1
|
Feitosa PHR, Castellano MVCDO, Costa CHD, Cardoso ADRO, Pereira LFF, Fernandes FLA, Costa FM, Felisbino MB, Oliveira AFFD, Jardim JR, Miravitlles M. Recommendations for the diagnosis and treatment of alpha-1 antitrypsin deficiency. J Bras Pneumol 2024; 50:e20240235. [PMID: 39661838 PMCID: PMC11601085 DOI: 10.36416/1806-3756/e20240235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 12/13/2024] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a relatively rare genetic disorder, inherited in an autosomal codominant manner, that results in reduced serum AAT concentrations, with a consequent reduction in antielastase activity in the lungs, as well as an increased risk of diseases such as pulmonary emphysema, liver cirrhosis, and necrotizing panniculitis. It results from different mutations in the SERPINA1 gene, leading to changes in the AAT glycoprotein, which can alter its concentration, conformation, and function. Unfortunately, underdiagnosis is quite common; it is possible that only 10% of cases are diagnosed. The most common deficiency is in the Z variant, and it is estimated that more than 3 million people worldwide have combinations of alleles associated with severe AATD. Serum AAT concentrations should be determined, and allelic variants should be identified by phenotyping or genotyping. Monitoring lung function, especially through spirometry, is essential, because it provides information on the progression of the disease. Although pulmonary densitometry appears to be the most sensitive measure of emphysema progression, it should not be used in routine clinical practice to monitor patients. In general, the treatment is similar to that indicated for patients with COPD not caused by AATD. Exogenous administration of purified human serum-derived AAT is the only specific treatment approved for AATD in nonsmoking patients with severe deficiency (serum AAT concentration of < 57 mg/dL or < 11 µM), with evidence of functional loss above the physiological level.
Collapse
Affiliation(s)
| | | | | | | | | | - Frederico Leon Arrabal Fernandes
- . Divisão de Pneumologia, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo ( SP) Brasil
| | - Fábio Marcelo Costa
- . Complexo Hospital das Clínicas, Universidade Federal do Paraná - CHC-UFPR - Curitiba (PR) Brasil
| | - Manuela Brisot Felisbino
- . Hospital Universitário, Universidade Federal de Santa Catarina - HU-UFSC - Florianópolis (SC) Brasil
| | | | - Jose R Jardim
- . Universidade Federal de São Paulo, São Paulo (SP) Brasil
| | - Marc Miravitlles
- . Vall d'Hebron Institut de Recerca - VHIR - Hospital Universitário Valld'Hebron, Barcelona, España
| |
Collapse
|
2
|
Kamuda K, Ronzoni R, Majumdar A, Guan FHX, Irving JA, Lomas DA. A novel pathological mutant reveals the role of torsional flexibility in the serpin breach in adoption of an aggregation-prone intermediate. FEBS J 2024; 291:2937-2954. [PMID: 38523412 PMCID: PMC11753496 DOI: 10.1111/febs.17121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/17/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024]
Abstract
Mutants of alpha-1-antitrypsin cause the protein to self-associate and form ordered aggregates ('polymers') that are retained within hepatocytes, resulting in a predisposition to the development of liver disease. The associated reduction in secretion, and for some mutants, impairment of function, leads to a failure to protect lung tissue against proteases released during the inflammatory response and an increased risk of emphysema. We report here a novel deficiency mutation (Gly192Cys), that we name the Sydney variant, identified in a patient in heterozygosity with the Z allele (Glu342Lys). Cellular analysis revealed that the novel variant was mostly retained as insoluble polymers within the endoplasmic reticulum. The basis for this behaviour was investigated using biophysical and structural techniques. The variant showed a 40% reduction in inhibitory activity and a reduced stability as assessed by thermal unfolding experiments. Polymerisation involves adoption of an aggregation-prone intermediate and paradoxically the energy barrier for transition to this state was increased by 16% for the Gly192Cys variant with respect to the wild-type protein. However, with activation to the intermediate state, polymerisation occurred at a 3.8-fold faster rate overall. X-ray crystallography provided two crystal structures of the Gly192Cys variant, revealing perturbation within the 'breach' region with Cys192 in two different orientations: in one structure it faces towards the hydrophobic core while in the second it is solvent-exposed. This orientational heterogeneity was confirmed by PEGylation. These data show the critical role of the torsional freedom imparted by Gly192 in inhibitory activity and stability against polymerisation.
Collapse
Affiliation(s)
- Kamila Kamuda
- Division of Medicine, UCL Respiratory, Rayne InstituteUniversity College LondonUK
- Institute of Structural and Molecular Biology, Birkbeck CollegeUniversity College LondonUK
| | - Riccardo Ronzoni
- Division of Medicine, UCL Respiratory, Rayne InstituteUniversity College LondonUK
- Institute of Structural and Molecular Biology, Birkbeck CollegeUniversity College LondonUK
| | - Avik Majumdar
- AW Morrow Gastroenterology and Liver CentreRoyal Prince Alfred HospitalSydneyAustralia
- Victorian Liver Transplant UnitAustin HealthMelbourneAustralia
- The University of MelbourneMelbourneAustralia
| | - Fiona H. X. Guan
- AW Morrow Gastroenterology and Liver CentreRoyal Prince Alfred HospitalSydneyAustralia
| | - James A. Irving
- Division of Medicine, UCL Respiratory, Rayne InstituteUniversity College LondonUK
- Institute of Structural and Molecular Biology, Birkbeck CollegeUniversity College LondonUK
| | - David A. Lomas
- Division of Medicine, UCL Respiratory, Rayne InstituteUniversity College LondonUK
- Institute of Structural and Molecular Biology, Birkbeck CollegeUniversity College LondonUK
| |
Collapse
|
3
|
Fernández-Gomez B, Menao-Guillén S, Fernandez Gonzalez A, Arruebo Muñio M, Ramos Alvarez M, Inda Landaluce M, Castillo Arce MA, Torralba-Cabeza MÁ. Utility of the Serum Protein Electrophoresis in the Opportunistic Screening for the Deficiency of Alpha-1 Antitrypsin. Diagnostics (Basel) 2023; 13:2778. [PMID: 37685316 PMCID: PMC10486943 DOI: 10.3390/diagnostics13172778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND A deficiency in alpha-1 antitrypsin (AAT1) is a rare disorder that represents a significant health threat and early diagnostic priority issue. We investigated the usefulness of the serum protein electrophoresis (SPE) as an opportunistic screening tool for AAT1 deficiency. METHODS For 6 months, all SPE carried out for any reasons were evaluated in our center. In those with less than 3% of alpha-1 globulins, AAT1 concentrations were studied. The SERPINA1 gene was subsequently sequenced in those patients displaying concentrations below 100 mg/dL. RESULTS Out of the total, 14 patients (0.3%) were identified with low AAT1 concentrations, with 11 of them agreeing to enter the study. Of those, mutations in the SERPINA1 gene were discovered in 10 patients (91%). Heterozygous mutations were detected in seven patients; three had the c.1096G>A mutation (p.Glu366Lys; Pi*Z), two had the c.863A>T mutation (p.Glu288Val; Pi*S), one had the c.221_223delTCT mutation (p.Phe76del; Pi*Malton), and the last one had the c.1066G>A (p.Ala356Thr) mutation, which was not previously described. Finally, one patient had the c.863A>T mutation in homozygosis, whereas two double heterozygous patients c.863A>T/c.1096G>A were detected. CONCLUSIONS An altered result in the concentration of AAT1 anticipates a mutation in the SERPINA1 gene in a manner close to 91%. The relationship between a decrease in the alpha-1 globulin band of the SPE and an alteration in the AAT1 concentration is direct in basal states of health. The SPE is presented as a highly sensitive test for opportunistic screening of AAT1 deficiency.
Collapse
Affiliation(s)
| | - Sebastian Menao-Guillén
- Department of Biochemistry, “Lozano Blesa” University Hospital, 50009 Zaragoza, Spain; (S.M.-G.); (A.F.G.); (M.A.M.); (M.R.A.); (M.I.L.); (M.A.C.A.)
- Instituto de Investigación Sanitaria de Aragon, 13th San Juan Bosco Avenue, 50009 Zaragoza, Spain
| | - Ayla Fernandez Gonzalez
- Department of Biochemistry, “Lozano Blesa” University Hospital, 50009 Zaragoza, Spain; (S.M.-G.); (A.F.G.); (M.A.M.); (M.R.A.); (M.I.L.); (M.A.C.A.)
| | - Maria Arruebo Muñio
- Department of Biochemistry, “Lozano Blesa” University Hospital, 50009 Zaragoza, Spain; (S.M.-G.); (A.F.G.); (M.A.M.); (M.R.A.); (M.I.L.); (M.A.C.A.)
| | - Monica Ramos Alvarez
- Department of Biochemistry, “Lozano Blesa” University Hospital, 50009 Zaragoza, Spain; (S.M.-G.); (A.F.G.); (M.A.M.); (M.R.A.); (M.I.L.); (M.A.C.A.)
| | - Mercedes Inda Landaluce
- Department of Biochemistry, “Lozano Blesa” University Hospital, 50009 Zaragoza, Spain; (S.M.-G.); (A.F.G.); (M.A.M.); (M.R.A.); (M.I.L.); (M.A.C.A.)
| | - Maria Angeles Castillo Arce
- Department of Biochemistry, “Lozano Blesa” University Hospital, 50009 Zaragoza, Spain; (S.M.-G.); (A.F.G.); (M.A.M.); (M.R.A.); (M.I.L.); (M.A.C.A.)
| | - Miguel Ángel Torralba-Cabeza
- Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain;
- Instituto de Investigación Sanitaria de Aragon, 13th San Juan Bosco Avenue, 50009 Zaragoza, Spain
- Unit or Rare Disorders, Department of Internal Medicine, “Lozano Blesa” University Hospital, 15th San Juan Bosco Avenue, 50009 Zaragoza, Spain
- Working Group on Minority Diseases of the Spanish Society of Internal Medicine (GTEM-SEMI), 50009 Zaragoza, Spain
| |
Collapse
|
4
|
TMAO to the rescue of pathogenic protein variants. Biochim Biophys Acta Gen Subj 2022; 1866:130214. [PMID: 35902028 DOI: 10.1016/j.bbagen.2022.130214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
Abstract
Trimethylamine N-oxide (TMAO) is a chemical chaperone found in various organisms including humans. Various studies unveiled that it is an excellent protein-stabilizing agent, and induces folding of unstructured proteins. It is also well established that it can counteract the deleterious effects of urea, salt, and hydrostatic pressure on macromolecular integrity. There is also existence of large body of data regarding its ability to restore functional deficiency of various mutant proteins or pathogenic variants by correcting misfolding defects and inhibiting the formation of high-order toxic protein oligomers. Since an important class of human disease called "protein conformational disorders" is due to protein misfolding and/or formation of high-order oligomers, TMAO stands as a promising molecule for the therapeutic intervention of such diseases. The present review has been designed to gather a comprehensive knowledge of the TMAO's effect on the functional restoration of various mutants, identify its shortcomings and explore its potentiality as a lead molecule. Future prospects have also been suitably incorporated.
Collapse
|
5
|
Kosinski P, Kedzia M, Mostowska A, Gutaj P, Lipa M, Wender-Ozegowska E, Rozy A, Chorostowska-Wynimko J, Wielgos M, Jezela-Stanek A. Alpha-1 Antitrypsin Z Variant (AAT PI*Z) as a Risk Factor for Intrahepatic Cholestasis of Pregnancy. Front Genet 2021; 12:720465. [PMID: 34557220 PMCID: PMC8454405 DOI: 10.3389/fgene.2021.720465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/27/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Intrahepatic cholestasis of pregnancy (ICP; prevalence 0.2–15.6%) is the most common pregnancy-related liver disorder. It may have serious consequences for a pregnancy, including increased risk of preterm delivery, meconium staining of amniotic fluid, fetal bradycardia, distress, and fetal demise. In cases of high bile acids (>100μmol/L), patients have 10-fold increase in the risk of stillbirth. Biophysical methods of fetal monitoring, such as cardiotocography, ultrasonography, or Doppler have been proven unreliable for risk prediction in the course of intrahepatic cholestasis. Therefore, we believe extensive research for more specific, especially early, markers should be carried out. By analogy with cholestasis in children with inherited alpha-1 antitrypsin deficiency (AATD), we hypothesized the SERPINA1 Z pathogenic variant might be related to a higher risk of cholestasis in pregnancy. This study aimed to investigate the most common AATD variants (Z and S SERPINA1 alleles) in a group of cholestatic pregnant women. Results: The Z carrier frequency was calculated to be 6.8%, which is much higher compared to the general population [2.3%; the Chi-squared test with Yates correction is 6.8774 (p=0.008)]. Conclusion: Increased prevalence of SERPINA1 PI*Z variant in a group of women with intrahepatic cholestasis may suggest a possible genetic origin of a higher risk of intrahepatic cholestasis in pregnancy.
Collapse
Affiliation(s)
- Przemyslaw Kosinski
- First Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland.,"Club 35", Scientific Group of Polish Society of Obstetricians and Gynaecologists, Warsaw, Poland
| | - Malgorzata Kedzia
- Division of Reproduction, Department of Obstetrics, Gynecology, and Gynecologic Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznań, Poland
| | - Pawel Gutaj
- "Club 35", Scientific Group of Polish Society of Obstetricians and Gynaecologists, Warsaw, Poland.,Division of Reproduction, Department of Obstetrics, Gynecology, and Gynecologic Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | - Michal Lipa
- First Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland.,"Club 35", Scientific Group of Polish Society of Obstetricians and Gynaecologists, Warsaw, Poland
| | - Ewa Wender-Ozegowska
- Division of Reproduction, Department of Obstetrics, Gynecology, and Gynecologic Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | - Adriana Rozy
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Miroslaw Wielgos
- First Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
6
|
Bai Y, Wan W, Huang Y, Jin W, Lyu H, Xia Q, Dong X, Gao Z, Liu Y. Quantitative interrogation of protein co-aggregation using multi-color fluorogenic protein aggregation sensors. Chem Sci 2021; 12:8468-8476. [PMID: 34221329 PMCID: PMC8221170 DOI: 10.1039/d1sc01122g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022] Open
Abstract
Co-aggregation of multiple pathogenic proteins is common in neurodegenerative diseases but deconvolution of such biochemical process is challenging. Herein, we developed a dual-color fluorogenic thermal shift assay to simultaneously report on the aggregation of two different proteins and quantitatively study their thermodynamic stability during co-aggregation. Expansion of spectral coverage was first achieved by developing multi-color fluorogenic protein aggregation sensors. Orthogonal detection was enabled by conjugating sensors of minimal fluorescence crosstalk to two different proteins via sortase-tag technology. Using this assay, we quantified shifts in melting temperatures in a heterozygous model protein system, revealing that the thermodynamic stability of wild-type proteins was significantly compromised by the mutant ones but not vice versa. We also examined how small molecule ligands selectively and differentially interfere with such interplay. Finally, we demonstrated these sensors are suited to visualize how different proteins exert influence on each other upon their co-aggregation in live cells.
Collapse
Affiliation(s)
- Yulong Bai
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wang Wan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yanan Huang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Wenhan Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Haochen Lyu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xuepeng Dong
- The Second Hospital of Dalian Medical University 467 Zhongshan Road Dalian 116044 China
| | - Zhenming Gao
- The Second Hospital of Dalian Medical University 467 Zhongshan Road Dalian 116044 China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
7
|
Lomas DA, Irving JA, Arico‐Muendel C, Belyanskaya S, Brewster A, Brown M, Chung C, Dave H, Denis A, Dodic N, Dossang A, Eddershaw P, Klimaszewska D, Haq I, Holmes DS, Hutchinson JP, Jagger AM, Jakhria T, Jigorel E, Liddle J, Lind K, Marciniak SJ, Messer J, Neu M, Olszewski A, Ordonez A, Ronzoni R, Rowedder J, Rüdiger M, Skinner S, Smith KJ, Terry R, Trottet L, Uings I, Wilson S, Zhu Z, Pearce AC. Development of a small molecule that corrects misfolding and increases secretion of Z α 1 -antitrypsin. EMBO Mol Med 2021; 13:e13167. [PMID: 33512066 PMCID: PMC7933930 DOI: 10.15252/emmm.202013167] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/23/2023] Open
Abstract
Severe α1 -antitrypsin deficiency results from the Z allele (Glu342Lys) that causes the accumulation of homopolymers of mutant α1 -antitrypsin within the endoplasmic reticulum of hepatocytes in association with liver disease. We have used a DNA-encoded chemical library to undertake a high-throughput screen to identify small molecules that bind to, and stabilise Z α1 -antitrypsin. The lead compound blocks Z α1 -antitrypsin polymerisation in vitro, reduces intracellular polymerisation and increases the secretion of Z α1 -antitrypsin threefold in an iPSC model of disease. Crystallographic and biophysical analyses demonstrate that GSK716 and related molecules bind to a cryptic binding pocket, negate the local effects of the Z mutation and stabilise the bound state against progression along the polymerisation pathway. Oral dosing of transgenic mice at 100 mg/kg three times a day for 20 days increased the secretion of Z α1 -antitrypsin into the plasma by sevenfold. There was no observable clearance of hepatic inclusions with respect to controls over the same time period. This study provides proof of principle that "mutation ameliorating" small molecules can block the aberrant polymerisation that underlies Z α1 -antitrypsin deficiency.
Collapse
Affiliation(s)
- David A Lomas
- UCL RespiratoryRayne InstituteUniversity College LondonLondonUK
| | - James A Irving
- UCL RespiratoryRayne InstituteUniversity College LondonLondonUK
| | | | | | | | | | | | | | | | | | | | | | | | - Imran Haq
- UCL RespiratoryRayne InstituteUniversity College LondonLondonUK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
McKimpson WM, Chen Y, Irving JA, Zheng M, Weinberger J, Tan WLW, Tiang Z, Jagger AM, Chua SC, Pessin JE, Foo RSY, Lomas DA, Kitsis RN. Conversion of the death inhibitor ARC to a killer activates pancreatic β cell death in diabetes. Dev Cell 2021; 56:747-760.e6. [PMID: 33667344 DOI: 10.1016/j.devcel.2021.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/28/2020] [Accepted: 02/09/2021] [Indexed: 01/06/2023]
Abstract
Loss of insulin-secreting pancreatic β cells through apoptosis contributes to the progression of type 2 diabetes, but underlying mechanisms remain elusive. Here, we identify a pathway in which the cell death inhibitor ARC paradoxically becomes a killer during diabetes. While cytoplasmic ARC maintains β cell viability and pancreatic architecture, a pool of ARC relocates to the nucleus to induce β cell apoptosis in humans with diabetes and several pathophysiologically distinct mouse models. β cell death results through the coordinate downregulation of serpins (serine protease inhibitors) not previously known to be synthesized and secreted by β cells. Loss of the serpin α1-antitrypsin from the extracellular space unleashes elastase, triggering the disruption of β cell anchorage and subsequent cell death. Administration of α1-antitrypsin to mice with diabetes prevents β cell death and metabolic abnormalities. These data uncover a pathway for β cell loss in type 2 diabetes and identify an FDA-approved drug that may impede progression of this syndrome.
Collapse
Affiliation(s)
- Wendy M McKimpson
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yun Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - James A Irving
- UCL Respiratory Medicine, University College London, London WC1E 6BN, UK; Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, UK
| | - Min Zheng
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jeremy Weinberger
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wilson Lek Wen Tan
- Cardiovascular Research Institute, National University Health Systems, Singapore, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Zenia Tiang
- Cardiovascular Research Institute, National University Health Systems, Singapore, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Alistair M Jagger
- UCL Respiratory Medicine, University College London, London WC1E 6BN, UK; Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, UK
| | - Streamson C Chua
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jeffrey E Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Roger S-Y Foo
- Cardiovascular Research Institute, National University Health Systems, Singapore, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - David A Lomas
- UCL Respiratory Medicine, University College London, London WC1E 6BN, UK; Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, UK
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
9
|
McNulty MJ, Silberstein DZ, Kuhn BT, Padgett HS, Nandi S, McDonald KA, Cross CE. Alpha-1 antitrypsin deficiency and recombinant protein sources with focus on plant sources: Updates, challenges and perspectives. Free Radic Biol Med 2021; 163:10-30. [PMID: 33279618 DOI: 10.1016/j.freeradbiomed.2020.11.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Alpha-1 antitrypsin deficiency (A1ATD) is an autosomal recessive disease characterized by low plasma levels of A1AT, a serine protease inhibitor representing the most abundant circulating antiprotease normally present at plasma levels of 1-2 g/L. The dominant clinical manifestations include predispositions to early onset emphysema due to protease/antiprotease imbalance in distal lung parenchyma and liver disease largely due to unsecreted polymerized accumulations of misfolded mutant A1AT within the endoplasmic reticulum of hepatocytes. Since 1987, the only FDA licensed specific therapy for the emphysema component has been infusions of A1AT purified from pooled human plasma at the 2020 cost of up to US $200,000/year with the risk of intermittent shortages. In the past three decades various, potentially less expensive, recombinant forms of human A1AT have reached early stages of development, one of which is just reaching the stage of human clinical trials. The focus of this review is to update strategies for the treatment of the pulmonary component of A1ATD with some focus on perspectives for therapeutic production and regulatory approval of a recombinant product from plants. We review other competitive technologies for treating the lung disease manifestations of A1ATD, highlight strategies for the generation of data potentially helpful for securing FDA Investigational New Drug (IND) approval and present challenges in the selection of clinical trial strategies required for FDA licensing of a New Drug Approval (NDA) for this disease.
Collapse
Affiliation(s)
- Matthew J McNulty
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - David Z Silberstein
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Brooks T Kuhn
- Department of Internal Medicine, University of California, Davis, CA, USA; University of California, Davis, Alpha-1 Deficiency Clinic, Sacramento, CA, USA
| | | | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, CA, USA; Global HealthShare Initiative®, University of California, Davis, CA, USA
| | - Karen A McDonald
- Department of Chemical Engineering, University of California, Davis, CA, USA; Global HealthShare Initiative®, University of California, Davis, CA, USA
| | - Carroll E Cross
- Department of Internal Medicine, University of California, Davis, CA, USA; University of California, Davis, Alpha-1 Deficiency Clinic, Sacramento, CA, USA; Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.
| |
Collapse
|
10
|
Faull SV, Elliston ELK, Gooptu B, Jagger AM, Aldobiyan I, Redzej A, Badaoui M, Heyer-Chauhan N, Rashid ST, Reynolds GM, Adams DH, Miranda E, Orlova EV, Irving JA, Lomas DA. The structural basis for Z α 1-antitrypsin polymerization in the liver. SCIENCE ADVANCES 2020; 6:6/43/eabc1370. [PMID: 33087346 PMCID: PMC7577719 DOI: 10.1126/sciadv.abc1370] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/08/2020] [Indexed: 05/22/2023]
Abstract
The serpinopathies are among a diverse set of conformational diseases that involve the aberrant self-association of proteins into ordered aggregates. α1-Antitrypsin deficiency is the archetypal serpinopathy and results from the formation and deposition of mutant forms of α1-antitrypsin as "polymer" chains in liver tissue. No detailed structural analysis has been performed of this material. Moreover, there is little information on the relevance of well-studied artificially induced polymers to these disease-associated molecules. We have isolated polymers from the liver tissue of Z α1-antitrypsin homozygotes (E342K) who have undergone transplantation, labeled them using a Fab fragment, and performed single-particle analysis of negative-stain electron micrographs. The data show structural equivalence between heat-induced and ex vivo polymers and that the intersubunit linkage is best explained by a carboxyl-terminal domain swap between molecules of α1-antitrypsin.
Collapse
Affiliation(s)
- Sarah V Faull
- UCL Respiratory, University College London, 5 University Street, London WC1E 6JF, UK
| | - Emma L K Elliston
- UCL Respiratory, University College London, 5 University Street, London WC1E 6JF, UK
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BN, UK
| | - Bibek Gooptu
- Leicester Institute of Structural and Chemical Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7HB, UK
- National Institute for Health Research (NIHR) Leicester BRC-Respiratory, Leicester, UK
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, University of London, London WC1E 7HX, UK
| | - Alistair M Jagger
- UCL Respiratory, University College London, 5 University Street, London WC1E 6JF, UK
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BN, UK
| | - Ibrahim Aldobiyan
- UCL Respiratory, University College London, 5 University Street, London WC1E 6JF, UK
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BN, UK
| | - Adam Redzej
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, University of London, London WC1E 7HX, UK
| | - Magd Badaoui
- UCL Respiratory, University College London, 5 University Street, London WC1E 6JF, UK
| | - Nina Heyer-Chauhan
- UCL Respiratory, University College London, 5 University Street, London WC1E 6JF, UK
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BN, UK
| | - S Tamir Rashid
- Centre for Stem Cells and Regenerative Medicine and Institute for Liver Studies, King's College London, London WC2R 2LS, UK
| | - Gary M Reynolds
- Centre for Liver Research and NIHR Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - David H Adams
- Centre for Liver Research and NIHR Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Elena Miranda
- Department of Biology and Biotechnologies "Charles Darwin" and Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Elena V Orlova
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, University of London, London WC1E 7HX, UK
| | - James A Irving
- UCL Respiratory, University College London, 5 University Street, London WC1E 6JF, UK.
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BN, UK
| | - David A Lomas
- UCL Respiratory, University College London, 5 University Street, London WC1E 6JF, UK.
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BN, UK
| |
Collapse
|
11
|
Affiliation(s)
- Pavel Strnad
- From the Department of Internal Medicine III, University Hospital RWTH (Rheinisch-Westfälisch Technische Hochschule) Aachen, Aachen, Germany (P.S.); the Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin (N.G.M.); and UCL Respiratory, Division of Medicine, Rayne Institute, University College London, London (D.A.L.)
| | - Noel G McElvaney
- From the Department of Internal Medicine III, University Hospital RWTH (Rheinisch-Westfälisch Technische Hochschule) Aachen, Aachen, Germany (P.S.); the Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin (N.G.M.); and UCL Respiratory, Division of Medicine, Rayne Institute, University College London, London (D.A.L.)
| | - David A Lomas
- From the Department of Internal Medicine III, University Hospital RWTH (Rheinisch-Westfälisch Technische Hochschule) Aachen, Aachen, Germany (P.S.); the Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin (N.G.M.); and UCL Respiratory, Division of Medicine, Rayne Institute, University College London, London (D.A.L.)
| |
Collapse
|
12
|
Scott BM, Sheffield WP. Engineering the serpin α 1 -antitrypsin: A diversity of goals and techniques. Protein Sci 2019; 29:856-871. [PMID: 31774589 DOI: 10.1002/pro.3794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
α1 -Antitrypsin (α1 -AT) serves as an archetypal example for the serine proteinase inhibitor (serpin) protein family and has been used as a scaffold for protein engineering for >35 years. Techniques used to engineer α1 -AT include targeted mutagenesis, protein fusions, phage display, glycoengineering, and consensus protein design. The goals of engineering have also been diverse, ranging from understanding serpin structure-function relationships, to the design of more potent or more specific proteinase inhibitors with potential therapeutic relevance. Here we summarize the history of these protein engineering efforts, describing the techniques applied to engineer α1 -AT, specific mutants of interest, and providing an appended catalog of the >200 α1 -AT mutants published to date.
Collapse
Affiliation(s)
- Benjamin M Scott
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland.,Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - William P Sheffield
- Canadian Blood Services, Centre for Innovation, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Calcium signalling in mammalian cell lines expressing wild type and mutant human α1-Antitrypsin. Sci Rep 2019; 9:17293. [PMID: 31754242 PMCID: PMC6872872 DOI: 10.1038/s41598-019-53535-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/28/2019] [Indexed: 11/08/2022] Open
Abstract
A possible role for calcium signalling in the autosomal dominant form of dementia, familial encephalopathy with neuroserpin inclusion bodies (FENIB), has been proposed, which may point towards a mechanism by which cells could sense and respond to the accumulation of mutant serpin polymers in the endoplasmic reticulum (ER). We therefore explored possible defects in Ca2+-signalling, which may contribute to the pathology associated with another serpinopathy, α1-antitrypsin (AAT) deficiency. Using CHO K1 cell lines stably expressing a wild type human AAT (MAAT) and a disease-causing polymer-forming variant (ZAAT) and the truncated variant (NHK AAT), we measured basal intracellular free Ca2+, its responses to thapsigargin (TG), an ER Ca2+-ATPase blocker, and store-operated Ca2+-entry (SOCE). Our fura2 based Ca2+ measurements detected no differences between these 3 parameters in cell lines expressing MAAT and cell lines expressing ZAAT and NHK AAT mutants. Thus, in our cell-based models of α1-antitrypsin (AAT) deficiency, unlike the case for FENIB, we were unable to detect defects in calcium signalling.
Collapse
|
14
|
Probing the folding pathway of a consensus serpin using single tryptophan mutants. Sci Rep 2018; 8:2121. [PMID: 29391487 PMCID: PMC5794792 DOI: 10.1038/s41598-018-19567-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/03/2017] [Indexed: 01/25/2023] Open
Abstract
Conserpin is an engineered protein that represents the consensus of a sequence alignment of eukaryotic serpins: protease inhibitors typified by a metastable native state and a structurally well-conserved scaffold. Previously, this protein has been found to adopt a native inhibitory conformation, possess an atypical reversible folding pathway and exhibit pronounced resistance to inactivation. Here we have designed a version of conserpin, cAT, with the inhibitory specificity of α1-antitrypsin, and generated single-tryptophan variants to probe its folding pathway in more detail. cAT exhibited similar thermal stability to the parental protein, an inactivation associated with oligomerisation rather a transition to the latent conformation, and a native state with pronounced kinetic stability. The tryptophan variants reveal the unfolding intermediate ensemble to consist of an intact helix H, a distorted helix F and ‘breach’ region structurally similar to that of a mesophilic serpin intermediate. A combination of intrinsic fluorescence, circular dichroism, and analytical gel filtration provide insight into a highly cooperative folding pathway with concerted changes in secondary and tertiary structure, which minimises the accumulation of two directly-observed aggregation-prone intermediate species. This functional conserpin variant represents a basis for further studies of the relationship between structure and stability in the serpin superfamily.
Collapse
|
15
|
Miranda E, Ferrarotti I, Berardelli R, Laffranchi M, Cerea M, Gangemi F, Haq I, Ottaviani S, Lomas DA, Irving JA, Fra A. The pathological Trento variant of alpha-1-antitrypsin (E75V) shows nonclassical behaviour during polymerization. FEBS J 2017; 284:2110-2126. [PMID: 28504839 PMCID: PMC5518210 DOI: 10.1111/febs.14111] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/26/2017] [Accepted: 05/12/2017] [Indexed: 12/11/2022]
Abstract
Severe alpha‐1‐antitrypsin deficiency (AATD) is most frequently associated with the alpha‐1‐antitrypsin (AAT) Z variant (E342K). ZZ homozygotes exhibit accumulation of AAT as polymers in the endoplasmic reticulum of hepatocytes. This protein deposition can lead to liver disease, with the resulting low circulating levels of AAT predisposing to early‐onset emphysema due to dysregulation of elastinolytic activity in the lungs. An increasing number of rare AAT alleles have been identified in patients with severe AATD, typically in combination with the Z allele. Here we report a new mutation (E75V) in a patient with severe plasma deficiency, which we designate Trento. In contrast to the Z mutant, Trento AAT was secreted efficiently when expressed in cellular models but showed compromised conformational stability. Polyacrylamide gel electrophoresis (PAGE) and ELISA‐based analyses of the secreted protein revealed the presence of oligomeric species with electrophoretic and immunorecognition profiles different from those of Z and S (E264V) AAT polymers, including reduced recognition by conformational monoclonal antibodies 2C1 and 4B12. This altered recognition was not due to direct effects on the epitope of the 2C1 monoclonal antibody which we localized between helices E and F. Structural analyses indicate the likely basis for polymer formation is the loss of a highly conserved stabilizing interaction between helix C and the posthelix I loop. These results highlight this region as important for maintaining native state stability and, when compromised, results in the formation of pathological polymers that are different from those produced by Z and S AAT.
Collapse
Affiliation(s)
- Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Ilaria Ferrarotti
- Department of Internal Medicine and Therapeutics, Pneumology Unit, University of Pavia, Italy
| | - Romina Berardelli
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Mattia Laffranchi
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Marta Cerea
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Fabrizio Gangemi
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Imran Haq
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, UK
| | - Stefania Ottaviani
- Center for Diagnosis of Inherited Alpha 1-Antitrypsin Deficiency, Pneumology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - David A Lomas
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, UK
| | - James A Irving
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, UK
| | - Annamaria Fra
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| |
Collapse
|
16
|
Andersen OJ, Risør MW, Poulsen EC, Nielsen NC, Miao Y, Enghild JJ, Schiøtt B. Reactive Center Loop Insertion in α-1-Antitrypsin Captured by Accelerated Molecular Dynamics Simulation. Biochemistry 2017; 56:634-646. [PMID: 27995800 DOI: 10.1021/acs.biochem.6b00839] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protease inhibition by metastable serine protease inhibitors (serpins) is mediated by one of the largest functional intradomain conformational changes known in biology. In this extensive structural rearrangement, protease-serpin complex formation triggers cleavage of the serpin reactive center loop (RCL), its subsequent insertion into central β-sheet A, and covalent trapping of the target protease. In this study, we present the first detailed accelerated molecular dynamics simulation of the insertion of the fully cleaved RCL in α-1-antitrypsin (α1AT), the archetypal member of the family of human serpins. Our results reveal internal water pathways that allow the initial incorporation of side chains of RCL residues into the protein interior. We observed structural plasticity of the helix F (hF) element that blocks the RCL path in the native state, which is in excellent agreement with previous experimental reports. Furthermore, the simulation suggested a novel role of hF and the connected turn (thFs3A) as chaperones that support the insertion process by reducing the conformational space available to the RCL. Transient electrostatic interactions of RCL residues potentially fine-tune the serpin inhibitory activity. On the basis of our simulation, we generated the α1AT mutants K168E, E346K, and K168E/E346K and analyzed their inhibitory activity along with their intrinsic stability and heat-induced polymerization. Remarkably, the E346K mutation exhibited enhanced inhibitory activity along with an increased rate of premature structural collapse (polymerization), suggesting a significant role of E346 in the gatekeeping of the strain in the metastable native state.
Collapse
Affiliation(s)
- Ole Juul Andersen
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Aarhus, Denmark.,Department of Chemistry, Aarhus University , Aarhus, Denmark
| | - Michael Wulff Risør
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Aarhus, Denmark.,Department of Molecular Biology and Genetics, Aarhus University , Aarhus, Denmark
| | - Emil Christian Poulsen
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Aarhus, Denmark.,Department of Molecular Biology and Genetics, Aarhus University , Aarhus, Denmark
| | - Niels Chr Nielsen
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Aarhus, Denmark.,Department of Chemistry, Aarhus University , Aarhus, Denmark
| | - Yinglong Miao
- Howard Hughes Medical Institute and Department of Pharmacology, University of California at San Diego , La Jolla, California 92093, United States
| | - Jan J Enghild
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Aarhus, Denmark.,Department of Molecular Biology and Genetics, Aarhus University , Aarhus, Denmark
| | - Birgit Schiøtt
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Aarhus, Denmark.,Department of Chemistry, Aarhus University , Aarhus, Denmark
| |
Collapse
|
17
|
Motamedi-Shad N, Jagger AM, Liedtke M, Faull SV, Nanda AS, Salvadori E, Wort JL, Kay CW, Heyer-Chauhan N, Miranda E, Perez J, Ordóñez A, Haq I, Irving JA, Lomas DA. An antibody that prevents serpin polymerisation acts by inducing a novel allosteric behaviour. Biochem J 2016; 473:3269-90. [PMID: 27407165 PMCID: PMC5264506 DOI: 10.1042/bcj20160159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 11/30/2022]
Abstract
Serpins are important regulators of proteolytic pathways with an antiprotease activity that involves a conformational transition from a metastable to a hyperstable state. Certain mutations permit the transition to occur in the absence of a protease; when associated with an intermolecular interaction, this yields linear polymers of hyperstable serpin molecules, which accumulate at the site of synthesis. This is the basis of many pathologies termed the serpinopathies. We have previously identified a monoclonal antibody (mAb4B12) that, in single-chain form, blocks α1-antitrypsin (α1-AT) polymerisation in cells. Here, we describe the structural basis for this activity. The mAb4B12 epitope was found to encompass residues Glu32, Glu39 and His43 on helix A and Leu306 on helix I. This is not a region typically associated with the serpin mechanism of conformational change, and correspondingly the epitope was present in all tested structural forms of the protein. Antibody binding rendered β-sheet A - on the opposite face of the molecule - more liable to adopt an 'open' state, mediated by changes distal to the breach region and proximal to helix F. The allosteric propagation of induced changes through the molecule was evidenced by an increased rate of peptide incorporation and destabilisation of a preformed serpin-enzyme complex following mAb4B12 binding. These data suggest that prematurely shifting the β-sheet A equilibrium towards the 'open' state out of sequence with other changes suppresses polymer formation. This work identifies a region potentially exploitable for a rational design of ligands that is able to dynamically influence α1-AT polymerisation.
Collapse
Affiliation(s)
- Neda Motamedi-Shad
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Alistair M. Jagger
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Maximilian Liedtke
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
| | - Sarah V. Faull
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, U.K
| | - Arjun Scott Nanda
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Enrico Salvadori
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
- London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, U.K
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Joshua L. Wort
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Christopher W.M. Kay
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
- London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, U.K
| | - Narinder Heyer-Chauhan
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Elena Miranda
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, Rome 00185, Italy
| | - Juan Perez
- Departamento de Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Campus Teatinos, Universidad de Malaga, Malaga 29071, Spain
| | - Adriana Ordóñez
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, U.K
| | - Imran Haq
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - James A. Irving
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - David A. Lomas
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| |
Collapse
|
18
|
Well-Known and Less Well-Known Functions of Alpha-1 Antitrypsin. Its Role in Chronic Obstructive Pulmonary Disease and Other Disease Developments. Ann Am Thorac Soc 2016; 13 Suppl 4:S280-8. [DOI: 10.1513/annalsats.201507-468kv] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
19
|
Lomas DA, Hurst JR, Gooptu B. Update on alpha-1 antitrypsin deficiency: New therapies. J Hepatol 2016; 65:413-24. [PMID: 27034252 DOI: 10.1016/j.jhep.2016.03.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/16/2016] [Accepted: 03/20/2016] [Indexed: 02/07/2023]
Abstract
α1-Antitrypsin deficiency is characterised by the misfolding and intracellular polymerisation of mutant α1-antitrypsin within the endoplasmic reticulum of hepatocytes. The retention of mutant protein causes hepatic damage and cirrhosis whilst the lack of an important circulating protease inhibitor predisposes the individuals with severe α1-antitrypsin deficiency to early onset emphysema. Our work over the past 25years has led to new paradigms for the liver and lung disease associated with α1-antitrypsin deficiency. We review here the molecular pathology of the cirrhosis and emphysema associated with α1-antitrypsin deficiency and show how an understanding of this condition provided the paradigm for a wider group of disorders that we have termed the serpinopathies. The detailed understanding of the pathobiology of α1-antitrypsin deficiency has identified important disease mechanisms to target. As a result, several novel parallel and complementary therapeutic approaches are in development with some now in clinical trials. We provide an overview of these new therapies for the liver and lung disease associated with α1-antitrypsin deficiency.
Collapse
Affiliation(s)
- David A Lomas
- UCL Respiratory, Division of Medicine, Rayne Building, University College London, UK; The London Alpha-1-Antitrypsin Deficiency Service, Royal Free London NHS Foundation Trust, London, UK; Institute of Structural and Molecular Biology, UCL/Birkbeck College, University of London, London WC1E 7HX, UK.
| | - John R Hurst
- UCL Respiratory, Division of Medicine, Rayne Building, University College London, UK; The London Alpha-1-Antitrypsin Deficiency Service, Royal Free London NHS Foundation Trust, London, UK
| | - Bibek Gooptu
- The London Alpha-1-Antitrypsin Deficiency Service, Royal Free London NHS Foundation Trust, London, UK; Institute of Structural and Molecular Biology, UCL/Birkbeck College, University of London, London WC1E 7HX, UK; Division of Asthma, Allergy and Lung Biology, King's College London, Guy's Hospital, 5th Floor, Tower Wing, London, UK
| |
Collapse
|
20
|
Abstract
α1-Antitrypsin deficiency (A1ATD) is an inherited disorder caused by mutations in SERPINA1, leading to liver and lung disease. It is not a rare disorder but frequently goes underdiagnosed or misdiagnosed as asthma, chronic obstructive pulmonary disease (COPD) or cryptogenic liver disease. The most frequent disease-associated mutations include the S allele and the Z allele of SERPINA1, which lead to the accumulation of misfolded α1-antitrypsin in hepatocytes, endoplasmic reticulum stress, low circulating levels of α1-antitrypsin and liver disease. Currently, there is no cure for severe liver disease and the only management option is liver transplantation when liver failure is life-threatening. A1ATD-associated lung disease predominately occurs in adults and is caused principally by inadequate protease inhibition. Treatment of A1ATD-associated lung disease includes standard therapies that are also used for the treatment of COPD, in addition to the use of augmentation therapy (that is, infusions of human plasma-derived, purified α1-antitrypsin). New therapies that target the misfolded α1-antitrypsin or attempt to correct the underlying genetic mutation are currently under development.
Collapse
|
21
|
Haq I, Irving JA, Saleh AD, Dron L, Regan-Mochrie GL, Motamedi-Shad N, Hurst JR, Gooptu B, Lomas DA. Deficiency Mutations of Alpha-1 Antitrypsin. Effects on Folding, Function, and Polymerization. Am J Respir Cell Mol Biol 2016; 54:71-80. [PMID: 26091018 DOI: 10.1165/rcmb.2015-0154oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Misfolding, polymerization, and defective secretion of functional alpha-1 antitrypsin underlies the predisposition to severe liver and lung disease in alpha-1 antitrypsin deficiency. We have identified a novel (Ala336Pro, Baghdad) deficiency variant and characterized it relative to the wild-type (M) and Glu342Lys (Z) alleles. The index case is a homozygous individual of consanguineous parentage, with levels of circulating alpha-1 antitrypsin in the moderate deficiency range, but is a biochemical phenotype that could not be classified by standard methods. The majority of the protein was present as functionally inactive polymer, and the remaining monomer was 37% active relative to the wild-type protein. These factors combined indicate an 85 to 95% functional deficiency, similar to that seen with ZZ homozygotes. Biochemical, biophysical, and computational studies further defined the molecular basis of this deficiency. These studies demonstrated that native Ala336Pro alpha-1 antitrypsin could populate the polymerogenic intermediate-and therefore polymerize-more readily than either wild-type alpha-1 antitrypsin or the Z variant. In contrast, folding was far less impaired in Ala336Pro alpha-1 antitrypsin than in the Z variant. The data are consistent with a disparate contribution by the "breach" region and "shutter" region of strand 5A to folding and polymerization mechanisms. Moreover, the findings demonstrate that, in these variants, folding efficiency does not correlate directly with the tendency to polymerize in vitro or in vivo. They therefore differentiate generalized misfolding from polymerization tendencies in missense variants of alpha-1 antitrypsin. Clinically, they further support the need to quantify loss-of-function in alpha-1 antitrypsin deficiency to individualize patient care.
Collapse
Affiliation(s)
- Imran Haq
- 1 Wolfson Institute for Biomedical Research, University College London, London, United Kingdom.,2 Institute of Structural and Molecular Biology/Birkbeck, University of London, London, United Kingdom
| | - James A Irving
- 1 Wolfson Institute for Biomedical Research, University College London, London, United Kingdom.,2 Institute of Structural and Molecular Biology/Birkbeck, University of London, London, United Kingdom
| | - Aarash D Saleh
- 3 London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, Pond Street, London, United Kingdom; and
| | - Louis Dron
- 3 London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, Pond Street, London, United Kingdom; and
| | - Gemma L Regan-Mochrie
- 1 Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Neda Motamedi-Shad
- 1 Wolfson Institute for Biomedical Research, University College London, London, United Kingdom.,2 Institute of Structural and Molecular Biology/Birkbeck, University of London, London, United Kingdom
| | - John R Hurst
- 3 London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, Pond Street, London, United Kingdom; and
| | - Bibek Gooptu
- 2 Institute of Structural and Molecular Biology/Birkbeck, University of London, London, United Kingdom.,3 London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, Pond Street, London, United Kingdom; and.,4 Division of Asthma, Allergy and Lung Biology, King's College London, London, United Kingdom
| | - David A Lomas
- 1 Wolfson Institute for Biomedical Research, University College London, London, United Kingdom.,2 Institute of Structural and Molecular Biology/Birkbeck, University of London, London, United Kingdom.,3 London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, Pond Street, London, United Kingdom; and
| |
Collapse
|
22
|
Moriconi C, Ordoñez A, Lupo G, Gooptu B, Irving JA, Noto R, Martorana V, Manno M, Timpano V, Guadagno NA, Dalton L, Marciniak SJ, Lomas DA, Miranda E. Interactions between N-linked glycosylation and polymerisation of neuroserpin within the endoplasmic reticulum. FEBS J 2015; 282:4565-79. [PMID: 26367528 PMCID: PMC4949553 DOI: 10.1111/febs.13517] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 07/26/2015] [Accepted: 09/10/2015] [Indexed: 01/04/2023]
Abstract
The neuronal serpin neuroserpin undergoes polymerisation as a consequence of point mutations that alter its conformational stability, leading to a neurodegenerative dementia called familial encephalopathy with neuroserpin inclusion bodies (FENIB). Neuroserpin is a glycoprotein with predicted glycosylation sites at asparagines 157, 321 and 401. We used site-directed mutagenesis, transient transfection, western blot, metabolic labelling and ELISA to probe the relationship between glycosylation, folding, polymerisation and degradation of neuroserpin in validated cell models of health and disease. Our data show that glycosylation at N157 and N321 plays an important role in maintaining the monomeric state of neuroserpin, and we propose this is the result of steric hindrance or effects on local conformational dynamics that can contribute to polymerisation. Asparagine residue 401 is not glycosylated in wild type neuroserpin and in several polymerogenic variants that cause FENIB, but partial glycosylation was observed in the G392E mutant of neuroserpin that causes severe, early-onset dementia. Our findings indicate that N401 glycosylation reports lability of the C-terminal end of neuroserpin in its native state. This C-terminal lability is not required for neuroserpin polymerisation in the endoplasmic reticulum, but the additional glycan facilitates degradation of the mutant protein during proteasomal impairment. In summary, our results indicate how normal and variant-specific N-linked glycosylation events relate to intracellular folding, misfolding, degradation and polymerisation of neuroserpin.
Collapse
Affiliation(s)
- Claudia Moriconi
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Adriana Ordoñez
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, UK
| | - Giuseppe Lupo
- Department of Chemistry, Sapienza University of Rome, Italy
| | - Bibek Gooptu
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - James A Irving
- Wolfson Institute for Biomedical Research, University College London, UK
| | - Rosina Noto
- National Research Council of Italy, Institute of Biophysics, Palermo, Italy
| | - Vincenzo Martorana
- National Research Council of Italy, Institute of Biophysics, Palermo, Italy
| | - Mauro Manno
- National Research Council of Italy, Institute of Biophysics, Palermo, Italy
| | - Valentina Timpano
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Noemi A Guadagno
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Lucy Dalton
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, UK
| | - Stefan J Marciniak
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, UK
| | - David A Lomas
- Wolfson Institute for Biomedical Research, University College London, UK
| | - Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
- Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Italy
| |
Collapse
|
23
|
A unique serpin P1' glutamate and a conserved β-sheet C arginine are key residues for activity, protease recognition and stability of serpinA12 (vaspin). Biochem J 2015. [PMID: 26199422 DOI: 10.1042/bj20150643] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
SerpinA12 (vaspin) is thought to be mainly expressed in adipose tissue and has multiple beneficial effects on metabolic, inflammatory and atherogenic processes related to obesity. KLK7 (kallikrein 7) is the only known protease target of vaspin to date and is inhibited with a moderate inhibition rate. In the crystal structure, the cleavage site (P1-P1') of the vaspin reactive centre loop is fairly rigid compared with the flexible residues before P2, possibly supported by an ionic interaction of P1' glutamate (Glu(379)) with an arginine residue (Arg(302)) of the β-sheet C. A P1' glutamate seems highly unusual and unfavourable for the protease KLK7. We characterized vaspin mutants to investigate the roles of these two residues in protease inhibition and recognition by vaspin. Reactive centre loop mutations changing the P1' residue or altering the reactive centre loop conformation significantly increased inhibition parameters, whereas removal of the positive charge within β-sheet C impeded the serpin-protease interaction. Arg(302) is a crucial contact to enable vaspin recognition by KLK7 and it supports moderate inhibition of the serpin despite the presence of the detrimental P1' Glu(379), which clearly represents a major limiting factor for vaspin-inhibitory activity. We also show that the vaspin-inhibition rate for KLK7 can be modestly increased by heparin and demonstrate that vaspin is a heparin-binding serpin. Noteworthily, we observed vaspin as a remarkably thermostable serpin and found that Glu(379) and Arg(302) influence heat-induced polymerization. These structural and functional results reveal the mechanistic basis of how reactive centre loop sequence and exosite interaction in vaspin enable KLK7 recognition and regulate protease inhibition as well as stability of this adipose tissue-derived serpin.
Collapse
|
24
|
An antibody raised against a pathogenic serpin variant induces mutant-like behaviour in the wild-type protein. Biochem J 2015; 468:99-108. [PMID: 25738741 PMCID: PMC4422257 DOI: 10.1042/bj20141569] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A monoclonal antibody (mAb) that binds to a transient intermediate may act as a catalyst for the corresponding reaction; here we show this principle can extend on a macro molecular scale to the induction of mutant-like oligomerization in a wild-type protein. Using the common pathogenic E342K (Z) variant of α1-antitrypsin as antigen–whose native state is susceptible to the formation of a proto-oligomeric intermediate–we have produced a mAb (5E3) that increases the rate of oligomerization of the wild-type (M) variant. Employing ELISA, gel shift, thermal stability and FRET time-course experiments, we show that mAb5E3 does not bind to the native state of α1-antitrypsin, but recognizes a cryptic epitope in the vicinity of the post-helix A loop and strand 4C that is revealed upon transition to the polymerization intermediate, and which persists in the ensuing oligomer. This epitope is not shared by loop-inserted monomeric conformations. We show the increased amenity to polymerization by either the pathogenic E342K mutation or the binding of mAb5E3 occurs without affecting the energetic barrier to polymerization. As mAb5E3 also does not alter the relative stability of the monomer to intermediate, it acts in a manner similar to the E342K mutant, by facilitating the conformational interchange between these two states. We show that a monoclonal antibody can act as a ‘molecular template’ in aberrant protein oligomerization, and the transient intermediate of α1-antitrypsin, a key to the molecular mechanism of disease pathogenesis, expresses a cryptic epitope also present in the oligomer.
Collapse
|
25
|
Nyon MP, Prentice T, Day J, Kirkpatrick J, Sivalingam GN, Levy G, Haq I, Irving JA, Lomas DA, Christodoulou J, Gooptu B, Thalassinos K. An integrative approach combining ion mobility mass spectrometry, X-ray crystallography, and nuclear magnetic resonance spectroscopy to study the conformational dynamics of α1 -antitrypsin upon ligand binding. Protein Sci 2015; 24:1301-12. [PMID: 26011795 PMCID: PMC4534181 DOI: 10.1002/pro.2706] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 11/11/2022]
Abstract
Native mass spectrometry (MS) methods permit the study of multiple protein species within solution equilibria, whereas ion mobility (IM)-MS can report on conformational behavior of specific states. We used IM-MS to study a conformationally labile protein (α1 -antitrypsin) that undergoes pathological polymerization in the context of point mutations. The folded, native state of the Z-variant remains highly polymerogenic in physiological conditions despite only minor thermodynamic destabilization relative to the wild-type variant. Various data implicate kinetic instability (conformational lability within a native state ensemble) as the basis of Z α1 -antitrypsin polymerogenicity. We show the ability of IM-MS to track such disease-relevant conformational behavior in detail by studying the effects of peptide binding on α1 -antitrypsin conformation and dynamics. IM-MS is, therefore, an ideal platform for the screening of compounds that result in therapeutically beneficial kinetic stabilization of native α1 -antitrypsin. Our findings are confirmed with high-resolution X-ray crystallographic and nuclear magnetic resonance spectroscopic studies of the same event, which together dissect structural changes from dynamic effects caused by peptide binding at a residue-specific level. IM-MS methods, therefore, have great potential for further study of biologically relevant thermodynamic and kinetic instability of proteins and provide rapid and multidimensional characterization of ligand interactions of therapeutic interest.
Collapse
Affiliation(s)
- Mun Peak Nyon
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Tanya Prentice
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Jemma Day
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - John Kirkpatrick
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Ganesh N Sivalingam
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Geraldine Levy
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Imran Haq
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London, WC1E 6BT, United Kingdom
| | - James A Irving
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London, WC1E 6BT, United Kingdom
| | - David A Lomas
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London, WC1E 6BT, United Kingdom
| | - John Christodoulou
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, WC1E 7HX, United Kingdom
| | - Bibek Gooptu
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, WC1E 7HX, United Kingdom.,Division of Asthma, Allergy and Lung Biology, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, WC1E 7HX, United Kingdom
| |
Collapse
|