1
|
Drescher DG, Drescher MJ, Selvakumar D, Annam NP. Analysis of Dysferlin Direct Interactions with Putative Repair Proteins Links Apoptotic Signaling to Ca 2+ Elevation via PDCD6 and FKBP8. Int J Mol Sci 2023; 24:4707. [PMID: 36902136 PMCID: PMC10002499 DOI: 10.3390/ijms24054707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Quantitative surface plasmon resonance (SPR) was utilized to determine binding strength and calcium dependence of direct interactions between dysferlin and proteins likely to mediate skeletal muscle repair, interrupted in limb girdle muscular dystrophy type 2B/R2. Dysferlin canonical C2A (cC2A) and C2F/G domains directly interacted with annexin A1, calpain-3, caveolin-3, affixin, AHNAK1, syntaxin-4, and mitsugumin-53, with cC2A the primary target and C2F lesser involved, overall demonstrating positive calcium dependence. Dysferlin C2 pairings alone showed negative calcium dependence in almost all cases. Like otoferlin, dysferlin directly interacted via its carboxy terminus with FKBP8, an anti-apoptotic outer mitochondrial membrane protein, and via its C2DE domain with apoptosis-linked gene (ALG-2/PDCD6), linking anti-apoptosis with apoptosis. Confocal Z-stack immunofluorescence confirmed co-compartmentalization of PDCD6 and FKBP8 at the sarcolemmal membrane. Our evidence supports the hypothesis that prior to injury, dysferlin C2 domains self-interact and give rise to a folded, compact structure as indicated for otoferlin. With elevation of intracellular Ca2+ in injury, dysferlin would unfold and expose the cC2A domain for interaction with annexin A1, calpain-3, mitsugumin 53, affixin, and caveolin-3, and dysferlin would realign from its interactions with PDCD6 at basal calcium levels to interact strongly with FKBP8, an intramolecular rearrangement facilitating membrane repair.
Collapse
Affiliation(s)
- Dennis G. Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Marian J. Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Dakshnamurthy Selvakumar
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Neeraja P. Annam
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
2
|
Pan G, Roy B, Palaniyandi SS. Diabetic Aldehyde Dehydrogenase 2 Mutant (ALDH2*2) Mice Are More Susceptible to Cardiac Ischemic-Reperfusion Injury Due to 4-Hydroxy-2-Nonenal Induced Coronary Endothelial Cell Damage. J Am Heart Assoc 2021; 10:e021140. [PMID: 34482710 PMCID: PMC8649540 DOI: 10.1161/jaha.121.021140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Aldehyde dehydrogenase‐2 (ALDH2), a mitochondrial enzyme, detoxifies reactive aldehydes such as 4‐hydroxy‐2‐nonenal (4HNE). A highly prevalent E487K mutation in ALDH2 (ALDH2*2) in East Asian people with intrinsic low ALDH2 activity is implicated in diabetic complications. 4HNE‐induced cardiomyocyte dysfunction was studied in diabetic cardiac damage; however, coronary endothelial cell (CEC) injury in myocardial ischemia‐reperfusion injury (IRI) in diabetic mice has not been studied. Therefore, we hypothesize that the lack of ALDH2 activity exacerbates 4HNE‐induced CEC dysfunction which leads to cardiac damage in ALDH2*2 mutant diabetic mice subjected to myocardial IRI. Methods and Results Three weeks after diabetes mellitus (DM) induction, hearts were subjected to IRI either in vivo via left anterior descending artery occlusion and release or ex vivo IRI by using the Langendorff system. The cardiac performance was assessed by conscious echocardiography in mice or by inserting a balloon catheter in the left ventricle in the ex vivo model. Just 3 weeks of DM led to an increase in cardiac 4HNE protein adducts and, cardiac dysfunction, and a decrease in the number of CECs along with reduced myocardial ALDH2 activity in ALDH2*2 mutant diabetic mice compared with their wild‐type counterparts. Systemic pretreatment with Alda‐1 (10 mg/kg per day), an activator of both ALDH2 and ALDH2*2, led to a reduction in myocardial infarct size and dysfunction, and coronary perfusion pressure upon cardiac IRI by increasing CEC population and coronary arteriole opening. Conclusions Low ALDH2 activity exacerbates 4HNE‐mediated CEC injury and thereby cardiac dysfunction in diabetic mouse hearts subjected to IRI, which can be reversed by ALDH2 activation.
Collapse
Affiliation(s)
- Guodong Pan
- Division of Hypertension and Vascular ResearchDepartment of Internal MedicineHenry Ford Health SystemDetroitMI
| | - Bipradas Roy
- Division of Hypertension and Vascular ResearchDepartment of Internal MedicineHenry Ford Health SystemDetroitMI
- Department of PhysiologyWayne State UniversityDetroitMI
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular ResearchDepartment of Internal MedicineHenry Ford Health SystemDetroitMI
- Department of PhysiologyWayne State UniversityDetroitMI
| |
Collapse
|
3
|
Tanaka M, Matsumoto K, Satake R, Yoshida Y, Inoue M, Hasegawa S, Suzuki T, Iwata M, Iguchi K, Nakamura M. Gentamicin-induced hearing loss: A retrospective study using the Food and Drug Administration Adverse Event Reporting System and a toxicological study using drug-gene network analysis. Heliyon 2021; 7:e07429. [PMID: 34401547 PMCID: PMC8353315 DOI: 10.1016/j.heliyon.2021.e07429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/15/2021] [Accepted: 06/24/2021] [Indexed: 11/25/2022] Open
Abstract
The objectives of the study were to evaluate the relationship between gentamicin (GEN) and hearing loss using the Food and Drug Administration Adverse Event Reporting system (FAERS) database and elucidate the potential toxicological mechanism of GEN-induced hearing loss through a drug–gene network analysis. Using the preferred terms and standardized queries from the Medical Dictionary for Regulatory Activities, we calculated the reporting odds ratios (RORs). We extracted GEN-associated genes (seed genes) and analyzed drug−gene interactions using the ClueGO plug-in in the Cytoscape software and the DIseAse MOdule Detection (DIAMOnD) algorithm. The lower limit of the 95% confidence interval (CI) of the ROR for aminoglycosides (AG) antibacterials was over 1, and the ROR was 5.5 (5.1–6.0). We retrieved 17 seed genes related to GEN from the PharmGKB and Drug Gene Interaction databases. In total, 1018 human genes interacting with GEN were investigated using ClueGO. Through Molecular Complex Detection (MCODE) analysis, we identified 17 local gene clusters. The nodes and edges of the highest-ranked local gene cluster named “Cluster 1” were 30 and 433, respectively. According to the ClueGO analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster 1 genes were highly enriched in “oxidative phosphorylation.” According to the ClueGO analysis using ClinVar, Cluster 1 genes were highly enriched in “mitochondrial diseases,” “mitochondrial complex I deficiency,” “hereditary hearing loss and deafness,” and “Leigh syndrome.” We identified 60 GEN-associated genes using the DIAMOnD algorithm. Several GEN-associated genes in the DIAMOnD algorithm were highly enriched in “PI3K-Akt signaling pathway,” “Ras signaling pathway,” “focal adhesion,” “MAPK signaling pathway,” “regulation of actin cytoskeleton,” “oxidative phosphorylation,” and “ECM-receptor interaction.” Our analysis demonstrated an association between several AGs and hearing loss using the FAERS database. Drug−gene network analysis demonstrated that GEN may be associated with oxidative phosphorylation-associated genes and integrin genes, which may be associated with hearing loss.
Collapse
Affiliation(s)
- Mizuki Tanaka
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Japan
| | - Kiyoka Matsumoto
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Japan
| | - Riko Satake
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Japan
| | - Yu Yoshida
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Japan
| | - Misaki Inoue
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Japan
| | - Shiori Hasegawa
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Japan.,Department of Pharmacy, Kobe City Medical Center General Hospital, 2-1-1 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Takaaki Suzuki
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Japan.,Gifu Prefectural Government, 2-1-1 Yabutaminami, Gifu, 500-8570, Japan
| | - Mari Iwata
- Kifune Pharmacy, 2-23-2 Hasuike, Yanaizu-cho, Gifu, 501-6103, Japan
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Japan
| | - Mitsuhiro Nakamura
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Japan
| |
Collapse
|
4
|
Wang H, Zhao H, Sun K, Huang X, Jin L, Feng J. Evolutionary Basis of High-Frequency Hearing in the Cochleae of Echolocators Revealed by Comparative Genomics. Genome Biol Evol 2020; 12:3740-3753. [PMID: 31730196 PMCID: PMC7145703 DOI: 10.1093/gbe/evz250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2019] [Indexed: 12/25/2022] Open
Abstract
High-frequency hearing is important for the survival of both echolocating bats and whales, but our understanding of its genetic basis is scattered and segmented. In this study, we combined RNA-Seq and comparative genomic analyses to obtain insights into the comprehensive gene expression profile of the cochlea and the adaptive evolution of hearing-related genes. A total of 144 genes were found to have been under positive selection in various species of echolocating bats and toothed whales, 34 of which were identified to be related to hearing behavior or auditory processes. Subsequently, multiple physiological processes associated with those genes were found to have adaptively evolved in echolocating bats and toothed whales, including cochlear bony development, antioxidant activity, ion balance, and homeostatic processes, along with signal transduction. In addition, abundant convergent/parallel genes and sites were detected between different pairs of echolocator species; however, no specific hearing-related physiological pathways were enriched by them and almost all of the convergent/parallel signals were selectively neutral, as previously reported. Notably, two adaptive parallel evolved sites in TECPR2 were shown to have been under positive selection, indicating their functional importance for the evolution of echolocation and high-frequency hearing in laryngeal echolocating bats. This study deepens our understanding of the genetic bases underlying high-frequency hearing in the cochlea of echolocating bats and toothed whales.
Collapse
Affiliation(s)
- Hui Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.,College of Life Science, Jilin Agricultural University, Changchun, China
| | - Hanbo Zhao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Xiaobin Huang
- Vector Laboratory for Zoonosis Control and Prevention, Dali University, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.,College of Life Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
5
|
Fitzakerley JL, Trachte GJ. Genetics of guanylyl cyclase pathways in the cochlea and their influence on hearing. Physiol Genomics 2018; 50:780-806. [PMID: 29958079 DOI: 10.1152/physiolgenomics.00056.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although hearing loss is the most common sensory deficit in Western societies, there are no successful pharmacological treatments for this disorder. Recent experiments have demonstrated that manipulation of intracellular cyclic guanosine monophosphate (cGMP) concentrations can have both beneficial and harmful effects on hearing. In this review, we will examine the role of cGMP as a key second messenger involved in many aspects of cochlear function and discuss the known functions of downstream effectors of cGMP in sound processing. The nitric oxide-stimulated soluble guanylyl cyclase system (sGC) and the two natriuretic peptide-stimulated particulate GCs (pGCs) will be more extensively covered because they have been studied most thoroughly. The cochlear GC systems are attractive targets for medical interventions that improve hearing while simultaneously representing an under investigated source of sensorineural hearing loss.
Collapse
Affiliation(s)
- Janet L Fitzakerley
- Department of Biomedical Sciences, University of Minnesota Medical School , Duluth, Minnesota
| | - George J Trachte
- Department of Biomedical Sciences, University of Minnesota Medical School , Duluth, Minnesota
| |
Collapse
|
6
|
Drescher DG, Selvakumar D, Drescher MJ. Analysis of Protein Interactions by Surface Plasmon Resonance. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 110:1-30. [PMID: 29412994 DOI: 10.1016/bs.apcsb.2017.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Surface plasmon resonance is an optical technique that is utilized for detecting molecular interactions, such as interactions that occur between proteins or other classes of molecules. Binding of a mobile molecule (analyte) to a molecule immobilized on a thin metal film (ligand) changes the refractive index of the film. The angle of extinction of light that is completely reflected after polarized light impinges upon the film, is altered and monitored as a change in detector position for a dip in reflected intensity (the surface plasmon resonance phenomenon). Because the method strictly detects mass, there is no need to label the interacting components, thus eliminating possible changes of their molecular properties. In this chapter, we review essential SPR methodology and present applications to basic science and human disease.
Collapse
Affiliation(s)
- Dennis G Drescher
- Wayne State University School of Medicine, Detroit, MI, United States.
| | | | - Marian J Drescher
- Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
7
|
Selvakumar D, Drescher MJ, Deckard NA, Ramakrishnan NA, Morley BJ, Drescher DG. Dopamine D1A directly interacts with otoferlin synaptic pathway proteins: Ca2+ and phosphorylation underlie an NSF-to-AP2mu1 molecular switch. Biochem J 2017; 474:79-104. [PMID: 27821621 PMCID: PMC6310132 DOI: 10.1042/bcj20160690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/15/2016] [Accepted: 11/07/2016] [Indexed: 11/17/2022]
Abstract
Dopamine receptors regulate exocytosis via protein-protein interactions (PPIs) as well as via adenylyl cyclase transduction pathways. Evidence has been obtained for PPIs in inner ear hair cells coupling D1A to soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE)-related proteins snapin, otoferlin, N-ethylmaleimide-sensitive factor (NSF), and adaptor-related protein complex 2, mu 1 (AP2mu1), dependent on [Ca2+] and phosphorylation. Specifically, the carboxy terminus of dopamine D1A was found to directly bind t-SNARE-associated protein snapin in teleost and mammalian hair cell models by yeast two-hybrid (Y2H) and pull-down assays, and snapin directly interacts with hair cell calcium-sensor otoferlin. Surface plasmon resonance (SPR) analysis, competitive pull-downs, and co-immunoprecipitation indicated that these interactions were promoted by Ca2+ and occur together. D1A was also found to separately interact with NSF, but with an inverse dependence on Ca2+ Evidence was obtained, for the first time, that otoferlin domains C2A, C2B, C2D, and C2F interact with NSF and AP2mu1, whereas C2C or C2E do not bind to either protein, representing binding characteristics consistent with respective inclusion or omission in individual C2 domains of the tyrosine motif YXXΦ. In competitive pull-down assays, as predicted by KD values from SPR (+Ca2+), C2F pulled down primarily NSF as opposed to AP2mu1. Phosphorylation of AP2mu1 gave rise to a reversal: an increase in binding by C2F to phosphorylated AP2mu1 was accompanied by a decrease in binding to NSF, consistent with a molecular switch for otoferlin from membrane fusion (NSF) to endocytosis (AP2mu1). An increase in phosphorylated AP2mu1 at the base of the cochlear inner hair cell was the observed response elicited by a dopamine D1A agonist, as predicted.
Collapse
Affiliation(s)
- Dakshnamurthy Selvakumar
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, U.S.A
| | - Marian J Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, U.S.A.
| | - Nathan A Deckard
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, U.S.A
| | - Neeliyath A Ramakrishnan
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, U.S.A
| | - Barbara J Morley
- Boys Town National Research Hospital, Omaha, Nebraska 68131, U.S.A
| | - Dennis G Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, U.S.A
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, U.S.A
| |
Collapse
|
8
|
Cardiac Mitochondrial Respiratory Dysfunction and Tissue Damage in Chronic Hyperglycemia Correlate with Reduced Aldehyde Dehydrogenase-2 Activity. PLoS One 2016; 11:e0163158. [PMID: 27736868 PMCID: PMC5063328 DOI: 10.1371/journal.pone.0163158] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 09/02/2016] [Indexed: 12/25/2022] Open
Abstract
Aldehyde dehydrogenase (ALDH) 2 is a mitochondrial isozyme of the heart involved in the metabolism of toxic aldehydes produced from oxidative stress. We hypothesized that hyperglycemia-mediated decrease in ALDH2 activity may impair mitochondrial respiration and ultimately result in cardiac damage. A single dose (65 mg/kg; i.p.) streptozotocin injection to rats resulted in hyperglycemia with blood glucose levels of 443 ± 9 mg/dl versus 121 ± 7 mg/dl in control animals, p<0.0001, N = 7–11. After 6 months of diabetes mellitus (DM) induction, the rats were sacrificed after recording the functionality of their hearts. Increase in the cardiomyocyte cross sectional area (446 ± 32 μm2Vs 221 ± 10 μm2; p<0.0001) indicated cardiac hypertrophy in DM rats. Both diastolic and systolic dysfunctions were observed with DM rats compared to controls. Most importantly, myocardial ALDH2 activity and levels were reduced, and immunostaining for 4HNE protein adducts was increased in DM hearts compared to controls. The mitochondrial oxygen consumption rate (OCR), an index of mitochondrial respiration, was decreased in mitochondria isolated from DM hearts compared to controls (p<0.0001). Furthermore, the rate of mitochondrial respiration and the increase in carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP)-induced maximal respiration were also decreased with chronic hyperglycemia. Chronic hyperglycemia reduced mitochondrial OXPHOS proteins. Reduced ALDH2 activity was correlated with mitochondrial dysfunction, pathological remodeling and cardiac dysfunction, respectively. Our results suggest that chronic hyperglycemia reduces ALDH2 activity, leading to mitochondrial respiratory dysfunction and consequently cardiac damage and dysfunction.
Collapse
|
9
|
Ohlemiller KK, Kiener AL, Gagnon PM. QTL Mapping of Endocochlear Potential Differences between C57BL/6J and BALB/cJ mice. J Assoc Res Otolaryngol 2016; 17:173-94. [PMID: 26980469 DOI: 10.1007/s10162-016-0558-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/25/2016] [Indexed: 12/18/2022] Open
Abstract
We reported earlier that the endocochlear potential (EP) differs between C57BL/6J (B6) and BALB/cJ (BALB) mice, being lower in BALBs by about 10 mV (Ohlemiller et al. Hear Res 220: 10-26, 2006). This difference corresponds to strain differences with respect to the density of marginal cells in cochlear stria vascularis. After about 1 year of age, BALB mice also tend toward EP reduction that correlates with further marginal cell loss. We therefore suggested that early sub-clinical features of the BALB stria vascularis may predispose these mice to a condition modeling Schuknecht's strial presbycusis. We further reported (Ohlemiller et al. J Assoc Res Otolaryngol 12: 45-58, 2011) that the acute effects of a 2-h 110 dB SPL noise exposure differ between B6 and BALB mice, such that the EP remains unchanged in B6 mice, but is reduced by 40-50 mV in BALBs. In about 25 % of BALBs, the EP does not completely recover, so that permanent EP reduction may contribute to noise-induced permanent threshold shifts in BALBs. To identify genes and alleles that may promote natural EP variation as well as noise-related EP reduction in BALB mice, we have mapped related quantitative trait loci (QTLs) using 12 recombinant inbred (RI) strains formed from B6 and BALB (CxB1-CxB12). EP and strial marginal cell density were measured in B6 mice, BALB mice, their F1 hybrids, and RI mice without noise exposure, and 1-3 h after broadband noise (4-45 kHz, 110 dB SPL, 2 h). For unexposed mice, the strain distribution patterns for EP and marginal cell density were used to generate preliminary QTL maps for both EP and marginal cell density. Six QTL regions were at least statistically suggestive, including a significant QTL for marginal cell density on chromosome 12 that overlapped a weak QTL for EP variation. This region, termed Maced (Marginal cell density QTL) supports the notion of marginal cell density as a genetically influenced contributor to natural EP variation. Candidate genes for Maced notably include Foxg1, Foxa1, Akap6, Nkx2-1, and Pax9. Noise exposure produced significant EP reductions in two RI strains as well as significant EP increases in two RI strains. QTL mapping of the EP in noise-exposed RI mice yielded four suggestive regions. Two of these overlapped with QTL regions we previously identified for noise-related EP reduction in CBA/J mice (Ohlemiller et al. Hear Res 260: 47-53, 2010) on chromosomes 5 and 18 (Nirep). The present map may narrow the Nirep interval to a ~10-Mb region of proximal Chr. 18 that includes Zeb1, Arhgap12, Mpp7, and Gjd4. This study marks the first exploration of natural gene variants that modulate the EP. Their orthologs may underlie some human hearing loss that originates in the lateral wall.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Department of Otolaryngology, Central Institute for the Deaf at Washington University School of Medicine, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO, 63110, USA.
| | - Anna L Kiener
- Department of Speech and Hearing Science, Ohio State University, Columbus, OH, USA
| | - Patricia M Gagnon
- Department of Otolaryngology, Central Institute for the Deaf at Washington University School of Medicine, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO, 63110, USA
| |
Collapse
|
10
|
Drescher DG, Dakshnamurthy S, Drescher MJ, Ramakrishnan NA. Surface Plasmon Resonance (SPR) Analysis of Binding Interactions of Inner-Ear Proteins. Methods Mol Biol 2016; 1427:165-187. [PMID: 27259927 DOI: 10.1007/978-1-4939-3615-1_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Surface plasmon resonance is an optical technique that is utilized for detecting molecular interactions. Binding of a mobile molecule (analyte) to a molecule immobilized on a thin metal film (ligand) changes the refractive index of the film. The angle of extinction of light that is completely reflected after polarized light impinges upon the film, is altered, and monitored as a change in detector position for a dip in reflected intensity (the surface plasmon resonance phenomenon). Because the method strictly detects mass, there is no need to label the interacting components, thus eliminating possible changes of their molecular properties. We have utilized surface plasmon resonance to study interaction of proteins of inner-ear sensory epithelia.
Collapse
Affiliation(s)
- Dennis G Drescher
- Departments of Otolaryngology and Biochemistry-Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA.
| | - Selvakumar Dakshnamurthy
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Marian J Drescher
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Neeliyath A Ramakrishnan
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
11
|
Pan G, Deshpande M, Thandavarayan RA, Palaniyandi SS. ALDH2 Inhibition Potentiates High Glucose Stress-Induced Injury in Cultured Cardiomyocytes. J Diabetes Res 2016; 2016:1390861. [PMID: 27882330 PMCID: PMC5110883 DOI: 10.1155/2016/1390861] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/26/2016] [Accepted: 08/22/2016] [Indexed: 01/27/2023] Open
Abstract
Aldehyde dehydrogenase (ALDH) gene superfamily consists of 19 isozymes. They are present in various organs and involved in metabolizing aldehydes that are biologically generated. For instance, ALDH2, a cardiac mitochondrial ALDH isozyme, is known to detoxify 4-hydroxy-2-nonenal, a reactive aldehyde produced upon lipid peroxidation in diabetic conditions. We hypothesized that inhibition of ALDH leads to the accumulation of unmetabolized 4HNE and consequently exacerbates injury in cells subjected to high glucose stress. H9C2 cardiomyocyte cell lines were pretreated with 10 μM disulfiram (DSF), an inhibitor of ALDH2 or vehicle (DMSO) for 2 hours, and then subjected to high glucose stress {33 mM D-glucose (HG) or 33 mM D-mannitol as an osmotic control (Ctrl)} for 24 hrs. The decrease in ALDH2 activity with DSF pretreatment was higher in HG group when compared to Ctrl group. Increased 4HNE adduct formation with DSF pretreatment was higher in HG group compared to Ctrl group. Pretreatment with DSF leads to potentiated HG-induced cell death in cultured H9C2 cardiomyocytes by lowering mitochondrial membrane potential. Our results indicate that ALDH2 activity is important in preventing high glucose induced cellular dysfunction.
Collapse
Affiliation(s)
- Guodong Pan
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA
| | - Mandar Deshpande
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA
| | - Rajarajan A. Thandavarayan
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit, MI 48202, USA
- *Suresh Selvaraj Palaniyandi:
| |
Collapse
|
12
|
Alawieh A, Mondello S, Kobeissy F, Shibbani K, Bassim M. Proteomics studies in inner ear disorders: pathophysiology and biomarkers. Expert Rev Proteomics 2015; 12:185-96. [PMID: 25795149 DOI: 10.1586/14789450.2015.1024228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although proteomics has been exploited in a wide range of diseases for identification of biomarkers and pathophysiological mechanisms, there are still biomedical disciplines such as otology where proteomics platforms are underused due to technical challenges and/or complex features of the disease. Thus, in the past few years, healthcare and scientific agencies have advocated the development and adoption of proteomic technologies in otological research. However, few studies have been conducted and limited literature is available in this area. Here, we present the state of the art of proteomics in otology, discussing the substantial evidence from recent experimental models and clinical studies in inner-ear conditions. We also delineate a series of critical issues including minute size of the inner ear, delicacy and poor accessibility of tissue that researchers face while undertaking otology proteomics research. Furthermore, we provide perspective to enhance the impact and lead to the clinical implementation of these proteomics-based strategies.
Collapse
Affiliation(s)
- Ali Alawieh
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
13
|
Impaired ALDH2 activity decreases the mitochondrial respiration in H9C2 cardiomyocytes. Cell Signal 2015; 28:1-6. [PMID: 26577527 DOI: 10.1016/j.cellsig.2015.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/02/2015] [Accepted: 11/09/2015] [Indexed: 12/26/2022]
Abstract
Reactive oxygen species (ROS)-mediated reactive aldehydes induce cellular stress. In cardiovascular diseases such as ischemia-reperfusion injury, lipid-peroxidation derived reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE) are known to contribute to the pathogenesis. 4HNE is involved in ROS formation, abnormal calcium handling and more importantly defective mitochondrial respiration. Aldehyde dehydrogenase (ALDH) superfamily contains NAD(P)(+)-dependent isozymes which can detoxify endogenous and exogenous aldehydes into non-toxic carboxylic acids. Therefore we hypothesize that 4HNE afflicts mitochondrial respiration and leads to cell death by impairing ALDH2 activity in cultured H9C2 cardiomyocyte cell lines. H9C2 cardiomyocytes were treated with 25, 50 and 75 μM 4HNE and its vehicle, ethanol as well as 25, 50 and 75 μM disulfiram (DSF), an inhibitor of ALDH2 and its vehicle (DMSO) for 4 h. 4HNE significantly decreased ALDH2 activity, ALDH2 protein levels, mitochondrial respiration and mitochondrial respiratory reserve capacity, and increased 4HNE adduct formation and cell death in cultured H9C2 cardiomyocytes. ALDH2 inhibition by DSF and ALDH2 siRNA attenuated ALDH2 activity besides reducing ALDH2 levels, mitochondrial respiration and mitochondrial respiratory reserve capacity and increased cell death. Our results indicate that ALDH2 impairment can lead to poor mitochondrial respiration and increased cell death in cultured H9C2 cardiomyocytes.
Collapse
|
14
|
Farooq SM, Boppana NB, Asokan D, Sekaran SD, Shankar EM, Li C, Gopal K, Bakar SA, Karthik HS, Ebrahim AS. C-phycocyanin confers protection against oxalate-mediated oxidative stress and mitochondrial dysfunctions in MDCK cells. PLoS One 2014; 9:e93056. [PMID: 24691130 PMCID: PMC3972226 DOI: 10.1371/journal.pone.0093056] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 03/02/2014] [Indexed: 12/04/2022] Open
Abstract
Oxalate toxicity is mediated through generation of reactive oxygen species (ROS) via a process that is partly dependent on mitochondrial dysfunction. Here, we investigated whether C-phycocyanin (CP) could protect against oxidative stress-mediated intracellular damage triggered by oxalate in MDCK cells. DCFDA, a fluorescence-based probe and hexanoyl-lysine adduct (HEL), an oxidative stress marker were used to investigate the effect of CP on oxalate-induced ROS production and membrane lipid peroxidation (LPO). The role of CP against oxalate-induced oxidative stress was studied by the evaluation of mitochondrial membrane potential by JC1 fluorescein staining, quantification of ATP synthesis and stress-induced MAP kinases (JNK/SAPK and ERK1/2). Our results revealed that oxalate-induced cells show markedly increased ROS levels and HEL protein expression that were significantly decreased following pre-treatment with CP. Further, JC1 staining showed that CP pre-treatment conferred significant protection from mitochondrial membrane permeability and increased ATP production in CP-treated cells than oxalate-alone-treated cells. In addition, CP treated cells significantly decreased the expression of phosphorylated JNK/SAPK and ERK1/2 as compared to oxalate-alone-treated cells. We concluded that CP could be used as a potential free radical-scavenging therapeutic strategy against oxidative stress-associated diseases including urolithiasis.
Collapse
Affiliation(s)
- Shukkur M. Farooq
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, United States of America
- * E-mail: (ASE); ) (SMF); ) (EMS)
| | - Nithin B. Boppana
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Devarajan Asokan
- Department of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shamala D. Sekaran
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Esaki M. Shankar
- Tropical Infectious Diseases Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail: (ASE); ) (SMF); ) (EMS)
| | - Chunying Li
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
| | - Kaliappan Gopal
- Department of Orthopedics, National Orthopedics Center for Excellence in Research and Learning (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sazaly A. Bakar
- Tropical Infectious Diseases Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Harve S. Karthik
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Abdul S. Ebrahim
- Department of Internal Medicine, Wayne State University, Detroit, Michigan, United States of America
- * E-mail: (ASE); ) (SMF); ) (EMS)
| |
Collapse
|
15
|
Mali VR, Ning R, Chen J, Yang XP, Xu J, Palaniyandi SS. Impairment of aldehyde dehydrogenase-2 by 4-hydroxy-2-nonenal adduct formation and cardiomyocyte hypertrophy in mice fed a high-fat diet and injected with low-dose streptozotocin. Exp Biol Med (Maywood) 2014; 239:610-8. [PMID: 24651616 DOI: 10.1177/1535370213520109] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE) are generated in the myocardium in cardiac disease. 4HNE and other toxic aldehydes form adducts with proteins, leading to cell damage and organ dysfunction. Aldehyde dehydrogenases (ALDHs) metabolize toxic aldehydes such as 4HNE into nontoxic metabolites. Both ALDH levels and activity are reduced in cardiac disease. We examined whether reduced ALDH2 activity contributes to cardiomyocyte hypertrophy in mice fed a high-fat diet and injected with low-dose streptozotocin (STZ). These mice exhibited most of the characteristics of metabolic syndrome/type-2 diabetes mellitus (DM): increased blood glucose levels depicting hyperglycemia (415.2 ± 18.7 mg/dL vs. 265.2 ± 7.6 mg/dL; P < 0.05), glucose intolerance with normal plasma insulin levels, suggesting insulin resistance and obesity as evident from increased weight (44 ± 3.1 vs. 34.50 ± 1.32 g; P < 0.05) and body fat. Myocardial ALDH2 activity was 60% lower in these mice (0.1 ± 0.012 vs. 0.04 ± 0.015 µmol/min/mg protein; P < 0.05). Myocardial 4HNE levels were also elevated in the hyperglycemic hearts. Co-immunoprecipitation study showed that 4HNE formed adducts on myocardial ALDH2 protein in the mice exhibiting metabolic syndrome/type-2 DM, and they had obvious cardiac hypertrophy compared with controls as evident from increased heart weight (HW), HW to tibial length ratio, left ventricular (LV) mass and cardiomyocyte hypertrophy. Cardiomyocyte hypertrophy was correlated inversely with ALDH2 activity (R (2 )= 0.7; P < 0.05). Finally, cardiac dysfunction was observed in mice with metabolic syndrome/type-2 DM. Therefore, we conclude that reduced ALDH2 activity may contribute to cardiac hypertrophy and dysfunction in mice presenting with some of the characteristics of metabolic syndrome/type-2 DM when on a high-fat diet and low-dose STZ injection.
Collapse
Affiliation(s)
- Vishal R Mali
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
16
|
Gerka-Stuyt J, Au A, Peachey NS, Alagramam KN. Transient receptor potential melastatin 1: a hair cell transduction channel candidate. PLoS One 2013; 8:e77213. [PMID: 24146970 PMCID: PMC3795643 DOI: 10.1371/journal.pone.0077213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/03/2013] [Indexed: 11/29/2022] Open
Abstract
Sound and head movements are perceived through sensory hair cells in the inner ear. Mounting evidence indicates that this process is initiated by the opening of mechanically sensitive calcium-permeable channels, also referred to as the mechanoelectrical transducer (MET) channels, reported to be around the tips of all but the tallest stereocilia. However, the identity of MET channel remains elusive. Literature suggests that the MET channel is a non-selective cation channel with a high Ca2+ permeability and ∼100 picosiemens conductance. These characteristics make members of the transient receptor potential (TRP) superfamily likely candidates for this role. One of these candidates is the transient receptor potential melastatin 1 protein (TRPM1), which is expressed in various cells types within the cochlea of the mouse including the hair cells. Recent studies demonstrate that mutations in the TRPM1 gene underlie the inherited retinal disease complete congenital stationary night blindness in humans and depolarizing bipolar cell dysfunction in the mouse retina, but auditory function was not assessed. Here we investigate the role of Trpm1 in hearing and as a possible hair cell MET channel using mice homozygous for the null allele of Trpm1 (Trpm1−/−) or a missense mutation in the pore domain of TRPM1 (Trpm1tvrm27/tvrm27). Hearing thresholds were evaluated in adult (4–5 months old) mice with auditory-evoked brain stem responses. Our data shows no statistically significant difference in hearing thresholds in Trpm1−/− or Trpm1tvrm27/tvrm27 mutants compared to littermate controls. Further, none of the mutant mice showed any sign of balance disorder, such as head bobbing or circling. These data suggest that TRPM1 is not essential for development of hearing or balance and it is unlikely that TRPM1 is a component of the hair cell MET channel.
Collapse
Affiliation(s)
- John Gerka-Stuyt
- Otolaryngology Head and Neck Surgery, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Adrian Au
- Otolaryngology Head and Neck Surgery, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Neal S. Peachey
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States of America
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kumar N. Alagramam
- Otolaryngology Head and Neck Surgery, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
17
|
Darville LN, Sokolowski BH. In-depth proteomic analysis of mouse cochlear sensory epithelium by mass spectrometry. J Proteome Res 2013; 12:3620-30. [PMID: 23721421 PMCID: PMC3777728 DOI: 10.1021/pr4001338] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Proteomic analysis of sensory organs such as the cochlea is challenging due to its small size and difficulties with membrane protein isolation. Mass spectrometry in conjunction with separation methods can provide a more comprehensive proteome, because of the ability to enrich protein samples, detect hydrophobic proteins, and identify low abundant proteins by reducing the proteome dynamic range. GELFrEE as well as different separation and digestion techniques were combined with FASP and nanoLC-MS/MS to obtain an in-depth proteome analysis of cochlear sensory epithelium from 30-day-old mice. Digestion with LysC/trypsin followed by SCX fractionation and multiple nanoLC-MS/MS analyses identified 3773 proteins with a 1% FDR. Of these, 694 protein IDs were in the plasmalemma. Protein IDs obtained by combining outcomes from GELFrEE/LysC/trypsin with GELFrEE/trypsin/trypsin generated 2779 proteins, of which 606 additional proteins were identified using the GELFrEE/LysC/trypsin approach. Combining results from the different techniques resulted in a total of 4620 IDs, including a number of previously unreported proteins. GO analyses showed high expression of binding and catalytic proteins as well as proteins associated with metabolism. The results show that the application of multiple techniques is needed to provide an exhaustive proteome of the cochlear sensory epithelium that includes many membrane proteins. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD000231.
Collapse
Affiliation(s)
- Lancia N.F. Darville
- University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd. Department of Otolaryngology – HNS, Otology Laboratory, MDC83, Tampa FL 33647
| | - Bernd H.A. Sokolowski
- University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd. Department of Otolaryngology – HNS, Otology Laboratory, MDC83, Tampa FL 33647
| |
Collapse
|
18
|
Selvakumar D, Drescher MJ, Drescher DG. Cyclic nucleotide-gated channel α-3 (CNGA3) interacts with stereocilia tip-link cadherin 23 + exon 68 or alternatively with myosin VIIa, two proteins required for hair cell mechanotransduction. J Biol Chem 2013; 288:7215-29. [PMID: 23329832 DOI: 10.1074/jbc.m112.443226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we obtained evidence for a photoreceptor/olfactory type of CNGA3 transcript in a purified teleost vestibular hair cell preparation with immunolocalization of CNGA3 protein to stereocilia of teleost vestibular and mammalian cochlear hair cells. The carboxyl terminus of highly Ca(2+)-permeable CNGA3 expressed in the mammalian organ of Corti and saccular hair cells was found to interact with an intracellular domain of microfibril interface-located protein 1 (EMILIN 1), a member of the elastin superfamily, also immunolocalizd to hair cell stereocilia (Selvakumar, D., Drescher, M. J., Dowdall, J. R., Khan, K. M., Hatfield, J. S., Ramakrishnan, N. A., and Drescher, D. G. (2012) Biochem. J. 443, 463-476). Here, we provide evidence for organ of Corti proteins, of Ca(2+)-dependent binding of the amino terminus of CNGA3 specifically to the carboxyl terminus of stereocilia tip-link protein CDH23 +68 (cadherin 23 with expressed exon 68) by yeast two-hybrid mating and co-transformation protocols, pulldown assays, and surface plasmon resonance analysis. Myosin VIIa, required for adaptation of hair cell mechanotransduction (MET) channel(s), competed with CDH23 +68, with direct Ca(2+)-dependent binding to the amino terminus of CNGA3. Based upon the premise that hair cell stereocilia tip-link proteins are closely coupled with MET, these results are consistent with the possibility that CNGA3 participates in hair-cell MET. Together with the demonstration of protein-protein interaction between HCN1 and tip-link protein protocadherin 15 CD3 (Ramakrishnan, N. A., Drescher, M. J., Barretto, R. L., Beisel, K. W., Hatfield, J. S., and Drescher, D. G. (2009) J. Biol. Chem. 284, 3227-3238; Ramakrishnan, N. A., Drescher, M. J., Khan, K. M., Hatfield, J. S., and Drescher, D. G. (2012) J. Biol. Chem. 287, 37628-37646), a protein-protein interaction for CNGA3 and a second tip-link protein, CDH23 +68, further suggests possible association of two different channels with a single stereocilia tip link.
Collapse
Affiliation(s)
- Dakshnamurthy Selvakumar
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
19
|
Ramakrishnan NA, Drescher MJ, Khan KM, Hatfield JS, Drescher DG. HCN1 and HCN2 proteins are expressed in cochlear hair cells: HCN1 can form a ternary complex with protocadherin 15 CD3 and F-actin-binding filamin A or can interact with HCN2. J Biol Chem 2012; 287:37628-46. [PMID: 22948144 DOI: 10.1074/jbc.m112.375832] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A unique coupling between HCN1 and stereociliary tip-link protein protocadherin 15 has been described for a teleost vestibular hair-cell model and mammalian organ of Corti (OC) (Ramakrishnan, N. A., Drescher, M. J., Barretto, R. L., Beisel, K. W., Hatfield, J. S., and Drescher, D. G. (2009) J. Biol. Chem. 284, 3227-3238). We now show that Ca(2+)-dependent interaction of the organ of Corti HCN1 and protocadherin 15 CD3 is mediated by amino-terminal sequence specific to HCN1 and is not replicated by analogous specific peptides for HCN2 or HCN4 nor by amino-terminal sequence conserved across HCN isoforms utilized in channel formation. Furthermore, the HCN1-specific peptide binds both phosphatidylinositol (3,4,5)-trisphosphate and phosphatidylinositol (4,5)-bisphosphate but not phosphatidylinositol 4-phosphate. Singly isolated cochlear inner and outer hair cells express HCN1 transcript, and HCN1 and HCN2 protein is immunolocalized to hair-cell stereocilia by both z-stack confocal and pre-embedding EM immunogold microscopy, with stereociliary tip-link and subcuticular plate sites. Quantitative PCR indicates HCN1/HCN2/HCN3/HCN4 = 9:9:1:89 in OC of the wild-type mouse, with HCN4 protein primarily attributable to inner sulcus cells. A mutant form of HCN1 mRNA and protein is expressed in the OC of an HCN1 mutant, corresponding to a full-length sequence with the in-frame deletion of pore-S6 domains, predicted by construct. The mutant transcript of HCN1 is ∼9-fold elevated relative to wild-type levels, possibly representing molecular compensation, with unsubstantial changes in HCN2, HCN3, and HCN4. Immunoprecipitation protocols indicate alternate interactions of full-length proteins; HCN1 can interact with protocadherin 15 CD3 and F-actin-binding filamin A forming a complex that does not include HCN2, or HCN1 can interact with HCN2 forming a complex without protocadherin 15 CD3 but including F-actin-binding fascin-2.
Collapse
Affiliation(s)
- Neeliyath A Ramakrishnan
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|