1
|
Chen Y, Liang R, Li Y, Jiang L, Ma D, Luo Q, Song G. Chromatin accessibility: biological functions, molecular mechanisms and therapeutic application. Signal Transduct Target Ther 2024; 9:340. [PMID: 39627201 PMCID: PMC11615378 DOI: 10.1038/s41392-024-02030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/04/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024] Open
Abstract
The dynamic regulation of chromatin accessibility is one of the prominent characteristics of eukaryotic genome. The inaccessible regions are mainly located in heterochromatin, which is multilevel compressed and access restricted. The remaining accessible loci are generally located in the euchromatin, which have less nucleosome occupancy and higher regulatory activity. The opening of chromatin is the most important prerequisite for DNA transcription, replication, and damage repair, which is regulated by genetic, epigenetic, environmental, and other factors, playing a vital role in multiple biological progresses. Currently, based on the susceptibility difference of occupied or free DNA to enzymatic cleavage, solubility, methylation, and transposition, there are many methods to detect chromatin accessibility both in bulk and single-cell level. Through combining with high-throughput sequencing, the genome-wide chromatin accessibility landscape of many tissues and cells types also have been constructed. The chromatin accessibility feature is distinct in different tissues and biological states. Research on the regulation network of chromatin accessibility is crucial for uncovering the secret of various biological processes. In this review, we comprehensively introduced the major functions and mechanisms of chromatin accessibility variation in different physiological and pathological processes, meanwhile, the targeted therapies based on chromatin dynamics regulation are also summarized.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Rui Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Yong Li
- Hepatobiliary Pancreatic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lingli Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Di Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China.
| |
Collapse
|
2
|
Saddoris SM, Schang LM. The opportunities and challenges of epigenetic approaches to manage herpes simplex infections. Expert Rev Anti Infect Ther 2024; 22:1123-1142. [PMID: 39466139 PMCID: PMC11634640 DOI: 10.1080/14787210.2024.2420329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/24/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
INTRODUCTION Despite the existence of antivirals that potently and efficiently inhibit the replication of herpes simplex virus 1 and 2 (HSV-1, -2), their ability to establish and maintain, and reactivate from, latency has precluded the development of curative therapies. Several groups are exploring the opportunities of targeting epigenetic regulation to permanently silence latent HSV genomes or induce their simultaneous reactivation in the presence of antivirals to flush the latent reservoirs, as has been explored for HIV. AREAS COVERED This review covers the basic principles of epigenetic regulation with an emphasis on those mechanisms relevant to the regulation of herpes simplex viruses, as well as the current knowledge on the regulation of lytic infections and the establishment and maintenance of, and reactivation from, latency, with an emphasis on epigenetic regulation. The differences with the epigenetic regulation of viral and cellular gene expression are highlighted as are the effects of known epigenetic regulators on herpes simplex viruses. The major limitations of current models to the development of novel antiviral strategies targeting latency are highlighted. EXPERT OPINION We provide an update on the epigenetic regulation during lytic and latent HSV-1 infection, highlighting the commonalities and differences with cellular gene expression and the potential of epigenetic drugs as antivirals, including the opportunities, challenges, and potential future directions.
Collapse
Affiliation(s)
- Sarah M Saddoris
- Department of Microbiology and Immunology and Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University. 235 Hungerford Hill Road, Ithaca, NY, 14850-USA
| | - Luis M Schang
- Department of Microbiology and Immunology and Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University. 235 Hungerford Hill Road, Ithaca, NY, 14850-USA
| |
Collapse
|
3
|
Eustermann S, Patel AB, Hopfner KP, He Y, Korber P. Energy-driven genome regulation by ATP-dependent chromatin remodellers. Nat Rev Mol Cell Biol 2024; 25:309-332. [PMID: 38081975 DOI: 10.1038/s41580-023-00683-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 03/28/2024]
Abstract
The packaging of DNA into chromatin in eukaryotes regulates gene transcription, DNA replication and DNA repair. ATP-dependent chromatin remodelling enzymes (re)arrange nucleosomes at the first level of chromatin organization. Their Snf2-type motor ATPases alter histone-DNA interactions through a common DNA translocation mechanism. Whether remodeller activities mainly catalyse nucleosome dynamics or accurately co-determine nucleosome organization remained unclear. In this Review, we discuss the emerging mechanisms of chromatin remodelling: dynamic remodeller architectures and their interactions, the inner workings of the ATPase cycle, allosteric regulation and pathological dysregulation. Recent mechanistic insights argue for a decisive role of remodellers in the energy-driven self-organization of chromatin, which enables both stability and plasticity of genome regulation - for example, during development and stress. Different remodellers, such as members of the SWI/SNF, ISWI, CHD and INO80 families, process (epi)genetic information through specific mechanisms into distinct functional outputs. Combinatorial assembly of remodellers and their interplay with histone modifications, histone variants, DNA sequence or DNA-bound transcription factors regulate nucleosome mobilization or eviction or histone exchange. Such input-output relationships determine specific nucleosome positions and compositions with distinct DNA accessibilities and mediate differential genome regulation. Finally, remodeller genes are often mutated in diseases characterized by genome dysregulation, notably in cancer, and we discuss their physiological relevance.
Collapse
Affiliation(s)
- Sebastian Eustermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Avinash B Patel
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Faculty of Chemistry and Pharmacy, LMU Munich, Munich, Germany
| | - Yuan He
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| | - Philipp Korber
- Biomedical Center (BMC), Molecular Biology, Faculty of Medicine, LMU Munich, Martinsried, Germany.
| |
Collapse
|
4
|
Knodel F, Pinter S, Kroll C, Rathert P. Fluorescent Reporter Systems to Investigate Chromatin Effector Proteins in Living Cells. Methods Mol Biol 2024; 2842:225-252. [PMID: 39012599 DOI: 10.1007/978-1-0716-4051-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Epigenetic research faces the challenge of the high complexity and tight regulation in chromatin modification networks. Although many isolated mechanisms of chromatin-mediated gene regulation have been described, solid approaches for the comprehensive analysis of specific processes as parts of the bigger epigenome network are missing. In order to expand the toolbox of methods by a system that will help to capture and describe the complexity of transcriptional regulation, we describe here a robust protocol for the generation of stable reporter systems for transcriptional activity and summarize their applications. The system allows for the induced recruitment of a chromatin regulator to a fluorescent reporter gene, followed by the detection of transcriptional changes using flow cytometry. The reporter gene is integrated into an endogenous chromatin environment, thus enabling the detection of regulatory dependencies of the investigated chromatin regulator on endogenous cofactors. The system allows for an easy and dynamic readout at the single-cell level and the ability to compensate for cell-to-cell variances of transcription. The modular design of the system enables the simple adjustment of the method for the investigation of different chromatin regulators in a broad panel of cell lines. We also summarize applications of this technology to characterize the silencing velocity of different chromatin effectors, removal of activating histone modifications, analysis of stability and reversibility of epigenome modifications, the investigation of the effects of small molecule on chromatin effectors and of functional effector-coregulator relationships. The presented method allows to investigate the complexity of transcriptional regulation by epigenetic effector proteins in living cells.
Collapse
Affiliation(s)
- Franziska Knodel
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Sabine Pinter
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Carolin Kroll
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
5
|
Veschi V, Durinck K, Thiele CJ, Speleman F. Neuroblastoma Epigenetic Landscape: Drugging Opportunities. PEDIATRIC ONCOLOGY 2024:71-95. [DOI: 10.1007/978-3-031-51292-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Yang Y, Qiu R, Zhao S, Shen L, Tang B, Weng Q, Xu Z, Zheng L, Chen W, Shu G, Wang Y, Zhao Z, Chen M, Ji J. SMYD3 associates with the NuRD (MTA1/2) complex to regulate transcription and promote proliferation and invasiveness in hepatocellular carcinoma cells. BMC Biol 2022; 20:294. [PMID: 36575438 PMCID: PMC9795622 DOI: 10.1186/s12915-022-01499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND SMYD3, a member of the SET and MYND domain-containing (SMYD) family, is a histone methyltransferase (HMT) and transcription factor that plays an important role in transcriptional regulation in human carcinogenesis. RESULTS Using affinity purification and mass spectrometry assays to identify SMYD3-associated proteins in hepatocellular carcinoma (HCC) cells, we found several previously undiscovered SMYD3-interacting proteins, including the NuRD (MTA1/2) complex, the METTL family, and the CRL4B complex. Transcriptomic analysis of the consequences of knocking down SMYD3, MTA1, or MTA2 in HCC cells showed that SMYD3/NuRD complex targets a cohort of genes, some of which are critically involved in cell growth and migration. qChIP analyses showed that SMYD3 knockdown led to a significant reduction in the binding of MTA1 or MTA2 to the promoters of IGFBP4 and led to a significant decrease in H4K20me3 and a marked increase in H4Ac at the IGFBP4 promoter. In addition, we demonstrated that SMYD3 promotes cell proliferation, invasion, and tumorigenesis in vivo and in vitro and found that its expression is markedly upregulated in human liver cancer. Knockdown of MTA1 or MTA2 had the same effect as knockdown of SMYD3 on proliferation and invasion of hepatocellular carcinoma cells. Catalytic mutant SMYD3 could not rescue the phenotypic effects caused by knockdown of SMYD3. Inhibitors of SMYD3 effectively inhibited the proliferation and invasiveness of HCC cells. CONCLUSIONS These findings revealed that SMYD3 could transcriptionally repress a cohort of target genes expression by associating with the NuRD (MTA1/2) complex, thereby promoting the proliferation and invasiveness of HCC cells. Our results support the case for pursuing SMYD3 as a practical prognostic marker or therapeutic target against HCC.
Collapse
Affiliation(s)
- Yang Yang
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Rongfang Qiu
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Siyu Zhao
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Lin Shen
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Bufu Tang
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Qiaoyou Weng
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Ziwei Xu
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Liyun Zheng
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Weiqian Chen
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Gaofeng Shu
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Yajie Wang
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Zhongwei Zhao
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Minjiang Chen
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Jiansong Ji
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| |
Collapse
|
7
|
Vaicekauskaitė I, Sabaliauskaitė R, Lazutka JR, Jarmalaitė S. The Emerging Role of Chromatin Remodeling Complexes in Ovarian Cancer. Int J Mol Sci 2022; 23:ijms232213670. [PMID: 36430148 PMCID: PMC9697406 DOI: 10.3390/ijms232213670] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Ovarian cancer (OC) is the fifth leading cause of women's death from cancers. The high mortality rate is attributed to the late presence of the disease and the lack of modern diagnostic tools, including molecular biomarkers. Moreover, OC is a highly heterogeneous disease, which contributes to early treatment failure. Thus, exploring OC molecular mechanisms could significantly enhance our understanding of the disease and provide new treatment options. Chromatin remodeling complexes (CRCs) are ATP-dependent molecular machines responsible for chromatin reorganization and involved in many DNA-related processes, including transcriptional regulation, replication, and reparation. Dysregulation of chromatin remodeling machinery may be related to cancer development and chemoresistance in OC. Some forms of OC and other gynecologic diseases have been associated with mutations in specific CRC genes. Most notably, ARID1A in endometriosis-related OC, SMARCA4, and SMARCB1 in hypercalcemic type small cell ovarian carcinoma (SCCOHT), ACTL6A, CHRAC1, RSF1 amplification in high-grade serous OC. Here we review the available literature on CRCs' involvement in OC to improve our understanding of its development and investigate CRCs as possible biomarkers and treatment targets for OC.
Collapse
Affiliation(s)
- Ieva Vaicekauskaitė
- Laboratory of Genetic Diagnostic, National Cancer Institute, Santariškių 1, LT-08406 Vilnius, Lithuania
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, LT-10222 Vilnius, Lithuania
| | - Rasa Sabaliauskaitė
- Laboratory of Genetic Diagnostic, National Cancer Institute, Santariškių 1, LT-08406 Vilnius, Lithuania
| | - Juozas Rimantas Lazutka
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, LT-10222 Vilnius, Lithuania
| | - Sonata Jarmalaitė
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, LT-10222 Vilnius, Lithuania
- Laboratory of Clinical Oncology, National Cancer Institute, Santariškių 1, LT-08406 Vilnius, Lithuania
- Correspondence:
| |
Collapse
|
8
|
Tu Z, Zheng Y. Role of ATP-dependent chromatin remodelers in hematopoietic stem and progenitor cell maintenance. Curr Opin Hematol 2022; 29:174-180. [PMID: 35787545 PMCID: PMC9257093 DOI: 10.1097/moh.0000000000000710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW ATP-dependent chromatin remodeling factors utilize energy from ATP hydrolysis to modulate DNA-histone structures and regulate gene transcription. They are essential during hematopoiesis and for hematopoietic stem and progenitor cell (HSPC) function. This review discusses the recently unveiled roles of these chromatin remodelers in HSPC regulation, with an emphasis on the mechanism of chromodomain helicase DNA-binding (CHD) family members. RECENT FINDINGS Recent studies of ATP-dependent chromatin remodelers have revealed that individual CHD family members engage in distinct mechanisms in regulating HSPC cell fate. For example, CHD8 is required for HSPC survival by restricting both P53 transcriptional activity and protein stability in steady state hematopoiesis while the related CHD7 physically interacts with RUNX family transcription factor 1 (RUNX1) and suppresses RUNX1-induced expansion of HSPCs during blood development. Moreover, other CHD subfamily members such as CHD1/CHD2 and CHD3/CHD4, as well as the switch/sucrose non-fermentable, imitation SWI, and SWI2/SNF2 related (SWR) families of chromatin modulators, have also been found important for HSPC maintenance by distinct mechanisms. SUMMARY The expanding knowledge of ATP-dependent chromatin remodelers in hematopoiesis illustrates their respective critical roles in HSPC maintenance including the regulation of HSPC differentiation, survival, and self-renewal. Further studies are warranted to elucidate how different chromatin remodeling complexes are integrated in various HSPC cell fate decisions during steady-state and stress hematopoiesis.
Collapse
Affiliation(s)
- Zhaowei Tu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
9
|
Golden NL, Foley MK, Kim Guisbert KS, Guisbert E. Divergent regulatory roles of NuRD chromatin remodeling complex subunits GATAD2 and CHD4 in Caenorhabditis elegans. Genetics 2022; 221:iyac046. [PMID: 35323946 PMCID: PMC9071545 DOI: 10.1093/genetics/iyac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/11/2022] [Indexed: 11/12/2022] Open
Abstract
During proteotoxic stress, a pathway known as the heat shock response is induced to maintain protein-folding homeostasis or proteostasis. Previously, we identified the Caenorhabditis elegans GATAD2 ortholog, dcp-66, as a novel regulator of the heat shock response. Here, we extend these findings to show that dcp-66 positively regulates the heat shock response at the cellular, molecular, and organismal levels. As GATAD2 is a subunit of the nucleosome remodeling and deacetylase chromatin remodeling complex, we examined other nucleosome remodeling and deacetylase subunits and found that the let-418 (CHD4) nucleosome repositioning core also regulates the heat shock response. However, let-418 acts as a negative regulator of the heat shock response, in contrast to positive regulation by dcp-66. The divergent effects of these two nucleosome remodeling and deacetylase subunits extend to the regulation of other stress responses including oxidative, genotoxic, and endoplasmic reticulum stress. Furthermore, a transcriptomic approach reveals additional divergently regulated pathways, including innate immunity and embryogenesis. Taken together, this work establishes new insights into the role of nucleosome remodeling and deacetylase subunits in organismal physiology. We incorporate these findings into a molecular model whereby different mechanisms of recruitment to promoters can result in the divergent effects of nucleosome remodeling and deacetylase subunits.
Collapse
Affiliation(s)
- Nicole L Golden
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Michaela K Foley
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Karen S Kim Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Eric Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| |
Collapse
|
10
|
Zhang Y, Tao G, Liu P, Lu K, Han Z, Liu H, Du M, Wang M, Chu H, Zhang Z. Evaluation of genetic variants in nucleosome remodeling and deacetylase (NuRD) complex subunits encoding genes and gastric cancer susceptibility. Arch Toxicol 2022; 96:1739-1749. [PMID: 35362730 DOI: 10.1007/s00204-022-03275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/14/2022] [Indexed: 12/24/2022]
Abstract
Epigenetic complex NuRD (nucleosome remodeling and deacetylase) engages in a range of basic cellular processes, including chromatin modification. Changes in the activity of NuRD complex can influence gastric cancer progression. Multivariate logistic regression analyses were used to estimate the association between single-nucleotide polymorphisms (SNPs) and gastric cancer risk. Expression quantitative trait loci (eQTL) analysis was used to analyze the relationship between the genotypes and gene expression levels using data from the genotype tissue expression project (GTEx). Gene expression was calculated using databases from The Cancer Genome Atlas (TCGA) and The Gene Expression Omnibus (GEO). Kaplan-Meier plotter was used to evaluate the association between gene expression and survival. SNP rs11064275 T allele in CHD4, rs892022 A allele and rs2033481 A allele in GATAD2A were found to contribute to the decreased risk of gastric cancer. The increase in the number of favorable alleles of these three SNPs was associated with a lower risk of gastric cancer. rs2033481 and rs892022 were substantially correlated with GATAD2A mRNA expression levels. Meanwhile, we detected that the CHD4 and GATAD2A mRNA expression was increased in gastric cancer tissues compared with the adjacent normal tissues. Furthermore, we found that patients with higher CHD4 or GATAD2A mRNA expression level had more advantageous overall survival. Our findings indicated that genetic variants in NuRD complex subunits encoding genes may be promising predictors of gastric cancer risk.
Collapse
Affiliation(s)
- Yujuan Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guoquan Tao
- Department of General Surgery, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Ping Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Kai Lu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhichao Han
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hanting Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Sen A, Huo Y, Elster J, Zage PE, McVicker G. Allele-specific expression reveals genes with recurrent cis-regulatory alterations in high-risk neuroblastoma. Genome Biol 2022; 23:71. [PMID: 35246212 PMCID: PMC8896304 DOI: 10.1186/s13059-022-02640-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroblastoma is a pediatric malignancy with a high frequency of metastatic disease at initial diagnosis. Neuroblastoma tumors have few recurrent protein-coding mutations but contain extensive somatic copy number alterations (SCNAs) suggesting that mutations that alter gene dosage are important drivers of tumorigenesis. Here, we analyze allele-specific expression in 96 high-risk neuroblastoma tumors to discover genes impacted by cis-acting mutations that alter dosage. RESULTS We identify 1043 genes with recurrent, neuroblastoma-specific allele-specific expression. While most of these genes lie within common SCNA regions, many of them exhibit allele-specific expression in copy neutral samples and these samples are enriched for mutations that are predicted to cause nonsense-mediated decay. Thus, both SCNA and non-SCNA mutations frequently alter gene expression in neuroblastoma. We focus on genes with neuroblastoma-specific allele-specific expression in the absence of SCNAs and find 26 such genes that have reduced expression in stage 4 disease. At least two of these genes have evidence for tumor suppressor activity including the transcription factor TFAP2B and the protein tyrosine phosphatase PTPRH. CONCLUSIONS In summary, our allele-specific expression analysis discovers genes that are recurrently dysregulated by both large SCNAs and other cis-acting mutations in high-risk neuroblastoma.
Collapse
Affiliation(s)
- Arko Sen
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Yuchen Huo
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA
| | - Jennifer Elster
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA.,Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital-San Diego, San Diego, California, USA
| | - Peter E Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA.,Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital-San Diego, San Diego, California, USA
| | - Graham McVicker
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA.
| |
Collapse
|
12
|
Laut AK, Dorneburg C, Fürstberger A, Barth TFE, Kestler HA, Debatin KM, Beltinger C. CHD5 inhibits metastasis of neuroblastoma. Oncogene 2022; 41:622-633. [PMID: 34789839 PMCID: PMC8799470 DOI: 10.1038/s41388-021-02081-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022]
Abstract
CHD5, a tumor suppressor at 1p36, is frequently lost or silenced in poor prognosis neuroblastoma (NB) and many adult cancers. The role of CHD5 in metastasis is unknown. We confirm that low expression of CHD5 is associated with stage 4 NB. Forced expression of CHD5 in NB cell lines with 1p loss inhibited key aspects of the metastatic cascade in vitro: anchorage-independent growth, migration, and invasion. In vivo, formation of bone marrow and liver metastases developing from intravenously injected NB cells was delayed and decreased by forced CHD5 expression. Genome-wide mRNA sequencing revealed reduction of genes and gene sets associated with metastasis when CHD5 was overexpressed. Known metastasis-suppressing genes preferentially upregulated in CHD5-overexpressing NB cells included PLCL1. In patient NB, low expression of PLCL1was associated with metastatic disease and poor survival. Knockdown of PLCL1 and of p53 in IMR5 NB cells overexpressing CHD5 reversed CHD5-induced inhibition of invasion and migration in vitro. In summary, CHD5 is a metastasis suppressor in NB.
Collapse
Affiliation(s)
- Astrid K Laut
- Section Experimental Pediatric Oncology, Dept. of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Carmen Dorneburg
- Section Experimental Pediatric Oncology, Dept. of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Axel Fürstberger
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | | | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Klaus-Michael Debatin
- Dept. of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Christian Beltinger
- Section Experimental Pediatric Oncology, Dept. of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.
| |
Collapse
|
13
|
D'Souza L, Channakkar AS, Muralidharan B. Chromatin remodelling complexes in cerebral cortex development and neurodevelopmental disorders. Neurochem Int 2021; 147:105055. [PMID: 33964373 PMCID: PMC7611358 DOI: 10.1016/j.neuint.2021.105055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/11/2021] [Accepted: 04/24/2021] [Indexed: 12/19/2022]
Abstract
The diverse number of neurons in the cerebral cortex are generated during development by neural stem cells lining the ventricle, and they continue maturing postnatally. Dynamic chromatin regulation in these neural stem cells is a fundamental determinant of the emerging property of the functional neural network, and the chromatin remodellers are critical determinants of this process. Chromatin remodellers participate in several steps of this process from proliferation, differentiation, migration leading to complex network formation which forms the basis of higher-order functions of cognition and behaviour. Here we review the role of these ATP-dependent chromatin remodellers in cortical development in health and disease and highlight several key mouse mutants of the subunits of the complexes which have revealed how the remodelling mechanisms control the cortical stem cell chromatin landscape for expression of stage-specific transcripts. Consistent with their role in cortical development, several putative risk variants in the subunits of the remodelling complexes have been identified as the underlying causes of several neurodevelopmental disorders. A basic understanding of the detailed molecular mechanism of their action is key to understating how mutations in the same networks lead to disease pathologies and perhaps pave the way for therapeutic development for these complex multifactorial disorders.
Collapse
Affiliation(s)
- Leora D'Souza
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Asha S Channakkar
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Bhavana Muralidharan
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India.
| |
Collapse
|
14
|
Clapier CR. Sophisticated Conversations between Chromatin and Chromatin Remodelers, and Dissonances in Cancer. Int J Mol Sci 2021; 22:5578. [PMID: 34070411 PMCID: PMC8197500 DOI: 10.3390/ijms22115578] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/13/2023] Open
Abstract
The establishment and maintenance of genome packaging into chromatin contribute to define specific cellular identity and function. Dynamic regulation of chromatin organization and nucleosome positioning are critical to all DNA transactions-in particular, the regulation of gene expression-and involve the cooperative action of sequence-specific DNA-binding factors, histone modifying enzymes, and remodelers. Remodelers are molecular machines that generate various chromatin landscapes, adjust nucleosome positioning, and alter DNA accessibility by using ATP binding and hydrolysis to perform DNA translocation, which is highly regulated through sophisticated structural and functional conversations with nucleosomes. In this review, I first present the functional and structural diversity of remodelers, while emphasizing the basic mechanism of DNA translocation, the common regulatory aspects, and the hand-in-hand progressive increase in complexity of the regulatory conversations between remodelers and nucleosomes that accompanies the increase in challenges of remodeling processes. Next, I examine how, through nucleosome positioning, remodelers guide the regulation of gene expression. Finally, I explore various aspects of how alterations/mutations in remodelers introduce dissonance into the conversations between remodelers and nucleosomes, modify chromatin organization, and contribute to oncogenesis.
Collapse
Affiliation(s)
- Cedric R Clapier
- Department of Oncological Sciences & Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| |
Collapse
|
15
|
Pinter S, Knodel F, Choudalakis M, Schnee P, Kroll C, Fuchs M, Broehm A, Weirich S, Roth M, Eisler SA, Zuber J, Jeltsch A, Rathert P. A functional LSD1 coregulator screen reveals a novel transcriptional regulatory cascade connecting R-loop homeostasis with epigenetic regulation. Nucleic Acids Res 2021; 49:4350-4370. [PMID: 33823549 PMCID: PMC8096265 DOI: 10.1093/nar/gkab180] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/04/2021] [Indexed: 12/30/2022] Open
Abstract
The lysine specific demethylase 1 (LSD1) plays a pivotal role in cellular differentiation by regulating the expression of key developmental genes in concert with different coregulatory proteins. This process is impaired in different cancer types and incompletely understood. To comprehensively identify functional coregulators of LSD1, we established a novel tractable fluorescent reporter system to monitor LSD1 activity in living cells. Combining this reporter system with a state-of-the-art multiplexed RNAi screen, we identify the DEAD-box helicase 19A (DDX19A) as a novel coregulator and demonstrate that suppression of Ddx19a results in an increase of R-loops and reduced LSD1-mediated gene silencing. We further show that DDX19A binds to tri-methylated lysine 27 of histone 3 (H3K27me3) and it regulates gene expression through the removal of transcription promoting R-loops. Our results uncover a novel transcriptional regulatory cascade where the downregulation of genes is dependent on the LSD1 mediated demethylation of histone H3 lysine 4 (H3K4). This allows the polycomb repressive complex 2 (PRC2) to methylate H3K27, which serves as a binding site for DDX19A. Finally, the binding of DDX19A leads to the efficient removal of R-loops at active promoters, which further de-represses LSD1 and PRC2, establishing a positive feedback loop leading to a robust repression of the target gene.
Collapse
Affiliation(s)
- Sabine Pinter
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Franziska Knodel
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Michel Choudalakis
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Philipp Schnee
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Carolin Kroll
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Marina Fuchs
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Alexander Broehm
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Sara Weirich
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Mareike Roth
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Stephan A Eisler
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, 70569 Stuttgart, Germany
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
16
|
Russo R, Russo V, Cecere F, Valletta M, Gentile MT, Colucci-D'Amato L, Angelini C, Riccio A, Pedone PV, Chambery A, Baglivo I. ZBTB2 protein is a new partner of the Nucleosome Remodeling and Deacetylase (NuRD) complex. Int J Biol Macromol 2020; 168:67-76. [PMID: 33301849 DOI: 10.1016/j.ijbiomac.2020.12.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 11/19/2022]
Abstract
ZBTB2 is a protein belonging to the BTB/POZ zinc-finger family whose members typically contain a BTB/POZ domain at the N-terminus and several zinc-finger domains at the C-terminus. Studies have been carried out to disclose the role of ZBTB2 in cell proliferation, in human cancers and in regulating DNA methylation. Moreover, ZBTB2 has been also described as an ARF, p53 and p21 gene repressor as well as an activator of genes modulating pluripotency. In this scenario, ZBTB2 seems to play many functions likely associated with other proteins. Here we report a picture of the ZBTB2 protein partners in U87MG cell line, identified by high-resolution mass spectrometry (MS) that highlights the interplay between ZBTB2 and chromatin remodeling multiprotein complexes. In particular, our analysis reveals the presence, as ZBTB2 candidate interactors, of SMARCA5 and BAZ1B components of the chromatin remodeling complex WICH and PBRM1, a subunit of the SWI/SNF complex. Intriguingly, we identified all the subunits of the NuRD complex among the ZBTB2 interactors. By co-immunoprecipitation experiments and ChIP-seq analysis we definitely identify ZBTB2 as a new partner of the NuRD complex.
Collapse
Affiliation(s)
- Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", via Vivaldi, 43, 81100 Caserta, Italy
| | - Veronica Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", via Vivaldi, 43, 81100 Caserta, Italy
| | - Francesco Cecere
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", via Vivaldi, 43, 81100 Caserta, Italy; Institute of Genetics and Biophysics "A. Buzzati-Traverso" - CNR, Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Mariangela Valletta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", via Vivaldi, 43, 81100 Caserta, Italy
| | - Maria Teresa Gentile
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", via Vivaldi, 43, 81100 Caserta, Italy
| | - Luca Colucci-D'Amato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", via Vivaldi, 43, 81100 Caserta, Italy
| | - Claudia Angelini
- Institute for Applied Mathematics "Mauro Picone" (IAC), National Research Council, 80131 Naples, Italy
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", via Vivaldi, 43, 81100 Caserta, Italy; Institute of Genetics and Biophysics "A. Buzzati-Traverso" - CNR, Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", via Vivaldi, 43, 81100 Caserta, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", via Vivaldi, 43, 81100 Caserta, Italy.
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", via Vivaldi, 43, 81100 Caserta, Italy.
| |
Collapse
|
17
|
Marques JG, Gryder BE, Pavlovic B, Chung Y, Ngo QA, Frommelt F, Gstaiger M, Song Y, Benischke K, Laubscher D, Wachtel M, Khan J, Schäfer BW. NuRD subunit CHD4 regulates super-enhancer accessibility in rhabdomyosarcoma and represents a general tumor dependency. eLife 2020; 9:54993. [PMID: 32744500 PMCID: PMC7438112 DOI: 10.7554/elife.54993] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/02/2020] [Indexed: 12/15/2022] Open
Abstract
The NuRD complex subunit CHD4 is essential for fusion-positive rhabdomyosarcoma (FP-RMS) survival, but the mechanisms underlying this dependency are not understood. Here, a NuRD-specific CRISPR screen demonstrates that FP-RMS is particularly sensitive to CHD4 amongst the NuRD members. Mechanistically, NuRD complex containing CHD4 localizes to super-enhancers where CHD4 generates a chromatin architecture permissive for the binding of the tumor driver and fusion protein PAX3-FOXO1, allowing downstream transcription of its oncogenic program. Moreover, CHD4 depletion removes HDAC2 from the chromatin, leading to an increase and spread of histone acetylation, and prevents the positioning of RNA Polymerase 2 at promoters impeding transcription initiation. Strikingly, analysis of genome-wide cancer dependency databases identifies CHD4 as a general cancer vulnerability. Our findings describe CHD4, a classically defined repressor, as positive regulator of transcription and super-enhancer accessibility as well as establish this remodeler as an unexpected broad tumor susceptibility and promising drug target for cancer therapy.
Collapse
Affiliation(s)
- Joana G Marques
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Berkley E Gryder
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Blaz Pavlovic
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Yeonjoo Chung
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Quy A Ngo
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Fabian Frommelt
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Young Song
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Katharina Benischke
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Dominik Laubscher
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
18
|
Ridenour JB, Möller M, Freitag M. Polycomb Repression without Bristles: Facultative Heterochromatin and Genome Stability in Fungi. Genes (Basel) 2020; 11:E638. [PMID: 32527036 PMCID: PMC7348808 DOI: 10.3390/genes11060638] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Genome integrity is essential to maintain cellular function and viability. Consequently, genome instability is frequently associated with dysfunction in cells and associated with plant, animal, and human diseases. One consequence of relaxed genome maintenance that may be less appreciated is an increased potential for rapid adaptation to changing environments in all organisms. Here, we discuss evidence for the control and function of facultative heterochromatin, which is delineated by methylation of histone H3 lysine 27 (H3K27me) in many fungi. Aside from its relatively well understood role in transcriptional repression, accumulating evidence suggests that H3K27 methylation has an important role in controlling the balance between maintenance and generation of novelty in fungal genomes. We present a working model for a minimal repressive network mediated by H3K27 methylation in fungi and outline challenges for future research.
Collapse
Affiliation(s)
| | | | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis OR 97331, USA; (J.B.R.); (M.M.)
| |
Collapse
|
19
|
Wu Y, Cheng W, Zhang X, Li Z, Liu Y, Bai W. Neurofibromatosis type I-associated malignant peripheral nerve sheath tumors: a case report and literature review. Arch Med Sci 2020; 16:1476-1482. [PMID: 33224354 PMCID: PMC7667415 DOI: 10.5114/aoms.2020.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/04/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Yibo Wu
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Wendan Cheng
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xin Zhang
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Ziyu Li
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yanchang Liu
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Wenyi Bai
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
Hasan N, Ahuja N. The Emerging Roles of ATP-Dependent Chromatin Remodeling Complexes in Pancreatic Cancer. Cancers (Basel) 2019; 11:E1859. [PMID: 31769422 PMCID: PMC6966483 DOI: 10.3390/cancers11121859] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer is an aggressive cancer with low survival rates. Genetic and epigenetic dysregulation has been associated with the initiation and progression of pancreatic tumors. Multiple studies have pointed to the involvement of aberrant chromatin modifications in driving tumor behavior. ATP-dependent chromatin remodeling complexes regulate chromatin structure and have critical roles in stem cell maintenance, development, and cancer. Frequent mutations and chromosomal aberrations in the genes associated with subunits of the ATP-dependent chromatin remodeling complexes have been detected in different cancer types. In this review, we summarize the current literature on the genomic alterations and mechanistic studies of the ATP-dependent chromatin remodeling complexes in pancreatic cancer. Our review is focused on the four main subfamilies: SWItch/sucrose non-fermentable (SWI/SNF), imitation SWI (ISWI), chromodomain-helicase DNA-binding protein (CHD), and INOsitol-requiring mutant 80 (INO80). Finally, we discuss potential novel treatment options that use small molecules to target these complexes.
Collapse
Affiliation(s)
| | - Nita Ahuja
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA;
| |
Collapse
|
21
|
Bracken AP, Brien GL, Verrijzer CP. Dangerous liaisons: interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer. Genes Dev 2019; 33:936-959. [PMID: 31123059 PMCID: PMC6672049 DOI: 10.1101/gad.326066.119] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, Bracken et al. discuss the functional organization and biochemical activities of remodelers and Polycomb and explore how they work together to control cell differentiation and the maintenance of cell identity. They also discuss how mutations in the genes encoding these various chromatin regulators contribute to oncogenesis by disrupting the chromatin equilibrium. Changes in chromatin structure mediated by ATP-dependent nucleosome remodelers and histone modifying enzymes are integral to the process of gene regulation. Here, we review the roles of the SWI/SNF (switch/sucrose nonfermenting) and NuRD (nucleosome remodeling and deacetylase) and the Polycomb system in chromatin regulation and cancer. First, we discuss the basic molecular mechanism of nucleosome remodeling, and how this controls gene transcription. Next, we provide an overview of the functional organization and biochemical activities of SWI/SNF, NuRD, and Polycomb complexes. We describe how, in metazoans, the balance of these activities is central to the proper regulation of gene expression and cellular identity during development. Whereas SWI/SNF counteracts Polycomb, NuRD facilitates Polycomb repression on chromatin. Finally, we discuss how disruptions of this regulatory equilibrium contribute to oncogenesis, and how new insights into the biological functions of remodelers and Polycombs are opening avenues for therapeutic interventions on a broad range of cancer types.
Collapse
Affiliation(s)
- Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Gerard L Brien
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, 3000 DR Rotterdam, the Netherlands
| |
Collapse
|
22
|
Moore AM, Xu Z, Kolli RT, White AJ, Sandler DP, Taylor JA. Persistent epigenetic changes in adult daughters of older mothers. Epigenetics 2019; 14:467-476. [PMID: 30879397 DOI: 10.1080/15592294.2019.1595299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Women of advanced maternal age account for an increasing proportion of live births in many developed countries across the globe. Offspring of older mothers are at an increased risk for a variety of subsequent health outcomes, including outcomes that do not manifest until childhood or adulthood. The molecular underpinnings of the association between maternal aging and offspring morbidity remain elusive. However, one possible mechanism is that maternal aging produces specific alterations in the offspring's epigenome in utero, and these epigenetic alterations persist into adulthood. We conducted an epigenome-wide association study (EWAS) of the effect of a mother's age on blood DNA methylation in 2,740 adult daughters using the Illumina Infinium HumanMethylation450 array. A false discovery rate (FDR) q-value threshold of 0.05 was used to identify differentially methylated CpG sites (dmCpGs). We identified 87 dmCpGs associated with increased maternal age. The majority (84%) of the dmCpGs had lower methylation in daughters of older mothers, with an average methylation difference of 0.6% per 5-year increase in mother's age. Thirteen genomic regions contained multiple dmCpGs. Most notably, nine dmCpGs were found in the promoter region of the gene LIM homeobox 8 (LHX8), which plays a pivotal role in female fertility. Other dmCpGs were found in genes associated with metabolically active brown fat, carcinogenesis, and neurodevelopmental disorders. We conclude that maternal age is associated with persistent epigenetic changes in daughters at genes that have intriguing links to health.
Collapse
Affiliation(s)
- Aaron M Moore
- a Epidemiology Branch , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC , USA
| | - Zongli Xu
- a Epidemiology Branch , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC , USA
| | - Ramya T Kolli
- b Epigenetics & Stem Cell Biology Laboratory , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC , USA
| | - Alexandra J White
- a Epidemiology Branch , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC , USA
| | - Dale P Sandler
- a Epidemiology Branch , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC , USA
| | - Jack A Taylor
- a Epidemiology Branch , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC , USA.,b Epigenetics & Stem Cell Biology Laboratory , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC , USA
| |
Collapse
|
23
|
SATB family chromatin organizers as master regulators of tumor progression. Oncogene 2018; 38:1989-2004. [PMID: 30413763 DOI: 10.1038/s41388-018-0541-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
SATB (Special AT-rich binding protein) family proteins have emerged as key regulators that integrate higher-order chromatin organization with the regulation of gene expression. Studies over the past decade have elucidated the specific roles of SATB1 and SATB2, two closely related members of this family, in cancer progression. SATB family chromatin organizers play diverse and important roles in regulating the dynamic equilibrium of apoptosis, cell invasion, metastasis, proliferation, angiogenesis, and immune modulation. This review highlights cellular and molecular events governed by SATB1 influencing the structural organization of chromatin and interacting with several co-activators and co-repressors of transcription towards tumor progression. SATB1 expression across tumor cell types generates cellular and molecular heterogeneity culminating in tumor relapse and metastasis. SATB1 exhibits dynamic expression within intratumoral cell types regulated by the tumor microenvironment, which culminates towards tumor progression. Recent studies suggested that cell-specific expression of SATB1 across tumor recruited dendritic cells (DC), cytotoxic T lymphocytes (CTL), T regulatory cells (Tregs) and tumor epithelial cells along with tumor microenvironment act as primary determinants of tumor progression and tumor inflammation. In contrast, SATB2 is differentially expressed in an array of cancer types and is involved in tumorigenesis. Survival analysis for patients across an array of cancer types correlated with expression of SATB family chromatin organizers suggested tissue-specific expression of SATB1 and SATB2 contributing to disease prognosis. In this context, it is pertinent to understand molecular players, cellular pathways, genetic and epigenetic mechanisms governed by cell types within tumors regulated by SATB proteins. We propose that patient survival analysis based on the expression profile of SATB chromatin organizers would facilitate their unequivocal establishment as prognostic markers and therapeutic targets for cancer therapy.
Collapse
|
24
|
CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language. Nat Commun 2018; 9:4619. [PMID: 30397230 PMCID: PMC6218476 DOI: 10.1038/s41467-018-06014-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 07/27/2018] [Indexed: 12/30/2022] Open
Abstract
Chromatin remodeling is of crucial importance during brain development. Pathogenic alterations of several chromatin remodeling ATPases have been implicated in neurodevelopmental disorders. We describe an index case with a de novo missense mutation in CHD3, identified during whole genome sequencing of a cohort of children with rare speech disorders. To gain a comprehensive view of features associated with disruption of this gene, we use a genotype-driven approach, collecting and characterizing 35 individuals with de novo CHD3 mutations and overlapping phenotypes. Most mutations cluster within the ATPase/helicase domain of the encoded protein. Modeling their impact on the three-dimensional structure demonstrates disturbance of critical binding and interaction motifs. Experimental assays with six of the identified mutations show that a subset directly affects ATPase activity, and all but one yield alterations in chromatin remodeling. We implicate de novo CHD3 mutations in a syndrome characterized by intellectual disability, macrocephaly, and impaired speech and language.
Collapse
|
25
|
Rivera-Reyes R, Kleppa MJ, Kispert A. Proteomic analysis identifies transcriptional cofactors and homeobox transcription factors as TBX18 binding proteins. PLoS One 2018; 13:e0200964. [PMID: 30071041 PMCID: PMC6071992 DOI: 10.1371/journal.pone.0200964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/30/2018] [Indexed: 01/04/2023] Open
Abstract
The TBX18 transcription factor is a crucial developmental regulator of several organ systems in mice, and loss of its transcriptional repression activity causes dilative nephropathies in humans. The molecular complexes with which TBX18 regulates transcription are poorly understood prompting us to use an unbiased proteomic approach to search for protein interaction partners. Using overexpressed dual tagged TBX18 as bait, we identified by tandem purification and subsequent LC-MS analysis TBX18 binding proteins in 293 cells. Clustering of functional annotations of the identified proteins revealed a highly significant enrichment of transcriptional cofactors and homeobox transcription factors. Using nuclear recruitment assays as well as GST pull-downs, we validated CBFB, GAR1, IKZF2, NCOA5, SBNO2 and CHD7 binding to the T-box of TBX18 in vitro. From these transcriptional cofactors, CBFB, CHD7 and IKZF2 enhanced the transcriptional repression of TBX18, while NCOA5 and SBNO2 dose-dependently relieved it. All tested homeobox transcription factors interacted with the T-box of TBX18 in pull-down assays, with members of the Pbx and Prrx subfamilies showing coexpression with Tbx18 in the developing ureter of the mouse. In summary, we identified and characterized new TBX18 binding partners that may influence the transcriptional activity of TBX18 in vivo.
Collapse
Affiliation(s)
| | - Marc-Jens Kleppa
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
26
|
Xiao Q, Chen L, Luo H, Li H, Kong Q, Jiao F, Pang S, Zhang M, Lan F, Fan W, Luo H, Tao T, Zhu X. A rare CHD5 haplotype and its interactions with environmental factors predicting hepatocellular carcinoma risk. BMC Cancer 2018; 18:658. [PMID: 29907144 PMCID: PMC6003142 DOI: 10.1186/s12885-018-4551-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/24/2018] [Indexed: 01/10/2023] Open
Abstract
Background CHD5 is a conventional tumour-suppressing gene in many tumours. The aim of this study was to determine whether CHD5 variants contribute to the risk of hepatocellular carcinoma (HCC). Methods Gene variants were identified using next-generation sequencing targeted on referenced mutations followed by TaqMan genotyping in two case-control studies. Results We discovered a rare variant (haplotype AG) in CHD5 (rs12564469-rs9434711) that was markedly associated with the risk of HCC in a Chinese population. A logistical regression model and permutation test confirmed the association. Indeed, the association quality increased in a gene dose-dependent manner as the number of samples increased. In the stratified analysis, this haplotype risk effect was statistically significant in a subgroup of alcohol drinkers. The false-positive report probability and multifactor dimensionality reduction further supported the finding. Conclusions Our results suggest that the rare CHD5 gene haplotype and alcohol intake contribute to the risk of HCC. Our findings can be valuable to researchers of cancer precision medicine looking to improve diagnosis and treatment of HCC. Electronic supplementary material The online version of this article (10.1186/s12885-018-4551-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qin Xiao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.,Department of Blood Transfusion, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lianzhou Chen
- Digestive System Tumor Tissue Bank, Center of Surgery Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haiqing Luo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.,The Affiliated Hospital Cancer Center, Guangdong Medical University, Zhanjiang, China
| | - Hongmei Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.,Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Qingming Kong
- Immunity and Biochemical Research Lab, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Fei Jiao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Shifeng Pang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China
| | - Ming Zhang
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Feifei Lan
- Forensic Identification Institute, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wenguo Fan
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hui Luo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China.
| | - Xiao Zhu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
27
|
Covalent Modifications of Histone H3K9 Promote Binding of CHD3. Cell Rep 2018; 21:455-466. [PMID: 29020631 DOI: 10.1016/j.celrep.2017.09.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/12/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Chromatin remodeling is required for genome function and is facilitated by ATP-dependent complexes, such as nucleosome remodeling and deacetylase (NuRD). Among its core components is the chromodomain helicase DNA binding protein 3 (CHD3) whose functional significance is not well established. Here, we show that CHD3 co-localizes with the other NuRD subunits, including HDAC1, near the H3K9ac-enriched promoters of the NuRD target genes. The tandem PHD fingers of CHD3 bind histone H3 tails and posttranslational modifications that increase hydrophobicity of H3K9-methylation or acetylation (H3K9me3 or H3K9ac)-enhance this interaction. Binding of CHD3 PHDs promotes H3K9Cme3-nucleosome unwrapping in vitro and perturbs the pericentric heterochromatin structure in vivo. Methylation or acetylation of H3K9 uniquely alleviates the intra-nucleosomal interaction of histone H3 tails, increasing H3K9 accessibility. Collectively, our data suggest that the targeting of covalently modified H3K9 by CHD3 might be essential in diverse functions of NuRD.
Collapse
|
28
|
Mohd-Sarip A, Teeuwssen M, Bot AG, De Herdt MJ, Willems SM, Baatenburg de Jong RJ, Looijenga LHJ, Zatreanu D, Bezstarosti K, van Riet J, Oole E, van Ijcken WFJ, van de Werken HJG, Demmers JA, Fodde R, Verrijzer CP. DOC1-Dependent Recruitment of NURD Reveals Antagonism with SWI/SNF during Epithelial-Mesenchymal Transition in Oral Cancer Cells. Cell Rep 2018; 20:61-75. [PMID: 28683324 DOI: 10.1016/j.celrep.2017.06.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 04/24/2017] [Accepted: 06/04/2017] [Indexed: 11/30/2022] Open
Abstract
The Nucleosome Remodeling and Deacetylase (NURD) complex is a key regulator of cell differentiation that has also been implicated in tumorigenesis. Loss of the NURD subunit Deleted in Oral Cancer 1 (DOC1) is associated with human oral squamous cell carcinomas (OSCCs). Here, we show that restoration of DOC1 expression in OSCC cells leads to a reversal of epithelial-mesenchymal transition (EMT). This is caused by the DOC1-dependent targeting of NURD to repress key transcriptional regulators of EMT. NURD recruitment drives extensive epigenetic reprogramming, including eviction of the SWI/SNF remodeler, formation of inaccessible chromatin, H3K27 deacetylation, and binding of PRC2 and KDM1A, followed by H3K27 methylation and H3K4 demethylation. Strikingly, depletion of SWI/SNF mimics the effects of DOC1 re-expression. Our results suggest that SWI/SNF and NURD function antagonistically to control chromatin state and transcription. We propose that disturbance of this dynamic equilibrium may lead to defects in gene expression that promote oncogenesis.
Collapse
Affiliation(s)
- Adone Mohd-Sarip
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands; Department of Biochemistry, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands.
| | - Miriam Teeuwssen
- Department of Pathology, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Alice G Bot
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Maria J De Herdt
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Stefan M Willems
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Robert J Baatenburg de Jong
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Leendert H J Looijenga
- Department of Pathology, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Diana Zatreanu
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics Centre, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Job van Riet
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands; Department of Urology, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Edwin Oole
- Center for Biomics, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Wilfred F J van Ijcken
- Center for Biomics, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Harmen J G van de Werken
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands; Department of Urology, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Jeroen A Demmers
- Proteomics Centre, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Riccardo Fodde
- Department of Pathology, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands.
| |
Collapse
|
29
|
Naraparaju K, Kolla V, Zhuang T, Higashi M, Iyer R, Kolla S, Okawa ER, Blobel GA, Brodeur GM. Role of microRNAs in epigenetic silencing of the CHD5 tumor suppressor gene in neuroblastomas. Oncotarget 2017; 7:15977-85. [PMID: 26895110 PMCID: PMC4941291 DOI: 10.18632/oncotarget.7434] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/05/2016] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma (NB), a tumor of the sympathetic nervous system, is the most common extracranial solid tumor of childhood. We and others have identified distinct patterns of genomic change that underlie diverse clinical behaviors, from spontaneous regression to relentless progression. We first identified CHD5 as a tumor suppressor gene that is frequently deleted in NBs. Mutation of the remaining CHD5 allele is rare in these tumors, yet expression is very low or absent, so expression is likely regulated by epigenetic mechanisms. In order to understand the potential role of miRNA regulation of CHD5 protein expression in NBs, we examined all miRNAs that are predicted to target the 3′-UTR using miRanda, TargetScan and other algorithms. We identified 18 miRNAs that were predicted by 2 or more programs: miR-204, -211, -216b, -17, -19ab, -20ab, -93, -106ab, -130ab, -301ab, -454, -519d, -3666. We then performed transient transfections in two NB cell lines, NLF (MYCN amplified) and SY5Y (MYCN non-amplified), with the reporter plasmid and miRNA mimic, as well as appropriate controls. We found seven miRNAs that significantly downregulated CHD5 expression in NB: miR-211, 17, -93, -20b, -106b, -204, and -3666. Interestingly, MYCN upregulates several of the candidates we identified: miR-17, -93, -106b & -20b. This suggests that miRNAs driven by MYCN and other genes represent a potential epigenetic mechanism to regulate CHD5 expression.
Collapse
Affiliation(s)
- Koumudi Naraparaju
- Division of Oncology and Hematology, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Venkatadri Kolla
- Division of Oncology and Hematology, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Tiangang Zhuang
- Division of Oncology and Hematology, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Mayumi Higashi
- Division of Oncology and Hematology, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Radhika Iyer
- Division of Oncology and Hematology, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Sriharsha Kolla
- Division of Oncology and Hematology, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Erin R Okawa
- Division of Oncology and Hematology, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Gerd A Blobel
- Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Garrett M Brodeur
- Division of Oncology and Hematology, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
30
|
Mills AA. The Chromodomain Helicase DNA-Binding Chromatin Remodelers: Family Traits that Protect from and Promote Cancer. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026450. [PMID: 28096241 DOI: 10.1101/cshperspect.a026450] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A plethora of mutations in chromatin regulators in diverse human cancers is emerging, attesting to the pivotal role of chromatin dynamics in tumorigenesis. A recurrent theme is inactivation of the chromodomain helicase DNA-binding (CHD) family of proteins-ATP-dependent chromatin remodelers that govern the cellular machinery's access to DNA, thereby controlling fundamental processes, including transcription, proliferation, and DNA damage repair. This review highlights what is currently known about how genetic and epigenetic perturbation of CHD proteins and the pathways that they regulate set the stage for cancer, providing new insight for designing more effective anti-cancer therapies.
Collapse
Affiliation(s)
- Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724
| |
Collapse
|
31
|
Weigt D, Hopf C, Médard G. Studying epigenetic complexes and their inhibitors with the proteomics toolbox. Clin Epigenetics 2016; 8:76. [PMID: 27437033 PMCID: PMC4950666 DOI: 10.1186/s13148-016-0244-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/05/2016] [Indexed: 12/27/2022] Open
Abstract
Some epigenetic modifier proteins have become validated clinical targets. With a few small molecule inhibitors already approved by national health administrations and many more in the pharmaceutical industry pipelines, there is a need for technologies that can promote full comprehension of the molecular action of these drugs. Proteomics, with its relatively unbiased nature, can contribute to a thorough understanding of the complexity of the megadalton complexes, which write, read and erase the histone code, and it can help study the on-target and off-target effect of the drugs designed to modulate their action. This review on the one hand gathers the published affinity probes able to decipher small molecule targets and off-targets in a close-to-native environment. These are small molecule analogues of epigenetic drugs conceived as protein target enrichment tools after they have engaged them in cells or lysates. Such probes, which have been designed for deacetylases, bromodomains, demethylases, and methyltransferases not only enrich their direct protein targets but also their stable interactors, which can be identified by mass spectrometry. Hence, they constitute a tool to study the epigenetic complexes together with other techniques also reviewed here: immunoaffinity purification with antibodies against native protein complex constituents or epitope tags, affinity matrices designed to bind recombinantly tagged protein, and enrichment of the complexes using histone tail peptides as baits. We expect that this toolbox will be adopted by more and more researchers willing to harness the spectacular advances in mass spectrometry to the epigenetic field.
Collapse
Affiliation(s)
- David Weigt
- />Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- />HBIGS International Graduate School of Molecular and Cellular Biology, Heidelberg University, Im Neuenheimer Feld 501, 69120 Heidelberg, Germany
| | - Carsten Hopf
- />Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- />HBIGS International Graduate School of Molecular and Cellular Biology, Heidelberg University, Im Neuenheimer Feld 501, 69120 Heidelberg, Germany
| | - Guillaume Médard
- />Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil Erlenmeyer Forum 5, 85354 Freising, Germany
| |
Collapse
|
32
|
Functional Insights into Chromatin Remodelling from Studies on CHARGE Syndrome. Trends Genet 2015; 31:600-611. [PMID: 26411921 PMCID: PMC4604214 DOI: 10.1016/j.tig.2015.05.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 12/27/2022]
Abstract
CHARGE syndrome is a rare genetic syndrome characterised by a unique combination of multiple organ anomalies. Dominant loss-of-function mutations in the gene encoding chromodomain helicase DNA binding protein 7 (CHD7), which is an ATP-dependent chromatin remodeller, have been identified as the cause of CHARGE syndrome. Here, we review recent work aimed at understanding the mechanism of CHD7 function in normal and pathological states, highlighting results from biochemical and in vivo studies. The emerging picture from this work suggests that the mechanisms by which CHD7 fine-tunes gene expression are context specific, consistent with the pleiotropic nature of CHARGE syndrome.
Collapse
|
33
|
Higashi M, Kolla V, Iyer R, Naraparaju K, Zhuang T, Kolla S, Brodeur GM. Retinoic acid-induced CHD5 upregulation and neuronal differentiation of neuroblastoma. Mol Cancer 2015; 14:150. [PMID: 26245651 PMCID: PMC4527355 DOI: 10.1186/s12943-015-0425-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/30/2015] [Indexed: 01/09/2023] Open
Abstract
Background Chromodomain-helicase DNA binding protein 5 (CHD5) is an important tumor suppressor gene deleted from 1p36.31 in neuroblastomas (NBs). High CHD5 expression is associated with a favorable prognosis, but deletion or low expression is frequent in high-risk tumors. We explored the role of CHD5 expression in the neuronal differentiation of NB cell lines. Methods NB cell lines SH-SY5Y (SY5Y), NGP, SK-N-DZ, IMR5, LAN5, SK-N-FI, NB69 and SH-EP were treated with 1–10 μM 13-cis-retinoic acid (13cRA) for 3–12 days. qRT-PCR and Western blot analyses were performed to measure mRNA and protein expression levels, respectively. Morphological differences were examined by both phase contrast and immunofluorescence studies. Results Treatment of SY5Y cells with 13cRA caused upregulation of CHD5 expression in a time- and dose-dependent manner (1, 5, or 10 μM for 7 or 12 days) and also induced neuronal differentiation. Furthermore, both NGP and SK-N-DZ cells showed CHD5 upregulation and neuronal differentiation after 13cRA treatment. In contrast, 13cRA treatment of IMR5, LAN5, or SK-N-FI induced neither CHD5 expression nor neuronal differentiation. NB69 cells showed two different morphologies (neuronal and substrate adherent) after 12 days treatment with 10 μM of 13cRA. CHD5 expression was high in the neuronal cells, but low/absent in the flat, substrate adherent cells. Finally, NGF treatment caused upregulation of CHD5 expression and neuronal differentiation in SY5Y cells transfected to express TrkA (SY5Y-TrkA) but not in TrkA-null parental SY5Y cells, and both changes were blocked by a pan-TRK inhibitor. Conclusions Treatment with 13cRA induces neuronal differentiation only in NB cells that upregulate CHD5. In addition, NGF induced CHD5 upregulation and neuronal differentiation only in TrkA expressing cells. Together, these results suggest that CHD5 is downstream of TrkA, and CHD5 expression may be crucial for neuronal differentiation induced by either 13cRA or TrkA/NGF signaling. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0425-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mayumi Higashi
- Division of Oncology, Children's Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania School of Medicine, CTRB Rm. 3018, 3501 Civic Center Blvd, Philadelphia, PA, 19104 - 4302, USA. .,Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602 - 8566, Japan.
| | - Venkatadri Kolla
- Division of Oncology, Children's Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania School of Medicine, CTRB Rm. 3018, 3501 Civic Center Blvd, Philadelphia, PA, 19104 - 4302, USA.
| | - Radhika Iyer
- Division of Oncology, Children's Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania School of Medicine, CTRB Rm. 3018, 3501 Civic Center Blvd, Philadelphia, PA, 19104 - 4302, USA.
| | - Koumudi Naraparaju
- Division of Oncology, Children's Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania School of Medicine, CTRB Rm. 3018, 3501 Civic Center Blvd, Philadelphia, PA, 19104 - 4302, USA.
| | - Tiangang Zhuang
- Division of Oncology, Children's Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania School of Medicine, CTRB Rm. 3018, 3501 Civic Center Blvd, Philadelphia, PA, 19104 - 4302, USA.
| | - Sriharsha Kolla
- Division of Oncology, Children's Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania School of Medicine, CTRB Rm. 3018, 3501 Civic Center Blvd, Philadelphia, PA, 19104 - 4302, USA.
| | - Garrett M Brodeur
- Division of Oncology, Children's Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania School of Medicine, CTRB Rm. 3018, 3501 Civic Center Blvd, Philadelphia, PA, 19104 - 4302, USA.
| |
Collapse
|
34
|
Vavougios GD, Solenov EI, Hatzoglou C, Baturina GS, Katkova LE, Molyvdas PA, Gourgoulianis KI, Zarogiannis SG. Computational genomic analysis of PARK7 interactome reveals high BBS1 gene expression as a prognostic factor favoring survival in malignant pleural mesothelioma. Am J Physiol Lung Cell Mol Physiol 2015; 309:L677-86. [PMID: 26254420 DOI: 10.1152/ajplung.00051.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 08/03/2015] [Indexed: 01/04/2023] Open
Abstract
The aim of our study was to assess the differential gene expression of Parkinson protein 7 (PARK7) interactome in malignant pleural mesothelioma (MPM) using data mining techniques to identify novel candidate genes that may play a role in the pathogenicity of MPM. We constructed the PARK7 interactome using the ConsensusPathDB database. We then interrogated the Oncomine Cancer Microarray database using the Gordon Mesothelioma Study, for differential gene expression of the PARK7 interactome. In ConsensusPathDB, 38 protein interactors of PARK7 were identified. In the Gordon Mesothelioma Study, 34 of them were assessed out of which SUMO1, UBC3, KIAA0101, HDAC2, DAXX, RBBP4, BBS1, NONO, RBBP7, HTRA2, and STUB1 were significantly overexpressed whereas TRAF6 and MTA2 were significantly underexpressed in MPM patients (network 2). Furthermore, Kaplan-Meier analysis revealed that MPM patients with high BBS1 expression had a median overall survival of 16.5 vs. 8.7 mo of those that had low expression. For validation purposes, we performed a meta-analysis in Oncomine database in five sarcoma datasets. Eight network 2 genes (KIAA0101, HDAC2, SUMO1, RBBP4, NONO, RBBP7, HTRA2, and MTA2) were significantly differentially expressed in an array of 18 different sarcoma types. Finally, Gene Ontology annotation enrichment analysis revealed significant roles of the PARK7 interactome in NuRD, CHD, and SWI/SNF protein complexes. In conclusion, we identified 13 novel genes differentially expressed in MPM, never reported before. Among them, BBS1 emerged as a novel predictor of overall survival in MPM. Finally, we identified that PARK7 interactome is involved in novel pathways pertinent in MPM disease.
Collapse
Affiliation(s)
- Georgios D Vavougios
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Evgeniy I Solenov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia; and
| | - Chrissi Hatzoglou
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece; Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Galina S Baturina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Liubov E Katkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Paschalis Adam Molyvdas
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | | | - Sotirios G Zarogiannis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece; Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| |
Collapse
|