1
|
Tang X, Zhang XJ, Pan JF, Guo K, Tan CL, Zhang QZ, Long LP, Ding RF, Niu XM, Liu Y, Li SH. Z/E configuration controlled by a Taxus sesquiterpene synthase facilitating the biosynthesis of (3Z,6E)-α-farnesene. PHYTOCHEMISTRY 2024; 229:114304. [PMID: 39424093 DOI: 10.1016/j.phytochem.2024.114304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Plant enzymes often present advantages in the synthesis of natural products with specific configurations. Farnesene is a pharmacologically active sesquiterpene with three natural Z/E configurations, among which the enzyme selectively responsible for the biosynthesis of (3Z,6E)-α-farnesene remains elusive. Herein, a sesquiterpene synthase TwSTPS1 biosynthesizing (3Z,6E)-α-farnesene as the major product was identified from Taxus wallichiana through genome mining. Utilizing molecular dynamics simulations and mutation analysis, the catalytic mechanism of TwSTPS1, especially Z/E configuration control, was explored. Moreover, the crucial residues associated with the specific catalytic activity of TwSTPS1 was elucidated through mutagenesis experiments. The findings contribute to our understanding of the Z/E configuration control by plant terpene synthases and also provide an alternative tool for manipulating (3Z,6E)-α-farnesene production using synthetic biology.
Collapse
Affiliation(s)
- Xue Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xian-Jing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jing-Feng Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Chun-Lin Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Qiao-Zhuo Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Li-Ping Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Rui-Feng Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xue-Mei Niu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, PR China.
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| |
Collapse
|
2
|
Zheng J, Wang N, Zhang W, Liao Y, Tao T, Chang J, Ye J, Xu F, Wang Q, Jiang L, Liu L. Characterization and functional analysis of novel α-bisabolol synthase (MrBAS) promoter from Matricaria recutita. Int J Biol Macromol 2024; 281:136445. [PMID: 39389512 DOI: 10.1016/j.ijbiomac.2024.136445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Matricaria recutita is widely used in industry and as a medicinal plant because it contains α-bisabolol. Alpha-bisabolol has broad application prospects due to its healthy function and medical value. The activity of the α-bisabolol synthase (MrBAS) promoter determines the expression of the MrBAS gene, which in turn influences the synthesis and accumulation of α-bisabolol. However, the activity and tissue specificity of the MrBAS promoter have not yet been characterized. In this study, a 1327-base pair (bp) region upstream of the MrBAS of the translation start site was cloned from the genome of M. recutita. MrBAS promoter sequence analysis revealed multiple light-responsive elements, and further dark treatment reduced α-bisabolol content in flowers. The α-bisabolol content and MrBAS expression levels in various flower tissues showed a strong correlation. The 5' deletion analysis revealed that the MrBAS promoter sequence could drive β-glucuronidase (GUS) gene expression in Nicotiana benthamiana leaves, with activity decreasing as the fragment shortened. Transgenic experiments demonstrated that the MrBAS promoter could specifically drive GUS gene expression in Arabidopsis anthers, pollen tubes, and petals. Thus, the MrBAS promoter has the potential to be a tool for directing transgene expression specifically in flower organs, offering new research avenues for cultivar development.
Collapse
Affiliation(s)
- Jiarui Zheng
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Nuo Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Tingting Tao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jie Chang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Qijian Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Leiyu Jiang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Li Liu
- Shannan Anrao Township Agricultural and Animal Husbandry Comprehensive Service Center, Shannan 856000, Xizang, China
| |
Collapse
|
3
|
Jiang Y, Xia L, Gao S, Li N, Yu S, Zhou J. Engineering Saccharomyces cerevisiae for enhanced (-)-α-bisabolol production. Synth Syst Biotechnol 2023; 8:187-195. [PMID: 36824492 PMCID: PMC9941373 DOI: 10.1016/j.synbio.2023.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
(-)-α-Bisabolol is naturally occurring in many plants and has great potential in health products and pharmaceuticals. However, the current extraction method from natural plants is unsustainable and cannot fulfil the increasing requirement. This study aimed to develop a sustainable strategy to enhance the biosynthesis of (-)-α-bisabolol by metabolic engineering. By introducing the heterologous gene MrBBS and weakening the competitive pathway gene ERG9, a de novo (-)-α-bisabolol biosynthesis strain was constructed that could produce 221.96 mg/L (-)-α-bisabolol. Two key genes for (-)-α-bisabolol biosynthesis, ERG20 and MrBBS, were fused by a flexible linker (GGGS)3 under the GAL7 promoter control, and the titer was increased by 2.9-fold. Optimization of the mevalonic acid pathway and multi-copy integration further increased (-)-α-bisabolol production. To promote product efflux, overexpression of PDR15 led to an increase in extracellular production. Combined with the optimal strategy, (-)-α-bisabolol production in a 5 L bioreactor reached 7.02 g/L, which is the highest titer reported in yeast to date. This work provides a reference for the efficient production of (-)-α-bisabolol in yeast.
Collapse
Affiliation(s)
- Yinkun Jiang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Lu Xia
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Ning Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Shiqin Yu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China,Corresponding author. Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
4
|
Biosynthesis of α-Bisabolol by Farnesyl Diphosphate Synthase and α-Bisabolol Synthase and Their Related Transcription Factors in Matricaria recutita L. Int J Mol Sci 2023; 24:ijms24021730. [PMID: 36675248 PMCID: PMC9864331 DOI: 10.3390/ijms24021730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The essential oil of German chamomile (Matricaria recutita L.) is widely used in food, cosmetics, and the pharmaceutical industry. α-Bisabolol is the main active substance in German chamomile. Farnesyl diphosphate synthase (FPS) and α-bisabolol synthase (BBS) are key enzymes related to the α-bisabolol biosynthesis pathway. However, little is known about the α-bisabolol biosynthesis pathway in German chamomile, especially the transcription factors (TFs) related to the regulation of α-bisabolol synthesis. In this study, we identified MrFPS and MrBBS and investigated their functions by prokaryotic expression and expression in hairy root cells of German chamomile. The results suggest that MrFPS is the key enzyme in the production of sesquiterpenoids, and MrBBS catalyzes the reaction that produces α-bisabolol. Subcellular localization analysis showed that both MrFPS and MrBBS proteins were located in the cytosol. The expression levels of both MrFPS and MrBBS were highest in the extension period of ray florets. Furthermore, we cloned and analyzed the promoters of MrFPS and MrBBS. A large number of cis-acting elements related to light responsiveness, hormone response elements, and cis-regulatory elements that serve as putative binding sites for specific TFs in response to various biotic and abiotic stresses were identified. We identified and studied TFs related to MrFPS and MrBBS, including WRKY, AP2, and MYB. Our findings reveal the biosynthesis and regulation of α-bisabolol in German chamomile and provide novel insights for the production of α-bisabolol using synthetic biology methods.
Collapse
|
5
|
Effects of codon optimization, N-terminal truncation and gene dose on the heterologous expression of berberine bridge enzyme. World J Microbiol Biotechnol 2022; 38:77. [PMID: 35316417 DOI: 10.1007/s11274-022-03265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Morphine, sanguinarine and chelerythrine are benzylisoquinoline alkaloids (BIAs), and these compounds possess strong biological activities. (S)-scoulerine is a commonly shared precursor of these compounds, and berberine bridge enzyme (BBE) is a key rate-limiting enzyme in the synthesis of (S)-scoulerine. We isolated the BBE gene from Macleaya cordata (McBBE) and used CEN.PK2-1C as a chassis strain. We compared the catalytic efficiency of five codon-optimized McBBE genes in Saccharomyces cerevisiae and finally obtained a yeast strain (YH03) that exhibited a 58-fold increase in yield (1.12 mg/L). Then, we truncated the N-terminus of McBBE by 8 and 22 amino acids and found that with the increase in the number of N-terminal truncated amino acids, the production of (S)-scoulerine gradually decreased. Additionally, we used CRISPR-Cas9 to integrate the McBBE gene at the delta site of the S. cerevisiae genome to achieve stable genetic inheritance and found that the yield of (S)-scoulerine was not significantly increased in the integrated strain. In conclusion, our work achieved high-efficiency expression of McBBE in S. cerevisiae, explored the influence of N-terminal truncation on the yield of (S)-scoulerine, and obtained a genetically stable S. cerevisiae strain with high McBBE expression. This study provides a reference for further complex metabolic engineering optimization and lays a foundation for the efficient biosynthesis of BIAs.
Collapse
|
6
|
Li YW, Yang CL, Shen Q, Peng QQ, Guo Q, Nie ZK, Sun XM, Shi TQ, Ji XJ, Huang H. YALIcloneNHEJ: An Efficient Modular Cloning Toolkit for NHEJ Integration of Multigene Pathway and Terpenoid Production in Yarrowia lipolytica. Front Bioeng Biotechnol 2022; 9:816980. [PMID: 35308823 PMCID: PMC8924588 DOI: 10.3389/fbioe.2021.816980] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022] Open
Abstract
Non-homologous end-joining (NHEJ)-mediated random integration in Yarrowia lipolytica has been demonstrated to be an effective strategy for screening hyperproducer strains. However, there was no multigene assembly method applied for NHEJ integration, which made it challenging to construct and integrate metabolic pathways. In this study, a Golden Gate modular cloning system (YALIcloneNHEJ) was established to develop a robust DNA assembly platform in Y. lipolytica. By optimizing key factors, including the amounts of ligase and the reaction cycles, the assembly efficiency of 4, 7, and 10 fragments reached up to 90, 75, and 50%, respectively. This YALIcloneNHEJ system was subsequently applied for the overproduction of the sesquiterpene (-)-α-bisabolol by constructing a biosynthesis route and enhancing the flux in the mevalonate pathway. The resulting strain produced 4.4 g/L (-)-α-bisabolol, the highest titer reported in yeast to date. Our study expands the toolbox of metabolic engineering and is expected to enable a highly efficient production of various terpenoids.
Collapse
Affiliation(s)
- Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Cai-Ling Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qi Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qian-Qian Peng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qi Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Zhi-Kui Nie
- Jiangxi New Reyphon Biochemical Co., Ltd., Salt and Chemical Industry, Xingan, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
- *Correspondence: Tian-Qiong Shi, ; Xiao-Jun Ji,
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- *Correspondence: Tian-Qiong Shi, ; Xiao-Jun Ji,
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
- College of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| |
Collapse
|
7
|
Cao R, Wu X, Wang Q, Qi P, Zhang Y, Wang L, Sun C. Characterization of γ-Cadinene Enzymes in Ganoderma lucidum and Ganoderma sinensis from Basidiomycetes Provides Insight into the Identification of Terpenoid Synthases. ACS OMEGA 2022; 7:7229-7239. [PMID: 35252713 PMCID: PMC8892675 DOI: 10.1021/acsomega.1c06792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Enzymes boost protein engineering, directed evolution, and the biochemical industry and are also the cornerstone of metabolic engineering. Basidiomycetes are known to produce a large variety of terpenoids with unique structures. However, basidiomycetous terpene synthases remain largely untapped. Therefore, we provide a modeling method to obtain specific terpene synthases. Aided by bioinformatics analysis, three γ-cadinene enzymes from Ganoderma lucidum and Ganoderma sinensis were accurately predicted and identified experimentally. Based on the highly conserved amino motifs of the characterized γ-cadinene enzymes, the enzyme was reassembled as model 1. Using this model as a template, 67 homologous sequences of the γ-cadinene enzyme were screened from the National Center for Biotechnology Information (NCBI). According to the 67 sequences, the same gene structure, and similar conserved motifs to model 1, the γ-cadinene enzyme model was further improved by the same construction method and renamed as model 2. The results of bioinformatics analysis show that the conservative regions of models 1 and 2 are highly similar. In addition, five of these sequences were verified, 100% of which were γ-cadinene enzymes. The accuracy of the prediction ability of the γ-cadinene enzyme model was proven. In the same way, we also reanalyzed the identified Δ6-protoilludene enzymes in fungi and (-)-α-bisabolol enzymes in plants, all of which have their own unique conserved motifs. Our research method is expected to be used to study other terpenoid synthases with a similar or the same function in basidiomycetes, ascomycetes, bacteria, and plants and to provide rich enzyme resources.
Collapse
Affiliation(s)
- Rui Cao
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Xinlong Wu
- College
of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Qi Wang
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Pengyan Qi
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Yuna Zhang
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Lizhi Wang
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Chao Sun
- Institute
of Medicinal Plant Development, Chinese
Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, P. R. China
| |
Collapse
|
8
|
Ye Z, Shi B, Huang Y, Ma T, Xiang Z, Hu B, Kuang Z, Huang M, Lin X, Tian Z, Deng Z, Shen K, Liu T. Revolution of vitamin E production by starting from microbial fermented farnesene to isophytol. Innovation (N Y) 2022; 3:100228. [PMID: 35373168 PMCID: PMC8968663 DOI: 10.1016/j.xinn.2022.100228] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin E is one of the most widely used vitamins. In the classical commercial synthesis of vitamin E (α-tocopherol), the chemical synthesis of isophytol is the key technical barrier. Here, we establish a new process for isophytol synthesis from microbial fermented farnesene. To achieve an efficient pathway for farnesene production, Saccharomyces cerevisiae was selected as the host strain. First, β-farnesene synthase genes from different sources were screened, and through protein engineering and system metabolic engineering, a high production of β-farnesene in S. cerevisiae was achieved (55.4 g/L). This farnesene can be chemically converted into isophytol in three steps with approximately 92% yield, which is economically equal to that from the best total chemical synthesis. Furthermore, we co-produced lycopene and farnesene to reduce the cost of farnesene. A factory based on this new process was successfully operated in Hubei Province, China, in 2017, with an annual output of 30,000 tons of vitamin E. This new process has completely changed the vitamin E market due to its low cost and safety. The traditional chemical synthesis of vitamin E is complex and could be explosive An innovative way to synthesize isophytol from biofermented farnesene is established This process is safer and cheaper, changing the production and marketing of vitamin E Co-production of β-farnesene and lycopene improves the competitiveness of this process
Collapse
Affiliation(s)
- Ziling Ye
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- J1 Biotech Co., Ltd., Wuhan 430075, China
| | - Bin Shi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- J1 Biotech Co., Ltd., Wuhan 430075, China
| | - Yanglei Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Tian Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zilei Xiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Ben Hu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhaolin Kuang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Man Huang
- J1 Biotech Co., Ltd., Wuhan 430075, China
| | - Xiaoying Lin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhu Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Kun Shen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Corresponding author
| |
Collapse
|
9
|
Kim TY, Park H, Kim SK, Kim SJ, Park YC. Production of (-)-α-bisabolol in metabolically engineered Saccharomyces cerevisiae. J Biotechnol 2021; 340:13-21. [PMID: 34391805 DOI: 10.1016/j.jbiotec.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/19/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
(-)-α-Bisabolol is a natural monocyclic sesquiterpene alcohol present in German chamomile and has been used as an ingredient of functional foods, cosmetics and pharmaceuticals. In this study, metabolic engineering strategies were attempted to produce (-)-α-bisabolol in Saccharomyces cerevisiae. The codon-optimized MrBBS gene coding for (-)-α-bisabolol synthase from Matricaria recutita was expressed in S. cerevisiae for (-)-α-bisabolol production. The resulting strain (DM) produced 9.5 mg/L of (-)-α-bisabolol in 24 h of batch culture. Additionally, the mevalonate pathway was intensified by introducing a truncated HMG1 gene coding for HMG-CoA reductase and ERG10 encoding acetyl-CoA thiolase. The resulting strain (DtEM) produced a 2.9-fold increased concentration of (-)-α-bisabolol than the DM strain. To increase the acetyl-CoA pool, the ACS1 gene coding for acetyl-CoA synthetase was also overexpressed in the DtEM strain. Finally, the DtEMA strain produced 124 mg/L of (-)-α-bisabolol with 2.7 mg/L-h of productivity in a fed-batch fermentation, which were 13 and 6.8 times higher than the DM strain in batch culture, respectively. Conclusively, these metabolically-engineered approaches might pave the way for the sustainable production of other sesquiterpenes in engineered S. cerevisiae.
Collapse
Affiliation(s)
- Tae Yeob Kim
- Department of Bio and Fermentation Convergence Technology, and Interdisciplinary Program for Bio-health Convergence, Kookmin University, Seoul 02707, Republic of Korea
| | - Haeseong Park
- Department of Bio and Fermentation Convergence Technology, and Interdisciplinary Program for Bio-health Convergence, Kookmin University, Seoul 02707, Republic of Korea; Center for Industrialization of Agricultural and Livestock Microorganism (CIALM), Jeongeup 56212, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology, and Interdisciplinary Program for Bio-health Convergence, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
10
|
Lim HS, Kim SK, Woo SG, Kim TH, Yeom SJ, Yong W, Ko YJ, Kim SJ, Lee SG, Lee DH. (-)-α-Bisabolol Production in Engineered Escherichia coli Expressing a Novel (-)-α-Bisabolol Synthase from the Globe Artichoke Cynara cardunculus var. Scolymus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8492-8503. [PMID: 34282904 DOI: 10.1021/acs.jafc.1c02759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
(-)-α-Bisabolol is a functional ingredient in various health and cosmetic products and has antibacterial, anti-inflammatory, and wound healing properties. (-)-α-Bisabolol is chemically synthesized and produced by steam distillation of essential oils extracted from Brazilian Candeia (Eremanthus erythropappus). To sustainably produce pure (-)-α-bisabolol, we previously engineered Escherichia coli to produce 9.1 g/L (-)-α-bisabolol via heterologous mevalonate pathways and (-)-α-bisabolol synthase (BOS) from German chamomile, Matricaria recutita (MrBOS). BOS has only been reported in MrBOS and Brazilian Candeia (EeBOS). The limited availability of BOS has made it difficult to achieve high titer and yield and large-scale (-)-α-bisabolol production. We identified a novel BOS in globe artichoke (CcBOS) and examined its functionality in vitro and in vivo. CcBOS showed higher catalytic efficiency and (-)-α-bisabolol production rates than those from MrBOS or EeBOS. In fed-batch fermentation, CcBOS generated the highest reported (-)-α-bisabolol titer to date (23.4 g/L). These results may facilitate economically viable industrial (-)-α-bisabolol production.
Collapse
Affiliation(s)
- Hyun Seung Lim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seong Keun Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seung-Gyun Woo
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Tae Hyun Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Soo-Jin Yeom
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- School of Biological Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Wonshik Yong
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance, National Center for Inter-University Research Facilities (NCIRF), Seoul National University, Seoul 08826, Republic of Korea
| | - Soo-Jung Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
11
|
Karunanithi PS, Berrios DI, Wang S, Davis J, Shen T, Fiehn O, Maloof JN, Zerbe P. The foxtail millet (Setaria italica) terpene synthase gene family. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:781-800. [PMID: 32282967 PMCID: PMC7497057 DOI: 10.1111/tpj.14771] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/15/2020] [Accepted: 03/24/2020] [Indexed: 05/18/2023]
Abstract
Terpenoid metabolism plays vital roles in stress defense and the environmental adaptation of monocot crops. Here, we describe the identification of the terpene synthase (TPS) gene family of the panicoid food and bioenergy model crop foxtail millet (Setaria italica). The diploid S. italica genome contains 32 TPS genes, 17 of which were biochemically characterized in this study. Unlike other thus far investigated grasses, S. italica contains TPSs producing all three ent-, (+)- and syn-copalyl pyrophosphate stereoisomers that naturally occur as central building blocks in the biosynthesis of distinct monocot diterpenoids. Conversion of these intermediates by the promiscuous TPS SiTPS8 yielded different diterpenoid scaffolds. Additionally, a cytochrome P450 monooxygenase (CYP99A17), which genomically clustered with SiTPS8, catalyzes the C19 hydroxylation of SiTPS8 products to generate the corresponding diterpene alcohols. The presence of syntenic orthologs to about 19% of the S. italica TPSs in related grasses supports a common ancestry of selected pathway branches. Among the identified enzyme products, abietadien-19-ol, syn-pimara-7,15-dien-19-ol and germacrene-d-4-ol were detectable in planta, and gene expression analysis of the biosynthetic TPSs showed distinct and, albeit moderately, inducible expression patterns in response to biotic and abiotic stress. In vitro growth-inhibiting activity of abietadien-19-ol and syn-pimara-7,15-dien-19-ol against Fusarium verticillioides and Fusarium subglutinans may indicate pathogen defensive functions, whereas the low antifungal efficacy of tested sesquiterpenoids supports other bioactivities. Together, these findings expand the known chemical space of monocot terpenoid metabolism to enable further investigations of terpenoid-mediated stress resilience in these agriculturally important species.
Collapse
Affiliation(s)
- Prema S. Karunanithi
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - David I. Berrios
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Sadira Wang
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - John Davis
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Tong Shen
- West Coast Metabolomics CenterUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Oliver Fiehn
- West Coast Metabolomics CenterUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Julin N. Maloof
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Philipp Zerbe
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| |
Collapse
|
12
|
Dienst D, Wichmann J, Mantovani O, Rodrigues JS, Lindberg P. High density cultivation for efficient sesquiterpenoid biosynthesis in Synechocystis sp. PCC 6803. Sci Rep 2020; 10:5932. [PMID: 32246065 PMCID: PMC7125158 DOI: 10.1038/s41598-020-62681-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/05/2020] [Indexed: 12/23/2022] Open
Abstract
Cyanobacteria and microalgae are attractive photoautotrophic host systems for climate-friendly production of fuels and other value-added biochemicals. However, for economic applications further development and implementation of efficient and sustainable cultivation strategies are essential. Here, we present a comparative study on cyanobacterial sesquiterpenoid biosynthesis in Synechocystis sp. PCC 6803 using a commercial lab-scale High Density Cultivation (HDC) platform in the presence of dodecane as in-situ extractant. Operating in a two-step semi-batch mode over a period of eight days, volumetric yields of (E)-α-bisabolene were more than two orders of magnitude higher than previously reported for cyanobacteria, with final titers of 179.4 ± 20.7 mg * L−1. Likewise, yields of the sesquiterpene alcohols (−)-patchoulol and (−)-α-bisabolol were many times higher than under reference conditions, with final titers of 17.3 ± 1.85 mg * L−1 and 96.3 ± 2.2 mg * L−1, respectively. While specific productivity was compromised particularly for (E)-α-bisabolene in the HDC system during phases of high biomass accumulation rates, volumetric productivity enhancements during linear growth at high densities were more pronounced for (E)-α-bisabolene than for the hydroxylated terpenoids. Together, this study provides additional insights into cell density-related process characteristics, introducing HDC as highly efficient strategy for phototrophic terpenoid production in cyanobacteria.
Collapse
Affiliation(s)
- Dennis Dienst
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - Julian Wichmann
- Faculty of Biology - Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Oliver Mantovani
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - João S Rodrigues
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - Pia Lindberg
- Department of Chemistry - Ångström, Uppsala University, Box 523, Uppsala, 75120, Sweden.
| |
Collapse
|
13
|
Laurini E, Andreani S, Muselli A, Pricl S, Tintaru A. Direct Identification of α-Bisabolol Enantiomers in an Essential Oil Using a Combined Ion Mobility-Mass Spectrometry/Quantum Chemistry Approach. JOURNAL OF NATURAL PRODUCTS 2020:acs.jnatprod.9b00982. [PMID: 32212660 DOI: 10.1021/acs.jnatprod.9b00982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Enantiomer-specific identification of chiral molecules in natural extracts is a challenging task, as many routine analytical techniques fail to provide selectivity in multicomponent mixtures. Here we describe an alternative approach, based on the combination of ion mobility-mass spectrometry (IM-MS) and quantum chemistry (QM), for the direct enantiomers differentiation in crude essential oils. The identification of α-bisabolol enantiomers contained in the raw essential oil (EO) from the Corsican Xanthium italicum fruits is reported as a proof-of-concept. Accordingly, IM-MS experiments performed in Ag+-doped methanol revealed the presence of both (+)- and (-)-α-bisabolol in the EO, while molecular simulations provided the structures of the two α-bisabolol enantiomer silver(I) adducts.
Collapse
Affiliation(s)
- Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy
| | - Stéphane Andreani
- Université de Corse, UMR CNRS 6134 SPE, Laboratoire Chimie des Produits Naturels (CPN), Campus Grimaldi, BP 52, 20250 Corte, France
| | - Alain Muselli
- Université de Corse, UMR CNRS 6134 SPE, Laboratoire Chimie des Produits Naturels (CPN), Campus Grimaldi, BP 52, 20250 Corte, France
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland
| | - Aura Tintaru
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR7273, 13397 Marseille, France
| |
Collapse
|
14
|
Muangphrom P, Misaki M, Suzuki M, Shimomura M, Suzuki H, Seki H, Muranaka T. Identification and characterization of (+)-α-bisabolol and 7-epi-silphiperfol-5-ene synthases from Artemisia abrotanum. PHYTOCHEMISTRY 2019; 164:144-153. [PMID: 31151061 DOI: 10.1016/j.phytochem.2019.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Triquinane is a type of sesquiterpenoid with a unique structure that contains a fused tricyclopentane ring and exhibits a wide range of bioactivities. Like other sesquiterpenoids, the first committed step in triquinane-type sesquiterpenoid biosynthesis is the cyclization of farnesyl pyrophosphate (FPP), a common precursor of all sesquiterpenoids, catalyzed by sesquiterpene synthase. Artemisia abrotanum L. (Asteraceae), a common plant used in the culinary and cosmetics industries, has been reported to accumulate high levels of triquinane silphiperfol-5-en-3-one A. This compound is potentially biosynthesized from the cyclization of FPP into 7-epi-silphiperfol-5-ene followed by a multi-step oxidation to silphiperfol-5-en-3-one A. In this study, we aimed to identify the sesquiterpene synthase responsible for the synthesis of 7-epi-silphiperfol-5-ene. We performed RNA sequencing of A. abrotanum leaves and gene candidates were mined by homology searches using the triquinane α-isocomene synthase of chamomile (MrTPS2) as query. After gene cloning, we obtained five variants of putative sesquiterpene synthase showing greater than 85% amino acid identity to MrTPS2 and greater than 95% amino acid identity to each other. Heterologous expression of these variants in a FPP-high-producing yeast strain revealed the first four variants to be (+)-α-bisabolol synthases (AabrBOS1-4). However, the fifth candidate cyclized FPP into 7-epi-silphiperfol-5-ene and can therefore be defined as a 7-epi-silphiperfol-5-ene synthase (AabrSPS). These findings revealed the first committed enzyme involved in silphiperfol-5-en-3-one A and (+)-α-bisabolol biosyntheses in A. abrotanum. Furthermore, the results of this study will be useful for enhancing the production of these compounds for further applications.
Collapse
Affiliation(s)
- Paskorn Muangphrom
- Department of Biotechnology, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Momoka Misaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Munenori Suzuki
- Department of Biotechnology, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; KNC Laboratories Co., Ltd., 3-2-34 Takatsukadai, Nishi-ku, Kobe, Hyogo, 651-2271, Japan; Kihara Institute for Biological Research, Yokohama City University 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Masaya Shimomura
- Kihara Institute for Biological Research, Yokohama City University 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Hideyuki Suzuki
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Kihara Institute for Biological Research, Yokohama City University 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Kihara Institute for Biological Research, Yokohama City University 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| |
Collapse
|
15
|
Enhanced (−)-α-Bisabolol Productivity by Efficient Conversion of Mevalonate in Escherichia coli. Catalysts 2019. [DOI: 10.3390/catal9050432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
(−)-α-Bisabolol, a naturally occurring sesquiterpene alcohol, has been used in pharmaceuticals and cosmetics owing to its beneficial effects on inflammation and skin healing. Previously, we reported the high production of (−)-α-bisabolol by fed-batch fermentation using engineered Escherichia coli (E. coli) expressing the exogenous mevalonate (MVA) pathway genes. The productivity of (−)-α-bisabolol must be improved before industrial application. Here, we report enhancement of initial (−)-α-bisabolol productivity to 3-fold higher than that observed in our previous study. We first harnessed a farnesyl pyrophosphate (FPP)-resistant mevalonate kinase 1 (MvaK1) from an archaeon Methanosarcina mazei (M. mazei) to create a more efficient heterologous MVA pathway that produces (−)-α-bisabolol in the engineered E. coli. The resulting strain produced 1.7-fold higher (−)-α-bisabolol relative to the strain expressing a feedback-inhibitory MvaK1 from Staphylococcus aureus (S. aureus). Next, to efficiently convert accumulated MVA to (−)-α-bisabolol, we additionally overexpressed genes involved in the lower MVA mevalonate pathway in E. coli containing the entire MVA pathway genes. (−)-α-Bisabolol production increased by 1.8-fold with reduction of MVA accumulation, relative to the control strain. Finally, we optimized the fermentation conditions including inducer concentration, aeration and enzymatic cofactor. The strain was able to produce 8.5 g/L of (−)-α-bisabolol with an initial productivity of 0.12 g/L h in the optimal fed-batch fermentation. Thus, the microbial production of (−)-α-bisabolol would be an economically viable bioprocess for its industrial application.
Collapse
|
16
|
Lee AR, Kwon M, Kang MK, Kim J, Kim SU, Ro DK. Increased sesqui- and triterpene production by co-expression of HMG-CoA reductase and biotin carboxyl carrier protein in tobacco (Nicotiana benthamiana). Metab Eng 2019; 52:20-28. [PMID: 30389612 DOI: 10.1016/j.ymben.2018.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/29/2018] [Accepted: 10/27/2018] [Indexed: 01/16/2023]
Abstract
Terpenoids are the most diverse natural products with many industrial applications and are all synthesized from simple precursors, isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). In plants, IPP is synthesized by two distinct metabolic pathways - cytosolic mevalonate (MVA) pathway for C15 sesquiterpene and C30 triterpene, and plastidic methylerythritol phosphate (MEP) pathway for C10 monoterpene and C20 diterpene. A number of studies have altered the metabolic gene expressions in either the MVA or MEP pathway to increase terpene production; however, it remains unknown if the alteration of the acetyl-CoA pool in plastid fatty acid biosynthesis can influence terpenoid flux. Here, we focused on the fact that acetyl-CoA is the precursor for both fatty acid biosynthesis in plastid and terpene biosynthesis in cytosol, and the metabolic impact of increased plastidic acetyl-CoA level on the cytosolic terpene biosynthesis was investigated. In tobacco leaf infiltration studies, the acetyl-CoA carboxylase complex (the enzyme supplying malonyl-CoA in plastid) was partially inhibited by overexpressing the inactive form of biotin carboxyl carrier protein (BCCP) by a negative dominant effect. Overexpression of BCCP showed 1.4-2.4-fold increase of sesquiterpenes in cytosol; however, surprisingly overexpression of BCCP linked to truncated HMG-CoA reductase (tHMGR) by a cleavable peptide 2A showed 20-40-fold increases of C15 sesquiterpenes (α-bisabolol, amorphadiene, and valerenadiene) and a 6-fold increase of C30 β-amyrin. α-Bisabolol and β-amyrin production reached 28.8 mg g-1 and 9.8 mg g-1 dry weight, respectively. Detailed analyses showed that a large increase in flux was achieved by the additive effect of BCCP- and tHMGR-overexpression, and an enhanced tHMGR activity by 2A peptide tag. Kinetic analyses showed that tHMGR-2A has a three-fold higher kcat value than tHMGR. The tHMGR-2A-BCCP1 co-expression strategy in this work provides a new insight into metabolic cross-talks and can be a generally applicable approach to over-produce sesqui- and tri-terpene in plants.
Collapse
Affiliation(s)
- Ah-Reum Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Moonhyuk Kwon
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Department of Biological Sciences, University of Calgary, Calgary, AB, T2N1N4, Canada
| | - Min-Kyoung Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeonghan Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soo-Un Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; College of Horticulture and Gardening, Yangtze University, Jingzhou 434023, Hubei, China.
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N1N4, Canada.
| |
Collapse
|
17
|
Durairaj J, Di Girolamo A, Bouwmeester HJ, de Ridder D, Beekwilder J, van Dijk AD. An analysis of characterized plant sesquiterpene synthases. PHYTOCHEMISTRY 2019; 158:157-165. [PMID: 30446165 DOI: 10.1016/j.phytochem.2018.10.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 05/04/2023]
Abstract
Plants exhibit a vast array of sesquiterpenes, C15 hydrocarbons which often function as herbivore-repellents or pollinator-attractants. These in turn are produced by a diverse range of sesquiterpene synthases. A comprehensive analysis of these enzymes in terms of product specificity has been hampered by the lack of a centralized resource of sufficient functionally annotated sequence data. To address this, we have gathered 262 plant sesquiterpene synthase sequences with experimentally characterized products. The annotated enzyme sequences allowed for an analysis of terpene synthase motifs, leading to the extension of one motif and recognition of a variant of another. In addition, putative terpene synthase sequences were obtained from various resources and compared with the annotated sesquiterpene synthases. This analysis indicated regions of terpene synthase sequence space which so far are unexplored experimentally. Finally, we present a case describing mutational studies on residues altering product specificity, for which we analyzed conservation in our database. This demonstrates an application of our database in choosing likely-functional residues for mutagenesis studies aimed at understanding or changing sesquiterpene synthase product specificity.
Collapse
Affiliation(s)
- Janani Durairaj
- Bioinformatics Group, Department of Plant Sciences, Wageningen University, Netherlands.
| | - Alice Di Girolamo
- Laboratory of Plant Physiology, Department of Plant Sciences, Wageningen University, Netherlands.
| | - Harro J Bouwmeester
- Swammerdam Institute for Life Sciences, University of Amsterdam, Netherlands.
| | - Dick de Ridder
- Bioinformatics Group, Department of Plant Sciences, Wageningen University, Netherlands.
| | - Jules Beekwilder
- Laboratory of Plant Physiology, Department of Plant Sciences, Wageningen University, Netherlands; Bioscience, Wageningen Plant Research, Wageningen University, Netherlands.
| | - Aalt Dj van Dijk
- Bioinformatics Group, Department of Plant Sciences, Wageningen University, Netherlands; Biometris, Department of Plant Sciences, Wageningen University, Netherlands.
| |
Collapse
|
18
|
Delatte TL, Scaiola G, Molenaar J, de Sousa Farias K, Alves Gomes Albertti L, Busscher J, Verstappen F, Carollo C, Bouwmeester H, Beekwilder J. Engineering storage capacity for volatile sesquiterpenes in Nicotiana benthamiana leaves. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1997-2006. [PMID: 29682901 PMCID: PMC6230952 DOI: 10.1111/pbi.12933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/19/2018] [Accepted: 04/02/2018] [Indexed: 05/18/2023]
Abstract
Plants store volatile compounds in specialized organs. The properties of these storage organs prevent precarious evaporation and protect neighbouring tissues from cytotoxicity. Metabolic engineering of plants is often carried out in tissues such as leaf mesophyll cells, which are abundant and easily accessible by engineering tools. However, these tissues are not suitable for the storage of volatile and hydrophobic compound such as sesquiterpenes and engineered volatiles are often lost into the headspace. In this study, we show that the seeds of Arabidopsis thaliana, which naturally contain lipid bodies, accumulate sesquiterpenes upon engineered expression. Subsequently, storage of volatile sesquiterpenes was achieved in Nicotiana benthamiana leaf tissue, by introducing oleosin-coated lipid bodies through metabolic engineering. Hereto, different combinations of genes encoding diacylglycerol acyltransferases (DGATs), transcription factors (WRINKL1) and oleosins (OLE1), from the oil seed-producing species castor bean (Ricinus communis) and Arabidopsis, were assessed for their suitability to promote lipid body formation. Co-expression of α-bisabolol synthase with Arabidopsis DGAT1 and WRINKL1 and OLE1 from castor bean promoted storage of α-bisabolol in N. benthamiana mesophyll tissue more than 17-fold. A clear correlation was found between neutral lipids and storage of sesquiterpenes, using synthases for α-bisabolol, (E)-β-caryophyllene and α-barbatene. The co-localization of neutral lipids and α-bisabolol was shown using microscopy. This work demonstrates that lipid bodies can be used as intracellular storage compartment for hydrophobic sesquiterpenes, also in the vegetative parts of plants, creating the possibility to improve yields of metabolic engineering strategies in plants.
Collapse
Affiliation(s)
| | - Giulia Scaiola
- Lab Plant PhysiolWageningen Univ & ResWageningenThe Netherlands
| | - Jamil Molenaar
- Lab Plant PhysiolWageningen Univ & ResWageningenThe Netherlands
| | | | | | | | | | - Carlos Carollo
- Lab Prod Nat & Espectrometria MassasUniv Fed Mato Grosso do SulCampo GrandeMSBrazil
| | - Harro Bouwmeester
- Lab Plant PhysiolWageningen Univ & ResWageningenThe Netherlands
- Present address:
Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jules Beekwilder
- Wageningen Univ & ResWageningen Plant ResBiosciWageningenThe Netherlands
| |
Collapse
|
19
|
(-)-α-bisabolol prevents neuronal damage and memory deficits through reduction of proinflammatory markers induced by permanent focal cerebral ischemia in mice. Eur J Pharmacol 2018; 842:270-280. [PMID: 30287152 DOI: 10.1016/j.ejphar.2018.09.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 01/06/2023]
Abstract
The pathophysiology of ischemic stroke involves multiple events such as inflammation and oxidative stress which will lead to neuronal death and cognitive deficits. The (-)-α-bisabolol is a monocyclic sesquiterpene alcohol found in various plants and mainly in Matricaria chamomilla, which exerts antioxidant, anti-inflammatory, and anti-apoptotic activities. The aim of this work was to investigate the neuroprotective effects of (-)-α-bisabolol in mice underwent permanent occlusion of the middle cerebral artery (pMCAO). Animals were treated with (-)-α-bisabolol (50, 100 and 200 mg/kg/day, orally) or vehicle (3% tween 80) one day before and 1 h after pMCAO and the treatment continued once daily for the following five days. The treatment with (-)-α-bisabolol (100 and 200 mg/kg) significantly reduced the infarcted area and neurological deficits caused by pMCAO. (-)-α-bisabolol at the 200 mg/kg dose increased cell viability and decreased neuronal degeneration, as evaluated by cresyl violet and Fluoro-Jade C stainings, respectively. (-)-α-bisabolol also increased the locomotor activity which was reduced by cerebral ischemia and improved pMCAO-induced working, spatial, object recognition, and aversive memories deficits. (-)-α-bisabolol (200 mg/kg) significantly prevented the increase of myeloperoxidase (MPO) activity, TNF-α immunoreactivity in the temporal cortex, and the increase of iNOS both in the temporal cortex and in the striatum. (-)-α-bisabolol treatment also prevented astrogliosis in these areas. These data showed that (-)-α-bisabolol provides neuroprotective action probably due to its anti-inflammatory activity, although other mechanisms cannot be discarded.
Collapse
|
20
|
Alves Gomes Albertti L, Delatte TL, Souza de Farias K, Galdi Boaretto A, Verstappen F, van Houwelingen A, Cankar K, Carollo CA, Bouwmeester HJ, Beekwilder J. Identification of the Bisabolol Synthase in the Endangered Candeia Tree ( Eremanthus erythropappus (DC) McLeisch). FRONTIERS IN PLANT SCIENCE 2018; 9:1340. [PMID: 30294334 PMCID: PMC6158398 DOI: 10.3389/fpls.2018.01340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Candeia (Eremanthus erythropappus (DC) McLeisch, Asteraceae) is a Brazilian tree, mainly occurring in the cerrado areas. From ethnobotanical information its essential oil is known to have wound healing and nociceptive properties. These properties are ascribed to result from a sesquiterpene alcohol, (-)-α-bisabolol, which is present at high concentrations in this oil. Bisabolol is highly valued by the cosmetic industry because of its antibacterial, anti-inflammatory, skin-smoothing and wound healing properties. Over the past decades, Candeia timber has been collected at large scale for bisabolol extraction from wild reserves and the species is thereby at risk of extinction. To support the development of breeding and nursing practices that would facilitate sustainable cultivation of Candeia, we identified a terpene synthase gene, EeBOS1, that appears to control biosynthesis (-)-α-bisabolol in the plant. Expression of this gene in E. coli showed that EeBOS1 protein is capable of producing (-)-α-bisabolol from farnesyl pyrophosphate in vitro. Analysis of gene expression in different tissues from Candeia plants in different life stages showed a high correlation of EeBOS1 expression and accumulation of (-)-α-bisabolol. This work is the first step to unravel the pathway toward (-)-α-bisabolol in Candeia, and in the further study of the control of (-)-α-bisabolol production.
Collapse
Affiliation(s)
- Leticia Alves Gomes Albertti
- Laboratório de Evolução e Biodiversidade Evolutiva, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Thierry L. Delatte
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, Netherlands
| | - Katyuce Souza de Farias
- Laboratório Productos Natural & Espectrometria Massas, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Amanda Galdi Boaretto
- Laboratório Productos Natural & Espectrometria Massas, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Francel Verstappen
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, Netherlands
| | | | | | - Carlos Alexandre Carollo
- Laboratório Productos Natural & Espectrometria Massas, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Harro J. Bouwmeester
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, Netherlands
| | | |
Collapse
|
21
|
In depth investigation of the metabolism of Nectandra megapotamica chemotypes. PLoS One 2018; 13:e0201996. [PMID: 30080887 PMCID: PMC6078319 DOI: 10.1371/journal.pone.0201996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 07/25/2018] [Indexed: 01/06/2023] Open
Abstract
Plants produce a wide range of secondary metabolites. Within a single species, chemotypes can be distinguished by the differences in the composition of the secondary metabolites. Herein, we evaluated Nectandra megapotamica (Spreng.) chemotypes and the balance of different classes of metabolites to verify how significant differences in plant metabolism are regarding chemotypes. We collected N. megapotamica leaves from eight adult plants in two Brazilian states. The essential oils and ethanol/water extracts were analyzed by GC-MS and LC-DAD-MS, respectively. Histochemical tests were performed, as well as chemical analyses of leaves from adaxial and abaxial foliar surfaces of N. megapotamica, and the stereochemistry of α-bisabolol was determined. Two different chemotypes, based on volatile compounds, were identified, distinguished by the presence of isospathulenol, α-bisabolol, β-bisabolene, and (E)-nerolidol for chemotype A, and bicyclogermacrene and elemicin for chemotype B. A stereochemical analysis of chemotype A extract revealed (+)-α-bisabolol enantiomer. Histochemical tests of chemotypes showed similar results and suggested the presence of essential oil in idioblasts stained with the dye NADI. The analyses of chemotype A leaves by GC-MS revealed similar compositions for abaxial and adaxial surfaces, such pattern was also observed for chemotype B. Medium and high polarity metabolites showed high chemical similarities between the chemotypes, highlighting the presence of proanthocyanidins and glycosylated flavonoids (O- and C-glycosides). Thus, N. megapotamica produced distinct volatile chemotypes with highly conserved medium to high polarity compounds. Such results suggest that phenolic derivatives have a basal physiological function, while genetic or environmental differences lead to differentiation in volatile profiles of N. megapotamica.
Collapse
|
22
|
Wong J, d'Espaux L, Dev I, van der Horst C, Keasling J. De novo synthesis of the sedative valerenic acid in Saccharomyces cerevisiae. Metab Eng 2018; 47:94-101. [PMID: 29545148 DOI: 10.1016/j.ymben.2018.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/03/2018] [Accepted: 03/05/2018] [Indexed: 12/20/2022]
Abstract
Valeriana officinalis (Valerian) root extracts have been used by European and Asian cultures for millennia for their anxiolytic and sedative properties. However, the efficacy of these extracts suffers from variable yields and composition, making these extracts a prime candidate for microbial production. Recently, valerenic acid, a C15 sesquiterpenoid, was identified as the active compound that modulates the GABAA channel. Although the first committed step, valerena-4,7(11)-diene synthase, has been identified and described, the complete valerenic acid biosynthetic pathway remains to be elucidated. Sequence homology and tissue-specific expression profiles of V. officinalis putative P450s led to the discovery of a V. officinalis valerena-4,7(11)-diene oxidase, VoCYP71DJ1, which required coexpression with a V. officinalis alcohol dehydrogenase and aldehyde dehydrogenase to complete valerenic acid biosynthesis in yeast. Further, we demonstrated the stable integration of all pathway enzymes in yeast, resulting in the production of 140 mg/L of valerena-4,7(11)-diene and 4 mg/L of valerenic acid in milliliter plates. These findings showcase Saccharomyces cerevisiae's potential as an expression platform for facilitating multiply-oxidized medicinal terpenoid pathway discovery, possibly paving the way for scale up and FDA approval of valerenic acid and other active compounds from plant-derived herbal medicines.
Collapse
Affiliation(s)
- Jeff Wong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, United States; DOE Joint BioEnergy Institute, Emeryville, CA 94608, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Leo d'Espaux
- DOE Joint BioEnergy Institute, Emeryville, CA 94608, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Ishaan Dev
- DOE Joint BioEnergy Institute, Emeryville, CA 94608, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Department of Chemical Engineering and Bioengineering, University of California at Berkeley, Berkeley, CA, USA Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA Joint BioEnergy Institute, Emeryville, CA, United States
| | - Cas van der Horst
- DOE Joint BioEnergy Institute, Emeryville, CA 94608, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Jay Keasling
- DOE Joint BioEnergy Institute, Emeryville, CA 94608, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Department of Chemical Engineering and Bioengineering, University of California at Berkeley, Berkeley, CA, USA Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA Joint BioEnergy Institute, Emeryville, CA, United States.
| |
Collapse
|
23
|
|
24
|
Evaluation of the antibacterial and modulatory potential of α-bisabolol, β-cyclodextrin and α-bisabolol/β-cyclodextrin complex. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.06.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
25
|
Han GH, Kim SK, Yoon PKS, Kang Y, Kim BS, Fu Y, Sung BH, Jung HC, Lee DH, Kim SW, Lee SG. Fermentative production and direct extraction of (-)-α-bisabolol in metabolically engineered Escherichia coli. Microb Cell Fact 2016; 15:185. [PMID: 27825357 PMCID: PMC5101696 DOI: 10.1186/s12934-016-0588-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/02/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND (-)-α-Bisabolol, also known as levomenol, is an unsaturated sesquiterpene alcohol that has mainly been used in pharmaceutical and cosmetic products due to its anti-inflammatory and skin-soothing properties. (-)-α-Bisabolol is currently manufactured mainly by steam-distillation of the essential oils extracted from the Brazilian candeia tree that is under threat because its natural habitat is constantly shrinking. Therefore, microbial production of (-)-α-bisabolol plays a key role in the development of its sustainable production from renewable feedstock. RESULTS Here, we created an Escherichia coli strain producing (-)-α-bisabolol at high titer and developed an in situ extraction method of (-)-α-bisabolol, using natural vegetable oils. We expressed a recently identified (-)-α-bisabolol synthase isolated from German chamomile (Matricaria recutita) (titer: 3 mg/L), converted the acetyl-CoA to mevalonate, using the biosynthetic mevalonate pathway (12.8 mg/L), and overexpressed farnesyl diphosphate synthase to efficiently supply the (-)-α-bisabolol precursor farnesyl diphosphate. Combinatorial expression of the exogenous mevalonate pathway and farnesyl diphosphate synthase enabled a dramatic increase in (-)-α-bisabolol production in the shake flask culture (80 mg/L) and 5 L bioreactor culture (342 mg/L) of engineered E. coli harboring (-)-α-bisabolol synthase. Fed-batch fermentation using a 50 L fermenter was conducted after optimizing culture conditions, resulting in efficient (-)-α-bisabolol production with a titer of 9.1 g/L. Moreover, a green, downstream extraction process using vegetable oils was developed for in situ extraction of (-)-α-bisabolol during fermentation and showed high yield recovery (>98%). CONCLUSIONS The engineered E. coli strains and economically viable extraction process developed in this study will serve as promising platforms for further development of microbial production of (-)-α-bisabolol at large scale.
Collapse
Affiliation(s)
- Gui Hwan Han
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seong Keun Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.,Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Paul Kyung-Seok Yoon
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.,Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Younghwan Kang
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Byoung Su Kim
- Department of Biotechnology, Chonnam National University, Yeosu, 550749, Republic of Korea
| | - Yaoyao Fu
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Bong Hyun Sung
- Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Heung Chae Jung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea. .,Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea. .,Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
26
|
Kim SK, Han GH, Seong W, Kim H, Kim SW, Lee DH, Lee SG. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production. Metab Eng 2016; 38:228-240. [DOI: 10.1016/j.ymben.2016.08.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/10/2016] [Accepted: 08/24/2016] [Indexed: 11/26/2022]
|
27
|
Miraj S, Alesaeidi S. A systematic review study of therapeutic effects of Matricaria recuitta chamomile (chamomile). Electron Physician 2016; 8:3024-3031. [PMID: 27790360 PMCID: PMC5074766 DOI: 10.19082/3024] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/20/2016] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Matricaria recuitta chamomilla is a plant that grows and is cultivated in some parts of Iran. The aim of this study was to overview the therapeutic effects of this valuable plant. This systematic review was aimed to introduce Matricaria recuitta chamomile, its chemical compounds, and its traditional usages. METHODS This review article was carried out by searching studies in PubMed, Medline, Web of Science, and IranMedex databases. The initial search strategy identified about 87 references. In this study, 69 studies were accepted for further screening and met all our inclusion criteria [in English, full text, therapeutic effects of Matricaria recuitta chamomilla L and dated mainly from the year 1990 to 2016]. The search terms were "Matricaria recuitta chamomilla L.," "therapeutic properties," "pharmacological effects." RESULT It is commonly used for its antioxidant, antimicrobial, antidepressant, anti-inflammatory, antidiarrheal activities, angiogenesis activity, anticarcinogenic, hepatoprotective, and antidiabetic effects. Besides, it is beneficial for knee osteoarthritis, ulcerative colitis, premenstrual syndrome, and gastrointestinal disorders. CONCLUSION Matricaria recuitta chamomilla L. is widely used for therapeutic and nontherapeutic purposes that trigger its significant value. Various combinations and numerous medicinal properties of its extract, oil, and leaves demand further studies about other useful and unknown properties of this multipurpose plant.
Collapse
Affiliation(s)
- Sepide Miraj
- M.D., Gynecologist, Fellowship of Infertility, Assistant Professor, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Alesaeidi
- MD, Assistant Professor of Rheumatology and internal medicine, Department of Rheumatology, Internal Medicine, Amiralam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Tao T, Chen Q, Meng X, Yan J, Xu F, Chang J. Molecular cloning, characterization, and functional analysis of a gene encoding 3-hydroxy-3-methylglutaryl-coenzyme A synthase from Matricaria chamomilla. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0463-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Muangphrom P, Seki H, Suzuki M, Komori A, Nishiwaki M, Mikawa R, Fukushima EO, Muranaka T. Functional Analysis of Amorpha-4,11-Diene Synthase (ADS) Homologs from Non-Artemisinin-Producing Artemisia Species: The Discovery of Novel Koidzumiol and (+)-α-Bisabolol Synthases. PLANT & CELL PHYSIOLOGY 2016; 57:1678-1688. [PMID: 27273626 DOI: 10.1093/pcp/pcw094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/29/2016] [Indexed: 06/06/2023]
Abstract
The production of artemisinin, the most effective antimalarial compound, is limited to Artemisia annua. Enzymes involved in artemisinin biosynthesis include amorpha-4,11-diene synthase (ADS), amorpha-4,11-diene 12-monooxygenase (CYP71AV1) and artemisinic aldehyde Δ(11)13 reductase (DBR2). Although artemisinin and its specific intermediates are not detected in other Artemisia species, we reported previously that CYP71AV1 and DBR2 homologs were expressed in some non-artemisinin-producing Artemisia plants. These homologous enzymes showed similar functions to their counterparts in A. annua and can convert fed intermediates into the following products along the artemisinin biosynthesis in planta These findings suggested a partial artemisinin-producing ability in those species. In this study, we examined genes highly homologous to ADS, the first committed gene in the pathway, in 13 Artemisia species. We detected ADS homologs in A. absinthium, A. kurramensis and A. maritima. We analyzed the enzymatic functions of all of the ADS homologs after obtaining their cDNA. We found that the ADS homolog from A. absinthium exhibited novel activity in the cyclization of farnesyl pyrophosphate (FPP) to koidzumiol, a rare natural sesquiterpenoid. Those from A. kurramensis and A. maritima showed similar, but novel, activities in the cyclization of FPP to (+)-α-bisabolol. The unique functions of the novel sesquiterpene synthases highly homologous to ADS found in this study could provide insight into the molecular basis of the exceptional artemisinin-producing ability in A. annua.
Collapse
Affiliation(s)
- Paskorn Muangphrom
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Munenori Suzuki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 Japan KNC Laboratories Co., Ltd., 3-2-34 Takatsukadai, Nishi-ku, Kobe, Hyogo, 651-2271 Japan
| | - Aya Komori
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 Japan KNC Laboratories Co., Ltd., 3-2-34 Takatsukadai, Nishi-ku, Kobe, Hyogo, 651-2271 Japan
| | - Mika Nishiwaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Ryota Mikawa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Ery Odette Fukushima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 Japan Continuing Professional Development Center, Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
| |
Collapse
|
30
|
Aschenbrenner AK, Kwon M, Conrad J, Ro DK, Spring O. Identification and characterization of two bisabolene synthases from linear glandular trichomes of sunflower (Helianthus annuus L., Asteraceae). PHYTOCHEMISTRY 2016; 124:29-37. [PMID: 26880289 DOI: 10.1016/j.phytochem.2016.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 01/13/2016] [Accepted: 01/17/2016] [Indexed: 06/05/2023]
Abstract
Sunflower is known to produce a variety of bisabolene-type sesquiterpenes and accumulates these substances in trichomes of leaves, stems and flowering parts. A bioinformatics approach was used to identify the enzyme responsible for the initial step in the biosynthesis of these compounds from its precursor farnesyl pyrophosphate. Based on sequence similarity with a known bisabolene synthases from Arabidopsis thaliana AtTPS12, candidate genes of Helianthus were searched in EST-database and used to design specific primers. PCR experiments identified two candidates in the RNA pool of linear glandular trichomes of sunflower. Their sequences contained the typical motifs of sesquiterpene synthases and their expression in yeast functionally characterized them as bisabolene synthases. Spectroscopic analysis identified the stereochemistry of the product of both enzymes as (Z)-γ-bisabolene. The origin of the two sunflower bisabolene synthase genes from the transcripts of linear trichomes indicates that they may be involved in the synthesis of sesquiterpenes produced in these trichomes. Comparison of the amino acid sequences of the sunflower bisabolene synthases showed high similarity with sesquiterpene synthases from other Asteracean species and indicated putative evolutionary origin from a β-farnesene synthase.
Collapse
Affiliation(s)
| | - Moonhyuk Kwon
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jürgen Conrad
- Bioorganic Chemistry, University of Hohenheim, Garbenstraße 30, 70593 Stuttgart, Germany
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Otmar Spring
- Institute of Botany, University of Hohenheim, Garbenstraße 30, 70593 Stuttgart, Germany.
| |
Collapse
|
31
|
In vitro characterization of a (E)-β-farnesene synthase from Matricaria recutita L. and its up-regulation by methyl jasmonate. Gene 2015; 571:58-64. [DOI: 10.1016/j.gene.2015.06.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 11/23/2022]
|