1
|
Radisky ES. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. J Biol Chem 2024; 300:107347. [PMID: 38718867 PMCID: PMC11170211 DOI: 10.1016/j.jbc.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
A vast ensemble of extracellular proteins influences the development and progression of cancer, shaped and reshaped by a complex network of extracellular proteases. These proteases, belonging to the distinct classes of metalloproteases, serine proteases, cysteine proteases, and aspartic proteases, play a critical role in cancer. They often become dysregulated in cancer, with increases in pathological protease activity frequently driven by the loss of normal latency controls, diminished regulation by endogenous protease inhibitors, and changes in localization. Dysregulated proteases accelerate tumor progression and metastasis by degrading protein barriers within the extracellular matrix (ECM), stimulating tumor growth, reactivating dormant tumor cells, facilitating tumor cell escape from immune surveillance, and shifting stromal cells toward cancer-promoting behaviors through the precise proteolysis of specific substrates to alter their functions. These crucial substrates include ECM proteins and proteoglycans, soluble proteins secreted by tumor and stromal cells, and extracellular domains of cell surface proteins, including membrane receptors and adhesion proteins. The complexity of the extracellular protease web presents a significant challenge to untangle. Nevertheless, technological strides in proteomics, chemical biology, and the development of new probes and reagents are enabling progress and advancing our understanding of the pivotal importance of extracellular proteolysis in cancer.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA.
| |
Collapse
|
2
|
Jones VT, Graves-Deal R, Cao Z, Bogatcheva G, Ramirez MA, Harmych SJ, Higginbotham JN, Sharma V, Damalanka VC, Wahoski CC, Joshi N, Irudayam MJ, Roland JT, Ayers GD, Liu Q, Coffey RJ, Janetka JW, Singh B. Inhibition of autocrine HGF maturation overcomes cetuximab resistance in colorectal cancer. Cell Mol Life Sci 2024; 81:28. [PMID: 38212428 PMCID: PMC10784391 DOI: 10.1007/s00018-023-05071-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Although amplifications and mutations in receptor tyrosine kinases (RTKs) act as bona fide oncogenes, in most cancers, RTKs maintain moderate expression and remain wild-type. Consequently, cognate ligands control many facets of tumorigenesis, including resistance to anti-RTK therapies. Herein, we show that the ligands for the RTKs MET and RON, HGF and HGFL, respectively, are synthesized as inactive precursors that are activated by cellular proteases. Our newly generated HGF/HGFL protease inhibitors could overcome both de novo and acquired cetuximab resistance in colorectal cancer (CRC). Conversely, HGF overexpression was necessary and sufficient to induce cetuximab resistance and loss of polarity. Moreover, HGF-induced cetuximab resistance could be overcome by the downstream MET inhibitor, crizotinib, and upstream protease inhibitors. Additionally, HAI-1, an endogenous inhibitor of HGF proteases, (i) was downregulated in CRC, (ii) exhibited increased genomic methylation that correlated with poor prognosis, (iii) HAI-1 expression correlated with cetuximab response in a panel of cancer cell lines, and (iv) exogenous addition of recombinant HAI-1 overcame cetuximab resistance in CC-HGF cells. Thus, we describe a targetable, autocrine HAI-1/Protease/HGF/MET axis in cetuximab resistance in CRC.
Collapse
Affiliation(s)
- Vivian Truong Jones
- Department of Medicine, Vanderbilt University Medical Center, 10465J, MRB IV, 2213 Garland Avenue, Nashville, TN, 37232-0441, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ramona Graves-Deal
- Department of Medicine, Vanderbilt University Medical Center, 10465J, MRB IV, 2213 Garland Avenue, Nashville, TN, 37232-0441, USA
| | - Zheng Cao
- Department of Medicine, Vanderbilt University Medical Center, 10465J, MRB IV, 2213 Garland Avenue, Nashville, TN, 37232-0441, USA
| | - Galina Bogatcheva
- Department of Medicine, Vanderbilt University Medical Center, 10465J, MRB IV, 2213 Garland Avenue, Nashville, TN, 37232-0441, USA
| | - Marisol A Ramirez
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sarah J Harmych
- Department of Medicine, Vanderbilt University Medical Center, 10465J, MRB IV, 2213 Garland Avenue, Nashville, TN, 37232-0441, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - James N Higginbotham
- Department of Medicine, Vanderbilt University Medical Center, 10465J, MRB IV, 2213 Garland Avenue, Nashville, TN, 37232-0441, USA
| | - Vineeta Sharma
- Department of Medicine, Vanderbilt University Medical Center, 10465J, MRB IV, 2213 Garland Avenue, Nashville, TN, 37232-0441, USA
| | - Vishnu C Damalanka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Claudia C Wahoski
- Department of Medicine, Vanderbilt University Medical Center, 10465J, MRB IV, 2213 Garland Avenue, Nashville, TN, 37232-0441, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Neeraj Joshi
- Department of Medicine, Vanderbilt University Medical Center, 10465J, MRB IV, 2213 Garland Avenue, Nashville, TN, 37232-0441, USA
| | - Maria Johnson Irudayam
- Department of Medicine, Vanderbilt University Medical Center, 10465J, MRB IV, 2213 Garland Avenue, Nashville, TN, 37232-0441, USA
| | - Joseph T Roland
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Gregory D Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, 10465J, MRB IV, 2213 Garland Avenue, Nashville, TN, 37232-0441, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, 10465J, MRB IV, 2213 Garland Avenue, Nashville, TN, 37232-0441, USA.
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
3
|
Koistinen H, Kovanen RM, Hollenberg MD, Dufour A, Radisky ES, Stenman UH, Batra J, Clements J, Hooper JD, Diamandis E, Schilling O, Rannikko A, Mirtti T. The roles of proteases in prostate cancer. IUBMB Life 2023; 75:493-513. [PMID: 36598826 PMCID: PMC10159896 DOI: 10.1002/iub.2700] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/22/2022] [Indexed: 01/05/2023]
Abstract
Since the proposition of the pro-invasive activity of proteolytic enzymes over 70 years ago, several roles for proteases in cancer progression have been established. About half of the 473 active human proteases are expressed in the prostate and many of the most well-characterized members of this enzyme family are regulated by androgens, hormones essential for development of prostate cancer. Most notably, several kallikrein-related peptidases, including KLK3 (prostate-specific antigen, PSA), the most well-known prostate cancer marker, and type II transmembrane serine proteases, such as TMPRSS2 and matriptase, have been extensively studied and found to promote prostate cancer progression. Recent findings also suggest a critical role for proteases in the development of advanced and aggressive castration-resistant prostate cancer (CRPC). Perhaps the most intriguing evidence for this role comes from studies showing that the protease-activated transmembrane proteins, Notch and CDCP1, are associated with the development of CRPC. Here, we review the roles of proteases in prostate cancer, with a special focus on their regulation by androgens.
Collapse
Affiliation(s)
- Hannu Koistinen
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Ruusu-Maaria Kovanen
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Pathology, HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Antoine Dufour
- Department of Physiology & Pharmacology and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, U.S.A
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - John D. Hooper
- Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Eleftherios Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antti Rannikko
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Mirtti
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Pathology, HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
4
|
Fabian O, Bajer L, Drastich P, Harant K, Sticova E, Daskova N, Modos I, Tichanek F, Cahova M. A Current State of Proteomics in Adult and Pediatric Inflammatory Bowel Diseases: A Systematic Search and Review. Int J Mol Sci 2023; 24:ijms24119386. [PMID: 37298338 DOI: 10.3390/ijms24119386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are systemic immune-mediated conditions with predilection for the gastrointestinal tract and include Crohn's disease and ulcerative colitis. Despite the advances in the fields of basic and applied research, the etiopathogenesis remains largely unknown. As a result, only one third of the patients achieve endoscopic remission. A substantial portion of the patients also develop severe clinical complications or neoplasia. The need for novel biomarkers that can enhance diagnostic accuracy, more precisely reflect disease activity, and predict a complicated disease course, thus, remains high. Genomic and transcriptomic studies contributed substantially to our understanding of the immunopathological pathways involved in disease initiation and progression. However, eventual genomic alterations do not necessarily translate into the final clinical picture. Proteomics may represent a missing link between the genome, transcriptome, and phenotypical presentation of the disease. Based on the analysis of a large spectrum of proteins in tissues, it seems to be a promising method for the identification of new biomarkers. This systematic search and review summarize the current state of proteomics in human IBD. It comments on the utility of proteomics in research, describes the basic proteomic techniques, and provides an up-to-date overview of available studies in both adult and pediatric IBD.
Collapse
Affiliation(s)
- Ondrej Fabian
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Department of Pathology and Molecular Medicine, 3rd Faculty of Medicine, Charles University and Thomayer Hospital, 140 59 Prague, Czech Republic
| | - Lukas Bajer
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Institute of Microbiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Pavel Drastich
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Eva Sticova
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Department of Pathology, Royal Vinohrady Teaching Hospital, Srobarova 1150/50, 100 00 Prague, Czech Republic
| | - Nikola Daskova
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Istvan Modos
- Department of Informatics, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Filip Tichanek
- Department of Informatics, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Monika Cahova
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| |
Collapse
|
5
|
GEINDREAU M, BRUCHARD M, VEGRAN F. Role of Cytokines and Chemokines in Angiogenesis in a Tumor Context. Cancers (Basel) 2022; 14:cancers14102446. [PMID: 35626056 PMCID: PMC9139472 DOI: 10.3390/cancers14102446] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Tumor growth in solid cancers requires adequate nutrient and oxygen supply, provided by blood vessels created by angiogenesis. Numerous studies have demonstrated that this mechanism plays a crucial role in cancer development and appears to be a well-defined hallmark of cancer. This process is carefully regulated, notably by cytokines with pro-angiogenic or anti-angiogenic features. In this review, we will discuss the role of cytokines in the modulation of angiogenesis. In addition, we will summarize the therapeutic approaches based on cytokine modulation and their clinical approval. Abstract During carcinogenesis, tumors set various mechanisms to help support their development. Angiogenesis is a crucial process for cancer development as it drives the creation of blood vessels within the tumor. These newly formed blood vessels insure the supply of oxygen and nutrients to the tumor, helping its growth. The main factors that regulate angiogenesis are the five members of the vascular endothelial growth factor (VEGF) family. Angiogenesis is a hallmark of cancer and has been the target of new therapies this past few years. However, angiogenesis is a complex phenomenon with many redundancy pathways that ensure its maintenance. In this review, we will first describe the consecutive steps forming angiogenesis, as well as its classical regulators. We will then discuss how the cytokines and chemokines present in the tumor microenvironment can induce or block angiogenesis. Finally, we will focus on the therapeutic arsenal targeting angiogenesis in cancer and the challenges they have to overcome.
Collapse
Affiliation(s)
- Mannon GEINDREAU
- Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.G.); (M.B.)
- CRI INSERM UMR1231 ‘Lipids, Nutrition and Cancer’ Team CAdiR, 21000 Dijon, France
| | - Mélanie BRUCHARD
- Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.G.); (M.B.)
- CRI INSERM UMR1231 ‘Lipids, Nutrition and Cancer’ Team CAdiR, 21000 Dijon, France
- Centre Georges-François Leclerc, UNICANCER, 21000 Dijon, France
- LipSTIC Labex, 21000 Dijon, France
| | - Frédérique VEGRAN
- Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.G.); (M.B.)
- CRI INSERM UMR1231 ‘Lipids, Nutrition and Cancer’ Team CAdiR, 21000 Dijon, France
- Centre Georges-François Leclerc, UNICANCER, 21000 Dijon, France
- LipSTIC Labex, 21000 Dijon, France
- Correspondence:
| |
Collapse
|
6
|
Lu L, Cole A, Huang D, Wang Q, Guo Z, Yang W, Lu J. Clinical Significance of Hepsin and Underlying Signaling Pathways in Prostate Cancer. Biomolecules 2022; 12:biom12020203. [PMID: 35204704 PMCID: PMC8961580 DOI: 10.3390/biom12020203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 02/04/2023] Open
Abstract
The hepsin gene encodes a type II transmembrane serine protease. Previous studies have shown the overexpression of hepsin in prostate cancer, and the dysregulation of hepsin promotes cancer cell proliferation, migration, and metastasis in vitro and in vivo. The review incorporated with our work showed that hepsin expression levels were specifically increased in prostate cancer, and higher expression in metastatic tumors than in primary tumors was also observed. Moreover, increased expression was associated with poor outcomes for patients with prostate cancer. Using in silico protein–protein interaction prediction, mechanistic analysis showed that hepsin interacted with eight other oncogenic proteins, whose expression was significantly correlated with hepsin expression in prostate cancer. The oncogenic functions of hepsin are mainly linked to proteolytic activities that disrupt epithelial integrity and regulatorily interact with other genes to influence cell-proliferation, EMT/metastasis, inflammatory, and tyrosine-kinase-signaling pathways. Moreover, genomic amplifications of hepsin, not deletions or other alterations, were significantly associated with prostate cancer metastasis. Targeting hepsin using a specific inhibitor or antibodies significantly attenuates its oncogenic behaviors. Therefore, hepsin could be a novel biomarker and therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Lucy Lu
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
| | - Adam Cole
- TruCore Pathology, Little Rock, AR 72204, USA;
| | - Dan Huang
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
| | - Qiang Wang
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
| | - Zhongming Guo
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
| | - Wancai Yang
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence: (W.Y.); (J.L.)
| | - Jim Lu
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
- Correspondence: (W.Y.); (J.L.)
| |
Collapse
|
7
|
Tanaka R, Terai M, Londin E, Sato T. The Role of HGF/MET Signaling in Metastatic Uveal Melanoma. Cancers (Basel) 2021; 13:cancers13215457. [PMID: 34771620 PMCID: PMC8582360 DOI: 10.3390/cancers13215457] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (MET) signaling plays an important role in the metastatic formation and therapeutic resistance to uveal melanoma. Here, we review the various functions of MET signaling contributing to metastatic formation, as well as review resistance to treatments in metastatic uveal melanoma. Abstract Hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (MET) signaling promotes tumorigenesis and tumor progression in various types of cancer, including uveal melanoma (UM). The roles of HGF/MET signaling have been studied in cell survival, proliferation, cell motility, and migration. Furthermore, HGF/MET signaling has emerged as a critical player not only in the tumor itself but also in the tumor microenvironment. Expression of MET is frequently observed in metastatic uveal melanoma and is associated with poor prognosis. It has been reported that HGF/MET signaling pathway activation is the major mechanism of treatment resistance in metastatic UM (MUM). To achieve maximal therapeutic benefit in MUM patients, it is important to understand how MET signaling drives cellular functions in uveal melanoma cells. Here, we review the HGF/MET signaling biology and the role of HGF/MET blockades in uveal melanoma.
Collapse
Affiliation(s)
- Ryota Tanaka
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (R.T.); (T.S.)
| | - Mizue Terai
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (R.T.); (T.S.)
- Correspondence: ; Tel.: +1-215-955-4780
| | - Eric Londin
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Takami Sato
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (R.T.); (T.S.)
| |
Collapse
|
8
|
Khater AR, Abou-Antoun T. Mesenchymal Epithelial Transition Factor Signaling in Pediatric Nervous System Tumors: Implications for Malignancy and Cancer Stem Cell Enrichment. Front Cell Dev Biol 2021; 9:654103. [PMID: 34055785 PMCID: PMC8155369 DOI: 10.3389/fcell.2021.654103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Malignant nervous system cancers in children are the most devastating and worrisome diseases, specifically due to their aggressive nature and, in some cases, inoperable location in critical regions of the brain and spinal cord, and the impermeable blood-brain barrier that hinders delivery of pharmaco-therapeutic compounds into the tumor site. Moreover, the delicate developmental processes of the nervous system throughout the childhood years adds another limitation to the therapeutic modalities and doses used to treat these malignant cancers. Therefore, pediatric oncologists are charged with the daunting responsibility of attempting to deliver effective cures to these children, yet with limited doses of the currently available therapeutic options in order to mitigate the imminent neurotoxicity of radio- and chemotherapy on the developing nervous system. Various studies reported that c-Met/HGF signaling is affiliated with increased malignancy and stem cell enrichment in various cancers such as high-grade gliomas, high-risk medulloblastomas, and MYCN-amplified, high-risk neuroblastomas. Therapeutic interventions that are utilized to target c-Met signaling in these malignant nervous system cancers have shown benefits in basic translational studies and preclinical trials, but failed to yield significant clinical benefits in patients. While numerous pre-clinical data reported promising results with the use of combinatorial therapy that targets c-Met with other tumorigenic pathways, therapeutic resistance remains a problem, and long-term cures are rare. The possible mechanisms, including the overexpression and activation of compensatory tumorigenic mechanisms within the tumors or ineffective drug delivery methods that may contribute to therapeutic resistance observed in clinical trials are elaborated in this review.
Collapse
Affiliation(s)
- Amanda Rose Khater
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Tamara Abou-Antoun
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
9
|
The ectodomain of matriptase-2 plays an important nonproteolytic role in suppressing hepcidin expression in mice. Blood 2021; 136:989-1001. [PMID: 32384154 DOI: 10.1182/blood.2020005222] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/19/2020] [Indexed: 01/22/2023] Open
Abstract
Matriptase-2 (MT2), encoded by TMPRSS6, is a membrane-anchored serine protease that plays a key role in suppressing hepatic hepcidin expression. MT2 is synthesized as a zymogen and undergoes autocleavage for activation. Previous studies suggest that MT2 suppresses hepcidin by cleaving hemojuvelin and other components of the bone morphogenetic protein-signaling pathway. However, the underlying mechanism is still debatable. Here we dissected the contributions of the nonproteolytic and proteolytic activities of Mt2 by taking advantage of Mt2 mutants and Tmprss6-/- mice. Studies of the protease-dead full-length Mt2 (Mt2S762A) and the truncated Mt2 that lacks the catalytic domain (Mt2mask) indicate that the catalytic domain, but not its proteolytic activity, was required for Mt2 to suppress hepcidin expression. This process was likely accomplished by the binding of Mt2 ectodomain to Hjv and Hfe. We found that Mt2 specifically cleaved the key components of the hepcidin-induction pathway, including Hjv, Alk3, ActRIIA, and Hfe, when overexpressed in hepatoma cells. Nevertheless, studies of a murine iron-refractory iron-deficiency anemia-causing mutant (Mt2I286F) in the complement protein subcomponents C1r/C1s, urchin embryonic growth factor, and bone morphogenetic protein 1 domain indicate that Mt2I286F can be activated, but it exhibited a largely compromised ability to suppress hepcidin expression. Coimmunoprecipitation analysis revealed that Mt2I286F, but not Mt2S762A, had reduced interactions with Hjv, ActRIIA, and Hfe. In addition, increased expression of a serine protease inhibitor, the hepatocyte growth factor activator inhibitor-2, in the liver failed to alter hepcidin. Together, these observations support the idea that the substrate interaction with Mt2 plays a determinant role and suggest that the proteolytic activity is not an appropriate target to modulate the function of MT2 for clinical applications.
Collapse
|
10
|
Shmakova AA, Balatskiy AV, Kulebyakina MA, Schaub T, Karagyaur MN, Kulebyakin KY, Rysenkova KD, Tarabykin VS, Tkachuk VA, Semina EV. Urokinase Receptor uPAR Overexpression in Mouse Brain Stimulates the Migration of Neurons into the Cortex during Embryogenesis. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421010069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Fuentes-Prior P. Priming of SARS-CoV-2 S protein by several membrane-bound serine proteinases could explain enhanced viral infectivity and systemic COVID-19 infection. J Biol Chem 2020; 296:100135. [PMID: 33268377 PMCID: PMC7834812 DOI: 10.1074/jbc.rev120.015980] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
The ongoing COVID-19 pandemic has already caused over a million deaths worldwide, and this death toll will be much higher before effective treatments and vaccines are available. The causative agent of the disease, the coronavirus SARS-CoV-2, shows important similarities with the previously emerged SARS-CoV-1, but also striking differences. First, SARS-CoV-2 possesses a significantly higher transmission rate and infectivity than SARS-CoV-1 and has infected in a few months over 60 million people. Moreover, COVID-19 has a systemic character, as in addition to the lungs, it also affects the heart, liver, and kidneys among other organs of the patients and causes frequent thrombotic and neurological complications. In fact, the term "viral sepsis" has been recently coined to describe the clinical observations. Here I review current structure-function information on the viral spike proteins and the membrane fusion process to provide plausible explanations for these observations. I hypothesize that several membrane-associated serine proteinases (MASPs), in synergy with or in place of TMPRSS2, contribute to activate the SARS-CoV-2 spike protein. Relative concentrations of the attachment receptor, ACE2, MASPs, their endogenous inhibitors (the Kunitz-type transmembrane inhibitors, HAI-1/SPINT1 and HAI-2/SPINT2, as well as major circulating serpins) would determine the infection rate of host cells. The exclusive or predominant expression of major MASPs in specific human organs suggests a direct role of these proteinases in e.g., heart infection and myocardial injury, liver dysfunction, kidney damage, as well as neurological complications. Thorough consideration of these factors could have a positive impact on the control of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Pablo Fuentes-Prior
- Molecular Bases of Disease, Biomedical Research Institute (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| |
Collapse
|
12
|
Kwon H, Ha H, Jeon H, Jang J, Son SH, Lee K, Park SK, Byun Y. Structure-activity relationship studies of dipeptide-based hepsin inhibitors with Arg bioisosteres. Bioorg Chem 2020; 107:104521. [PMID: 33334587 DOI: 10.1016/j.bioorg.2020.104521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/09/2023]
Abstract
Hepsin is a type II transmembrane serine protease (TTSP) associated with cell proliferation and overexpressed in several types of cancer including prostate cancer (PCa). Because of its significant role in cancer progression and metastasis, hepsin is an attractive protein as a potential therapeutic and diagnostic biomarker for PCa. Based on the reported Leu-Arg dipeptide-based hepsin inhibitors, we performed structural modification and determined in vitro hepsin- and matriptase-inhibitory activities. Comprehensive structure-activity relationship studies identified that the p-guanidinophenylalanine-based dipeptide analog 22a exhibited a strong hepsin-inhibitory activity (Ki = 50.5 nM) and 22-fold hepsin selectivity over matriptase. Compound 22a could be a prototype molecule for structural optimization of dipeptide-based hepsin inhibitors.
Collapse
Affiliation(s)
- Hongmok Kwon
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Hyunsoo Ha
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Hayoung Jeon
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Jaebong Jang
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Sang-Hyun Son
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Kiho Lee
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Song-Kyu Park
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea; Biomedical Research Center, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea.
| |
Collapse
|
13
|
Inhibition of an active zymogen protease: the zymogen form of matriptase is regulated by HAI-1 and HAI-2. Biochem J 2020; 477:1779-1794. [PMID: 32338287 DOI: 10.1042/bcj20200182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 11/17/2022]
Abstract
The membrane-bound serine protease matriptase belongs to a rare subset of serine proteases that display significant activity in the zymogen form. Matriptase is critically involved in epithelial differentiation and homeostasis, and insufficient regulation of its proteolytic activity directly causes onset and development of malignant cancer. There is strong evidence that the zymogen activity of matriptase is sufficient for its biological function(s). Activated matriptase is inhibited by the two Kunitz-type inhibitor domain-containing hepatocyte growth factor activator inhibitors 1 (HAI-1) and HAI-2, however, it remains unknown whether the activity of the matriptase zymogen is regulated. Using both purified proteins and a cell-based assay, we show that the catalytic activity of the matriptase zymogen towards a peptide-based substrate as well as the natural protein substrates, pro-HGF and pro-prostasin, can be inhibited by HAI-1 and HAI-2. Inhibition of zymogen matriptase by HAI-1 and HAI-2 appears similar to inhibition of activated matriptase and occurs at comparable inhibitor concentrations. This indicates that HAI-1 and HAI-2 interact with the active sites of zymogen and activated matriptase in a similar manner. Our results suggest that HAI-1 and HAI-2 regulate matriptase zymogen activity and thus may act as regulators of matriptase trans(auto)-activation. Due to the main localisation of HAI-2 in the ER and HAI-1 in the secretory pathway and on the cell surface, this regulation likely occurs both in the secretory pathway and on the plasma membrane. Regulation of an active zymogen form of a protease is a novel finding.
Collapse
|
14
|
Mukai S, Yamasaki K, Fujii M, Nagai T, Terada N, Kataoka H, Kamoto T. Dysregulation of Type II Transmembrane Serine Proteases and Ligand-Dependent Activation of MET in Urological Cancers. Int J Mol Sci 2020; 21:ijms21082663. [PMID: 32290402 PMCID: PMC7215454 DOI: 10.3390/ijms21082663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 01/09/2023] Open
Abstract
Unlike in normal epithelium, dysregulated overactivation of various proteases have been reported in cancers. Degradation of pericancerous extracellular matrix leading to cancer cell invasion by matrix metalloproteases is well known evidence. On the other hand, several cell-surface proteases, including type II transmembrane serine proteases (TTSPs), also induce progression through activation of growth factors, protease activating receptors and other proteases. Hepatocyte growth factor (HGF) known as a multifunctional growth factor that upregulates cancer cell motility, invasiveness, proliferative, and anti-apoptotic activities through phosphorylation of MET (a specific receptor of HGF). HGF secreted as inactive zymogen (pro-HGF) from cancer associated stromal fibroblasts, and the proteolytic activation by several TTSPs including matriptase and hepsin is required. The activation is strictly regulated by HGF activator inhibitors (HAIs) in physiological condition. However, downregulation is frequently observed in cancers. Indeed, overactivation of MET by upregulation of matriptase and hepsin accompanied by the downregulation of HAIs in urological cancers (prostate cancer, renal cell carcinoma, and bladder cancer) are also reported, a phenomenon observed in cancer cells with malignant phenotype, and correlated with poor prognosis. In this review, we summarized current reports focusing on TTSPs, HAIs, and MET signaling axis in urological cancers.
Collapse
Affiliation(s)
- Shoichiro Mukai
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (K.Y.); (M.F.); (T.N.); (N.T.); (T.K.)
- Correspondence: ; Tel.: +81-985-85-2968
| | - Koji Yamasaki
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (K.Y.); (M.F.); (T.N.); (N.T.); (T.K.)
| | - Masato Fujii
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (K.Y.); (M.F.); (T.N.); (N.T.); (T.K.)
| | - Takahiro Nagai
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (K.Y.); (M.F.); (T.N.); (N.T.); (T.K.)
| | - Naoki Terada
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (K.Y.); (M.F.); (T.N.); (N.T.); (T.K.)
| | - Hiroaki Kataoka
- Oncopathology and Regenerative Biology Section, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan;
| | - Toshiyuki Kamoto
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (K.Y.); (M.F.); (T.N.); (N.T.); (T.K.)
| |
Collapse
|
15
|
Abstract
Over the last two decades, a novel subgroup of serine proteases, the cell surface-anchored serine proteases, has emerged as an important component of the human degradome, and several members have garnered significant attention for their roles in cancer progression and metastasis. A large body of literature describes that cell surface-anchored serine proteases are deregulated in cancer and that they contribute to both tumor formation and metastasis through diverse molecular mechanisms. The loss of precise regulation of cell surface-anchored serine protease expression and/or catalytic activity may be contributing to the etiology of several cancer types. There is therefore a strong impetus to understand the events that lead to deregulation at the gene and protein levels, how these precipitate in various stages of tumorigenesis, and whether targeting of selected proteases can lead to novel cancer intervention strategies. This review summarizes current knowledge about cell surface-anchored serine proteases and their role in cancer based on biochemical characterization, cell culture-based studies, expression studies, and in vivo experiments. Efforts to develop inhibitors to target cell surface-anchored serine proteases in cancer therapy will also be summarized.
Collapse
|
16
|
Excess hepsin proteolytic activity limits oncogenic signaling and induces ER stress and autophagy in prostate cancer cells. Cell Death Dis 2019; 10:601. [PMID: 31399560 PMCID: PMC6689070 DOI: 10.1038/s41419-019-1830-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/05/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
Abstract
The serine protease hepsin is frequently overexpressed in human prostate cancer (PCa) and is associated with matrix degradation and PCa progression in mice. Curiously, low expression of hepsin is associated with poor survival in different cancer types, and transgenic overexpression of hepsin leads to loss of viability in various cancer cell lines. Here, by comparing isogenic transfectants of the PCa cell line PC-3 providing inducible overexpression of wild-type hepsin (HPN) vs. the protease-deficient mutant HPNS353A, we were able to attribute hepsin-mediated tumor-adverse effects to its excess proteolytic activity. A stem-like expression signature of surface markers and adhesion molecules, Notch intracellular domain release, and increased pericellular protease activity were associated with low expression levels of wild-type hepsin, but were partially lost in response to overexpression. Instead, overexpression of wild-type hepsin, but not of HPNS353A, induced relocalization of the protein to the cytoplasm, and increased autophagic flux in vitro as well as LC3B punctae frequency in tumor xenografts. Confocal microscopy revealed colocalization of wild-type hepsin with both LC3B punctae as well as with the autophagy cargo receptor p62/SQSTM1. Overexpression of wild type, but not protease-deficient hepsin induced expression and nuclear presence of CHOP, indicating activation of the unfolded protein response and ER-associated protein degradation (ERAD). Whereas inhibitors of ER stress and secretory protein trafficking slightly increased viability, combined inhibition of the ubiquitin-proteasome degradation pathway (by bortezomib) with either ER stress (by salubrinal) or autophagy (by bafilomycin A1) revealed a significant decrease of viability during overexpression of wild-type hepsin in PC-3 cells. Our results demonstrate that a precise control of Hepsin proteolytic activity is critical for PCa cell fate and suggest, that the interference with ERAD could be a promising therapeutic option, leading to induction of proteotoxicity in hepsin-overexpressing tumors.
Collapse
|
17
|
Damalanka VC, Wildman SA, Janetka JW. Piperidine carbamate peptidomimetic inhibitors of the serine proteases HGFA, matriptase and hepsin. MEDCHEMCOMM 2019; 10:1646-1655. [PMID: 31803403 DOI: 10.1039/c9md00234k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022]
Abstract
Matriptase and hepsin are type II transmembrane serine proteases (TTSPs). Along with related S1 trypsin like serine protease HGFA (hepatocyte growth factor activator), their unregulated proteolytic activity has been associated with cancer including tumor progression and metastasis. These three proteases have two substrates in common, hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP), the ligands for MET and recepteur d'origine nantais (RON) receptor tyrosine kinases. Mechanism-based tetrapeptide and benzamidine inhibitors of these proteases have been shown to block HGF/MET and MSP/RON cancer cell signaling. Herein, we have rationally designed a new class of peptidomimetic hybrid small molecule piperidine carbamate dipeptide inhibitors comparable in potency to much larger tetrapeptides. We have identified multiple compounds which have potent activity against matriptase and hepsin and with excellent selectivity over the off-target serine proteases factor Xa and thrombin.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , St. Louis , Missouri , USA . ; Tel: +314 362 0509
| | - Scott A Wildman
- University of Wisconsin Carbone Cancer Center , Drug Development Core , University of Wisconsin-Madison , Madison , Wisconsin , USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , St. Louis , Missouri , USA . ; Tel: +314 362 0509
| |
Collapse
|
18
|
Damalanka VC, Han Z, Karmakar P, O’Donoghue AJ, La Greca F, Kim T, Pant SM, Helander J, Klefström J, Craik CS, Janetka JW. Discovery of Selective Matriptase and Hepsin Serine Protease Inhibitors: Useful Chemical Tools for Cancer Cell Biology. J Med Chem 2018; 62:480-490. [DOI: 10.1021/acs.jmedchem.8b01536] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vishnu C. Damalanka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Zhenfu Han
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Partha Karmakar
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, 92093, United States
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94158, United States
| | - Florencia La Greca
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94158, United States
| | - Tommy Kim
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Shishir M. Pant
- Cancer Cell Circuitry Laboratory, Research Programs Unit/Translational Cancer Biology & Medicum, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Jonathan Helander
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Juha Klefström
- Cancer Cell Circuitry Laboratory, Research Programs Unit/Translational Cancer Biology & Medicum, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94158, United States
| | - James W. Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| |
Collapse
|
19
|
Mahdi A, Darvishi B, Majidzadeh-A K, Salehi M, Farahmand L. Challenges facing antiangiogenesis therapy: The significant role of hypoxia-inducible factor and MET in development of resistance to anti-vascular endothelial growth factor-targeted therapies. J Cell Physiol 2018; 234:5655-5663. [PMID: 30515806 DOI: 10.1002/jcp.27414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023]
Abstract
It is now fully recognized that along with multiple physiological functions, angiogenesis is also involved in the fundamental process and pathobiology of several disorders including cancer. Recent studies have fully established the role of angiogenesis in cancer progression as well as invasion and metastasis. Consequently, many therapeutic agents such as monoclonal antibodies targeting angiogenesis pathway have been introduced in clinic with the hope for improving the outcomes of cancer therapy. Bevacizumab (Avastin®) was the first anti-vascular endothelial growth factor (VEGF) targeting monoclonal antibody developed with this purpose and soon received its accelerated US Food and Drug Administration (FDA) approval for treatment of patients with metastatic breast cancer in 2008. However, the failure to meet expecting results in different follow-up studies, forced FDA to remove bevacizumab approval for metastatic breast cancer. Investigations have now revealed that while suppressing VEGF pathway initially decreases tumor progression rate and vasculature density, activation of several interrelated pathways and signaling molecules following VEGF blockade compensate the insufficiency of VEGF and initially blocked angiogenesis, explaining in part the failure observed with bevacizumab single therapy. In present review, we introduce some of the main pathways and signaling molecules involved in angiogenesis and then propose how their interconnection may result in development of resistance to bevacizumab.
Collapse
Affiliation(s)
- Ali Mahdi
- Department of Recombinant Proteins, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Behrad Darvishi
- Department of Recombinant Proteins, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Department of Recombinant Proteins, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.,Tasnim Biotechnology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Malihe Salehi
- Department of Recombinant Proteins, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Department of Recombinant Proteins, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
20
|
Hepatocyte Growth Factor Activator: A Proteinase Linking Tissue Injury with Repair. Int J Mol Sci 2018; 19:ijms19113435. [PMID: 30388869 PMCID: PMC6275078 DOI: 10.3390/ijms19113435] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 01/16/2023] Open
Abstract
Hepatocyte growth factor (HGF) promotes pleiotropic signaling through its specific receptor tyrosine kinase, MET. As such, it has important roles in the regeneration of injured tissues. Since HGF is produced mainly by mesenchymal cells and MET is expressed in most epithelial, endothelial and somatic stem cells, HGF functions as a typical paracrine growth factor. HGF is secreted as an inactive precursor (proHGF) and requires proteolytic activation to initiate HGF-induced MET signaling. HGF activator (HGFAC) is a serum activator of proHGF and produces robust HGF activities in injured tissues. HGFAC is a coagulation factor XII-like serine endopeptidase that circulates in the plasma as a zymogen (proHGFAC). Thrombin, kallikrein-related peptidase (KLK)-4 or KLK-5 efficiently activates proHGFAC. The activated HGFAC cleaves proHGF at Arg494-Val495, resulting in the formation of the active disulfide-linked heterodimer HGF. Macrophage stimulating protein, a ligand of RON, is also activated by HGFAC in vivo. Although HGFAC functions primarily at the site of damaged tissue, a recent report has suggested that activated HGFAC relays a signal to stem cells in non-injured tissues via proHGF activation in the stem cell niche. This review focuses on current knowledge regarding HGFAC-mediated proHGF activation and its roles in tissue regeneration and repair.
Collapse
|
21
|
Serine peptidase inhibitor Kunitz type 2 (SPINT2) in cancer development and progression. Biomed Pharmacother 2018; 101:278-286. [PMID: 29499401 DOI: 10.1016/j.biopha.2018.02.100] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 02/07/2023] Open
Abstract
Understanding the molecular basis and mechanisms involved in neoplastic transformation and progression is important for the development of novel selective target therapeutic strategies. Hepatocyte growth factor (HGF)/c-MET signaling plays an important role in cell proliferation, survival, migration and motility of cancer cells. Serine peptidase inhibitor Kunitz type 2 (SPINT2) binds to and inactivates the HGF activator (HGFA), behaving as an HGFA inhibitor (HAI) and impairing the conversion of pro-HGF into bioactive HGF. The scope of the present review is to recapitulate and review the evidence of SPINT2 participation in cancer development and progression, exploring the clinical, biological and functional descriptions of the involvement of this protein in diverse neoplasias. Most studies are in agreement as to the belief that, in a large range of human cancers, the SPINT2 gene promoter is frequently methylated, resulting in the epigenetic silence of this gene. Functional assays indicate that SPINT2 reactivation ameliorates the malignant phenotype, specifically reducing cell viability, migration and invasion in diverse cancer cell lines. In sum, the SPINT2 gene is epigenetically silenced or downregulated in human cancers, altering the balance of HGF activation/inhibition ratio, which contributes to cancer development and progression.
Collapse
|
22
|
Matriptase regulates c-Met mediated proliferation and invasion in inflammatory breast cancer. Oncotarget 2018; 7:58162-58173. [PMID: 27528224 PMCID: PMC5295421 DOI: 10.18632/oncotarget.11262] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/29/2016] [Indexed: 11/25/2022] Open
Abstract
The poor prognosis for patients with inflammatory breast cancer (IBC) compared to patients with other types of breast cancers emphasizes the need to better understand the molecular underpinnings of this disease with the goal of developing effective targeted therapeutics. Dysregulation of matriptase expression, an epithelial-specific member of the type II transmembrane serine protease family, has been demonstrated in many different cancer types. To date, no studies have assessed the expression and potential pro-oncogenic role of matriptase in IBC. We examined the functional relationship between matriptase and the HGF/c-MET signaling pathway in the IBC cell lines SUM149 and SUM190, and in IBC patient samples. Matriptase and c-Met proteins are localized on the surface membrane of IBC cells and their expression is strongly correlated in infiltrating cancer cells and in the cancer cells of lymphatic emboli in patient samples. Abrogation of matriptase expression by silencing with RNAi or inhibition of matriptase proteolytic activity with a synthetic inhibitor impairs the conversion of inactive pro-HGF to active HGF and subsequent c-Met-mediated signaling, leading to efficient impairment of proliferation and invasion of IBC cells. These data show the potential of matriptase inhibitors as a novel targeted therapy for IBC, and lay the groundwork for the development and testing of such drugs.
Collapse
|
23
|
Kataoka H, Kawaguchi M, Fukushima T, Shimomura T. Hepatocyte growth factor activator inhibitors (HAI-1 and HAI-2): Emerging key players in epithelial integrity and cancer. Pathol Int 2018; 68:145-158. [PMID: 29431273 DOI: 10.1111/pin.12647] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
Abstract
The growth, survival, and metabolic activities of multicellular organisms at the cellular level are regulated by intracellular signaling, systemic homeostasis and the pericellular microenvironment. Pericellular proteolysis has a crucial role in processing bioactive molecules in the microenvironment and thereby has profound effects on cellular functions. Hepatocyte growth factor activator inhibitor type 1 (HAI-1) and HAI-2 are type I transmembrane serine protease inhibitors expressed by most epithelial cells. They regulate the pericellular activities of circulating hepatocyte growth factor activator and cellular type II transmembrane serine proteases (TTSPs), proteases required for the activation of hepatocyte growth factor (HGF)/scatter factor (SF). Activated HGF/SF transduces pleiotropic signals through its receptor tyrosine kinase, MET (coded by the proto-oncogene MET), which are necessary for cellular migration, survival, growth and triggering stem cells for accelerated healing. HAI-1 and HAI-2 are also required for normal epithelial functions through regulation of TTSP-mediated activation of other proteases and protease-activated receptor 2, and also through suppressing excess degradation of epithelial junctional proteins. This review summarizes current knowledge regarding the mechanism of pericellular HGF/SF activation and highlights emerging roles of HAIs in epithelial development and integrity, as well as tumorigenesis and progression of transformed epithelial cells.
Collapse
Affiliation(s)
- Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Takeshi Shimomura
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| |
Collapse
|
24
|
Thewke DP, Kou J, Fulmer ML, Xie Q. The HGF/MET Signaling and Therapeutics in Cancer. CURRENT HUMAN CELL RESEARCH AND APPLICATIONS 2018. [DOI: 10.1007/978-981-10-7296-3_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Owusu BY, Bansal N, Venukadasula PKM, Ross LJ, Messick TE, Goel S, Galemmo RA, Klampfer L. Inhibition of pro-HGF activation by SRI31215, a novel approach to block oncogenic HGF/MET signaling. Oncotarget 2017; 7:29492-506. [PMID: 27121052 PMCID: PMC5045412 DOI: 10.18632/oncotarget.8785] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/28/2016] [Indexed: 01/05/2023] Open
Abstract
The binding of hepatocyte growth factor (HGF) to its receptor MET activates a signaling cascade that promotes cell survival, proliferation, cell scattering, migration and invasion of malignant cells. HGF is secreted by cancer cells or by tumor-associated fibroblasts as pro-HGF, an inactive precursor. A key step in the regulation of HGF/MET signaling is proteolytic processing of pro-HGF to its active form by one of the three serine proteases, matriptase, hepsin or HGF activator (HGFA).We developed SRI 31215, a small molecule that acts as a triplex inhibitor of matriptase, hepsin and HGFA and mimics the activity of HAI-1/2, endogenous inhibitors of HGF activation. We demonstrated that SRI 31215 inhibits fibroblast-induced MET activation, epithelial-mesenchymal transition and migration of cancer cells. SRI 31215 overcomes primary resistance to cetuximab and gefitinib in HGF-producing colon cancer cells and prevents fibroblast-mediated resistance to EGFR inhibitors. Thus, SRI 31215 blocks signaling between cancer cells and fibroblasts and inhibits the tumor-promoting activity of cancer-associated fibroblasts.Aberrant HGF/MET signaling supports cell survival, proliferation, angiogenesis, invasion and metastatic spread of cancer cells, establishing HGF and MET as valid therapeutic targets. Our data demonstrate that inhibitors of HGF activation, such as SRI 31215, merit investigation as potential therapeutics in tumors that are addicted to HGF/MET signaling. The findings reported here also indicate that inhibitors of HGF activation overcome primary and acquired resistance to anti-EGFR therapy, providing a rationale for concurrent inhibition of EGFR and HGF to prevent therapeutic resistance and to improve the outcome of cancer patients.
Collapse
Affiliation(s)
- Benjamin Y Owusu
- Department of Oncology, Drug Discovery Division, Southern Research, Birmingham, AL, USA
| | - Namita Bansal
- Department of Chemistry, Drug Discovery Division, Southern Research, Birmingham, AL, USA
| | | | - Larry J Ross
- High Throughput Screening, Southern Research, Drug Discovery Division, Birmingham, AL, USA
| | - Troy E Messick
- The Wistar Institute, Southern Research, Philadelphia, PA, USA
| | - Sanjay Goel
- Albert Einstein Cancer Center, Southern Research, Bronx, NY, USA
| | - Robert A Galemmo
- Department of Chemistry, Drug Discovery Division, Southern Research, Birmingham, AL, USA
| | - Lidija Klampfer
- Department of Oncology, Drug Discovery Division, Southern Research, Birmingham, AL, USA
| |
Collapse
|
26
|
Murray AS, Varela FA, List K. Type II transmembrane serine proteases as potential targets for cancer therapy. Biol Chem 2017; 397:815-26. [PMID: 27078673 DOI: 10.1515/hsz-2016-0131] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/11/2016] [Indexed: 12/15/2022]
Abstract
Carcinogenesis is accompanied by increased protein and activity levels of extracellular cell-surface proteases that are capable of modifying the tumor microenvironment by directly cleaving the extracellular matrix, as well as activating growth factors and proinflammatory mediators involved in proliferation and invasion of cancer cells, and recruitment of inflammatory cells. These complex processes ultimately potentiate neoplastic progression leading to local tumor cell invasion, entry into the vasculature, and metastasis to distal sites. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression. In this review the knowledge collected over the past two decades about the molecular mechanisms underlying the pro-cancerous properties of selected TTSPs will be summarized. Furthermore, we will discuss how these insights may facilitate the translation into clinical settings in the future by specifically targeting TTSPs as part of novel cancer treatment regimens.
Collapse
|
27
|
Di Nunno V, Cubelli M, Massari F. The role of the MET/AXL pathway as a new target for multikinase inhibitors in renal cell carcinoma. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1347481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Marta Cubelli
- Division of Oncology, S.Orsola-Malpighi Hospital, Bologna, Italy
| | | |
Collapse
|
28
|
Friis S, Tadeo D, Le-Gall SM, Jürgensen HJ, Sales KU, Camerer E, Bugge TH. Matriptase zymogen supports epithelial development, homeostasis and regeneration. BMC Biol 2017; 15:46. [PMID: 28571576 PMCID: PMC5452369 DOI: 10.1186/s12915-017-0384-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/05/2017] [Indexed: 12/31/2022] Open
Abstract
Background Matriptase is a membrane serine protease essential for epithelial development, homeostasis, and regeneration, as well as a central orchestrator of pathogenic pericellular signaling in the context of inflammatory and proliferative diseases. Matriptase is an unusual protease in that its zymogen displays measurable enzymatic activity. Results Here, we used gain and loss of function genetics to investigate the possible biological functions of zymogen matriptase. Unexpectedly, transgenic mice mis-expressing a zymogen-locked version of matriptase in the epidermis displayed pathologies previously reported for transgenic mice mis-expressing wildtype epidermal matriptase. Equally surprising, mice engineered to express only zymogen-locked endogenous matriptase, unlike matriptase null mice, were viable, developed epithelial barrier function, and regenerated the injured epithelium. Compatible with these observations, wildtype and zymogen-locked matriptase were equipotent activators of PAR-2 inflammatory signaling. Conclusion The study demonstrates that the matriptase zymogen is biologically active and is capable of executing developmental and homeostatic functions of the protease. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0384-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stine Friis
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA.,Section for Molecular Disease Biology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Tadeo
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA.,Georgetown University School of Medicine, Washington, DC, 20057, USA
| | - Sylvain M Le-Gall
- INSERM U970, Paris Cardiovascular Research Centre, Paris, France.,Université Sorbonne Paris Cité, Paris, France
| | - Henrik Jessen Jürgensen
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA
| | - Katiuchia Uzzun Sales
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA.,Department of Cell and Molecular Biology, Ribierão Preto School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, Paris, France.,Université Sorbonne Paris Cité, Paris, France
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA.
| |
Collapse
|
29
|
Hepatocyte Growth Factor, a Key Tumor-Promoting Factor in the Tumor Microenvironment. Cancers (Basel) 2017; 9:cancers9040035. [PMID: 28420162 PMCID: PMC5406710 DOI: 10.3390/cancers9040035] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/05/2017] [Accepted: 04/13/2017] [Indexed: 01/13/2023] Open
Abstract
The tumor microenvironment plays a key role in tumor development and progression. Stromal cells secrete growth factors, cytokines and extracellular matrix proteins which promote growth, survival and metastatic spread of cancer cells. Fibroblasts are the predominant constituent of the tumor stroma and Hepatocyte Growth Factor (HGF), the specific ligand for the tyrosine kinase receptor c-MET, is a major component of their secretome. Indeed, cancer-associated fibroblasts have been shown to promote growth, survival and migration of cancer cells in an HGF-dependent manner. Fibroblasts also confer resistance to anti-cancer therapy through HGF-induced epithelial mesenchymal transition (EMT) and activation of pro-survival signaling pathways such as ERK and AKT in tumor cells. Constitutive HGF/MET signaling in cancer cells is associated with increased tumor aggressiveness and predicts poor outcome in cancer patients. Due to its role in tumor progression and therapeutic resistance, both HGF and MET have emerged as valid therapeutic targets. Several inhibitors of MET and HGF are currently being tested in clinical trials. Preclinical data provide a strong indication that inhibitors of HGF/MET signaling overcome both primary and acquired resistance to EGFR, HER2, and BRAF targeting agents. These findings support the notion that co-targeting of cancer cells and stromal cells is required to prevent therapeutic resistance and to increase the overall survival rate of cancer patients. HGF dependence has emerged as a hallmark of therapeutic resistance, suggesting that inhibitors of biological activity of HGF should be included into therapeutic regimens of cancer patients.
Collapse
|
30
|
A mini-review of c-Met as a potential therapeutic target in melanoma. Biomed Pharmacother 2017; 88:194-202. [DOI: 10.1016/j.biopha.2017.01.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 12/28/2016] [Accepted: 01/06/2017] [Indexed: 12/22/2022] Open
|
31
|
Stidham RW, Wu J, Shi J, Lubman DM, Higgins PDR. Serum Glycoproteome Profiles for Distinguishing Intestinal Fibrosis from Inflammation in Crohn's Disease. PLoS One 2017; 12:e0170506. [PMID: 28114331 PMCID: PMC5256928 DOI: 10.1371/journal.pone.0170506] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/05/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Reliable identification and quantitation of intestinal fibrosis in the setting of co-existing inflammation due to Crohn's disease (CD) is difficult. We aimed to identify serum biomarkers which distinguish inflammatory from fibrostenotic phenotypes of CD using serum glycoproteome profiles. METHODS Subjects with fibrostenotic and inflammation-predominant CD phenotypes (n = 20 per group) underwent comparison by quantitative serum glycoproteome profiles as part of a single tertiary care center cohort study. Following lectin elution, glycoproteins underwent liquid chromatography followed by tandem mass spectrometry. Identified candidate biomarkers of fibrosis were also measured by serum ELISA, a widely available technique. RESULTS Five (5) glycoproteins demonstrated a ≥20% relative abundance change in ≥80% of subjects, including cartilage oligomeric matrix protein (COMP) and hepatocyte growth factor activator (HGFA). COMP (431.7±112.7 vs. 348.7±90.5 ng/mL, p = 0.012) and HGFA (152.7±66.5 vs. 107.1±38.7 ng/mL, p = 0.031) serum levels were elevated in the fibrostenotic vs. inflammatory CD groups using ELISA. Within the fibrostenotic group, intra-individual changes of candidate biomarkers revealed HGFA levels significantly declined following the resection of all diseased intestine (152.7±66.5 vs. 107.1±38.7 ng/mL, p = 0.015); COMP levels were unchanged. Immunohistochemical staining confirmed the presence of COMP in the submucosa and muscularis of resected fibrostenotic tissue. CONCLUSIONS In this biomarker discovery study, several serum glycoproteins, specifically COMP and HGFA, differ between between predominately inflammatory and fibrostenotic CD phenotypes. The development of blood-based biomarkers of fibrosis would provide an important complement to existing prognostic tools in IBD, aiding decisions on therapeutic intensity and mechanism selection, surgery, and the monitoring of future anti-fibrotic therapies for CD.
Collapse
Affiliation(s)
- Ryan W Stidham
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jing Wu
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, United States of America
| | - Jiaqi Shi
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI, United States of America
| | - David M Lubman
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, United States of America
| | - Peter D R Higgins
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
32
|
Reid JC, Bennett NC, Stephens CR, Carroll ML, Magdolen V, Clements JA, Hooper JD. In vitro evidence that KLK14 regulates the components of the HGF/Met axis, pro-HGF and HGF-activator inhibitor 1A and 1B. Biol Chem 2016; 397:1299-1305. [DOI: 10.1515/hsz-2016-0163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022]
Abstract
Abstract
Kallikrein-related peptidase (KLK) 14 is a serine protease linked to several pathologies including prostate cancer. We show that KLK14 has biphasic effects in vitro on activating and inhibiting components of the prostate cancer associated hepatocyte growth factor (HGF)/Met system. At 5–10 nm, KLK14 converts pro-HGF to the two-chain heterodimer required for Met activation, while higher concentrations degrade the HGF α-chain. HGF activator-inhibitor (HAI)-1A and HAI-1B, which inhibit pro-HGF activators, are degraded by KLK14 when protease:inhibitor stoichiometry is 1:1 or the protease is in excess. When inhibitors are in excess, KLK14 generates HAI-1A and HAI-1B fragments known to inhibit pro-HGF activating serine proteases. These in vitro data suggest that increased KLK14 activity could contribute at multiple levels to HGF/Met-mediated processes in prostate and other cancers.
Collapse
|
33
|
Stella GM, Gentile A, Baderacchi A, Meloni F, Milan M, Benvenuti S. Ockham's razor for the MET-driven invasive growth linking idiopathic pulmonary fibrosis and cancer. J Transl Med 2016; 14:256. [PMID: 27590450 PMCID: PMC5010719 DOI: 10.1186/s12967-016-1008-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/16/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) identifies a specific lung disorder characterized by chronic, progressive fibrosing interstitial pneumonia of unknown etiology, which lacks effective treatment. According to the current pathogenic perspective, the aberrant proliferative events in IPF resemble those occurring during malignant transformation. MAIN BODY Receptor tyrosine kinases (RTK) are known to be key players in cancer onset and progression. It has been demonstrated that RTK expression is sometimes also altered and even druggable in IPF. One example of an RTK-the MET proto-oncogene-is a key regulator of invasive growth. This physiological genetic program supports embryonic development and post-natal organ regeneration, as well as cooperating in the evolution of cancer metastasis when aberrantly activated. Growing evidence sustains that MET activation may collaborate in maintaining tissue plasticity and the regenerative potential that characterizes IPF. CONCLUSION The present work aims to elucidate-by applying the logic of simplicity-the bio-molecular mechanisms involved in MET activation in IPF. This clarification is crucial to accurately design MET blockade strategies within a fully personalized approach to IPF.
Collapse
Affiliation(s)
- Giulia M. Stella
- Pneumology Unit, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Piazzale Golgi 19, 27100 Pavia, Italy
- Investigational Clinical Oncology (INCO), IRCCS Candiolo Cancer Institute-FPO, Candiolo, 20060 Turin, Italy
| | - Alessandra Gentile
- Experimental Clinical Molecular Oncology (ECMO), IRCCS Candiolo Cancer Institute-FPO, Candiolo, 20060 Turin, Italy
| | - Alice Baderacchi
- Investigational Clinical Oncology (INCO), IRCCS Candiolo Cancer Institute-FPO, Candiolo, 20060 Turin, Italy
| | - Federica Meloni
- Pneumology Unit, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Piazzale Golgi 19, 27100 Pavia, Italy
| | - Melissa Milan
- Experimental Clinical Molecular Oncology (ECMO), IRCCS Candiolo Cancer Institute-FPO, Candiolo, 20060 Turin, Italy
| | - Silvia Benvenuti
- Experimental Clinical Molecular Oncology (ECMO), IRCCS Candiolo Cancer Institute-FPO, Candiolo, 20060 Turin, Italy
| |
Collapse
|
34
|
Ariyawutyakorn W, Saichaemchan S, Varella-Garcia M. Understanding and Targeting MET Signaling in Solid Tumors - Are We There Yet? J Cancer 2016; 7:633-49. [PMID: 27076844 PMCID: PMC4829549 DOI: 10.7150/jca.12663] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 01/22/2016] [Indexed: 12/22/2022] Open
Abstract
The MET signaling pathway plays an important role in normal physiology and its deregulation has proved critical for development of numerous solid tumors. Different technologies have been used to investigate the genomic and proteomic status of MET in cancer patients and its association with disease prognosis. Moreover, with the development of targeted therapeutic drugs, there is an urgent need to identify potential biomarkers for selection of patients who are more likely to derive benefit from these agents. Unfortunately, the variety of technical platforms and analysis criteria for diagnosis has brought confusion to the field and a lack of agreement in the evaluation of MET status as a prognostic or predictive marker for targeted therapy agents. We review the molecular mechanisms involved in the deregulation of the MET signaling pathway in solid tumors, the different technologies used for diagnosis, and the main factors that affect the outcome, emphasizing the urge for completing analytical and clinical validation of these tests. We also review the current clinical studies with MET targeted agents, which mostly focus on lung cancer.
Collapse
Affiliation(s)
- Witthawat Ariyawutyakorn
- 1. Faculty of Medicine, Chiang Mai University, 110 Intavarorod Rd., Muang, Chiang Mai, Thailand 50200
- 3. Department of Medicine, University of Colorado, Anschutz Medical Campus, 12801 East 17th Ave, RC1 South, L18-8118, Mail Stop 8117, Aurora, Colorado, USA 80045
| | - Siriwimon Saichaemchan
- 2. Division of Oncology, Department of Medicine, Phramongkutklao Hospital and College of Medicine, 315 Phayathai Rd., Ratchathewi, Bangkok, Thailand 10400
- 3. Department of Medicine, University of Colorado, Anschutz Medical Campus, 12801 East 17th Ave, RC1 South, L18-8118, Mail Stop 8117, Aurora, Colorado, USA 80045
| | - Marileila Varella-Garcia
- 3. Department of Medicine, University of Colorado, Anschutz Medical Campus, 12801 East 17th Ave, RC1 South, L18-8118, Mail Stop 8117, Aurora, Colorado, USA 80045
| |
Collapse
|
35
|
Han Z, Harris PKW, Karmakar P, Kim T, Owusu BY, Wildman SA, Klampfer L, Janetka JW. α-Ketobenzothiazole Serine Protease Inhibitors of Aberrant HGF/c-MET and MSP/RON Kinase Pathway Signaling in Cancer. ChemMedChem 2016; 11:585-99. [PMID: 26889658 DOI: 10.1002/cmdc.201500600] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 12/20/2022]
Abstract
Upregulation of the HGF and MSP growth-factor processing serine endopeptidases HGFA, matriptase and hepsin is correlated with increased metastasis in multiple tumor types driven by c-MET or RON kinase signaling. We rationally designed P1' α-ketobenzothiazole mechanism-based inhibitors of these proteases. Structure-activity studies are presented, which resulted in the identification of potent inhibitors with differential selectivity. The tetrapeptide inhibitors span the P1-P1' substrate cleavage site via a P1' amide linker off the benzothiazole, occupying the S3' pocket. Optimized inhibitors display sub-nanomolar enzyme inhibition against one, two, or all three of HGFA, matriptase, and hepsin. Several compounds also have good selectivity against the related trypsin-like proteases, thrombin and Factor Xa. Finally, we show that inhibitors block the fibroblast (HGF)-mediated migration of invasive DU145 prostate cancer cells. In addition to prostate cancer, breast, colon, lung, pancreas, gliomas, and multiple myeloma tumors all depend on HGF and MSP for tumor survival and progression. Therefore, these unique inhibitors have potential as new therapeutics for a diverse set of tumor types.
Collapse
Affiliation(s)
- Zhenfu Han
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Peter K W Harris
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Partha Karmakar
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Tommy Kim
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Ben Y Owusu
- Department of Oncology, Southern Research Institute, 2000 9th Ave., Birmingham, AL, 35205, USA
| | - Scott A Wildman
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA.,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53792, USA
| | - Lidija Klampfer
- Department of Oncology, Southern Research Institute, 2000 9th Ave., Birmingham, AL, 35205, USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA.
| |
Collapse
|
36
|
Venukadasula PKM, Owusu BY, Bansal N, Ross LJ, Hobrath JV, Bao D, Truss JW, Stackhouse M, Messick TE, Klampfer L, Galemmo RA. Design and Synthesis of Nonpeptide Inhibitors of Hepatocyte Growth Factor Activation. ACS Med Chem Lett 2016; 7:177-81. [PMID: 26985294 DOI: 10.1021/acsmedchemlett.5b00357] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/22/2015] [Indexed: 01/28/2023] Open
Abstract
In this letter we report first nonpeptide inhibitors of hepatocyte growth factor (HGF) activation. These compounds inhibit the three proteases (matriptase, hepsin, and HGF activator) required for HGF maturation. We show that 6, 8a, 8b, and 8d block activation of fibroblast-derived pro-HGF, thus preventing fibroblast-induced scattering of DU145 prostate cancer cells. Compound 6 (SRI 31215) is very soluble (91 μM) and has excellent microsome stability (human t 1/2 = 162 min; mouse t 1/2 = 296 min). In mouse 6 has an in vivo t 1/2 = 5.8 h following IV administration. The high solubility of 6 and IV t 1/2 make this compound a suitable prototype "triplex inhibitor" for the study of the inhibition of HGF activation in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Troy E. Messick
- The Wistar Institute, 3601
Spruce Street, Philadelphia, Pennsylvania19104, United States
| | | | | |
Collapse
|
37
|
Brunati M, Perucca S, Han L, Cattaneo A, Consolato F, Andolfo A, Schaeffer C, Olinger E, Peng J, Santambrogio S, Perrier R, Li S, Bokhove M, Bachi A, Hummler E, Devuyst O, Wu Q, Jovine L, Rampoldi L. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin. eLife 2015; 4:e08887. [PMID: 26673890 PMCID: PMC4755741 DOI: 10.7554/elife.08887] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 11/02/2015] [Indexed: 12/28/2022] Open
Abstract
Uromodulin is the most abundant protein in the urine. It is exclusively produced by renal epithelial cells and it plays key roles in kidney function and disease. Uromodulin mainly exerts its function as an extracellular matrix whose assembly depends on a conserved, specific proteolytic cleavage leading to conformational activation of a Zona Pellucida (ZP) polymerisation domain. Through a comprehensive approach, including extensive characterisation of uromodulin processing in cellular models and in specific knock-out mice, we demonstrate that the membrane-bound serine protease hepsin is the enzyme responsible for the physiological cleavage of uromodulin. Our findings define a key aspect of uromodulin biology and identify the first in vivo substrate of hepsin. The identification of hepsin as the first protease involved in the release of a ZP domain protein is likely relevant for other members of this protein family, including several extracellular proteins, as egg coat proteins and inner ear tectorins. DOI:http://dx.doi.org/10.7554/eLife.08887.001 Several proteins in humans and other animals contain a region called a 'zona pellucida domain'. This domain enables these proteins to associate with each other and form long filaments. Uromodulin is one such protein that was first identified more than fifty years ago. This protein is known to play a role in human diseases such as hypertension and kidney failure, but uromodulin’s biological purpose still remains elusive. Uromodulin is only made in the kidney and it is the most abundant protein in the urine of healthy individuals. Uromodulin also contains a so-called 'external hydrophobic patch' that must be removed before the zona pellucida domain can start to form filaments. This hydrophobic patch is removed when uromodulin is cut by an unknown enzyme; this cutting releases the rest of the uromodulin protein from the surface of the cells that line the kidney into the urine. Brunati et al. have now tested a panel of candidate enzymes and identified that one called hepsin is able to cut uromodulin. Hepsin is embedded in the cell membrane of the cells that line the kidney. When the level of hepsin was artificially reduced in cells grown in the laboratory, uromodulin remained anchored to the cell surface, its processing was altered and it did not form filaments. Brunati et al. next analysed mice in which the gene encoding hepsin had been deleted. While these animals did not have any major defects in their internal organs, they had much lower levels of uromodulin in their urine. Furthermore, this residual urinary protein was not cut properly and it did not assemble into filaments. Thus, these findings reveal that hepsin is the enzyme that is responsible for releasing uromodulin in the urine. This discovery could be exploited to alter the levels of uromodulin release, and further studies using mice lacking hepsin may also help to understand uromodulin’s biological role. Finally, it will be important to understand if hepsin, or a similar enzyme, is also responsible for the release of other proteins containing the zona pellucida domain. DOI:http://dx.doi.org/10.7554/eLife.08887.002
Collapse
Affiliation(s)
- Martina Brunati
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Simone Perucca
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Ling Han
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Angela Cattaneo
- Functional Proteomics, FIRC Institute of Molecular Oncology, Milan, Italy.,Protein Microsequencing Facility, San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Consolato
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Annapaola Andolfo
- Protein Microsequencing Facility, San Raffaele Scientific Institute, Milan, Italy
| | - Céline Schaeffer
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Eric Olinger
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Jianhao Peng
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland, United States
| | - Sara Santambrogio
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Romain Perrier
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Shuo Li
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland, United States
| | - Marcel Bokhove
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Angela Bachi
- Functional Proteomics, FIRC Institute of Molecular Oncology, Milan, Italy.,Protein Microsequencing Facility, San Raffaele Scientific Institute, Milan, Italy
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Olivier Devuyst
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Qingyu Wu
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland, United States
| | - Luca Jovine
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Luca Rampoldi
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
38
|
Pereira MS, de Almeida GC, Pinto F, Viana-Pereira M, Reis RM. SPINT2 Deregulation in Prostate Carcinoma. J Histochem Cytochem 2015; 64:32-41. [PMID: 26442953 DOI: 10.1369/0022155415612874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 09/19/2015] [Indexed: 11/22/2022] Open
Abstract
SPINT2 is a tumor suppressor gene that inhibits proteases implicated in cancer progression, like HGFA, hepsin and matriptase. Loss of SPINT2 expression in tumors has been associated with gene promoter hypermethylation; however, little is known about the mechanisms of SPINT2 deregulation in prostate cancer (PCa). We aimed to analyze SPINT2 expression levels and understand the possible regulation by SPINT2 promoter hypermethylation in PCa. In a cohort of 57 cases including non-neoplastic and PCa tissues, SPINT2 expression and promoter methylation was analyzed by immunohistochemistry and methylation-specific PCR, respectively. Methylation status of the SPINT2 promoter was also evaluated by bisulfite sequencing and 5-aza-2'-deoxycytidine treatment. Oncomine and TCGA databases were used to perform in silico PCa analysis of SPINT2 mRNA and methylation levels. A reduction in SPINT2 expression levels from non-neoplastic to PCa tissues was observed; however, none of the cases exhibited SPINT2 promoter methylation. Both bisulfite sequencing and 5-aza demonstrated that SPINT2 promoter is not methylated in PCa cells. Bioinformatics approaches did not show downregulation of SPINT2 at the mRNA level and, in corroboration with our results, SPINT2 promoter region is reported to be unmethylated. Our study suggests an involvement of SPINT2 in PCa tumorigenesis, probably in association with a post-translational regulation of SPINT2.
Collapse
Affiliation(s)
- Márcia Santos Pereira
- ICVS/3B’s– PT Government Associate Laboratory, Braga/Guimarães, Portugal (MSP, FP, MVP, RMR)
| | | | - Filipe Pinto
- School of Health Sciences, University of Minho, Braga, Portugal (MSP, FP, MVP, RMR),ICVS/3B’s– PT Government Associate Laboratory, Braga/Guimarães, Portugal (MSP, FP, MVP, RMR)
| | - Marta Viana-Pereira
- School of Health Sciences, University of Minho, Braga, Portugal (MSP, FP, MVP, RMR),ICVS/3B’s– PT Government Associate Laboratory, Braga/Guimarães, Portugal (MSP, FP, MVP, RMR)
| | - Rui Manuel Reis
- School of Health Sciences, University of Minho, Braga, Portugal (MSP, FP, MVP, RMR),ICVS/3B’s– PT Government Associate Laboratory, Braga/Guimarães, Portugal (MSP, FP, MVP, RMR),Molecular Oncology Research Center ,Barretos Cancer Hospital, S. Paulo, Brazil(RMR)
| |
Collapse
|
39
|
Pelkonen M, Luostari K, Tengström M, Ahonen H, Berdel B, Kataja V, Soini Y, Kosma VM, Mannermaa A. Low expression levels of hepsin and TMPRSS3 are associated with poor breast cancer survival. BMC Cancer 2015; 15:431. [PMID: 26014348 PMCID: PMC4445813 DOI: 10.1186/s12885-015-1440-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 05/15/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Hepsin, (also called TMPRSS1) and TMPRSS3 are type II transmembrane serine proteases (TTSPs) that are involved in cancer progression. TTSPs can remodel extracellular matrix (ECM) and, when dysregulated, promote tumor progression and metastasis by inducing defects in basement membrane and ECM molecules. This study investigated whether the gene and protein expression levels of these TTSPs were associated with breast cancer characteristics or survival. METHODS Immunohistochemical staining was used to evaluate hepsin levels in 372 breast cancer samples and TMPRSS3 levels in 373 samples. TMPRSS1 mRNA expression was determined in 125 invasive and 16 benign breast tumor samples, and TMPRSS3 mRNA expression was determined in 167 invasive and 23 benign breast tumor samples. The gene and protein expression levels were analyzed for associations with breast cancer-specific survival and clinicopathological parameters. RESULTS Low TMPRSS1 and TMPRSS3 mRNA expression levels were independent prognostic factors for poor breast cancer survival during the 20-year follow-up (TMPRSS1, P = 0.023; HR, 2.065; 95 % CI, 1.106-3.856; TMPRSS3, P = 0.013; HR, 2.106; 95 % CI, 1.167-3.800). Low expression of the two genes at the mRNA and protein levels associated with poorer survival compared to high levels (log rank P-values 0.015-0.042). Low TMPRSS1 mRNA expression was also an independent marker of poor breast cancer prognosis in patients treated with radiotherapy (P = 0.034; HR, 2.344; 95 % CI, 1.065-5.160). Grade III tumors, large tumor size, and metastasis were associated with low mRNA and protein expression levels. CONCLUSIONS The results suggest that the TTSPs hepsin and TMPRSS3 may have similar biological functions in the molecular pathology of breast cancer. Low mRNA and protein expression levels of the studied TTSPs were prognostic markers of poor survival in breast cancer.
Collapse
Affiliation(s)
- Mikko Pelkonen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Imaging Center, Clinical Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Kaisa Luostari
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Imaging Center, Clinical Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Maria Tengström
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Cancer Center, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Hermanni Ahonen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Imaging Center, Clinical Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Bozena Berdel
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Imaging Center, Clinical Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Vesa Kataja
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Cancer Center, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Ylermi Soini
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Imaging Center, Clinical Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Veli-Matti Kosma
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Imaging Center, Clinical Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Arto Mannermaa
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Imaging Center, Clinical Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| |
Collapse
|
40
|
Franco FM, Jones DE, Harris PK, Han Z, Wildman SA, Jarvis CM, Janetka JW. Structure-based discovery of small molecule hepsin and HGFA protease inhibitors: Evaluation of potency and selectivity derived from distinct binding pockets. Bioorg Med Chem 2015; 23:2328-43. [DOI: 10.1016/j.bmc.2015.03.072] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/20/2015] [Accepted: 03/27/2015] [Indexed: 11/28/2022]
|
41
|
Hwang S, Kim HE, Min M, Raghunathan R, Panova IP, Munshi R, Ryu B. Epigenetic Silencing of SPINT2 Promotes Cancer Cell Motility via HGF-MET Pathway Activation in Melanoma. J Invest Dermatol 2015; 135:2283-2291. [PMID: 25910030 PMCID: PMC4537358 DOI: 10.1038/jid.2015.160] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 03/23/2015] [Accepted: 04/10/2015] [Indexed: 12/23/2022]
Abstract
Aberrant HGF-MET signaling activation via interactions with surrounding stromal cells in tumor microenvironment plays significant roles in malignant tumor progression. However, extracellular proteolytic regulation of HGF activation which is influenced by the tumor microenvironment and its consequential effects on melanoma malignancy remain uncharacterized. In this study we identified SPINT2: a proteolytic inhibitor of hepatocyte growth factor activator (HGFA), which plays a significant role in the suppression of the HGF-MET pathway and malignant melanoma progression. SPINT2 expression is significantly lower in metastatic melanoma tissues compared to those in early stage primary melanomas which also corresponded with DNA methylation levels isolated from tissue samples. Treatment with the DNA hypomethylating agent decitabine in cultured melanoma cells induced transcriptional reactivation of SPINT2, suggesting that this gene is epigenetically silenced in malignant melanomas. Furthermore, we show that ectopically expressed SPINT2 in melanoma cells inhibits HGF induced MET-AKT signaling pathway and decreases malignant phenotype potential such as cell motility, and invasive growth of melanoma cells. These results suggest that SPINT2 is associated with tumor suppressive functions in melanoma by inhibiting an extracellular signal regulator of HGF which is typically activated by tumor-stromal interactions. These findings indicate that epigenetic impairment of the tightly regulated cytokine-receptor communications in tumor microenvironment may contribute to malignant tumor progression.
Collapse
Affiliation(s)
- Soonyean Hwang
- Department of Dermatology, Boston University School of Medicine, Boston, Massachussetts, USA
| | - Hye-Eun Kim
- Department of Anatomy, BK21 Plus Program, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Michelle Min
- Department of Dermatology, Boston University School of Medicine, Boston, Massachussetts, USA
| | - Rekha Raghunathan
- Department of Dermatology, Boston University School of Medicine, Boston, Massachussetts, USA
| | - Izabela P Panova
- Department of Dermatology, Boston University School of Medicine, Boston, Massachussetts, USA
| | - Ruchi Munshi
- Department of Dermatology, Boston University School of Medicine, Boston, Massachussetts, USA
| | - Byungwoo Ryu
- Department of Dermatology, Boston University School of Medicine, Boston, Massachussetts, USA.
| |
Collapse
|
42
|
Zoratti GL, Tanabe LM, Varela FA, Murray AS, Bergum C, Colombo É, Lang JE, Molinolo AA, Leduc R, Marsault E, Boerner J, List K. Targeting matriptase in breast cancer abrogates tumour progression via impairment of stromal-epithelial growth factor signalling. Nat Commun 2015; 6:6776. [PMID: 25873032 PMCID: PMC4749267 DOI: 10.1038/ncomms7776] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 02/24/2015] [Indexed: 02/07/2023] Open
Abstract
Matriptase is an epithelia-specific membrane-anchored serine protease that has received considerable attention in recent years due to its consistent dysregulation in human epithelial tumors, including breast cancer. Mice with reduced levels of matriptase display a significant delay in oncogene-induced mammary tumor formation and blunted tumor growth. The abated tumor growth is associated with a decrease in cancer cell proliferation. Here we demonstrate by genetic deletion and silencing that the proliferation impairment in matriptase deficient breast cancer cells is caused by their inability to initiate activation of the c-Met signaling pathway in response to fibroblast-secreted pro-HGF. Similarly, inhibition of matriptase catalytic activity using a selective small-molecule inhibitor abrogates the activation of c-Met, Gab1 and AKT, in response to pro-HGF, which functionally leads to attenuated proliferation in breast carcinoma cells. We conclude that matriptase is critically involved in breast cancer progression and represents a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Gina L Zoratti
- 1] Department of Pharmacology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 540 E Canfield, Scott Hall Room 6332, Detroit, Michigan 48201, USA [2] Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 540 E Canfield, Scott Hall Room 6332, Detroit, Michigan 48201, USA [3] Cancer Biology Graduate Program, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 110 E. Warren Avenue, Suite 2215, Detroit, Michigan 48201, USA
| | - Lauren M Tanabe
- Department of Pharmacology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 540 E Canfield, Scott Hall Room 6332, Detroit, Michigan 48201, USA
| | - Fausto A Varela
- Department of Pharmacology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 540 E Canfield, Scott Hall Room 6332, Detroit, Michigan 48201, USA
| | - Andrew S Murray
- 1] Department of Pharmacology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 540 E Canfield, Scott Hall Room 6332, Detroit, Michigan 48201, USA [2] Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 540 E Canfield, Scott Hall Room 6332, Detroit, Michigan 48201, USA [3] Cancer Biology Graduate Program, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 110 E. Warren Avenue, Suite 2215, Detroit, Michigan 48201, USA
| | - Christopher Bergum
- Department of Pharmacology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 540 E Canfield, Scott Hall Room 6332, Detroit, Michigan 48201, USA
| | - Éloïc Colombo
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Av Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Julie E Lang
- Department of Surgery, Norris Comprehensive Cancer Center, University of Southern California, 1510 San Pablo Street, Suite 412, Los Angeles, California 90033, USA
| | - Alfredo A Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 211, Bethesda, Maryland 20892, USA
| | - Richard Leduc
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Av Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Eric Marsault
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Av Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Julie Boerner
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 540 E Canfield, Scott Hall Room 6332, Detroit, Michigan 48201, USA
| | - Karin List
- 1] Department of Pharmacology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 540 E Canfield, Scott Hall Room 6332, Detroit, Michigan 48201, USA [2] Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 540 E Canfield, Scott Hall Room 6332, Detroit, Michigan 48201, USA [3] Cancer Biology Graduate Program, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, 110 E. Warren Avenue, Suite 2215, Detroit, Michigan 48201, USA
| |
Collapse
|
43
|
Van Der Steen N, Pauwels P, Gil-Bazo I, Castañon E, Raez L, Cappuzzo F, Rolfo C. cMET in NSCLC: Can We Cut off the Head of the Hydra? From the Pathway to the Resistance. Cancers (Basel) 2015; 7:556-73. [PMID: 25815459 PMCID: PMC4491670 DOI: 10.3390/cancers7020556] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/19/2015] [Accepted: 03/05/2015] [Indexed: 01/05/2023] Open
Abstract
In the last decade, the tyrosine kinase receptor cMET, together with its ligand hepatocyte growth factor (HGF), has become a target in non-small cell lung cancer (NSCLC). Signalization via cMET stimulates several oncological processes amongst which are cell motility, invasion and metastasis. It also confers resistance against several currently used targeted therapies, e.g., epidermal growth factor receptor (EGFR) inhibitors. In this review, we will discuss the basic structure of cMET and the most important signaling pathways. We will also look into aberrations in the signaling and the effects thereof in cancer growth, with the focus on NSCLC. Finally, we will discuss the role of cMET as resistance mechanism.
Collapse
Affiliation(s)
- Nele Van Der Steen
- Center for Oncological Research Antwerp, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium; E-Mails: (N.V.D.S.); (P.P.)
| | - Patrick Pauwels
- Center for Oncological Research Antwerp, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium; E-Mails: (N.V.D.S.); (P.P.)
- Molecular Pathology Unit, Pathology Department, Antwerp University Hospital, Wilrijkstraat 10, Edegem 2650, Belgium
| | - Ignacio Gil-Bazo
- Department of Oncology, Clínica Universidad de Navarra, Pamplona 31008, Spain; E-Mails: (I.G.-B.); (E.C.)
| | - Eduardo Castañon
- Department of Oncology, Clínica Universidad de Navarra, Pamplona 31008, Spain; E-Mails: (I.G.-B.); (E.C.)
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital, Wilrijkstraat 10, Edegem 2650, Belgium
| | - Luis Raez
- Thoracic Oncology Program, Memorial Cancer Institute, Memorial Health Care System, Pembroke Pines, FL 33024, USA; E-Mail:
| | - Federico Cappuzzo
- Thoracic Oncology Program, Memorial Cancer Institute, Memorial Health Care System, Pembroke Pines, FL 33024, USA; E-Mail:
| | - Christian Rolfo
- Center for Oncological Research Antwerp, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium; E-Mails: (N.V.D.S.); (P.P.)
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital, Wilrijkstraat 10, Edegem 2650, Belgium
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +32-3-821-3646; Fax: +32-3-825-1592
| |
Collapse
|
44
|
Zhang Y, Jain RK, Zhu M. Recent Progress and Advances in HGF/MET-Targeted Therapeutic Agents for Cancer Treatment. Biomedicines 2015; 3:149-181. [PMID: 28536405 PMCID: PMC5344234 DOI: 10.3390/biomedicines3010149] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 12/31/2022] Open
Abstract
The hepatocyte growth factor (HGF): MET axis is a ligand-mediated receptor tyrosine kinase pathway that is involved in multiple cellular functions, including proliferation, survival, motility, and morphogenesis. Aberrancy in the HGF/MET pathway has been reported in multiple tumor types and is associated with tumor stage and prognosis. Thus, targeting the HGF/MET pathway has become a potential therapeutic strategy in oncology development in the last two decades. A number of novel therapeutic agents-either as therapeutic proteins or small molecules that target the HGF/MET pathway-have been tested in patients with different tumor types in clinical studies. In this review, recent progress in HGF/MET pathway-targeted therapy for cancer treatment, the therapeutic potential of HGF/MET-targeted agents, and challenges in the development of such agents will be discussed.
Collapse
Affiliation(s)
- Yilong Zhang
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | - Rajul K Jain
- Kite Pharma, Inc., 2225 Colorado Avenue, Santa Monica, CA 90404, USA.
| | - Min Zhu
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
45
|
Abstract
Pericellular proteases have long been associated with cancer invasion and metastasis due to their ability to degrade extracellular matrix components. Recent studies demonstrate that proteases also modulate tumor progression and metastasis through highly regulated and complex processes involving cleavage, processing, or shedding of cell adhesion molecules, growth factors, cytokines, and kinases. In this review, we address how cancer cells, together with their surrounding microenvironment, regulate pericellular proteolysis. We dissect the multitude of mechanisms by which pericellular proteases contribute to cancer progression and discuss how this knowledge can be integrated into therapeutic opportunities.
Collapse
Affiliation(s)
- Lisa Sevenich
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Johanna A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| |
Collapse
|
46
|
Han Z, Harris PKW, Jones DE, Chugani R, Kim T, Agarwal M, Shen W, Wildman SA, Janetka JW. Inhibitors of HGFA, Matriptase, and Hepsin Serine Proteases: A Nonkinase Strategy to Block Cell Signaling in Cancer. ACS Med Chem Lett 2014; 5:1219-24. [PMID: 25408834 DOI: 10.1021/ml500254r] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/09/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatocyte growth factor activators (HGFA), matriptase, and hepsin are S1 family trypsin-like serine proteases. These proteases proteolytically cleave the single-chain zymogen precursors, pro-HGF (hepatocyte growth factor), and pro-MSP (macrophage stimulating protein) into active heterodimeric forms. HGF and MSP are activating ligands for the oncogenic receptor tyrosine kinases (RTKs), c-MET and RON, respectively. We have discovered the first substrate-based ketothiazole inhibitors of HGFA, matriptase and hepsin. The compounds were synthesized using a combination of solution and solid-phase peptide synthesis (SPPS). Compounds were tested for protease inhibition using a kinetic enzyme assay employing fluorogenic peptide substrates. Highlighted HGFA inhibitors are Ac-KRLR-kt (5g), Ac-SKFR-kt (6c), and Ac-SWLR-kt (6g) with K is = 12, 57, and 63 nM, respectively. We demonstrated that inhibitors block the conversion of native pro-HGF and pro-MSP by HGFA with equivalent potency. Finally, we show that inhibition causes a dose-dependent decrease of c-MET signaling in MDA-MB-231 breast cancer cells. This preliminary investigation provides evidence that HGFA is a promising therapeutic target in breast cancer and other tumor types driven by c-MET and RON.
Collapse
Affiliation(s)
- Zhenfu Han
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman
Cancer Center, and ‡Department of Medicine, Oncology Division, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Peter K. W. Harris
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman
Cancer Center, and ‡Department of Medicine, Oncology Division, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Darin E. Jones
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman
Cancer Center, and ‡Department of Medicine, Oncology Division, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Ryan Chugani
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman
Cancer Center, and ‡Department of Medicine, Oncology Division, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Tommy Kim
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman
Cancer Center, and ‡Department of Medicine, Oncology Division, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Manjula Agarwal
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman
Cancer Center, and ‡Department of Medicine, Oncology Division, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Wei Shen
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman
Cancer Center, and ‡Department of Medicine, Oncology Division, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Scott A. Wildman
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman
Cancer Center, and ‡Department of Medicine, Oncology Division, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - James W. Janetka
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman
Cancer Center, and ‡Department of Medicine, Oncology Division, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| |
Collapse
|
47
|
Mechanisms of hepatocyte growth factor activation in cancer tissues. Cancers (Basel) 2014; 6:1890-904. [PMID: 25268161 PMCID: PMC4276949 DOI: 10.3390/cancers6041890] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/16/2022] Open
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) plays critical roles in cancer progression through its specific receptor, MET. HGF/SF is usually synthesized and secreted as an inactive proform (pro-HGF/SF) by stromal cells, such as fibroblasts. Several serine proteases are reported to convert pro-HGF/SF to mature HGF/SF and among these, HGF activator (HGFA) and matriptase are the most potent activators. Increased activities of both proteases have been observed in various cancers. HGFA is synthesized mainly by the liver and secreted as an inactive pro-form. In cancer tissues, pro-HGFA is likely activated by thrombin and/or human kallikrein 1-related peptidase (KLK)-4 and KLK-5. Matriptase is a type II transmembrane serine protease that is expressed by most epithelial cells and is also synthesized as an inactive zymogen. Matriptase activation is likely to be mediated by autoactivation or by other trypsin-like proteases. Recent studies revealed that matriptase autoactivation is promoted by an acidic environment. Given the mildly acidic extracellular environment of solid tumors, matriptase activation may, thus, be accelerated in the tumor microenvironment. HGFA and matriptase activities are regulated by HGFA inhibitor (HAI)-1 (HAI-1) and/or HAI-2 in the pericellular microenvironment. HAIs may have an important role in cancer cell biology by regulating HGF/SF-activating proteases.
Collapse
|
48
|
Pennacchietti S, Cazzanti M, Bertotti A, Rideout WM, Han M, Gyuris J, Perera T, Comoglio PM, Trusolino L, Michieli P. Microenvironment-Derived HGF Overcomes Genetically Determined Sensitivity to Anti-MET Drugs. Cancer Res 2014; 74:6598-609. [DOI: 10.1158/0008-5472.can-14-0761] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Luostari K, Hartikainen JM, Tengström M, Palvimo JJ, Kataja V, Mannermaa A, Kosma VM. Type II transmembrane serine protease gene variants associate with breast cancer. PLoS One 2014; 9:e102519. [PMID: 25029565 PMCID: PMC4100901 DOI: 10.1371/journal.pone.0102519] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/19/2014] [Indexed: 01/03/2023] Open
Abstract
Type II transmembrane serine proteases (TTSPs) are related to tumor growth, invasion, and metastasis in cancer. Genetic variants in these genes may alter their function, leading to cancer onset and progression, and affect patient outcome. Here, 464 breast cancer cases and 370 controls were genotyped for 82 single-nucleotide polymorphisms covering eight genes. Association of the genotypes was estimated against breast cancer risk, breast cancer-specific survival, and survival in different treatment groups, and clinicopathological variables. SNPs in TMPRSS3 (rs3814903 and rs11203200), TMPRSS7 (rs1844925), and HGF (rs5745752) associated significantly with breast cancer risk (Ptrend = 0.008-0.042). SNPs in TMPRSS1 (rs12151195 and rs12461158), TMPRSS2 (rs2276205), TMPRSS3 (rs3814903), and TMPRSS7 (rs2399403) associated with prognosis (P = 0.004-0.046). When estimating the combined effect of the variants, the risk of breast cancer was higher with 4-5 alleles present compared to 0-2 alleles (P = 0.0001; OR, 2.34; 95% CI, 1.39-3.94). Women with 6-8 survival-associating alleles had a 3.3 times higher risk of dying of breast cancer compared to women with 1-3 alleles (P = 0.001; HR, 3.30; 95% CI, 1.58-6.88). The results demonstrate the combined effect of variants in TTSPs and their related genes in breast cancer risk and patient outcome. Functional analysis of these variants will lead to further understanding of this gene family, which may improve individualized risk estimation and development of new strategies for treatment of breast cancer.
Collapse
Affiliation(s)
- Kaisa Luostari
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Jaana M. Hartikainen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Maria Tengström
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, Kuopio, Finland
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Jorma J. Palvimo
- Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Vesa Kataja
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, Kuopio, Finland
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Arto Mannermaa
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Veli-Matti Kosma
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
50
|
Samore WR, Gondi CS. Brief overview of selected approaches in targeting pancreatic adenocarcinoma. Expert Opin Investig Drugs 2014; 23:793-807. [PMID: 24673265 DOI: 10.1517/13543784.2014.902933] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Pancreatic adenocarcinoma (PDAC) has the worst prognosis of any major malignancy, with 5-year survival painfully inadequate at under 5%. Investigators have struggled to target and exploit PDAC unique biology, failing to bring meaningful results from bench to bedside. Nonetheless, in recent years, several promising targets have emerged. AREAS COVERED This review will discuss novel drug approaches in development for use in PDAC. The authors examine the continued efforts to target Kirsten rat sarcoma viral oncogene homolog (KRas), which have recently been successfully abated using novel small interfering RNA (siRNA) eluting devices. The authors also discuss other targets relevant to PDAC including those downstream of mutated KRas, such as MAPK kinase and phosphatidylinositol 3-kinase. EXPERT OPINION Although studies into novel biomarkers and advanced imaging have highlighted the potential new avenues toward discovering localized tumors earlier, the current therapeutic options highlight the fact that PDAC is a highly metastatic and chemoresistant cancer that often must be fought with virulent, systemic therapies. Several newer approaches, including siRNA targeting of mutated KRas and enzymatic depletion of hyaluronan with PEGylated hyaluronidase are particularly exciting given their early stage results. Further research should help in elucidating their potential impact as therapeutic options.
Collapse
Affiliation(s)
- Wesley R Samore
- M3 student, University of Illinois College of Medicine , One Illini Drive Peoria, IL 61605 , USA
| | | |
Collapse
|