1
|
Ying S, Guo Q, Zhang C. KLHL3-dependent WNK4 degradation affected by potassium through the neddylation and autophagy pathway. BMC Nephrol 2023; 24:217. [PMID: 37481568 PMCID: PMC10362690 DOI: 10.1186/s12882-023-03257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/29/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Studies reported that kelch-like protein 3 (KLHL3)-Cullin3(CUL3) E3 ligase ubiquitinated with-no-lysine kinase 4 (WNK4). Impaired WNK4 ubiquitination plays a key role in Familial hyperkalemic hypertension (FHHt, also called pseudohypoaldosteronism type II) which results from overaction of thiazide-sensitive sodium chloride cotransport (NCC). In addition, researchers have also found that dietary potassium deficiency activates NCC along the renal distal convoluted tubule (DCT). However, the underlying mechanism remains unclear about the relationship between potassium and WNK4. METHODS In the present study, we conducted in vitro and in vivo experiments to confirm that KLHL3-dependent WNK4 degradation is affected by potassium through the neddylation and autophagy pathway. In vitro, the WNK4 and KLHL3 plasmids were cotransfected into HEK293 cell lines by lipofectamine 2000, and then incubated with different potassium concentrations (1mmol/L and 10mmol/L) for 24 h, and further treated with MLN4924 or the autophagy inhibitor or both of MLN4924 and the autophagy inhibitor for another 24 h respectively. In vivo, we created mice that were fed with low or high potassium diets and then were injected MLN4924 in the experimental groups. The expression of WNK4, pWNK4, KLHL3, NEDD8, LC3 ,and P62 was detected by western blotting in vitro and vivo experiments. RESULTS We found that the abundance and phosphorylation of WNK4 increase when neddylation is inhibited both in vitro and vivo. Furthermore, the abundance of pWNK4, WNK4, NEDD8, and KLHL3 was increased in the low potassium (LK) group. Inhibiting autophagy can ameliorate the effect of potassium on the abundance and activity of WNK4 to some extent. CONCLUSION These findings suggest a complex regulation of potassium in the degradation of WNK4. Low potassium can activate WNK4, which may be related to neddylation and autophagy, but the mechanism needs to be further studied.
Collapse
Affiliation(s)
- Siqi Ying
- Department of Nephrology, Jing'an District Center Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Qin Guo
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Shi, China
| | - Chong Zhang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Shi, China.
| |
Collapse
|
2
|
Zhang YJ, Yang C, Wang W, Harafuji N, Stasiak P, Bell PD, Caldovic L, Sztul E, Guay-Woodford LM, Bebok Z. Cystin is required for maintaining fibrocystin (FPC) levels and safeguarding proteome integrity in mouse renal epithelial cells: A mechanistic connection between the kidney defects in cpk mice and human ARPKD. FASEB J 2023; 37:e23008. [PMID: 37318790 DOI: 10.1096/fj.202300100r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is caused primarily by mutations in PKHD1, encoding fibrocystin (FPC), but Pkhd1 mutant mice failed to reproduce the human phenotype. In contrast, the renal lesion in congenital polycystic kidney (cpk) mice, with a mutation in Cys1 and cystin protein loss, closely phenocopies ARPKD. Although the nonhomologous mutation diminished the translational relevance of the cpk model, recent identification of patients with CYS1 mutations and ARPKD prompted the investigations described herein. We examined cystin and FPC expression in mouse models (cpk, rescued-cpk (r-cpk), Pkhd1 mutants) and mouse cortical collecting duct (CCD) cell lines (wild type (wt), cpk). We found that cystin deficiency caused FPC loss in both cpk kidneys and CCD cells. FPC levels increased in r-cpk kidneys and siRNA of Cys1 in wt cells reduced FPC. However, FPC deficiency in Pkhd1 mutants did not affect cystin levels. Cystin deficiency and associated FPC loss impacted the architecture of the primary cilium, but not ciliogenesis. No reduction in Pkhd1 mRNA levels in cpk kidneys and CCD cells suggested posttranslational FPC loss. Studies of cellular protein degradation systems suggested selective autophagy as a mechanism. In support of the previously described function of FPC in E3 ubiquitin ligase complexes, we demonstrated reduced polyubiquitination and elevated levels of functional epithelial sodium channel in cpk cells. Therefore, our studies expand the function of cystin in mice to include inhibition of Myc expression via interaction with necdin and maintenance of FPC as functional component of the NEDD4 E3 ligase complexes. Loss of FPC from E3 ligases may alter the cellular proteome, contributing to cystogenesis through multiple, yet to be defined, mechanisms.
Collapse
Affiliation(s)
- Yiming J Zhang
- Department of Cell Developmental and Integrative Biology (CDIB), University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| | - Chaozhe Yang
- Center for Translational Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Wei Wang
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| | - Naoe Harafuji
- Center for Translational Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Piotr Stasiak
- Department of Cell Developmental and Integrative Biology (CDIB), University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| | - P Darwin Bell
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ljubica Caldovic
- Center for Translational Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Elizabeth Sztul
- Department of Cell Developmental and Integrative Biology (CDIB), University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| | - Lisa M Guay-Woodford
- Center for Translational Research, Children's National Hospital, Washington, District of Columbia, USA
- Center for Genetic Medicine Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Zsuzsanna Bebok
- Department of Cell Developmental and Integrative Biology (CDIB), University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Kelch-like protein 3 in human disease and therapy. Mol Biol Rep 2022; 49:9813-9824. [PMID: 35585379 DOI: 10.1007/s11033-022-07487-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
Kelch-like protein 3 (KLHL3) is a substrate adaptor of Cullin3-RING ubiquitin ligase (CRL3), and KLHL3-CUL3 complex plays a vital role in the ubiquitination of specific substrates. Mutations and abnormal post-translational modifications of KLHL3-CUL3 affect substrate ubiquitination and may related to the pathogenesis of Gordon syndrome (GS), Primary Hyperparathyroidism (PHPT), Diabetes Mellitus (DM), Congenital Heart Disease (CHD), Pre-eclampsia (PE) and even cancers. Therefore, it is essential to understand the function and molecular mechanisms of KLHL3-CUL3 for the treatment of related diseases. In this review, we summary the structure and function of KLHL3-CUL3, the effect of KLHL3-CUL3 mutations and aberrant modifications in GS, PHPT, DM, CHD and PE. Moreover, we noted a possible role of KLHL3-CUL3 in carcinogenesis and provided ideas for targeting KLHL3-CUL3 for related disease treatment.
Collapse
|
4
|
Jung JU, Ghosh A, Earnest S, Deaton SL, Cobb MH. UBR5 is a novel regulator of WNK1 stability. Am J Physiol Cell Physiol 2022; 322:C1176-C1186. [PMID: 35442829 DOI: 10.1152/ajpcell.00417.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The with no lysine (K) 1 (WNK1) protein kinase maintains cellular ion homeostasis in many tissues through actions on ion cotransporters and channels. Increased accumulation of WNK1 protein leads to pseudohypoaldosteronism type II (PHAII), a form of familial hypertension. WNK1 can be degraded via its adaptor-dependent recruitment to the Cullin3-RBX1 E3 ligase complex by the ubiquitin-proteasome system. Disruption of this process also leads to disease. To determine if this is the primary mechanism of WNK1 turnover, we examined WNK1 protein stability and degradation by measuring its rate of decay after blockade of translation. Here, we show that WNK1 protein degradation exhibits atypical kinetics in Hela cells. Consistent with this apparent complexity, we found that multiple degradative pathways can modulate cellular WNK1 protein amount. WNK1 protein is degraded not only by the proteasome, but also by the lysosome. Non-lysosomal cysteine proteases calpain and caspases also influence WNK1 degradation, as inhibitors of these proteases modestly increased WNK1 protein expression. Importantly, we discovered that the E3 ubiquitin ligase UBR5 interacts with WNK1 and its deficiency results in increased WNK1 protein. Our results further demonstrate that increased WNK1 in UBR5-depleted cells is attributable to reduced lysosomal degradation of WNK1 protein. Taken together, our findings provide insights into the multiplicity of degradative pathways involved in WNK1 turnover and uncover UBR5 as a previously unknown regulator of WNK1 protein stability that leads to lysosomal degradation of WNK1 protein.
Collapse
Affiliation(s)
- Ji-Ung Jung
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Anwesha Ghosh
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Svetlana Earnest
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Staci L Deaton
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Melanie H Cobb
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
5
|
Zhang Y, Guo Q, Jiang G, Zhang C. Dysfunction of Cullin 3 RING E3 ubiquitin ligase causes vasoconstriction and increased sodium reabsorption in diabetes. Arch Biochem Biophys 2021; 710:109000. [PMID: 34343486 DOI: 10.1016/j.abb.2021.109000] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022]
Abstract
Impaired endothelium-mediated vasodilation and/or increased sensitivity to vasoconstrictors lead to vascular smooth muscle cell (VSMC) dysfunction in individuals with diabetes. Diabetic nephropathy is associated with a considerably higher risk of cardiovascular disease and death than their nondiabetic counterparts. We studied the activity of Cullin 3 RING ubiquitin ligase (CRL3) and its substrates in mice using an intraperitoneal injection of streptozotocin (STZ) and db/db mice. The levels of CRL3 adaptors, including Kelch-like 2/3 (KLHL2/3) and Rho-related BTB domain-containing protein 1, were significantly decreased in the aortic tissues and heart of the STZ group, whereas the levels of Cullin 3 (CUL3) and its neddylated derivatives were substantially increased. Decreased KLHL3 expression and significantly increased expression of NEDD8 conjugates were observed in the kidneys of db/db mice. The neddylation inhibitor MLN4924 decreased the degradation of KLHL2/KLHL3 under high-glucose conditions with/without insulin, and transfection with KLHL2 promoted the degradation of its substrates with-no-lysine (WNK) kinases. Increased abundance of WNK3, RhoA/ROCK activity and phosphodiesterase 5 enhanced the sensibility to vasoconstrictors and impaired vasodilation. Moreover, WNK3 localized in VSMCs undergoing cell division, and high-glucose medium increased WNK3 signaling in VSMCs undergoing mitosis, which might explain the increased thickness of aortic tissues in subjects with diabetes. Increases in WNK4 abundance resulted in increased sodium reabsorption in the distal renal tubules. Thus, KLHL2/RhoBTB1/KLHL3 inactivation in the aortic tissues and kidney is a result of excessive activation of neddylation in hyperglycemia and hyperinsulinemia, which affects vascular tone and sodium reabsorption.
Collapse
Affiliation(s)
- Ya Zhang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Guo
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gengru Jiang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chong Zhang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Zhang Y, Jiang G, Zhang C. Downregulation of Cullin 3 Ligase Signaling Pathways Contributes to Hypertension in Preeclampsia. Front Cardiovasc Med 2021; 8:654254. [PMID: 33928137 PMCID: PMC8076533 DOI: 10.3389/fcvm.2021.654254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Preeclampsia (PE) is a leading cause of maternal and perinatal morbidity and mortality; however, its etiology and pathophysiology remain obscure. PE is initiated by inadequate spiral artery remodeling and subsequent placental ischemia/hypoxia, which stimulates release of bioactive factors into maternal circulation, leading to hypertension and renal damage. Methods and Results: Abundance of key components of cullin 3-ring ubiquitin ligase (CRL3), including cullin 3 (CUL3) and its neddylated modification, and adaptors including Kelch-like 2 (KLHL2) and Rho-related BTB domain containing protein 1 was all decreased in spiral arteries and placentas of PE patients. Similar changes were found in aortic tissues and renal distal tubules of pregnant mice treated with Nω-nitro-l-arginine methyl ester hydrochloride. The downregulation of CRL3 function led to accumulation of with-no-lysine kinases, phosphodiesterase 5, and RhoA in vessels and renal distal tubules, which promoted vasoconstriction and Na-Cl cotransporter activation in the distal convoluted tubule (DCT), as well as vascular and DCT structure remodeling. Proton pump inhibitor esomeprazole partially restored CRL3 function. In vitro studies have shown that increased abundance of JAB1, a component of the COP9 signalosome, inhibited CUL3 neddylation and promoted the expression of hypoxia-inducible factor 1α, which downregulated peroxisome proliferator-activated receptor γ and further promoted CUL3 inactivation. KLHL3/2 was degraded by increased autophagy. Conclusion: These findings support that the downregulation of CRL3 function disrupts the balance of vasoconstriction and vasodilation and aggravates excess reabsorption of sodium in PE.
Collapse
Affiliation(s)
- Ya Zhang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gengru Jiang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chong Zhang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Cornelius RJ, Zhang C, Erspamer KJ, Agbor LN, Sigmund CD, Singer JD, Yang CL, Ellison DH. Dual gain and loss of cullin 3 function mediates familial hyperkalemic hypertension. Am J Physiol Renal Physiol 2018; 315:F1006-F1018. [PMID: 29897280 PMCID: PMC6230741 DOI: 10.1152/ajprenal.00602.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/11/2018] [Accepted: 06/07/2018] [Indexed: 12/26/2022] Open
Abstract
Familial hyperkalemic hypertension is caused by mutations in with-no-lysine kinases (WNKs) or in proteins that mediate their degradation, kelch-like 3 (KLHL3) and cullin 3 (CUL3). Although the mechanisms by which WNK and KLHL3 mutations cause the disease are now clear, the effects of the disease-causing CUL3Δ403-459 mutation remain controversial. Possible mechanisms, including hyperneddylation, altered ubiquitin ligase activity, decreased association with the COP9 signalosome (CSN), and increased association with and degradation of KLHL3 have all been postulated. Here, we systematically evaluated the effects of Cul3Δ403-459 using cultured kidney cells. We first identified that the catalytically active CSN subunit jun activation domain-binding protein-1 (JAB1) does not associate with the deleted Cul3 4-helix bundle domain but instead with the adjacent α/β1 domain, suggesting that altered protein folding underlies the impaired binding. Inhibition of deneddylation with JAB1 siRNA increased Cul3 neddylation and decreased KLHL3 abundance, similar to the Cul3 mutant. We next determined that KLHL3 degradation has both ubiquitin ligase-dependent and -independent components. Proteasomal KLHL3 degradation was enhanced by Cul3Δ403-459; however, autophagic degradation was also upregulated by this Cul3 mutant. Finally, to evaluate whether deficient substrate adaptor was responsible for the disease, we restored KLHL3 to wild-type (WT) Cul3 levels. In the absence of WT Cul3, WNK4 was not degraded, demonstrating that Cul3Δ403-459 itself cannot degrade WNK4; conversely, when WT Cul3 was present, as in diseased humans, WNK4 degradation was restored. In conclusion, deletion of exon 9 from Cul3 generates a protein that is itself ubiquitin-ligase defective but also capable of enhanced autophagocytic KLHL3 degradation, thereby exerting dominant-negative effects on the WT allele.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University , Portland, Oregon
| | - Chong Zhang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Kayla J Erspamer
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University , Portland, Oregon
| | - Larry N Agbor
- Department of Pharmacology, UIHC Center for Hypertension Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Curt D Sigmund
- Department of Pharmacology, UIHC Center for Hypertension Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Jeffrey D Singer
- Department of Biology, Portland State University , Portland, Oregon
| | - Chao-Ling Yang
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University , Portland, Oregon
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University , Portland, Oregon
- Veterans Affairs Portland Health Care System, Portland, Oregon
| |
Collapse
|
8
|
Lin CM, Cheng CJ, Yang SS, Tseng MH, Yen MT, Sung CC, Lin SH. Generation and analysis of a mouse model of pseudohypoaldosteronism type II caused by KLHL3 mutation in BTB domain. FASEB J 2018; 33:1051-1061. [PMID: 30148674 DOI: 10.1096/fj.201801023r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Kelch-like 3 ( KLHL3) mutations contributed to the most common causative genes in patients with pseudohypoaldosteronism type II (PHAII); however, the molecular mechanisms of PHAII-causing mutations in BTB domain of KLHL3 in vivo have not been investigated. We generated and analyzed Klhl3 knock-in (KI) mice carrying a missense M131V mutation in the BTB domain (corresponding to human KLHL3 M78V mutation). Klhl3M131V/+ KI mice exhibited typical PHAII phenotype with an exaggerated diuretic response to hydrochlorothiazide. Their kidney tissues showed an unchanged KLHL3, decreased cullin 3 (Cul3), and increased with-no-lysine kinases (WNKs) WNK1 and WNK4 along with an enhanced downstream ste20-related proline/alanine-rich kinase/oxidative stress response kinase 1-N(K)CC phosphorylation. Their Cul3 protein in the cytosol of distal convoluted tubule cells was also significantly attenuated on immunogold-labeling electron microscopy. In microdissected renal tubules, Klhl3M131V/+ KI mice expressed high levels of Wnk4 mRNA in the distal nephron. In vitro coimmunoprecipitation showed the KLHL3 BTB domain mutation retained intact interaction with WNKs but reduced binding to Cul3, thus leading to the increased abundance of total WNKs. In summary, Klhl3M131V/+ KI mice feature typical PHAII with a simultaneous increase of WNK1 and WNK4 through the impaired KLHL3 BTB domain binding to Cul3.-Lin, C.-M., Cheng, C.-J., Yang, S.-S., Tseng, M.-H., Yen, M.-T., Sung, C.-C., Lin, S.-H. Generation and analysis of a mouse model of pseudohypoaldosteronism type II caused by KLHL3 mutation in BTB domain.
Collapse
Affiliation(s)
- Chien-Ming Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pediatrics, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Jen Cheng
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sung-Sen Yang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Min-Hua Tseng
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Pediatric Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; and
| | - Ming-Tso Yen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Nephrology, Department of Medicine, Cathay General Hospital, Taipei, Taiwan
| | - Chih-Chien Sung
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
9
|
Chung WY, Han JW, Heo W, Lee MG, Kim JY. Overexpression of WNK1 in POMC-expressing neurons reduces weigh gain via WNK4-mediated degradation of Kir6.2. Mol Cell Biochem 2018; 447:165-174. [PMID: 29392534 DOI: 10.1007/s11010-018-3301-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/24/2018] [Indexed: 10/18/2022]
Abstract
"With no lysine" (WNK) kinases have been shown to regulate various ion transporters in various tissues, but studies on the function of WNK kinases in the brain have been limited. In this study, we discovered that WNK1 and WNK4 in POMC-expressing neuronal cells in WNK1 overexpressed transgenic mice (WNK1 TG) decrease appetite via degradation of Kir6.2. Weight gain after 20 weeks of age was delayed in WNK1 TG mice as a result of reduced food intake. Expression of WNK1 and proopiomelanocortin (POMC) was higher in POMC-expressing neurons in the hypothalamus of WNK1 TG mice than in WT mice. Immunostaining of serial sections of the hypothalamus revealed that POMC-expressing neurons were smaller in WNK1 TG mice than in WT mice. In addition, expression of Kir6.2 was significantly reduced in WNK1 TG mice. Overexpression and knockdown of WNK4 demonstrated that WNK4 regulates protein expression of Kir6.2 via protein-protein interaction. Accordingly, reduced age-dependent weight gain of WNK1 TG mice seems to be related with the decreased Kir6.2 expression via WNK1- and WNK4-regulated protein stability of Kir6.2.
Collapse
Affiliation(s)
- Woo Young Chung
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Jung Woo Han
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Woon Heo
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Min Goo Lee
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Joo Young Kim
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, South Korea.
| |
Collapse
|
10
|
Sasaki E, Susa K, Mori T, Isobe K, Araki Y, Inoue Y, Yoshizaki Y, Ando F, Mori Y, Mandai S, Zeniya M, Takahashi D, Nomura N, Rai T, Uchida S, Sohara E. KLHL3 Knockout Mice Reveal the Physiological Role of KLHL3 and the Pathophysiology of Pseudohypoaldosteronism Type II Caused by Mutant KLHL3. Mol Cell Biol 2017; 37:e00508-16. [PMID: 28052936 PMCID: PMC5359427 DOI: 10.1128/mcb.00508-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 10/17/2016] [Accepted: 12/29/2016] [Indexed: 01/06/2023] Open
Abstract
Mutations in the with-no-lysine kinase 1 (WNK1), WNK4, kelch-like 3 (KLHL3), and cullin3 (CUL3) genes are known to cause the hereditary disease pseudohypoaldosteronism type II (PHAII). It was recently demonstrated that this results from the defective degradation of WNK1 and WNK4 by the KLHL3/CUL3 ubiquitin ligase complex. However, the other physiological in vivo roles of KLHL3 remain unclear. Therefore, here we generated KLHL3-/- mice that expressed β-galactosidase (β-Gal) under the control of the endogenous KLHL3 promoter. Immunoblots of β-Gal and LacZ staining revealed that KLHL3 was expressed in some organs, such as brain. However, the expression levels of WNK kinases were not increased in any of these organs other than the kidney, where WNK1 and WNK4 increased in KLHL3-/- mice but not in KLHL3+/- mice. KLHL3-/- mice also showed PHAII-like phenotypes, whereas KLHL3+/- mice did not. This clearly demonstrates that the heterozygous deletion of KLHL3 was not sufficient to cause PHAII, indicating that autosomal dominant type PHAII is caused by the dominant negative effect of mutant KLHL3. We further demonstrated that the dimerization of KLHL3 can explain this dominant negative effect. These findings could help us to further understand the physiological roles of KLHL3 and the pathophysiology of PHAII caused by mutant KLHL3.
Collapse
Affiliation(s)
- Emi Sasaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichiro Susa
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiyoshi Isobe
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuya Araki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuichi Inoue
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuki Yoshizaki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Fumiaki Ando
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaro Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shintaro Mandai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Moko Zeniya
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daiei Takahashi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naohiro Nomura
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
11
|
Dbouk HA, Huang CL, Cobb MH. Hypertension: the missing WNKs. Am J Physiol Renal Physiol 2016; 311:F16-27. [PMID: 27009339 PMCID: PMC4967160 DOI: 10.1152/ajprenal.00358.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 03/16/2016] [Indexed: 12/23/2022] Open
Abstract
The With no Lysine [K] (WNK) family of enzymes are central in the regulation of blood pressure. WNKs have been implicated in hereditary hypertension disorders, mainly through control of the activity and levels of ion cotransporters and channels. Actions of WNKs in the kidney have been heavily investigated, and recent studies have provided insight into not only the regulation of these enzymes but also how mutations in WNKs and their interacting partners contribute to hypertensive disorders. Defining the roles of WNKs in the cardiovascular system will provide clues about additional mechanisms by which WNKs can regulate blood pressure. This review summarizes recent developments in the regulation of the WNK signaling cascade and its role in regulation of blood pressure.
Collapse
Affiliation(s)
- Hashem A Dbouk
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Chou-Long Huang
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| |
Collapse
|