1
|
Pocivavsek A, Schwarcz R, Erhardt S. Neuroactive Kynurenines as Pharmacological Targets: New Experimental Tools and Exciting Therapeutic Opportunities. Pharmacol Rev 2024; 76:978-1008. [PMID: 39304346 DOI: 10.1124/pharmrev.124.000239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Both preclinical and clinical studies implicate functional impairments of several neuroactive metabolites of the kynurenine pathway (KP), the major degradative cascade of the essential amino acid tryptophan in mammals, in the pathophysiology of neurologic and psychiatric diseases. A number of KP enzymes, such as tryptophan 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenases (IDO1 and IDO2), kynurenine aminotransferases (KATs), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3-HAO), and quinolinic acid phosphoribosyltransferase (QPRT), control brain KP metabolism in health and disease and are therefore increasingly considered to be promising targets for the treatment of disorders of the nervous system. Understanding the distribution, cellular expression, and regulation of KP enzymes and KP metabolites in the brain is therefore critical for the conceptualization and implementation of successful therapeutic strategies. SIGNIFICANCE STATEMENT: Studies have implicated the kynurenine pathway of tryptophan in the pathophysiology of neurologic and psychiatric diseases. Key enzymes of the kynurenine pathway regulate brain metabolism in both health and disease, making them promising targets for treating these disorders. Therefore, understanding the distribution, cellular expression, and regulation of these enzymes and metabolites in the brain is critical for developing effective therapeutic strategies. This review endeavors to describe these processes in detail.
Collapse
Affiliation(s)
- Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Robert Schwarcz
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Sophie Erhardt
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| |
Collapse
|
2
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
3
|
Duan J, Sun J, Jiang T, Ma X, Li X, Wang Y, Zhang F, Liu C. Podophyllotoxin-mediated neurotoxicity via the microbiota-gut-brain axis in SD rats based on the toxicological evidence chain (TEC) concept. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168106. [PMID: 37884145 DOI: 10.1016/j.scitotenv.2023.168106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Podophyllotoxin (PPT) is a naturally occurring aryltetralin lignan. However, its clinical application has been limited due to its neurotoxicity, the mechanism of which remains unclear. This study aimed to investigate the potential involvement of the microbiota-gut-brain (MGB) axis in PPT-induced neurotoxicity using the toxicological evidence chain concept. Our approach included behavioral testing in rats, evaluation of colon and hippocampal pathological changes, examination of proinflammatory factors, brain-gut peptides, and an in-depth analysis of gut microbiome and metabolic profiles. Our results demonstrated that PPT exposure compromised cognitive functions, induced damage to the colon and hippocampus, and increased intestinal permeability in rats. Furthermore, it elevated proinflammatory factors, particularly TNF-α and IL-6, while causing disruptions in the gut microbiota, favoring Escherichia-Shigella over Lactobacillus. Significant alterations in metabolic profiles in feces, serum, and hippocampus, particularly in tryptophan metabolism with a correlation to inflammatory factors and Escherichia-Shigella, were also observed. Our findings suggest that PPT promotes the enrichment of Escherichia-Shigella leading to inflammatory factor production and alterations in kynurenine metabolism in the hippocampus, potentially contributing to neurotoxicity. The study provides novel insights into the mechanistic pathways of PPT-induced neurotoxicity, emphasizing the role of the MGB axis and offering avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Jiajia Duan
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Jiaxing Sun
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Tao Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Xiao Ma
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Xuejiao Li
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Yuming Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 301617
| | - Fangfang Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 301617
| | - Chuanxin Liu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003.
| |
Collapse
|
4
|
Mingoti MED, Bertollo AG, de Oliveira T, Ignácio ZM. Stress and Kynurenine-Inflammation Pathway in Major Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:163-190. [PMID: 36949310 DOI: 10.1007/978-981-19-7376-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Major depressive disorder (MDD) is one of the most prevalent disorders and causes severe damage to people's quality of life. Lifelong stress is one of the major villains in triggering MDD. Studies have shown that both stress and MDD, especially the more severe conditions of the disorder, are associated with inflammation and neuroinflammation and the relationship to an imbalance in tryptophan metabolism towards the kynurenine pathway (KP) through the enzymes indoleamine-2,3-dioxygenase (IDO), which is mainly stimulated by pro-inflammatory cytokines and tryptophan-2,3-dioxygenase (TDO) which is activated primarily by glucocorticoids. Considering that several pathophysiological mechanisms of MDD underlie or interact with biological processes from KP metabolites, this chapter addresses and discusses the function of these mechanisms. Activities triggered by stress and the hypothalamic-pituitary-adrenal (HPA) axis and immune and inflammatory processes, in addition to epigenetic phenomena and the gut-brain axis (GBA), are addressed. Finally, studies on the function and mechanisms of physical exercise in the KP metabolism and MDD are pointed out and discussed.
Collapse
Affiliation(s)
- Maiqueli Eduarda Dama Mingoti
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Amanda Gollo Bertollo
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Tácio de Oliveira
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| |
Collapse
|
5
|
Badawy AB. Tryptophan metabolism and disposition in cancer biology and immunotherapy. Biosci Rep 2022; 42:BSR20221682. [PMID: 36286592 PMCID: PMC9653095 DOI: 10.1042/bsr20221682] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 08/31/2023] Open
Abstract
Tumours utilise tryptophan (Trp) and its metabolites to promote their growth and evade host defences. They recruit Trp through up-regulation of Trp transporters, and up-regulate key enzymes of Trp degradation and down-regulate others. Thus, Trp 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenase 1 (IDO1), IDO2, N'-formylkynurenine formamidase (FAMID) and Kyn aminotransferase 1 (KAT1) are all up-regulated in many cancer types, whereas Kyn monooxygenase (KMO), kynureninase (KYNU), 2-amino-3-carboxymuconic acid-6-semialdehyde decarboxylase (ACMSD) and quinolinate phosphoribosyltransferase (QPRT) are up-regulated in a few, but down-regulated in many, cancers. This results in accumulation of the aryl hydrocarbon receptor (AhR) ligand kynurenic acid and in depriving the host of NAD+ by blocking its synthesis from quinolinic acid. The host loses more NAD+ by up-regulation of the NAD+-consuming poly (ADP-ribose) polymerases (PARPs) and the protein acetylaters SIRTs. The nicotinamide arising from PARP and SIRT activation can be recycled in tumours to NAD+ by the up-regulated key enzymes of the salvage pathway. Up-regulation of the Trp transporters SLC1A5 and SLC7A5 is associated mostly with that of TDO2 = FAMID > KAT1 > IDO2 > IDO1. Tumours down-regulate enzymes of serotonin synthesis, thereby removing competition for Trp from the serotonin pathway. Strategies for combating tumoral immune escape could involve inhibition of Trp transport into tumours, inhibition of TDO and IDOs, inhibition of FAMID, inhibition of KAT and KYNU, inhibition of NMPRT and NMNAT, inhibition of the AhR, IL-4I1, PARPs and SIRTs, and by decreasing plasma free Trp availability to tumours by albumin infusion or antilipolytic agents and inhibition of glucocorticoid induction of TDO by glucocorticoid antagonism.
Collapse
Affiliation(s)
- Abdulla A.-B. Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, Wales, U.K
| |
Collapse
|
6
|
Mithaiwala MN, Santana-Coelho D, Porter GA, O’Connor JC. Neuroinflammation and the Kynurenine Pathway in CNS Disease: Molecular Mechanisms and Therapeutic Implications. Cells 2021; 10:1548. [PMID: 34205235 PMCID: PMC8235708 DOI: 10.3390/cells10061548] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
Diseases of the central nervous system (CNS) remain a significant health, social and economic problem around the globe. The development of therapeutic strategies for CNS conditions has suffered due to a poor understanding of the underlying pathologies that manifest them. Understanding common etiological origins at the cellular and molecular level is essential to enhance the development of efficacious and targeted treatment options. Over the years, neuroinflammation has been posited as a common link between multiple neurological, neurodegenerative and neuropsychiatric disorders. Processes that precipitate neuroinflammatory conditions including genetics, infections, physical injury and psychosocial factors, like stress and trauma, closely link dysregulation in kynurenine pathway (KP) of tryptophan metabolism as a possible pathophysiological factor that 'fuel the fire' in CNS diseases. In this study, we aim to review emerging evidence that provide mechanistic insights between different CNS disorders, neuroinflammation and the KP. We provide a thorough overview of the different branches of the KP pertinent to CNS disease pathology that have therapeutic implications for the development of selected and efficacious treatment strategies.
Collapse
Affiliation(s)
- Mustafa N. Mithaiwala
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Danielle Santana-Coelho
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Grace A. Porter
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Jason C. O’Connor
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
- Department of Research, Audie L. Murphy VA Hospital, South Texas Veterans Heath System, San Antonio, TX 78229, USA
| |
Collapse
|
7
|
LI H, CUI L, ZHANG G, ZHANG M, JIAO L, WU W. [Quantitative analysis of tryptophan and its metabolites in urine by ultra performance liquid chromatography-tandem mass spectrometry]. Se Pu 2021; 39:518-525. [PMID: 34227336 PMCID: PMC9403997 DOI: 10.3724/sp.j.1123.2020.06022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 11/25/2022] Open
Abstract
Tryptophan (Trp), also known as α-amino β-indolepropionic acid, is an essential amino acid, which is involved in various physiological processes. Studies have shown that tumors, infectious diseases, and neurological diseases are accompanied by Trp-related metabolic disorders. Understanding the excretion of Trp and its metabolites in normal individuals is of great significance for treating Trp-related diseases and monitoring the health. A rapid quantitative method was developed based on ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Further, this method was applied to the simultaneous determination of Trp and its metabolites, including kynurenine (Kyn), kynurenic acid (KA), 3-hydroxykynurenine (3-OH-Kyn), 3-hydroxyanthranilic acid (3-OH-AA), xanthurenic acid (XA), 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA). The excretion and amount of target compounds in random urine samples collected from healthy participants were studied using this method. Urine samples were collected from healthy male volunteers (between 20-22 years old) without any diet and exercise restrictions. Urine samples were collected between 11∶00-13∶00 daily for 10 d. Thereafter, the urine samples were diluted, centrifuged, and subjected to pre-column derivatization with dansyl chloride (DNS-Cl). Caffeic acid (CA) was used as the internal control. Later, the derivatives were detected using triple quadrupole mass spectrometry with electron pray ionization (ESI) in positive and multi reaction monitoring (MRM) modes. The samples were separated using a Thermo C18 column (50 mm×3 mm, 2.7 μm) with 0.1% aqueous formic acid aqueous solution and methanol as mobile phases at a flow rate of 0.2 mL/min. The three most abundant ions for each derivative were selected for downstream analysis, and the internal control was used for quantification. The polarity and molecular weight of the compounds were found to be altered effectively after DNS-Cl derivatization treatment. The dansyl group effectively altered the polarities of the derivatives, such that their retention behaviors in the reverse elution system were similar and they were well separated. The interference due to impurities was effectively eliminated using the MRM mode. The results showed significant linear correlation, since the correlation coefficients were greater than 0.9740. The recoveries were between 93.24%-107.65%, and the LODs were 0.005-0.5 ng/mL for the eight compounds. Trp prototype and the seven target metabolites, including 3-OH-Kyn, 3-OH-AA, XA, Kyn, KA, 5-HIAA, and 5-HT generated through Trp-5-HT and Trp-Kyn pathways were detected in the urine samples. These results indicated that Trp was excreted in a prototypic form or after being metabolized. The level of the target compounds in random urine samples of individuals were 0.99-3.72 (3-OH-Kyn), 2.51-21.11 (3-OH-AA), 0.25-1.12 (XA), 0.15-1.53 (Kyn), 0.24-2.58 (KA), 0-0.31 (5-HT), and 2.2-17.94 (5-HIAA) μg/mL. For the same individual, in the state of physical health, the fluctuations of Trp and its metabolites in urine were large. Due to these large fluctuations in the absolute content, the difference between individuals was not significant. The data generated using 70 urine samples revealed that the amount of excreted Trp being metabolized was 124%-268% of prototype, which further indicated that the excretion after metabolism was the major underlying mechanism. Upon comparing the levels of metabolites in the Trp-5-HT and Trp-Kyn pathways, the results indicated that the levels of 3-OH-AA and 3-OH-Kyn generated upon Trp degradation through the Kyn pathway was higher than those of the other products. Trp was degraded via Kyn pathway to produce 3-OH-AA, which was the main metabolite of Trp found to be present in the body. This manuscript detected the levels of Trp and its metabolites, as well as summarized the characteristics of excretion using random urine samples, which could provide valuable information for clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei WU
- Tel:(0431)86763991,E-mail:
| |
Collapse
|
8
|
Rork AM, Xu S, Attygalle A, Renner T. Primary Metabolism co-Opted for Defensive Chemical Production in the Carabid Beetle, Harpalus pensylvanicus. J Chem Ecol 2021; 47:334-349. [PMID: 33689113 DOI: 10.1007/s10886-021-01253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/18/2020] [Accepted: 02/02/2021] [Indexed: 11/25/2022]
Abstract
Of the approximately one million described insect species, ground beetles (Coleoptera: Carabidae) have long captivated the attention of evolutionary biologists due to the diversity of defensive compounds they synthesize. Produced using defensive glands in the abdomen, ground beetle chemicals represent over 250 compounds including predator-deterring formic acid, which has evolved as a defensive strategy at least three times across Insecta. Despite being a widespread method of defense, formic acid biosynthesis is poorly understood in insects. Previous studies have suggested that the folate cycle of one-carbon (C1) metabolism, a pathway involved in nucleotide biosynthesis, may play a key role in defensive-grade formic acid production in ants. Here, we report on the defensive gland transcriptome of the formic acid-producing ground beetle Harpalus pensylvanicus. The full suite of genes involved in the folate cycle of C1 metabolism are significantly differentially expressed in the defensive glands of H. pensylvanicus when compared to gene expression profiles in the rest of the body. We also find support for two additional pathways potentially involved in the biosynthesis of defensive-grade formic acid, the kynurenine pathway and the methionine salvage cycle. Additionally, we have found an array of differentially expressed genes in the secretory lobes involved in the biosynthesis and transport of cofactors necessary for formic acid biosynthesis, as well as genes presumably involved in the detoxification of secondary metabolites including formic acid. We also provide insight into the evolution of the predominant gene family involved in the folate cycle (MTHFD) and suggest that high expression of folate cycle genes rather than gene duplication and/or neofunctionalization may be more important for defensive-grade formic acid biosynthesis in H. pensylvanicus. This provides the first evidence in Coleoptera and one of a few examples in Insecta of a primary metabolic process being co-opted for defensive chemical biosynthesis. Our results shed light on potential mechanisms of formic acid biosynthesis in the defensive glands of a ground beetle and provide a foundation for further studies into the evolution of formic acid-based chemical defense strategies in insects.
Collapse
Affiliation(s)
- Adam M Rork
- Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, PA, 16802, USA.
| | - Sihang Xu
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Athula Attygalle
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Tanya Renner
- Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, PA, 16802, USA
| |
Collapse
|
9
|
Bellmaine S, Schnellbaecher A, Zimmer A. Reactivity and degradation products of tryptophan in solution and proteins. Free Radic Biol Med 2020; 160:696-718. [PMID: 32911085 DOI: 10.1016/j.freeradbiomed.2020.09.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/06/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
Tryptophan is one of the essential mammalian amino acids and is thus a required component in human nutrition, animal feeds, and cell culture media. However, this aromatic amino acid is highly susceptible to oxidation and is known to degrade into multiple products during manufacturing, storage, and processing. Many physical and chemical processes contribute to the degradation of this compound, primarily via oxidation or cleavage of the highly reactive indole ring. The central contributing factors are reactive oxygen species, such as singlet oxygen, hydrogen peroxide, and hydroxyl radicals; light and photosensitizers; metals; and heat. In a multi-component mixture, tryptophan also commonly reacts with carbonyl-containing compounds, leading to a wide variety of products. The purpose of this review is to summarize the current state of knowledge regarding the degradation and interaction products of tryptophan in complex liquid solutions and in proteins. For the purposes of context, a brief summary of the key pathways in tryptophan metabolism will be included, along with common methods and issues in tryptophan manufacturing. The review will focus on the conditions that lead to tryptophan degradation, the products generated in these processes, their known biological effects, and methods which may be applied to stabilize the amino acid.
Collapse
Affiliation(s)
- Stephanie Bellmaine
- Merck Life Science, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Alisa Schnellbaecher
- Merck Life Science, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Aline Zimmer
- Merck Life Science, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany.
| |
Collapse
|
10
|
Zenin VA, Novikova LA, Yurkova MS, Savvin IO, Kurov KA, Fedorov AN. Chemical Modification of Fusion Protein Based on the Thermus thermophilus GroEL Chaperon with AEBSF Protease Inhibitor. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819060164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Badawy AAB. Kynurenine pathway and human systems. Exp Gerontol 2019; 129:110770. [PMID: 31704347 DOI: 10.1016/j.exger.2019.110770] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/30/2023]
Abstract
The essential amino acid L-tryptophan (Trp) appears to play an important role in aging by acting as a general regulator of protein homeostasis. The major route of Trp degradation, the kynurenine pathway (KP), produces a range of biologically active metabolites that can impact or be impacted by a variety of body systems, including the endocrine, haemopoietic, immune, intermediary metabolism and neuronal systems, with the end product of the KP, NAD+, being essential for vital cellular processes. An account of the pathway, its regulation and functions is presented in relation to body systems with a summary of previous studies of the impact of aging on the pathway enzymes and metabolites. A low-grade inflammatory environment characterized by elevation of cytokines and other immune modulators and consequent disturbances in KP activity develops with aging. The multifactorial nature of the aging process necessitates assessment of factors determining the progression of this mild dysfunction to age-related diseases and developing strategies aimed at arresting and reversing this progression.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, Wales, UK.
| |
Collapse
|
12
|
Kiss-Szemán AJ, Harmat V, Menyhárd DK. Achieving Functionality Through Modular Build-up: Structure and Size Selection of Serine Oligopeptidases. Curr Protein Pept Sci 2019; 20:1089-1101. [PMID: 31553292 DOI: 10.2174/1389203720666190925103339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/13/2019] [Accepted: 04/12/2019] [Indexed: 01/13/2023]
Abstract
Enzymes of the prolyl oligopeptidase family (S9 family) recognize their substrates not only by the specificity motif to be cleaved but also by size - they hydrolyze oligopeptides smaller than 30 amino acids. They belong to the serine-protease family, but differ from classical serine-proteases in size (80 kDa), structure (two domains) and regulation system (size selection of substrates). This group of enzymes is an important target for drug design as they are linked to amnesia, schizophrenia, type 2 diabetes, trypanosomiasis, periodontitis and cell growth. By comparing the structure of various members of the family we show that the most important features contributing to selectivity and efficiency are: (i) whether the interactions weaving the two domains together play a role in stabilizing the catalytic triad and thus their absence may provide for its deactivation: these oligopeptidases can screen their substrates by opening up, and (ii) whether the interaction-prone β-edge of the hydrolase domain is accessible and thus can guide a multimerization process that creates shielded entrance or intricate inner channels for the size-based selection of substrates. These cornerstones can be used to estimate the multimeric state and selection strategy of yet undetermined structures.
Collapse
Affiliation(s)
- Anna J Kiss-Szemán
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eotvos Lorand University, Budapest, Hungary
| | - Veronika Harmat
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eotvos Lorand University, Budapest, Hungary.,MTA-ELTE Protein Modelling Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Dóra K Menyhárd
- MTA-ELTE Protein Modelling Research Group, Eotvos Lorand University, Budapest, Hungary
| |
Collapse
|
13
|
Liu SH, Luo J, Yang BJ, Wang AY, Tang J. karmoisin and cardinal ortholog genes participate in the ommochrome synthesis of Nilaparvata lugens (Hemiptera: Delphacidae). INSECT SCIENCE 2019; 26:35-43. [PMID: 28657684 DOI: 10.1111/1744-7917.12501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/02/2017] [Accepted: 06/07/2017] [Indexed: 06/07/2023]
Abstract
Ommochrome is the major source for eye coloration of all insect species so far examined. Phenoxazinone synthetase (PHS) has always been regarded as the terminal step enzyme for ommochrome formation, which is encoded by cardinal or karmoisin genes. Our previous study indicated that the karmoisin ortholog gene (Nl-karmoisin) product in the brown planthopper (BPH) was a monocarboxylate transporter, while not a PHS. Here, based on full-length complementary DNA, the cardinal ortholog gene in BPH (Nl-cardinal) product was predicted to be a haem peroxidase rather than a PHS. We suggest for the first time that neither karmoisin nor cardinal encodes the PHS, but whether PHS participates in BPH eye pigmentation needs further research. Nymphal RNA interference (RNAi) experiments showed that knockdown Nl-cardinal transcript led the BPH ocelli and compound eye to color change from brown to red, while knockdown Nl-karmoisin only made the ocelli present the red phenotype. Notably, not only the Nl-cardinal transcript, dscd injection (Nl-cardinal targeting double-stranded DNA (dsRNA)) also significantly reduced the Nl-karmoisin transcript by 33.7%, while dska (Nl-karmoisin targeting dsRNA) injection did not significantly change the Nl-cardinal transcript. Considering the above RNAi and quantitative real-time polymerase chain reaction results, we propose that Nl-cardinal plays a more important role in ommochrome synthesis than Nl-karmoisin, and it may be an upstream gene of Nl-karmoisin. The present study suggested that both karmoisin and cardinal ortholog genes play a role in ommochrome synthesis in a hemimetabolous insect.
Collapse
Affiliation(s)
- Shu-Hua Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ju Luo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Bao-Jun Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ai-Ying Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jian Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
14
|
Figon F, Casas J. Ommochromes in invertebrates: biochemistry and cell biology. Biol Rev Camb Philos Soc 2019; 94:156-183. [PMID: 29989284 DOI: 10.1111/brv.12441] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 01/24/2023]
Abstract
Ommochromes are widely occurring coloured molecules of invertebrates, arising from tryptophan catabolism through the so-called Tryptophan → Ommochrome pathway. They are mainly known to mediate compound eye vision, as well as reversible and irreversible colour patterning. Ommochromes might also be involved in cell homeostasis by detoxifying free tryptophan and buffering oxidative stress. These biological functions are directly linked to their unique chromophore, the phenoxazine/phenothiazine system. The most recent reviews on ommochrome biochemistry were published more than 30 years ago, since when new results on the enzymes of the ommochrome pathway, on ommochrome photochemistry as well as on their antiradical capacities have been obtained. Ommochromasomes are the organelles where ommochromes are synthesised and stored. Hence, they play an important role in mediating ommochrome functions. Ommochromasomes are part of the lysosome-related organelles (LROs) family, which includes other pigmented organelles such as vertebrate melanosomes. Ommochromasomes are unique because they are the only LRO for which a recycling process during reversible colour change has been described. Herein, we provide an update on ommochrome biochemistry, photoreactivity and antiradical capacities to explain their diversity and behaviour both in vivo and in vitro. We also highlight new biochemical techniques, such as quantum chemistry, metabolomics and crystallography, which could lead to major advances in their chemical and functional characterisation. We then focus on ommochromasome structure and formation by drawing parallels with the well-characterised melanosomes of vertebrates. The biochemical, genetic, cellular and microscopic tools that have been applied to melanosomes should provide important information on the ommochromasome life cycle. We propose LRO-based models for ommochromasome biogenesis and recycling that could be tested in the future. Using the context of insect compound eyes, we finally emphasise the importance of an integrated approach in understanding the biological functions of ommochromes.
Collapse
Affiliation(s)
- Florent Figon
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université de Tours, 37200 Tours, France
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université de Tours, 37200 Tours, France
| |
Collapse
|
15
|
Braidy N, Berg J, Clement J, Khorshidi F, Poljak A, Jayasena T, Grant R, Sachdev P. Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes. Antioxid Redox Signal 2019; 30:251-294. [PMID: 29634344 PMCID: PMC6277084 DOI: 10.1089/ars.2017.7269] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/20/2022]
Abstract
Significance: Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that serves as an essential cofactor and substrate for a number of critical cellular processes involved in oxidative phosphorylation and ATP production, DNA repair, epigenetically modulated gene expression, intracellular calcium signaling, and immunological functions. NAD+ depletion may occur in response to either excessive DNA damage due to free radical or ultraviolet attack, resulting in significant poly(ADP-ribose) polymerase (PARP) activation and a high turnover and subsequent depletion of NAD+, and/or chronic immune activation and inflammatory cytokine production resulting in accelerated CD38 activity and decline in NAD+ levels. Recent studies have shown that enhancing NAD+ levels can profoundly reduce oxidative cell damage in catabolic tissue, including the brain. Therefore, promotion of intracellular NAD+ anabolism represents a promising therapeutic strategy for age-associated degenerative diseases in general, and is essential to the effective realization of multiple benefits of healthy sirtuin activity. The kynurenine pathway represents the de novo NAD+ synthesis pathway in mammalian cells. NAD+ can also be produced by the NAD+ salvage pathway. Recent Advances: In this review, we describe and discuss recent insights regarding the efficacy and benefits of the NAD+ precursors, nicotinamide (NAM), nicotinic acid (NA), nicotinamide riboside (NR), and nicotinamide mononucleotide (NMN), in attenuating NAD+ decline in degenerative disease states and physiological aging. Critical Issues: Results obtained in recent years have shown that NAD+ precursors can play important protective roles in several diseases. However, in some cases, these precursors may vary in their ability to enhance NAD+ synthesis via their location in the NAD+ anabolic pathway. Increased synthesis of NAD+ promotes protective cell responses, further demonstrating that NAD+ is a regulatory molecule associated with several biochemical pathways. Future Directions: In the next few years, the refinement of personalized therapy for the use of NAD+ precursors and improved detection methodologies allowing the administration of specific NAD+ precursors in the context of patients' NAD+ levels will lead to a better understanding of the therapeutic role of NAD+ precursors in human diseases.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Jade Berg
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia
| | | | - Fatemeh Khorshidi
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Anne Poljak
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Ross Grant
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
16
|
Badawy AAB. Tryptophan Metabolism: A Versatile Area Providing Multiple Targets for Pharmacological Intervention. EGYPTIAN JOURNAL OF BASIC AND CLINICAL PHARMACOLOGY 2019; 9:10.32527/2019/101415. [PMID: 31105983 PMCID: PMC6520243 DOI: 10.32527/2019/101415] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The essential amino acid L-tryptophan (Trp) undergoes extensive metabolism along several pathways, resulting in production of many biologically active metabolites which exert profound effects on physiological processes. The disturbance in Trp metabolism and disposition in many disease states provides a basis for exploring multiple targets for pharmaco-therapeutic interventions. In particular, the kynurenine pathway of Trp degradation is currently at the forefront of immunological research and immunotherapy. In this review, I shall consider mammalian Trp metabolism in health and disease and outline the intervention targets. It is hoped that this account will provide a stimulus for pharmacologists and others to conduct further studies in this rich area of biomedical research and therapeutics.
Collapse
|
17
|
Krishnamurthy A, Mundra S, Belur PD. Improving the catalytic efficiency of Fibrinolytic enzyme from Serratia marcescens subsp. sakuensis by chemical modification. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Zarafeta D, Moschidi D, Ladoukakis E, Gavrilov S, Chrysina ED, Chatziioannou A, Kublanov I, Skretas G, Kolisis FN. Metagenomic mining for thermostable esterolytic enzymes uncovers a new family of bacterial esterases. Sci Rep 2016; 6:38886. [PMID: 27991516 PMCID: PMC5171882 DOI: 10.1038/srep38886] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/14/2016] [Indexed: 11/09/2022] Open
Abstract
Biocatalysts exerting activity against ester bonds have a broad range of applications in modern biotechnology. Here, we have identified a new esterolytic enzyme by screening a metagenomic sample collected from a hot spring in Kamchatka, Russia. Biochemical characterization of the new esterase, termed EstDZ2, revealed that it is highly active against medium chain fatty acid esters at temperatures between 25 and 60 °C and at pH values 7-8. The new enzyme is moderately thermostable with a half-life of more than six hours at 60 °C, but exhibits exquisite stability against high concentrations of organic solvents. Phylogenetic analysis indicated that EstDZ2 is likely an Acetothermia enzyme that belongs to a new family of bacterial esterases, for which we propose the index XV. One distinctive feature of this new family, is the presence of a conserved GHSAG catalytic motif. Multiple sequence alignment, coupled with computational modelling of the three-dimensional structure of EstDZ2, revealed that the enzyme lacks the largest part of the "cap" domain, whose extended structure is characteristic for the closely related Family IV esterases. Thus, EstDZ2 appears to be distinct from known related esterolytic enzymes, both in terms of sequence characteristics, as well as in terms of three-dimensional structure.
Collapse
Affiliation(s)
- Dimitra Zarafeta
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
- Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Danai Moschidi
- Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Efthymios Ladoukakis
- Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Sergey Gavrilov
- Winogradsky Institute of Microbiology, Research Center for Biotechnology Russian Academy of Sciences, Moscow, Russian Federation
| | - Evangelia D. Chrysina
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Aristotelis Chatziioannou
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Ilya Kublanov
- Winogradsky Institute of Microbiology, Research Center for Biotechnology Russian Academy of Sciences, Moscow, Russian Federation
| | - Georgios Skretas
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Fragiskos N. Kolisis
- Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
19
|
Silva CO, Petersen SB, Reis CP, Rijo P, Molpeceres J, Fernandes AS, Gonçalves O, Gomes AC, Correia I, Vorum H, Neves-Petersen MT. EGF Functionalized Polymer-Coated Gold Nanoparticles Promote EGF Photostability and EGFR Internalization for Photothermal Therapy. PLoS One 2016; 11:e0165419. [PMID: 27788212 PMCID: PMC5082958 DOI: 10.1371/journal.pone.0165419] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/11/2016] [Indexed: 11/18/2022] Open
Abstract
The application of functionalized nanocarriers on photothermal therapy for cancer ablation has wide interest. The success of this application depends on the therapeutic efficiency and biocompatibility of the system, but also on the stability and biorecognition of the conjugated protein. This study aims at investigating the hypothesis that EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization, making these conjugated particles suitable for photothermal therapy. The conjugated gold nanoparticles (100–200 nm) showed a plasmon absorption band located within the near-infrared range (650–900 nm), optimal for photothermal therapy applications. The effects of temperature, of polymer-coated gold nanoparticles and of UVB light (295nm) on the fluorescence properties of EGF have been investigated with steady-state and time-resolved fluorescence spectroscopy. The fluorescence properties of EGF, including the formation of Trp and Tyr photoproducts, is modulated by temperature and by the intensity of the excitation light. The presence of polymeric-coated gold nanoparticles reduced or even avoided the formation of Trp and Tyr photoproducts when EGF is exposed to UVB light, protecting this way the structure and function of EGF. Cytotoxicity studies of conjugated nanoparticles carried out in normal-like human keratinocytes showed small, concentration dependent decreases in cell viability (0–25%). Moreover, conjugated nanoparticles could activate and induce the internalization of overexpressed Epidermal Growth Factor Receptor in human lung carcinoma cells. In conclusion, the gold nanoparticles conjugated with Epidermal Growth Factor and coated with biopolymers developed in this work, show a potential application for near infrared photothermal therapy, which may efficiently destroy solid tumours, reducing the damage of the healthy tissue.
Collapse
Affiliation(s)
- Catarina Oliveira Silva
- Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisboa, Portugal
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Alcalá de Henares, Spain
| | - Steffen B. Petersen
- Medical Photonics Lab, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Catarina Pinto Reis
- Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisboa, Portugal
- IBEB, Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- * E-mail: (MTNP); (CPR)
| | - Patrícia Rijo
- Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisboa, Portugal
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Jesús Molpeceres
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Alcalá de Henares, Spain
| | - Ana Sofia Fernandes
- Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisboa, Portugal
- iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Odete Gonçalves
- Medical Photonics Lab, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- CBMA (Centre of Molecular and Environmental Biology), University of Minho, Campus de Gualtar, Braga, Portugal
- CFUM (Centre of Physics of University of Minho), Department of Physics, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Andreia C. Gomes
- CBMA (Centre of Molecular and Environmental Biology), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Isabel Correia
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | | |
Collapse
|
20
|
Oliveira Silva C, Petersen SB, Pinto Reis C, Rijo P, Molpeceres J, Vorum H, Neves-Petersen MT. Lysozyme Photochemistry as a Function of Temperature. The Protective Effect of Nanoparticles on Lysozyme Photostability. PLoS One 2015; 10:e0144454. [PMID: 26656259 PMCID: PMC4682814 DOI: 10.1371/journal.pone.0144454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/18/2015] [Indexed: 11/30/2022] Open
Abstract
The presence of aromatic residues and their close spatial proximity to disulphide bridges makes hen egg white lysozyme labile to UV excitation. UVB induced photo-oxidation of tryptophan and tyrosine residues leads to photochemical products, such as, kynurenine, N-formylkynurenine and dityrosine and to the disruption of disulphide bridges in proteins. We here report that lysozyme UV induced photochemistry is modulated by temperature, excitation power, illumination time, excitation wavelength and by the presence of plasmonic quencher surfaces, such as gold, and by the presence of natural fluorescence quenchers, such as hyaluronic acid and oleic acid. We show evidence that the photo-oxidation effects triggered by 295 nm at 20°C are reversible and non-reversible at 10°C, 25°C and 30°C. This paper provides evidence that the 295 nm damage threshold of lysozyme lies between 0.1 μW and 0.3 μW. Protein conformational changes induced by temperature and UV light have been detected upon monitoring changes in the fluorescence emission spectra of lysozyme tryptophan residues and SYPRO® Orange. Lysozyme has been conjugated onto gold nanoparticles, coated with hyaluronic acid and oleic acid (HAOA). Steady state and time resolved fluorescence studies of free and conjugated lysozyme onto HAOA gold nanoparticles reveals that the presence of the polymer decreased the rate of the observed photochemical reactions and induced a preference for short fluorescence decay lifetimes. Size and surface charge of the HAOA gold nanoparticles have been determined by dynamic light scattering and zeta potential measurements. TEM analysis of the particles confirms the presence of a gold core surrounded by a HAOA matrix. We conclude that HAOA gold nanoparticles may efficiently protect lysozyme from the photochemical effects of UVB light and this nanocarrier could be potentially applied to other proteins with clinical relevance. In addition, this study confirms that the temperature plays a critical role in the photochemical pathways a protein enters upon UV excitation.
Collapse
Affiliation(s)
- Catarina Oliveira Silva
- Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisboa, 1749–024, Portugal
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Steffen B. Petersen
- Medical Photonics Lab, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Fredrik Bajers vej 7, DK-9220, Aalborg, Denmark
| | - Catarina Pinto Reis
- Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisboa, 1749–024, Portugal
- IBEB, Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749–016, Lisbon, Portugal
| | - Patrícia Rijo
- Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisboa, 1749–024, Portugal
| | - Jesús Molpeceres
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University, Hobrovej 18–22, 9000 Aalborg, Denmark
| | | |
Collapse
|
21
|
Rauwerdink A, Kazlauskas RJ. How the Same Core Catalytic Machinery Catalyzes 17 Different Reactions: the Serine-Histidine-Aspartate Catalytic Triad of α/β-Hydrolase Fold Enzymes. ACS Catal 2015; 5:6153-6176. [PMID: 28580193 DOI: 10.1021/acscatal.5b01539] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymes within a family often catalyze different reactions. In some cases, this variety stems from different catalytic machinery, but in other cases the machinery is identical; nevertheless, the enzymes catalyze different reactions. In this review, we examine the subset of α/β-hydrolase fold enzymes that contain the serine-histidine-aspartate catalytic triad. In spite of having the same protein fold and the same core catalytic machinery, these enzymes catalyze seventeen different reaction mechanisms. The most common reactions are hydrolysis of C-O, C-N and C-C bonds (Enzyme Classification (EC) group 3), but other enzymes are oxidoreductases (EC group 1), acyl transferases (EC group 2), lyases (EC group 4) or isomerases (EC group 5). Hydrolysis reactions often follow the canonical esterase mechanism, but eight variations occur where either the formation or cleavage of the acyl enzyme intermediate differs. The remaining eight mechanisms are lyase-type elimination reactions, which do not have an acyl enzyme intermediate and, in four cases, do not even require the catalytic serine. This diversity of mechanisms from the same catalytic triad stems from the ability of the enzymes to bind different substrates, from the requirements for different chemical steps imposed by these new substrates and, only in about half of the cases, from additional hydrogen bond partners or additional general acids/bases in the active site. This detailed analysis shows that binding differences and non-catalytic residues create new mechanisms and are essential for understanding and designing efficient enzymes.
Collapse
Affiliation(s)
- Alissa Rauwerdink
- Department of Biochemistry, Molecular Biology & Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Romas J. Kazlauskas
- Department of Biochemistry, Molecular Biology & Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| |
Collapse
|
22
|
Yanar K, Atukeren P, Cebe T, Kunbaz A, Ozan T, Kansu AD, Durmaz S, Güleç V, Belce A, Aydın S, Çakatay U, Rizvi SI. Ameliorative Effects of Testosterone Administration on Renal Redox Homeostasis in Naturally Aged Rats. Rejuvenation Res 2015; 18:299-312. [DOI: 10.1089/rej.2014.1640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Karolin Yanar
- Department of Medical Biochemistry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Pınar Atukeren
- Department of Medical Biochemistry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tamer Cebe
- Basic Sciences, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ahmad Kunbaz
- Basic Sciences, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tuna Ozan
- Basic Sciences, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ahmet Doğukan Kansu
- Basic Sciences, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Selahattin Durmaz
- Basic Sciences, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Veysel Güleç
- Basic Sciences, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ahmet Belce
- Department of Nursing, Faculty of Health Sciences, Bezmialem Vakıf University, Istanbul, Turkey
| | - Seval Aydın
- Department of Medical Biochemistry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ufuk Çakatay
- Department of Medical Biochemistry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
23
|
Zhang Y, Sun J, Mu H, Li J, Zhang Y, Xu F, Xiang Z, Qian PY, Qiu JW, Yu Z. Proteomic basis of stress responses in the gills of the pacific oyster Crassostrea gigas. J Proteome Res 2014; 14:304-17. [PMID: 25389644 DOI: 10.1021/pr500940s] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Pacific oyster Crassostrea gigas is one of the dominant sessile inhabitants of the estuarine intertidal zone, which is a physically harsh environment due to the presence of a number of stressors. Oysters have adapted to highly dynamic and stressful environments, but the molecular mechanisms underlying such stress adaptation are largely unknown. In the present study, we examined the proteomic responses in the gills of C. gigas exposed to three stressors (high temperature, low salinity, and aerial exposure) they often encounter in the field. We quantitatively compared the gill proteome profiles using iTRAQ-coupled 2-D LC-MS/MS. There were 3165 identified proteins among which 2379 proteins could be quantified. Heat shock, hyposalinity, and aerial exposure resulted in 50, 15, and 33 differentially expressed gill proteins, respectively. Venn diagram analysis revealed substantial different responses to the three stressors. Only xanthine dehydrogenase/oxidase showed a similar expression pattern across the three stress treatments, suggesting that reduction of ROS accumulation may be a conserved response to these stressors. Heat shock caused significant overexpression of molecular chaperones and production of S-adenosyl-l-methionine, indicating their crucial protective roles against protein denature. In addition, heat shock also activated immune responses, Ca(2+) binding protein expression. By contrast, hyposalinity and aerial exposure resulted in the up-regulation of 3-demethylubiquinone-9 3-methyltransferase, indicating that increase in ubiquinone synthesis may contribute to withstanding both the osmotic and desiccation stress. Strikingly, the majority of desiccation-responsive proteins, including those involved in metabolism, ion transportation, immune responses, DNA duplication, and protein synthesis, were down-regulated, indicating conservation of energy as an important strategy to cope with desiccation stress. There was a high consistency between the expression levels determined by iTRAQ and Western blotting, highlighting the high reproducibility of our proteomic approach and its great value in revealing molecular mechanisms of stress responses.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Structures of bacterial kynurenine formamidase reveal a crowded binuclear zinc catalytic site primed to generate a potent nucleophile. Biochem J 2014; 462:581-9. [PMID: 24942958 PMCID: PMC4243253 DOI: 10.1042/bj20140511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tryptophan is an important precursor for chemical entities that ultimately support the biosynthesis of key metabolites. The second stage of tryptophan catabolism is catalysed by kynurenine formamidase, an enzyme that is different between eukaryotes and prokaryotes. In the present study, we characterize the catalytic properties and present the crystal structures of three bacterial kynurenine formamidases. The structures reveal a new amidase protein fold, a highly organized and distinctive binuclear Zn2+ catalytic centre in a confined, hydrophobic and relatively rigid active site. The structure of a complex with 2-aminoacetophenone delineates aspects of molecular recognition extending to the observation that the substrate itself may be conformationally restricted to assist binding in the confined space of the active site and for subsequent processing. The cations occupy a crowded environment, and, unlike most Zn2+-dependent enzymes, there is little scope to increase co-ordination number during catalysis. We propose that the presence of a bridging water/hydroxide ligand in conjunction with the placement of an active site histidine supports a distinctive amidation mechanism. Catalytic properties and structures of three bacterial kynurenine formamidases are presented. The dimeric enzyme possesses an uncommon fold and crowded binuclear zinc active site. Fluorescence and structure of a complex inform on molecular recognition and a plausible mechanism is proposed.
Collapse
|
25
|
Bjerregaard-Andersen K, Sommer T, Jensen JK, Jochimsen B, Etzerodt M, Morth JP. A proton wire and water channel revealed in the crystal structure of isatin hydrolase. J Biol Chem 2014; 289:21351-9. [PMID: 24917679 DOI: 10.1074/jbc.m114.568824] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high resolution crystal structures of isatin hydrolase from Labrenzia aggregata in the apo and the product state are described. These are the first structures of a functionally characterized metal-dependent hydrolase of this fold. Isatin hydrolase converts isatin to isatinate and belongs to a novel family of metalloenzymes that include the bacterial kynurenine formamidase. The product state, mimicked by bound thioisatinate, reveals a water molecule that bridges the thioisatinate to a proton wire in an adjacent water channel and thus allows the proton released by the reaction to escape only when the product is formed. The functional proton wire present in isatin hydrolase isoform b represents a unique catalytic feature common to all hydrolases is here trapped and visualized for the first time. The local molecular environment required to coordinate thioisatinate allows stronger and more confident identification of orthologous genes encoding isatin hydrolases within the prokaryotic kingdom. The isatin hydrolase orthologues found in human gut bacteria raise the question as to whether the indole-3-acetic acid degradation pathway is present in human gut flora.
Collapse
Affiliation(s)
- Kaare Bjerregaard-Andersen
- From the Norwegian Center of Molecular Medicine, Nordic EMBL Partnership University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway, the Department for Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10C, DK-8000 Aarhus, Denmark
| | - Theis Sommer
- From the Norwegian Center of Molecular Medicine, Nordic EMBL Partnership University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway
| | - Jan K Jensen
- the Department for Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10C, DK-8000 Aarhus, Denmark
| | - Bjarne Jochimsen
- the Department for Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10C, DK-8000 Aarhus, Denmark
| | - Michael Etzerodt
- the Department for Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10C, DK-8000 Aarhus, Denmark
| | - J Preben Morth
- From the Norwegian Center of Molecular Medicine, Nordic EMBL Partnership University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway, the Institute for Experimental Medical Research, Oslo University Hospital, N-0424 Oslo, Norway, and
| |
Collapse
|