)Firenze, Italy
| | - Marina Ziche
- Department of Life SciencesUniversity of Siena, Via Aldo Moro 2, 53100 Siena, ItalyDepartment of Surgery and Translational MedicineUniversity of Florence, Largo Brambilla 3, 50134 Firenze, ItalyDepartment of Clinical and Experimental MedicineUniversity of Florence, Viale Pieraccini 18, 50139 Firenze, ItalyDepartment of Medical Biochemistry and BiophysicsKarolinska Institutet, SE-171 77 Stockholm, SwedenIstituto Toscano Tumori (ITT)Firenze, Italy Department of Life SciencesUniversity of Siena, Via Aldo Moro 2, 53100 Siena, ItalyDepartment of Surgery and Translational MedicineUniversity of Florence, Largo Brambilla 3, 50134 Firenze, ItalyDepartment of Clinical and Experimental MedicineUniversity of Florence, Viale Pieraccini 18, 50139 Firenze, ItalyDepartment of Medical Biochemistry and BiophysicsKarolinska Institutet, SE-171 77 Stockholm, SwedenIstituto Toscano Tumori (ITT)Firenze, Italy
| | - Sandra Donnini
- Department of Life SciencesUniversity of Siena, Via Aldo Moro 2, 53100 Siena, ItalyDepartment of Surgery and Translational MedicineUniversity of Florence, Largo Brambilla 3, 50134 Firenze, ItalyDepartment of Clinical and Experimental MedicineUniversity of Florence, Viale Pieraccini 18, 50139 Firenze, ItalyDepartment of Medical Biochemistry and BiophysicsKarolinska Institutet, SE-171 77 Stockholm, SwedenIstituto Toscano Tumori (ITT)Firenze, Italy Department of Life SciencesUniversity of Siena, Via Aldo Moro 2, 53100 Siena, ItalyDepartment of Surgery and Translational MedicineUniversity of Florence, Largo Brambilla 3, 50134 Firenze, ItalyDepartment of Clinical and Experimental MedicineUniversity of Florence, Viale Pieraccini 18, 50139 Firenze, ItalyDepartment of Medical Biochemistry and BiophysicsKarolinska Institutet, SE-171 77 Stockholm, SwedenIstituto Toscano Tumori (ITT)Firenze, Italy
| |
Collapse
|
27
|
Role of microsomal prostaglandin E synthase-1 (mPGES-1)-derived prostaglandin E2 in colon carcinogenesis. Prostaglandins Other Lipid Mediat 2015; 121:42-5. [PMID: 26150361 DOI: 10.1016/j.prostaglandins.2015.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/08/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023]
Abstract
Nonsteroidal anti-inflammatory drugs, especially selective cyclooxygenase-2 (COX-2) inhibitors, are among the most promising chemopreventive agents for colorectal cancer. However, recent clinical trials have indicated that these inhibitors pose a significantly increased cardiovascular risk. Microsomal prostaglandin E (PGE) synthase-1 (mPGES-1) and mPGES-1-derived PGE2 have gained attention recently as alternative targets to COX-2 for colorectal cancer chemoprevention and chemotherapy. In this review, we summarize the current understanding of the roles of mPGES-1, a PGE2-inactivating enzyme (15-hydroxyprostagladin dehydrogenase), and PGE2 specific receptors (EPs) in colon carcinogenesis.
Collapse
|
28
|
Larsson K, Jakobsson PJ. Inhibition of microsomal prostaglandin E synthase-1 as targeted therapy in cancer treatment. Prostaglandins Other Lipid Mediat 2015; 120:161-5. [PMID: 26100239 DOI: 10.1016/j.prostaglandins.2015.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/22/2015] [Accepted: 06/02/2015] [Indexed: 11/29/2022]
|
29
|
Chang J, Xue M, Yang S, Yao B, Zhang B, Chen X, Pozzi A, Zhang MZ. Inhibition of 11β-Hydroxysteroid Dehydrogenase Type II Suppresses Lung Carcinogenesis by Blocking Tumor COX-2 Expression as Well as the ERK and mTOR Signaling Pathways. PLoS One 2015; 10:e0127030. [PMID: 26011146 PMCID: PMC4444260 DOI: 10.1371/journal.pone.0127030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 04/10/2015] [Indexed: 12/31/2022] Open
Abstract
Lung cancer is by far the leading cause of cancer death. Early diagnosis and prevention remain the best approach to reduce the overall morbidity and mortality. Experimental and clinical evidence have shown that cyclooxygenase-2 (COX-2) derived prostaglandin E2 (PGE2) contributes to lung tumorigenesis. COX-2 inhibitors suppress the development and progression of lung cancer. However, increased cardiovascular risks of COX-2 inhibitors limit their use in chemoprevention of lung cancers. Glucocorticoids are endogenous and potent COX-2 inhibitors, and their local actions are down-regulated by 11β–hydroxysteroid dehydrogenase type II (11ßHSD2)-mediated metabolism. We found that 11βHSD2 expression was increased in human lung cancers and experimental lung tumors. Inhibition of 11βHSD2 activity enhanced glucocorticoid-mediated COX-2 inhibition in human lung carcinoma cells. Furthermore, 11βHSD2 inhibition suppressed lung tumor growth and invasion in association with increased tissue active glucocorticoid levels, decreased COX-2 expression, inhibition of ERK and mTOR signaling pathways, increased tumor endoplasmic reticulum stress as well as increased lifespan. Therefore, 11βHSD2 inhibition represents a novel approach for lung cancer chemoprevention and therapy by increasing tumor glucocorticoid activity, which in turn selectively blocks local COX-2 activity and/or inhibits the ERK and mTOR signaling pathways.
Collapse
Affiliation(s)
- Jian Chang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Min Xue
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Shilin Yang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Bing Yao
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ambra Pozzi
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Ming-Zhi Zhang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, China
- * E-mail:
| |
Collapse
|
30
|
Luz JG, Antonysamy S, Kuklish SL, Condon B, Lee MR, Allison D, Yu XP, Chandrasekhar S, Backer R, Zhang A, Russell M, Chang SS, Harvey A, Sloan AV, Fisher MJ. Crystal Structures of mPGES-1 Inhibitor Complexes Form a Basis for the Rational Design of Potent Analgesic and Anti-Inflammatory Therapeutics. J Med Chem 2015; 58:4727-37. [DOI: 10.1021/acs.jmedchem.5b00330] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- John Gately Luz
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Stephen Antonysamy
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Steven L. Kuklish
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Bradley Condon
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Matthew R. Lee
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Dagart Allison
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Xiao-Peng Yu
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Srinivasan Chandrasekhar
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Ryan Backer
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Aiping Zhang
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Marijane Russell
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Shawn S. Chang
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Anita Harvey
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Ashley V. Sloan
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Matthew J. Fisher
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| |
Collapse
|
31
|
Liu C, Chen S, Wang X, Chen Y, Tang N. 15d-PGJ2 decreases PGE2 synthesis in HBx-positive liver cells by interfering EGR1 binding to mPGES-1 promoter. Biochem Pharmacol 2014; 91:337-47. [DOI: 10.1016/j.bcp.2014.07.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/27/2014] [Accepted: 07/29/2014] [Indexed: 01/05/2023]
|
32
|
Korotkova M, Jakobsson PJ. Characterization of Microsomal Prostaglandin E Synthase 1 Inhibitors. Basic Clin Pharmacol Toxicol 2013; 114:64-9. [DOI: 10.1111/bcpt.12162] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/19/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Marina Korotkova
- Rheumatology Unit; Department of Medicine; Karolinska Institutet; Stockholm Sweden
| | - Per-Johan Jakobsson
- Rheumatology Unit; Department of Medicine; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
33
|
Zang S, Ni M, Lian Y, Zhang Y, Liu J, Huang A. Expression of microsomal prostaglandin E2 synthase-1 and its role in human hepatocellular carcinoma. Hum Pathol 2013; 44:1681-7. [DOI: 10.1016/j.humpath.2013.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/07/2013] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
|
34
|
Corso G, Coletta I, Ombrato R. Murine mPGES-1 3D Structure Elucidation and Inhibitors Binding Mode Predictions by Homology Modeling and Site-Directed Mutagenesis. J Chem Inf Model 2013; 53:1804-17. [DOI: 10.1021/ci400180f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Gaia Corso
- R&D, †Computational Chemistry Lab, ‡In vitro Pharmacology Dev., Angelini Research Center, ACRAF S.p.A. P.le della Stazione, snc, I-00040 Santa Palomba, Pomezia (RM), Italy
| | - Isabella Coletta
- R&D, †Computational Chemistry Lab, ‡In vitro Pharmacology Dev., Angelini Research Center, ACRAF S.p.A. P.le della Stazione, snc, I-00040 Santa Palomba, Pomezia (RM), Italy
| | - Rosella Ombrato
- R&D, †Computational Chemistry Lab, ‡In vitro Pharmacology Dev., Angelini Research Center, ACRAF S.p.A. P.le della Stazione, snc, I-00040 Santa Palomba, Pomezia (RM), Italy
| |
Collapse
|
35
|
Howe LR, Subbaramaiah K, Kent CV, Zhou XK, Chang SH, Hla T, Jakobsson PJ, Hudis CA, Dannenberg AJ. Genetic deletion of microsomal prostaglandin E synthase-1 suppresses mouse mammary tumor growth and angiogenesis. Prostaglandins Other Lipid Mediat 2013; 106:99-105. [PMID: 23624019 DOI: 10.1016/j.prostaglandins.2013.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/24/2013] [Accepted: 04/17/2013] [Indexed: 02/06/2023]
Abstract
The cyclooxygenase/prostaglandin (COX/PG) signaling pathway is of central importance in inflammation and neoplasia. COX inhibitors are widely used for analgesia and also have demonstrated activity for cancer prophylaxis. However, cardiovascular toxicity associated with this drug class diminishes their clinical utility and motivates the development of safer approaches both for pain relief and cancer prevention. The terminal synthase microsomal PGE synthase-1 (mPGES-1) has attracted considerable attention as a potential target. Overexpression of mPGES-1 has been observed in both colorectal and breast cancers, and gene knockout and overexpression approaches have established a role for mPGES-1 in gastrointestinal carcinogenesis. Here we evaluate the contribution of mPGES-1 to mammary tumorigenesis using a gene knockout approach. Mice deficient in mPGES-1 were crossed with a strain in which breast cancer is driven by overexpression of human epidermal growth factor receptor 2 (HER2/neu). Loss of mPGES-1 was associated with a substantial reduction in intramammary PGE2 levels, aromatase activity, and angiogenesis in mammary glands from HER2/neu transgenic mice. Consistent with these findings, we observed a significant reduction in multiplicity of tumors ≥1mm in diameter, suggesting that mPGES-1 contributes to mammary tumor growth. Our data identify mPGES-1 as a potential anti-breast cancer target.
Collapse
Affiliation(s)
- Louise R Howe
- Department of Cell & Developmental Biology and Weill Cornell Cancer Center, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Akitake Y, Nakatani Y, Kamei D, Hosokawa M, Akatsu H, Uematsu S, Akira S, Kudo I, Hara S, Takahashi M. Microsomal prostaglandin E synthase-1 is induced in alzheimer's disease and its deletion mitigates alzheimer's disease-like pathology in a mouse model. J Neurosci Res 2013; 91:909-19. [DOI: 10.1002/jnr.23217] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/30/2012] [Accepted: 01/30/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Yoshiharu Akitake
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Fukuoka University; Fukuoka; Japan
| | - Yoshihito Nakatani
- Department of Health Chemistry; School of Pharmacy; Showa University; Tokyo; Japan
| | | | | | - Hiroyasu Akatsu
- Choju Medical Institute; Fukushimura Hospital; Toyohashi; Aichi; Japan
| | - Satoshi Uematsu
- Department of Host Defense; Research Institute for Microbial Diseases; Osaka University; Osaka; Japan
| | - Shizuo Akira
- Department of Host Defense; Research Institute for Microbial Diseases; Osaka University; Osaka; Japan
| | - Ichiro Kudo
- Department of Health Chemistry; School of Pharmacy; Showa University; Tokyo; Japan
| | - Shuntaro Hara
- Department of Health Chemistry; School of Pharmacy; Showa University; Tokyo; Japan
| | | |
Collapse
|
37
|
Ruud J, Nilsson A, Engström Ruud L, Wang W, Nilsberth C, Iresjö BM, Lundholm K, Engblom D, Blomqvist A. Cancer-induced anorexia in tumor-bearing mice is dependent on cyclooxygenase-1. Brain Behav Immun 2013; 29:124-135. [PMID: 23305935 DOI: 10.1016/j.bbi.2012.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/17/2012] [Accepted: 12/30/2012] [Indexed: 11/29/2022] Open
Abstract
It is well-established that prostaglandins (PGs) affect tumorigenesis, and evidence indicates that PGs also are important for the reduced food intake and body weight loss, the anorexia-cachexia syndrome, in malignant cancer. However, the identity of the PGs and the PG producing cyclooxygenase (COX) species responsible for cancer anorexia-cachexia is unknown. Here, we addressed this issue by transplanting mice with a tumor that elicits anorexia. Meal pattern analysis revealed that the anorexia in the tumor-bearing mice was due to decreased meal frequency. Treatment with a non-selective COX inhibitor attenuated the anorexia, and also tumor growth. When given at manifest anorexia, non-selective COX-inhibitors restored appetite and prevented body weight loss without affecting tumor size. Despite COX-2 induction in the cerebral blood vessels of tumor-bearing mice, a selective COX-2 inhibitor had no effect on the anorexia, whereas selective COX-1 inhibition delayed its onset. Tumor growth was associated with robust increase of PGE(2) levels in plasma - a response blocked both by non-selective COX-inhibition and by selective COX-1 inhibition, but not by COX-2 inhibition. However, there was no increase in PGE(2)-levels in the cerebrospinal fluid. Neutralization of plasma PGE(2) with specific antibodies did not ameliorate the anorexia, and genetic deletion of microsomal PGE synthase-1 (mPGES-1) affected neither anorexia nor tumor growth. Furthermore, tumor-bearing mice lacking EP(4) receptors selectively in the nervous system developed anorexia. These observations suggest that COX-enzymes, most likely COX-1, are involved in cancer-elicited anorexia and weight loss, but that these phenomena occur independently of host mPGES-1, PGE(2) and neuronal EP(4) signaling.
Collapse
Affiliation(s)
- Johan Ruud
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - Anna Nilsson
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - Linda Engström Ruud
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - Wenhua Wang
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
| | - Camilla Nilsberth
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - Britt-Marie Iresjö
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
| | - Kent Lundholm
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
| | - David Engblom
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - Anders Blomqvist
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden.
| |
Collapse
|
38
|
Deletion of microsomal prostaglandin E synthase-1 protects neuronal cells from cytotoxic effects of β-amyloid peptide fragment 31–35. Biochem Biophys Res Commun 2012; 424:409-13. [DOI: 10.1016/j.bbrc.2012.06.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/24/2012] [Indexed: 02/04/2023]
|
39
|
Sha W, Brüne B, Weigert A. The multi-faceted roles of prostaglandin E2 in cancer-infiltrating mononuclear phagocyte biology. Immunobiology 2012; 217:1225-32. [PMID: 22727331 DOI: 10.1016/j.imbio.2012.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/07/2012] [Indexed: 12/14/2022]
Abstract
Extensive research in the last two decades implemented that the inflammatory cell infiltrate, especially in solid tumors, is a major determinant for patient prognosis. Mononuclear phagocytes, i.e. monocytes/macrophages, dendritic cells and myeloid-derived suppressor cells, constitute the majority of tumor-associated immune cells. Instead of inducing anti-tumor immunity, mononuclear phagocytes are functionally subverted by tumor microenvironmental factors to support each stage of oncogenesis. Although mechanisms how tumors program their inflammatory infiltrate to support tumor development are ill-defined, few master regulators are beginning to emerge. One of them is the inflammatory eicosanoid prostaglandin E(2) (PGE(2)), produced by tumor cells or the infiltrating immune cells. In this review we summarize the impact of PGE(2) on mononuclear phagocytes in inflammation and cancer and discuss potential implications for cancer therapy.
Collapse
Affiliation(s)
- Weixiao Sha
- Institute of Biochemistry I/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | | | | |
Collapse
|
40
|
Prostanoids in tumor angiogenesis: therapeutic intervention beyond COX-2. Trends Mol Med 2012; 18:233-43. [PMID: 22425675 DOI: 10.1016/j.molmed.2012.02.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/10/2012] [Accepted: 02/14/2012] [Indexed: 02/06/2023]
Abstract
Prostanoids regulate angiogenesis in carcinoma and chronic inflammatory disease progression. Although prostanoid biosynthetic enzymes and signaling have been extensively analyzed in inflammation, little is known about how prostanoids mediate tumor-induced angiogenesis. Targeted cyclooxygenase (COX)-2 inhibition in tumor, stromal and endothelial cells is an attractive antiangiogenic strategy; however, the associated cardiovascular side effects have led to the development of a new generation of nonsteroidal anti-inflammatory drugs (NSAIDs) acting downstream of COX. These agents target terminal prostanoid synthases and prostanoid receptors, which may also include several peroxisome proliferator-activated receptors (PPARs). Here, we discuss the role of prostanoids as modulators of tumor angiogenesis and how prostanoid metabolism reflects complex cell-cell crosstalk that determines tumor growth. Finally, we discuss the potential of new NSAIDs for the treatment of angiogenesis-dependent tumor development.
Collapse
|
41
|
Prostaglandins in cancer cell adhesion, migration, and invasion. Int J Cell Biol 2012; 2012:723419. [PMID: 22505934 PMCID: PMC3299390 DOI: 10.1155/2012/723419] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/08/2011] [Indexed: 12/21/2022] Open
Abstract
Prostaglandins exert a profound influence over the adhesive, migratory, and invasive behavior of cells during the development and progression of cancer. Cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) are upregulated in inflammation and cancer. This results in the production of prostaglandin E2 (PGE2), which binds to and activates G-protein-coupled prostaglandin E1–4 receptors (EP1–4). Selectively targeting the COX-2/mPGES-1/PGE2/EP1–4 axis of the prostaglandin pathway can reduce the adhesion, migration, invasion, and angiogenesis. Once stimulated by prostaglandins, cadherin adhesive connections between epithelial or endothelial cells are lost. This enables cells to invade through the underlying basement membrane and extracellular matrix (ECM). Interactions with the ECM are mediated by cell surface integrins by “outside-in signaling” through Src and focal adhesion kinase (FAK) and/or “inside-out signaling” through talins and kindlins. Combining the use of COX-2/mPGES-1/PGE2/EP1–4 axis-targeted molecules with those targeting cell surface adhesion receptors or their downstream signaling molecules may enhance cancer therapy.
Collapse
|
42
|
Abstract
Microsomal prostaglandin E synthase-1 (mPGES-1) is the terminal synthase responsible for the synthesis of the pro-tumorigenic prostaglandin E(2) (PGE(2)). mPGES-1 is overexpressed in a wide variety of cancers. Since its discovery in 1997 by Bengt Samuelsson and collaborators, the enzyme has been the object of over 200 peer-reviewed articles. Although today mPGES-1 is considered a validated and promising therapeutic target for anticancer drug discovery, challenges in inhibitor design and selectivity are such that up to this date there are only a few published records of small-molecule inhibitors targeting the enzyme and exhibiting some in vivo anticancer activity. This review summarizes the structures, and the in vitro and in vivo activities of these novel mPGES-1 inhibitors. Challenges that have been encountered are also discussed.
Collapse
|
43
|
Donnini S, Finetti F, Terzuoli E, Giachetti A, Iñiguez MA, Hanaka H, Fresno M, Rådmark O, Ziche M. EGFR signaling upregulates expression of microsomal prostaglandin E synthase-1 in cancer cells leading to enhanced tumorigenicity. Oncogene 2011; 31:3457-66. [PMID: 22081067 DOI: 10.1038/onc.2011.503] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this report we describe the contribution of prostaglandin E(2) (PGE(2)) derived from the inducible microsomal PGE-synthase type-1 (mPGES-1) to the epidermal growth factor receptor (EGFR) oncogenic drive in tumor epithelial cells and in tumor-bearing mice. EGFR stimulation upregulated expression of mPGES-1 in HT-29, A431 and A549 cancer cells. Egr-1, a transcription factor induced by EGF, mediated this response. The Egr-1 rise provoked the overexpression of mPGES-1 messenger and protein, and enhanced PGE(2) formation. These changes were suppressed either by silencing Egr-1, or by upstream blockade of EGFR or ERK1/2 signals. Further, in a clonogenic assay on tumor cells, EGF induced a florid tumorigenic phenotype, which regressed when mPGES-1 was silenced or knocked down. EGF-induced mPGES-1 overexpression in epithelial cell reduced E-cadherin expression, whereas enhancing that of vimentin, suggesting an incipient mesenchymal phenotype. Additionally, inhibiting the EGFR in mice bearing the A431 tumor, the mPGES-1 expression and the tumor growth, exhibited a parallel decline. In conclusion, these findings provide novel evidence that a tight cooperation between the EGF/EGFR and mPGES-1 leads to a significant tumorigenic gain in epithelial cells, and provide clues for controlling the vicious association.
Collapse
Affiliation(s)
- S Donnini
- Section of Pharmacology, Department of Biotechnology, University of Siena, and Istituto Toscano Tumori, Siena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sasaki Y, Kamei D, Ishikawa Y, Ishii T, Uematsu S, Akira S, Murakami M, Hara S. Microsomal prostaglandin E synthase-1 is involved in multiple steps of colon carcinogenesis. Oncogene 2011; 31:2943-52. [PMID: 21986945 DOI: 10.1038/onc.2011.472] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accumulating evidence indicates that cyclooxygenase (COX)-2-derived prostaglandin (PG) E(2) is involved in the development of various tumors, including colorectal cancer. However, the precise contribution of microsomal PGE synthase (mPGES)-1, a terminal enzyme that acts downstream of COX-2 in the PGE(2)-biosynthetic pathway, to multiple processes of tumor development is not yet fully understood. Here, we show the pro-tumorigenic role of mPGES-1 in chemical carcinogen-induced colon carcinogenesis and intrasplenic tumor transplantation models. Genetic deletion of mPGES-1 significantly reduced both the total number and size of colorectal polyps at 18 weeks after azoxymethane administration with reduced nuclear translocation of β-catenin, altered expression profiles of chemokines/cytokines and increased production of antitumorigenic PGs, prostaglandin D(2) and prostacyclin in tumor tissues. At an early stage (6 weeks), mPGES-1 deficiency significantly reduced the number of aberrant crypt foci, while its transgenic overexpression increased the number. Furthermore, the growth of intrasplenically transplanted tumor cells was suppressed in mPGES-1 knockout (KO) mice. Co-culture of tumor cells with bone marrow-derived macrophages (BM-MΦs) isolated from wild-type (WT) mice resulted in the induction of mPGES-1 in BM-MΦs and increased the growth of tumor cells in vitro, whereas mPGES-1-null BM-MΦs failed to facilitate tumor growth. The adoptive transfer of WT BM-MΦs into mPGES-1 KO mice restored the growth of transplanted tumor cells, indicating that mPGES-1 in MΦs is important for the growth of adjacent tumor cells. Taken together, our findings suggest that the inhibition of mPGES-1 is an alternative therapeutic target for colorectal and possibly other cancers.
Collapse
Affiliation(s)
- Y Sasaki
- Department of Health Chemistry, School of Pharmacy, Showa University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Chang HH, Song Z, Wisner L, Tripp T, Gokhale V, Meuillet EJ. Identification of a novel class of anti-inflammatory compounds with anti-tumor activity in colorectal and lung cancers. Invest New Drugs 2011; 30:1865-77. [PMID: 21931968 DOI: 10.1007/s10637-011-9748-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/30/2011] [Indexed: 12/13/2022]
Abstract
Chronic inflammation is associated with 25% of all cancers. In the inflammation-cancer axis, prostaglandin E(2) (PGE(2)) is one of the major players. PGE(2) synthases (PGES) are the enzymes downstream of the cyclooxygenases (COXs) in the PGE(2) biosynthesis pathway. Microsomal prostaglandin E(2) synthase 1 (mPGES-1) is inducible by pro-inflammatory stimuli and constitutively expressed in a variety of cancers. The potential role for this enzyme in tumorigenesis has been reported and mPGES-1 represents a novel therapeutic target for cancers. In order to identify novel small molecule inhibitors of mPGES-1, we screened the ChemBridge library and identified 13 compounds as potential hits. These compounds were tested for their ability to bind directly to the enzyme using surface plasmon resonance spectroscopy and to decrease cytokine-stimulated PGE(2) production in various cancer cell lines. We demonstrate that the compound PGE0001 (ChemBridge ID number 5654455) binds to human mPGES-1 recombinant protein with good affinity (K(D) = 21.3 ± 7.8 μM). PGE0001 reduces IL-1β-induced PGE(2) release in human HCA-7 colon and A549 lung cancer cell lines with EC(50) in the sub-micromolar range. Although PGE0001 may have alternative targets based on the results from in vitro assays, it shows promising effects in vivo. PGE0001 exhibits significant anti-tumor activity in SW837 rectum and A549 lung cancer xenografts in SCID mice. Single injection i.p. of PGE0001 at 100 mg/kg decreases serum PGE(2) levels in mice within 5 h. In summary, our data suggest that the identified compound PGE0001 exerts anti-tumor activity via the inhibition of the PGE(2) synthesis pathway.
Collapse
Affiliation(s)
- Hui-Hua Chang
- Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | |
Collapse
|
46
|
Lu D, Han C, Wu T. Microsomal prostaglandin E synthase-1 promotes hepatocarcinogenesis through activation of a novel EGR1/β-catenin signaling axis. Oncogene 2011; 31:842-57. [PMID: 21743491 PMCID: PMC3193853 DOI: 10.1038/onc.2011.287] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microsomal prostaglandin E synthase-1 (mPGES-1) is a key enzyme that couples with cyclooxygenase-2 (COX-2) for the production of PGE2. Although COX-2 is known to mediate the growth and progression of several human cancers including hepatocellular carcinoma (HCC), the role of mPGES-1 in hepatocarcinogenesis is not well established. This study provides novel evidence for a key role of mPGES-1 in HCC growth and progression. Forced overexpression of mPGES-1 in two HCC cell lines (Hep3B and Huh7) increased tumor cell growth, clonogenic formation, migration and invasion, whereas knockdown of mPGES-1 inhibited these parameters, in vitro. In a SCID mouse tumor xenograft model, mPGES-1 overexpressed cells formed palpable tumors at earlier time points and developed larger tumors when compared to the control (p<0.01); in contrast, mPGES-1 knockdown delayed tumor development and reduced tumor size (p<0.01). Mechanistically, mPGES-1-induced HCC cell proliferation, invasion and migration involve PGE2 production and activation of early growth response 1 (EGR1) and β-catenin. Specifically, mPGES-1-derived PGE2 induces the formation of EGR1-β-catenin complex, which interacts with TCF4/LEF1 transcription factors and activates the expression of β-catenin downstream genes. Our findings depict a novel crosstalk between mPGES-1/PGE2 and EGR1/β-catenin signaling that is critical for hepatocarcinogenesis.
Collapse
Affiliation(s)
- D Lu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
47
|
Nakanishi M, Menoret A, Tanaka T, Miyamoto S, Montrose DC, Vella AT, Rosenberg DW. Selective PGE(2) suppression inhibits colon carcinogenesis and modifies local mucosal immunity. Cancer Prev Res (Phila) 2011; 4:1198-208. [PMID: 21576350 DOI: 10.1158/1940-6207.capr-11-0188] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prostaglandin E(2) (PGE(2)) is a bioactive lipid that mediates a wide range of physiologic effects and plays a central role in inflammation and cancer. PGE(2) is generated from arachidonic acid by the sequential actions of the COX and terminal synthases (PGES). Increased levels of COX-2, with a concomitant elevation of PGE(2), are often found in colorectal cancers (CRC), providing the rationale for the use of COX-2 inhibitors for chemoprevention. Despite their proven efficacy in cancer prevention, however, COX-2 inhibitors exhibit dose-dependent toxicities that are mediated in part by their nonspecific reduction of essential prostanoids, thus limiting their chemopreventive benefit. To achieve enhanced specificity, recent efforts have been directed toward targeting the inducible terminal synthase in the production of PGE(2), microsomal PGES (mPGES-1). In the present study, we show that genetic deletion of mPGES-1 affords significant protection against carcinogen-induced colon cancer. mPGES-1 gene deletion results in an about 80% decrease in tumor multiplicity and up to a 90% reduction in tumor load in the distal colon of azoxymethane (AOM)-treated mice. Associated with the striking cancer suppression, we have identified a critical role for PGE(2) in the control of immunoregulatory cell expansion (FoxP3-positive regulatory T cells) within the colon-draining mesenteric lymph nodes, providing a potential mechanism by which suppression of PGE(2) may protect against CRC. These results provide new insights into how PGE(2) controls antitumor immunity.
Collapse
Affiliation(s)
- Masako Nakanishi
- Center for Molecular Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Li CL, Chang TT, Sun MF, Chen HY, Tsai FJ, Fisher M, Chen CYC, Lee CL, Fang WC, Wong YH. Structure-based and ligand-based drug design for microsomal prostaglandin E synthase-1 inhibitors. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2010.538054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
49
|
Involvement of the constitutive prostaglandin E synthase cPGES/p23 in expression of an initial prostaglandin E2 inactivating enzyme, 15-PGDH. Prostaglandins Other Lipid Mediat 2011; 94:112-7. [PMID: 21334450 DOI: 10.1016/j.prostaglandins.2011.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 01/15/2011] [Accepted: 02/07/2011] [Indexed: 12/21/2022]
Abstract
We previously showed that cytosolic prostaglandin (PG) E synthase (cPGES/p23) which isomerizes PGH(2) to PGE(2), is essential for fetal mouse development. Embryonic fibroblasts derived from cPGES/p23 knockout mice generated higher amounts of PGE(2) in culture supernatants than wild-type-derived cells. In order to elucidate this apparent conflict that absence of PGE(2) synthetic enzyme caused facilitation of PGE(2) biosynthesis, we examined expression of the PGE(2) degrading enzyme in embryonic fibroblasts. We report here that embryonic fibroblasts deficient in cPGES/p23 decreased the expression of the PGE(2) degrading enzyme, 15-hydroxyprostaglandin dehydrogenase (15-PGDH), which catalyzes the inactivating conversion of the PGE(2) 15-OH to a 15-keto group, compared with that of wild-type. In addition, rat fibroblastic 3Y1 cells harboring cPGES/p23 siRNA exhibited lower 15-PGDH expression than mock-transfected cells. Furthermore, forcible expression of cPGES/p23 in 3Y1 cells resulted in facilitation of 15-PGDH promoter activity. These results suggest that the PGE(2)-inactivating pathway is controlled by the PGE(2) biosynthetic enzyme, cPGES/p23.
Collapse
|
50
|
Affiliation(s)
- Makoto MURAKAMI
- Biomembrane Signaling Project, The Tokyo Metropolitan Institute of Medical Science
- Department of Health Chemistry, School of Pharmaceutical Science, Showa University
| |
Collapse
|