1
|
Pino MTL, Rocca MV, Acosta LH, Cabilla JP. Challenging the Norm: The Unrecognized Impact of Soluble Guanylyl Cyclase Subunits in Cancer. Int J Mol Sci 2024; 25:10053. [PMID: 39337539 PMCID: PMC11432225 DOI: 10.3390/ijms251810053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Since the discovery of nitric oxide (NO), a long journey has led us to the present, during which much knowledge has been gained about its pathway members and their roles in physiological and various pathophysiological conditions. Soluble guanylyl cyclase (sGC), the main NO receptor composed of the sGCα1 and sGCβ1 subunits, has been one of the central figures in this narrative. However, the sGCα1 and sGCβ1 subunits remained obscured by the focus on sGC's enzymatic activity for many years. In this review, we restore the significance of the sGCα1 and sGCβ1 subunits by compiling and analyzing available but previously overlooked information regarding their roles beyond enzymatic activity. We delve into the basics of sGC expression regulation, from its transcriptional regulation to its interaction with proteins, placing particular emphasis on evidence thus far demonstrating the actions of each sGC subunit in different tumor models. Exploring the roles of sGC subunits in cancer offers a valuable opportunity to enhance our understanding of tumor biology and discover new therapeutic avenues.
Collapse
Affiliation(s)
- María Teresa L Pino
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, CONICET-Universidad Abierta Interamericana, Buenos Aires C1270AAH, Argentina
| | - María Victoria Rocca
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, CONICET-Universidad Abierta Interamericana, Buenos Aires C1270AAH, Argentina
| | - Lucas H Acosta
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, CONICET-Universidad Abierta Interamericana, Buenos Aires C1270AAH, Argentina
| | - Jimena P Cabilla
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, CONICET-Universidad Abierta Interamericana, Buenos Aires C1270AAH, Argentina
| |
Collapse
|
2
|
Dent MR, DeMartino AW. Nitric oxide and thiols: Chemical biology, signalling paradigms and vascular therapeutic potential. Br J Pharmacol 2023:10.1111/bph.16274. [PMID: 37908126 PMCID: PMC11058123 DOI: 10.1111/bph.16274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
Nitric oxide (• NO) interactions with biological thiols play crucial, but incompletely determined, roles in vascular signalling and other biological processes. Here, we highlight two recently proposed signalling paradigms: (1) the formation of a vasodilating labile nitrosyl ferrous haem (NO-ferrohaem) facilitated by thiols via thiyl radical generation and (2) polysulfides/persulfides and their interaction with • NO. We also describe the specific (bio)chemical routes in which • NO and thiols react to form S-nitrosothiols, a broad class of small molecules, and protein post-translational modifications that can influence protein function through catalytic site or allosteric structural changes. S-Nitrosothiol formation depends upon cellular conditions, but critically, an appropriate oxidant for either the thiol (yielding a thiyl radical) or • NO (yielding a nitrosonium [NO+ ]-donating species) is required. We examine the roles of these collective • NO/thiol species in vascular signalling and their cardiovascular therapeutic potential.
Collapse
Affiliation(s)
- Matthew R. Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony W. DeMartino
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Cui C, Shu P, Sadeghian T, Younis W, Li H, Beuve A. Inhibitory Peptide of Soluble Guanylyl Cyclase/Trx1 Interface Blunts the Dual Redox Signaling Functions of the Complex. Antioxidants (Basel) 2023; 12:antiox12040906. [PMID: 37107281 PMCID: PMC10135718 DOI: 10.3390/antiox12040906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Soluble guanylyl cyclase (GC1) and oxido-reductase thioredoxin (Trx1) form a complex that mediates two NO signaling pathways as a function of the redox state of cells. Under physiological conditions, reduced Trx1 (rTrx1) supports the canonical NO-GC1-cGMP pathway by protecting GC1 activity from thiol oxidation. Under oxidative stress, the NO-cGMP pathway is disrupted by the S-nitrosation of GC1 (addition of a NO group to a cysteine). In turn, SNO-GC1 initiates transnitrosation cascades, using oxidized thioredoxin (oTrx1) as a nitrosothiol relay. We designed an inhibitory peptide that blocked the interaction between GC1 and Trx1. This inhibition resulted in the loss of a) the rTrx1 enhancing effect of GC1 cGMP-forming activity in vitro and in cells and its ability to reduce the multimeric oxidized GC1 and b) GC1's ability to fully reduce oTrx1, thus identifying GC1 novel reductase activity. Moreover, an inhibitory peptide blocked the transfer of S-nitrosothiols from SNO-GC1 to oTrx1. In Jurkat T cells, oTrx1 transnitrosates procaspase-3, thereby inhibiting caspase-3 activity. Using the inhibitory peptide, we demonstrated that S-nitrosation of caspase-3 is the result of a transnitrosation cascade initiated by SNO-GC1 and mediated by oTrx1. Consequently, the peptide significantly increased caspase-3 activity in Jurkat cells, providing a promising therapy for some cancers.
Collapse
Affiliation(s)
- Chuanlong Cui
- School of Graduate Studies, Newark Health Science Campus, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
- Department of Physiology, Pharmacology and Neurosciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Ping Shu
- Department of Physiology, Pharmacology and Neurosciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Tanaz Sadeghian
- School of Graduate Studies, Newark Health Science Campus, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Waqas Younis
- Department of Physiology, Pharmacology and Neurosciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Hong Li
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Annie Beuve
- Department of Physiology, Pharmacology and Neurosciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
4
|
Sharina I, Martin E. Cellular Factors That Shape the Activity or Function of Nitric Oxide-Stimulated Soluble Guanylyl Cyclase. Cells 2023; 12:471. [PMID: 36766813 PMCID: PMC9914232 DOI: 10.3390/cells12030471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
NO-stimulated guanylyl cyclase (SGC) is a hemoprotein that plays key roles in various physiological functions. SGC is a typical enzyme-linked receptor that combines the functions of a sensor for NO gas and cGMP generator. SGC possesses exclusive selectivity for NO and exhibits a very fast binding of NO, which allows it to function as a sensitive NO receptor. This review describes the effect of various cellular factors, such as additional NO, cell thiols, cell-derived small molecules and proteins on the function of SGC as cellular NO receptor. Due to its vital physiological function SGC is an important drug target. An increasing number of synthetic compounds that affect SGC activity via different mechanisms are discovered and brought to clinical trials and clinics. Cellular factors modifying the activity of SGC constitute an opportunity for improving the effectiveness of existing SGC-directed drugs and/or the creation of new therapeutic strategies.
Collapse
Affiliation(s)
| | - Emil Martin
- Department of Internal Medicine, Cardiology Division, The University of Texas—McGovern Medical School, 1941 East Road, Houston, TX 77054, USA
| |
Collapse
|
5
|
Maturation, inactivation, and recovery mechanisms of soluble guanylyl cyclase. J Biol Chem 2021; 296:100336. [PMID: 33508317 PMCID: PMC7949132 DOI: 10.1016/j.jbc.2021.100336] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/22/2022] Open
Abstract
Soluble guanylate cyclase (sGC) is a heme-containing heterodimeric enzyme that generates many molecules of cGMP in response to its ligand nitric oxide (NO); sGC thereby acts as an amplifier in NO-driven biological signaling cascades. Because sGC helps regulate the cardiovascular, neuronal, and gastrointestinal systems through its cGMP production, boosting sGC activity and preventing or reversing sGC inactivation are important therapeutic and pharmacologic goals. Work over the last two decades is uncovering the processes by which sGC matures to become functional, how sGC is inactivated, and how sGC is rescued from damage. A diverse group of small molecules and proteins have been implicated in these processes, including NO itself, reactive oxygen species, cellular heme, cell chaperone Hsp90, and various redox enzymes as well as pharmacologic sGC agonists. This review highlights their participation and provides an update on the processes that enable sGC maturation, drive its inactivation, or assist in its recovery in various settings within the cell, in hopes of reaching a better understanding of how sGC function is regulated in health and disease.
Collapse
|
6
|
Alapa M, Cui C, Shu P, Li H, Kholodovych V, Beuve A. Selective cysteines oxidation in soluble guanylyl cyclase catalytic domain is involved in NO activation. Free Radic Biol Med 2021; 162:450-460. [PMID: 33161042 PMCID: PMC7889651 DOI: 10.1016/j.freeradbiomed.2020.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO) binds to soluble guanylyl cyclase (GC1) and stimulates its catalytic activity to produce cGMP. Despite the key role of the NO-cGMP signaling in cardiovascular physiology, the mechanisms of GC1 activation remain ill-defined. It is believed that conserved cysteines (Cys) in GC1 modulate the enzyme's activity through thiol-redox modifications. We previously showed that GC1 activity is modulated via mixed-disulfide bond by protein disulfide isomerase and thioredoxin 1. Herein we investigated the novel concept that NO-stimulated GC1 activity is mediated by thiol/disulfide switches and aimed to map the specific Cys that are involved. First, we showed that the dithiol reducing agent Tris (2-carboxyethyl)-phosphine reduces GC1 response to NO, indicating the significance of Cys oxidation in NO activation. Second, using dibromobimane, which fluoresces when crosslinking two vicinal Cys thiols, we demonstrated decreased fluorescence in NO-stimulated GC1 compared to unstimulated conditions. This suggested that NO-stimulated GC1 contained more bound Cys, potentially disulfide bonds. Third, to identify NO-regulated Cys oxidation using mass spectrometry, we compared the redox status of all Cys identified in tryptic peptides, among which, ten were oxidized and two were reduced in NO-stimulated GC1. Fourth, we resorted to computational modeling to narrow down the Cys candidates potentially involved in disulfide bond and identified Cys489 and Cys571. Fifth, our mutational studies showed that Cys489 and Cys571 were involved in GC1'response to NO, potentially as a thiol/disulfide switch. These findings imply that specific GC1 Cys sensitivity to redox environment is critical for NO signaling in cardiovascular physiology.
Collapse
Affiliation(s)
- Maryam Alapa
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ, 07103, USA
| | - Chuanlong Cui
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ, 07103, USA; Center for Advanced Proteomics Research- New Jersey Medical School- Rutgers, Newark, NJ, 07103, USA
| | - Ping Shu
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ, 07103, USA
| | - Hong Li
- Center for Advanced Proteomics Research- New Jersey Medical School- Rutgers, Newark, NJ, 07103, USA
| | - Vlad Kholodovych
- Office of Advanced Research Computing, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Annie Beuve
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ, 07103, USA.
| |
Collapse
|
7
|
Kim YM, Youn SW, Sudhahar V, Das A, Chandhri R, Cuervo Grajal H, Kweon J, Leanhart S, He L, Toth PT, Kitajewski J, Rehman J, Yoon Y, Cho J, Fukai T, Ushio-Fukai M. Redox Regulation of Mitochondrial Fission Protein Drp1 by Protein Disulfide Isomerase Limits Endothelial Senescence. Cell Rep 2019; 23:3565-3578. [PMID: 29924999 PMCID: PMC6324937 DOI: 10.1016/j.celrep.2018.05.054] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/28/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dynamics are tightly controlled by fusion and fission, and their dysregulation and excess reactive oxygen species (ROS) contribute to endothelial cell (EC) dysfunction. How redox signals regulate coupling between mitochondrial dynamics and endothelial (dys)function remains unknown. Here, we identify protein disulfide isomerase A1 (PDIA1) as a thiol reductase for the mitochondrial fission protein Drp1. A biotin-labeled Cys-OH trapping probe and rescue experiments reveal that PDIA1 depletion in ECs induces sulfenylation of Drp1 at Cys644, promoting mitochondrial fragmentation and ROS elevation without inducing ER stress, which drives EC senescence. Mechanistically, PDIA1 associates with Drp1 to reduce its redox status and activity. Defective wound healing and angiogenesis in diabetic or PDIA1+/- mice are restored by EC-targeted PDIA1 or the Cys oxidation-defective mutant Drp1. Thus, this study uncovers a molecular link between PDIA1 and Drp1 oxidoreduction, which maintains normal mitochondrial dynamics and limits endothelial senescence with potential translational implications for vascular diseases associated with diabetes or aging.
Collapse
Affiliation(s)
- Young-Mee Kim
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Seock-Won Youn
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Varadarajan Sudhahar
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA; Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Archita Das
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Reyhaan Chandhri
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA; Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA; Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Henar Cuervo Grajal
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA; Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Junghun Kweon
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Silvia Leanhart
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA; Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Lianying He
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Peter T Toth
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jan Kitajewski
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA; Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Jalees Rehman
- Departments of Medicine (Cardiology) and Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Yisang Yoon
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Jaehyung Cho
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA; Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA; Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA; Department of Medicine (Cardiology), Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
8
|
Childers KC, Garcin ED. Structure/function of the soluble guanylyl cyclase catalytic domain. Nitric Oxide 2018; 77:53-64. [PMID: 29702251 PMCID: PMC6005667 DOI: 10.1016/j.niox.2018.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
Abstract
Soluble guanylyl cyclase (GC-1) is the primary receptor of nitric oxide (NO) in smooth muscle cells and maintains vascular function by inducing vasorelaxation in nearby blood vessels. GC-1 converts guanosine 5′-triphosphate (GTP) into cyclic guanosine 3′,5′-monophosphate (cGMP), which acts as a second messenger to improve blood flow. While much work has been done to characterize this pathway, we lack a mechanistic understanding of how NO binding to the heme domain leads to a large increase in activity at the C-terminal catalytic domain. Recent structural evidence and activity measurements from multiple groups have revealed a low-activity cyclase domain that requires additional GC-1 domains to promote a catalytically-competent conformation. How the catalytic domain structurally transitions into the active conformation requires further characterization. This review focuses on structure/function studies of the GC-1 catalytic domain and recent advances various groups have made in understanding how catalytic activity is regulated including small molecules interactions, Cys-S-NO modifications and potential interactions with the NO-sensor domain and other proteins.
Collapse
Affiliation(s)
- Kenneth C Childers
- University of Maryland Baltimore County, Department of Chemistry and Biochemistry, Baltimore, USA
| | - Elsa D Garcin
- University of Maryland Baltimore County, Department of Chemistry and Biochemistry, Baltimore, USA.
| |
Collapse
|
9
|
Huang C, Alapa M, Shu P, Nagarajan N, Wu C, Sadoshima J, Kholodovych V, Li H, Beuve A. Guanylyl cyclase sensitivity to nitric oxide is protected by a thiol oxidation-driven interaction with thioredoxin-1. J Biol Chem 2017; 292:14362-14370. [PMID: 28659344 DOI: 10.1074/jbc.m117.787390] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/20/2017] [Indexed: 01/08/2023] Open
Abstract
Nitric oxide (NO) modulates many physiological events through production of cGMP from its receptor, the NO-sensitive guanylyl cyclase (GC1). NO also appears to function in a cGMP-independent manner, via S-nitrosation (SNO), a redox-based modification of cysteine thiols. Previously, we have shown that S-nitrosated GC1 (SNO-GC1) is desensitized to NO stimulation following prolonged NO exposure or under oxidative/nitrosative stress. In animal models of nitrate tolerance and angiotensin II-induced hypertension, decreased vasodilation in response to NO correlates with GC1 thiol oxidation, but the physiological mechanism that resensitizes GC1 to NO and restores basal activity is unknown. Because GC1 interacts with the oxidoreductase protein-disulfide isomerase, we hypothesized that thioredoxin-1 (Trx1), a cytosolic oxidoreductase, could be involved in restoring GC1 basal activity and NO sensitivity because the Trx/thioredoxin reductase (TrxR) system maintains thiol redox homeostasis. Here, by manipulating activity and levels of the Trx1/TrxR system and by using a Trx1-Trap assay, we demonstrate that Trx1 modulates cGMP synthesis through an association between Trx1 and GC1 via a mixed disulfide. A proximity ligation assay confirmed the endogenous Trx1-GC1 complex in cells. Mutational analysis suggested that Cys609 in GC1 is involved in the Trx1-GC1 association and modulation of GC1 activity. Functionally, we established that Trx1 protects GC1 from S-nitrosocysteine-induced desensitization. A computational model of Trx1-GC1 interaction illustrates a possible mechanism for Trx1 to maintain basal GC1 activity and prevent/rescue GC1 desensitization to NO. The etiology of some oxidative vascular diseases may very well be explained by the dysfunction of the Trx1-GC1 association.
Collapse
Affiliation(s)
- Can Huang
- From the Department of Pharmacology, Physiology, and Neuroscience
| | - Maryam Alapa
- From the Department of Pharmacology, Physiology, and Neuroscience
| | - Ping Shu
- From the Department of Pharmacology, Physiology, and Neuroscience
| | - Narayani Nagarajan
- the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Changgong Wu
- the Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School Cancer Center, Newark, New Jersey 07103
| | - Junichi Sadoshima
- the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Vladyslav Kholodovych
- the Office of Advanced and Research Computing, Rutgers University, Piscataway, New Jersey 08854, and.,the Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08901
| | - Hong Li
- the Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School Cancer Center, Newark, New Jersey 07103
| | - Annie Beuve
- From the Department of Pharmacology, Physiology, and Neuroscience,
| |
Collapse
|
10
|
Rahaman MM, Nguyen AT, Miller MP, Hahn SA, Sparacino-Watkins C, Jobbagy S, Carew NT, Cantu-Medellin N, Wood KC, Baty CJ, Schopfer FJ, Kelley EE, Gladwin MT, Martin E, Straub AC. Cytochrome b5 Reductase 3 Modulates Soluble Guanylate Cyclase Redox State and cGMP Signaling. Circ Res 2017; 121:137-148. [PMID: 28584062 DOI: 10.1161/circresaha.117.310705] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/17/2022]
Abstract
RATIONALE Soluble guanylate cyclase (sGC) heme iron, in its oxidized state (Fe3+), is desensitized to NO and limits cGMP production needed for downstream activation of protein kinase G-dependent signaling and blood vessel dilation. OBJECTIVE Although reactive oxygen species are known to oxidize the sGC heme iron, the basic mechanism(s) governing sGC heme iron recycling to its NO-sensitive, reduced state remain poorly understood. METHODS AND RESULTS Oxidant challenge studies show that vascular smooth muscle cells have an intrinsic ability to reduce oxidized sGC heme iron and form protein-protein complexes between cytochrome b5 reductase 3, also known as methemoglobin reductase, and oxidized sGC. Genetic knockdown and pharmacological inhibition in vascular smooth muscle cells reveal that cytochrome b5 reductase 3 expression and activity is critical for NO-stimulated cGMP production and vasodilation. Mechanistically, we show that cytochrome b5 reductase 3 directly reduces oxidized sGC required for NO sensitization as assessed by biochemical, cellular, and ex vivo assays. CONCLUSIONS Together, these findings identify new insights into NO-sGC-cGMP signaling and reveal cytochrome b5 reductase 3 as the first identified physiological sGC heme iron reductase in vascular smooth muscle cells, serving as a critical regulator of cGMP production and protein kinase G-dependent signaling.
Collapse
Affiliation(s)
- Mizanur M Rahaman
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Anh T Nguyen
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Megan P Miller
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Scott A Hahn
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Courtney Sparacino-Watkins
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Soma Jobbagy
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Nolan T Carew
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Nadiezhda Cantu-Medellin
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Katherine C Wood
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Catherine J Baty
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Francisco J Schopfer
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Eric E Kelley
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Mark T Gladwin
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Emil Martin
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.)
| | - Adam C Straub
- From the Heart, Lung, Blood and Vascular Medicine Institute (M.M.R., A.T.N., M.P.M., S.A.H., C.S.-W., N.T.C., N.C.-M., K.C.W., M.T.G., A.C.S.), Division of Pulmonary, Allergy and Critical Care Medicine (C.S.-W., M.T.G.), Department of Pharmacology and Chemical Biology (S.J., C.J.B., F.J.S., A.C.S.), and Division of Renal-Electrolyte (C.J.B.), University of Pittsburgh, PA; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown (E.E.K.); and Department of Internal Medicine, Division of Cardiology, University of Texas Houston Medical School (E.M.).
| |
Collapse
|
11
|
Vanhoutte PM, Zhao Y, Xu A, Leung SWS. Thirty Years of Saying NO: Sources, Fate, Actions, and Misfortunes of the Endothelium-Derived Vasodilator Mediator. Circ Res 2017; 119:375-96. [PMID: 27390338 DOI: 10.1161/circresaha.116.306531] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/02/2016] [Indexed: 12/16/2022]
Abstract
Endothelial cells control vascular tone by releasing nitric oxide (NO) produced by endothelial NO synthase. The activity of endothelial NO synthase is modulated by the calcium concentration and by post-translational modifications (eg, phosphorylation). When NO reaches vascular smooth muscle, soluble guanylyl cyclase is its primary target producing cGMP. NO production is stimulated by circulating substances (eg, catecholamines), platelet products (eg, serotonin), autacoids formed in (eg, bradykinin) or near (eg, adiponectin) the vascular wall and physical factors (eg, shear stress). NO dysfunction can be caused, alone or in combination, by abnormal coupling of endothelial cell membrane receptors, insufficient supply of substrate (l-arginine) or cofactors (tetrahydrobiopterin), endogenous inhibitors (asymmetrical dimethyl arginine), reduced expression/presence/dimerization of endothelial NO synthase, inhibition of its enzymatic activity, accelerated disposition of NO by reactive oxygen species and abnormal responses (eg, biased soluble guanylyl cyclase activity producing cyclic inosine monophosphate) of the vascular smooth muscle. Major culprits causing endothelial dysfunction, irrespective of the underlying pathological process (aging, obesity, diabetes mellitus, and hypertension), include stimulation of mineralocorticoid receptors, activation of endothelial Rho-kinase, augmented presence of asymmetrical dimethyl arginine, and exaggerated oxidative stress. Genetic and pharmacological interventions improve dysfunctional NO-mediated vasodilatations if protecting the supply of substrate and cofactors for endothelial NO synthase, preserving the presence and activity of the enzyme and reducing reactive oxygen species generation. Common achievers of such improvement include maintained levels of estrogens and increased production of adiponectin and induction of silent mating-type information regulation 2 homologue 1. Obviously, endothelium-dependent relaxations are not the only beneficial action of NO in the vascular wall. Thus, reduced NO-mediated responses precede and initiate the atherosclerotic process.
Collapse
Affiliation(s)
- Paul M Vanhoutte
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yingzi Zhao
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Susan W S Leung
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Beuve A. Thiol-Based Redox Modulation of Soluble Guanylyl Cyclase, the Nitric Oxide Receptor. Antioxid Redox Signal 2017; 26:137-149. [PMID: 26906466 PMCID: PMC5240013 DOI: 10.1089/ars.2015.6591] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/27/2016] [Accepted: 02/21/2016] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Soluble guanylyl cyclase (sGC), which produces the second messenger cyclic guanosine 3', 5'-monophosphate (cGMP), is at the crossroads of nitric oxide (NO) signaling: sGC catalytic activity is both stimulated by NO binding to the heme and inhibited by NO modification of its cysteine (Cys) thiols (S-nitrosation). Modulation of sGC activity by thiol oxidation makes sGC a therapeutic target for pathologies originating from oxidative or nitrosative stress. sGC has an unusually high percentage of Cys for a cytosolic protein, the majority solvent exposed and therefore accessible modulatory targets for biological and pathophysiological signaling. Recent Advances: Thiol oxidation of sGC contributes to the development of cardiovascular diseases by decreasing NO-dependent cGMP production and thereby vascular reactivity. This thiol-based resistance to NO (e.g., increase in peripheral resistance) is observed in hypertension and hyperaldosteronism. CRITICAL ISSUES Some roles of specific Cys thiols have been identified in vitro. So far, it has not been possible to pinpoint the roles of specific Cys of sGC in vivo and to investigate the molecular mechanisms in an animal model. FUTURE DIRECTIONS The role of Cys as redox sensors, intermediates of activation, and mediators of change in sGC conformation, activity, and dimerization remains largely unexplored. To understand modulation of sGC activity, it is critical to investigate the roles of specific oxidative thiol modifications that are formed during these processes. Where the redox state of sGC thiols contribute to pathologies (vascular resistance and sGC desensitization by NO donors), it becomes crucial to design therapeutic strategies to restore sGC to its normal, physiological thiol redox state. Antioxid. Redox Signal. 26, 137-149.
Collapse
Affiliation(s)
- Annie Beuve
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School-Rutgers , Newark, New Jersey
| |
Collapse
|
13
|
|
14
|
Potential Role of Protein Disulfide Isomerase in Metabolic Syndrome-Derived Platelet Hyperactivity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2423547. [PMID: 28053690 PMCID: PMC5174184 DOI: 10.1155/2016/2423547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 02/08/2023]
Abstract
Metabolic Syndrome (MetS) has become a worldwide epidemic, alongside with a high socioeconomic cost, and its diagnostic criteria must include at least three out of the five features: visceral obesity, hypertension, dyslipidemia, insulin resistance, and high fasting glucose levels. MetS shows an increased oxidative stress associated with platelet hyperactivation, an essential component for thrombus formation and ischemic events in MetS patients. Platelet aggregation is governed by the peroxide tone and the activity of Protein Disulfide Isomerase (PDI) at the cell membrane. PDI redox active sites present active cysteine residues that can be susceptible to changes in plasma oxidative state, as observed in MetS. However, there is a lack of knowledge about the relationship between PDI and platelet hyperactivation under MetS and its metabolic features, in spite of PDI being a mediator of important pathways implicated in MetS-induced platelet hyperactivation, such as insulin resistance and nitric oxide dysfunction. Thus, the aim of this review is to analyze data available in the literature as an attempt to support a possible role for PDI in MetS-induced platelet hyperactivation.
Collapse
|
15
|
Soares Moretti AI, Martins Laurindo FR. Protein disulfide isomerases: Redox connections in and out of the endoplasmic reticulum. Arch Biochem Biophys 2016; 617:106-119. [PMID: 27889386 DOI: 10.1016/j.abb.2016.11.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
Protein disulfide isomerases are thiol oxidoreductase chaperones from thioredoxin superfamily. As redox folding catalysts from the endoplasmic reticulum (ER), their roles in ER-related redox homeostasis and signaling are well-studied. PDIA1 exerts thiol oxidation/reduction and isomerization, plus chaperone effects. Also, substantial evidence indicates that PDIs regulate thiol-disulfide switches in other cell locations such as cell surface and possibly cytosol. Subcellular PDI translocation routes remain unclear and seem Golgi-independent. The list of signaling and structural proteins reportedly regulated by PDIs keeps growing, via thiol switches involving oxidation, reduction and isomerization, S-(de)nytrosylation, (de)glutathyonylation and protein oligomerization. PDIA1 is required for agonist-triggered Nox NADPH oxidase activation and cell migration in vascular cells and macrophages, while PDIA1-dependent cytoskeletal regulation appears a converging pathway. Extracellularly, PDIs crucially regulate thiol redox signaling of thrombosis/platelet activation, e.g., integrins, and PDIA1 supports expansive caliber remodeling during injury repair via matrix/cytoskeletal organization. Some proteins display regulatory PDI-like motifs. PDI effects are orchestrated by expression levels or post-translational modifications. PDI is redox-sensitive, although probably not a mass-effect redox sensor due to kinetic constraints. Rather, the "all-in-one" organization of its peculiar redox/chaperone properties likely provide PDIs with precision and versatility in redox signaling, making them promising therapeutic targets.
Collapse
Affiliation(s)
- Ana Iochabel Soares Moretti
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | | |
Collapse
|
16
|
Garmaroudi FS, Handy DE, Liu YY, Loscalzo J. Systems Pharmacology and Rational Polypharmacy: Nitric Oxide-Cyclic GMP Signaling Pathway as an Illustrative Example and Derivation of the General Case. PLoS Comput Biol 2016; 12:e1004822. [PMID: 26985825 PMCID: PMC4795786 DOI: 10.1371/journal.pcbi.1004822] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/19/2016] [Indexed: 11/23/2022] Open
Abstract
Impaired nitric oxide (NO˙)-cyclic guanosine 3', 5'-monophosphate (cGMP) signaling has been observed in many cardiovascular disorders, including heart failure and pulmonary arterial hypertension. There are several enzymatic determinants of cGMP levels in this pathway, including soluble guanylyl cyclase (sGC) itself, the NO˙-activated form of sGC, and phosphodiesterase(s) (PDE). Therapies for some of these disorders with PDE inhibitors have been successful at increasing cGMP levels in both cardiac and vascular tissues. However, at the systems level, it is not clear whether perturbation of PDE alone, under oxidative stress, is the best approach for increasing cGMP levels as compared with perturbation of other potential pathway targets, either alone or in combination. Here, we develop a model-based approach to perturbing this pathway, focusing on single reactions, pairs of reactions, or trios of reactions as targets, then monitoring the theoretical effects of these interventions on cGMP levels. Single perturbations of all reaction steps within this pathway demonstrated that three reaction steps, including the oxidation of sGC, NO˙ dissociation from sGC, and cGMP degradation by PDE, exerted a dominant influence on cGMP accumulation relative to other reaction steps. Furthermore, among all possible single, paired, and triple perturbations of this pathway, the combined perturbations of these three reaction steps had the greatest impact on cGMP accumulation. These computational findings were confirmed in cell-based experiments. We conclude that a combined perturbation of the oxidatively-impaired NO˙-cGMP signaling pathway is a better approach to the restoration of cGMP levels as compared with corresponding individual perturbations. This approach may also yield improved therapeutic responses in other complex pharmacologically amenable pathways. Developing drugs for a well-defined biochemical or molecular pathway has conventionally been approached by optimizing the inhibition (or activation) of a single target by a single pharmacologic agent. On occasion, drug combinations have been used that generally target multiple pathways affecting a common phenotype, again by optimizing the extent of inhibition of individual targets, semi-empirically adjusting their doses to minimize toxicities as they are manifest. Here, we present a computational approach for identifying optimal combinations of agents that can affect (inhibit) a well-defined biochemical pathway, doing so at minimal combined concentrations, thereby potentially minimizing dose-dependent toxicities. This approach is illustrated computationally and experimentally with a well-known pathway, the nitric oxide-cyclic GMP pathway, but is readily generalizable to rational polypharmacy.
Collapse
Affiliation(s)
- Farshid S. Garmaroudi
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diane E. Handy
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joseph Loscalzo
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
Heckler EJ, Kholodovych V, Jain M, Liu T, Li H, Beuve A. Mapping Soluble Guanylyl Cyclase and Protein Disulfide Isomerase Regions of Interaction. PLoS One 2015; 10:e0143523. [PMID: 26618351 PMCID: PMC4664405 DOI: 10.1371/journal.pone.0143523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/05/2015] [Indexed: 11/19/2022] Open
Abstract
Soluble guanylyl cyclase (sGC) is a heterodimeric nitric oxide (NO) receptor that produces cyclic GMP. This signaling mechanism is a key component in the cardiovascular system. NO binds to heme in the β subunit and stimulates the catalytic conversion of GTP to cGMP several hundred fold. Several endogenous factors have been identified that modulate sGC function in vitro and in vivo. In previous work, we determined that protein disulfide isomerase (PDI) interacts with sGC in a redox-dependent manner in vitro and that PDI inhibited NO-stimulated activity in cells. To our knowledge, this was the first report of a physical interaction between sGC and a thiol-redox protein. To characterize this interaction between sGC and PDI, we first identified peptide linkages between sGC and PDI, using a lysine cross-linking reagent and recently developed mass spectrometry analysis. Together with Flag-immunoprecipitation using sGC domain deletions, wild-type (WT) and mutated PDI, regions of sGC involved in this interaction were identified. The observed data were further explored with computational modeling to gain insight into the interaction mechanism between sGC and oxidized PDI. Our results indicate that PDI interacts preferentially with the catalytic domain of sGC, thus providing a mechanism for PDI inhibition of sGC. A model in which PDI interacts with either the α or the β catalytic domain is proposed.
Collapse
Affiliation(s)
- Erin J. Heckler
- Department of Pharmacology and Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States of America
| | - Vladyslav Kholodovych
- High Performance and Research Computing, OIRT, Rutgers University, New Brunswick, NJ, United States of America
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America
| | - Mohit Jain
- Proteomics Core, New Jersey Medical School, Rutgers University, Newark, NJ, United States of America
| | - Tong Liu
- Proteomics Core, New Jersey Medical School, Rutgers University, Newark, NJ, United States of America
| | - Hong Li
- Proteomics Core, New Jersey Medical School, Rutgers University, Newark, NJ, United States of America
| | - Annie Beuve
- Department of Pharmacology and Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States of America
- * E-mail:
| |
Collapse
|
18
|
New insights into the role of soluble guanylate cyclase in blood pressure regulation. Curr Opin Nephrol Hypertens 2014; 23:135-42. [PMID: 24419369 DOI: 10.1097/01.mnh.0000441048.91041.3a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE OF REVIEW Nitric oxide (NO)-soluble guanylate cyclase (sGC)-dependent signaling mechanisms have a profound effect on the regulation of blood pressure (BP). In this review, we will discuss recent findings in the field that support the importance of sGC in the development of hypertension. RECENT FINDINGS The importance of sGC in BP regulation was highlighted by studies using genetically modified animal models, chemical stimulators/activators and inhibitors of the NO/sGC signaling pathway, and genetic association studies in humans. Many studies further support the role of NO/sGC in vasodilation and vascular dysfunction, which is underscored by the early clinical success of synthetic sGC stimulators for the treatment of pulmonary hypertension. Recent work has uncovered more details about the structural basis of sGC activation, enabling the development of more potent and efficient modulators of sGC activity. Finally, the mechanisms involved in the modulation of sGC by signaling gases other than NO, as well as the influence of redox signaling on sGC, have been the subject of several interesting studies. SUMMARY sGC is fast becoming an interesting therapeutic target for the treatment of vascular dysfunction and hypertension, with novel sGC stimulating/activating compounds as promising clinical treatment options.
Collapse
|
19
|
Hoffmann LS, Chen HH. cGMP: transition from bench to bedside: a report of the 6th International Conference on cGMP Generators, Effectors and Therapeutic Implications. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:707-18. [PMID: 24927824 DOI: 10.1007/s00210-014-0999-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 02/06/2023]
Abstract
Essential physiological homeostatic processes such as vascular tone, fluid balance, cardiorenal function, and sensory processes are regulated by the second messenger cyclic guanosine 3', 5'-monophosphate (cGMP). Dysregulation of cGMP-dependent pathways plays an important role in cardiovascular diseases such as hypertension, pulmonary hypertension, heart failure, or erectile dysfunction. Thus, the cGMP pathway consisting of the cGMP-generating guanylyl cyclases, protein kinases, and phosphodiesterases (PDE) has evolved to an important drug target and is the focus of a wide variety of research fields ranging from unraveling mechanisms on the molecular level to understanding the regulation of physiological and pathophysiological processes by cGMP. Based on the results from basic and preclinical research, therapeutic drugs have been developed which modulate the cGMP pathway and are investigated in clinical trials. Riociguat, a nitric oxide (NO)-independent soluble guanylyl cyclase stimulator; recombinant B-type natriuretic peptide (BNP); or recombinant atrial natriuretic peptide (ANP) and PDE5 inhibitors are cGMP-modulating drugs that are already available for the treatment of pulmonary hypertension, acute heart failure, and erectile dysfunction, respectively. The latest results from basic to clinical research on cGMP were presented on the 6th International Conference on cGMP in Erfurt, Germany, and are summarized in this article.
Collapse
Affiliation(s)
- Linda S Hoffmann
- Institute of Pharmacology and Toxicology, Biomedical Center, University of Bonn, Bonn, Germany,
| | | |
Collapse
|
20
|
Rogers NM, Seeger F, Garcin ED, Roberts DD, Isenberg JS. Regulation of soluble guanylate cyclase by matricellular thrombospondins: implications for blood flow. Front Physiol 2014; 5:134. [PMID: 24772092 PMCID: PMC3983488 DOI: 10.3389/fphys.2014.00134] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/18/2014] [Indexed: 01/16/2023] Open
Abstract
Nitric oxide (NO) maintains cardiovascular health by activating soluble guanylate cyclase (sGC) to increase cellular cGMP levels. Cardiovascular disease is characterized by decreased NO-sGC-cGMP signaling. Pharmacological activators and stimulators of sGC are being actively pursued as therapies for acute heart failure and pulmonary hypertension. Here we review molecular mechanisms that modulate sGC activity while emphasizing a novel biochemical pathway in which binding of the matricellular protein thrombospondin-1 (TSP1) to the cell surface receptor CD47 causes inhibition of sGC. We discuss the therapeutic implications of this pathway for blood flow, tissue perfusion, and cell survival under physiologic and disease conditions.
Collapse
Affiliation(s)
- Natasha M Rogers
- Department of Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Franziska Seeger
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County Baltimore, MD, USA
| | - Elsa D Garcin
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County Baltimore, MD, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH Bethesda, MD, USA
| | - Jeffrey S Isenberg
- Department of Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine Pittsburgh, PA, USA ; Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| |
Collapse
|
21
|
Heckler EJ, Jain M, Crassous PA, Rossi AR, Li H, Beuve A. Thiol-redox proteins interact with soluble guanylyl cyclase and modulate its activity. BMC Pharmacol Toxicol 2013. [PMCID: PMC3765623 DOI: 10.1186/2050-6511-14-s1-o21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|