1
|
Zhou Z, Xie Y, Wei Q, Zhang X, Xu Z. Revisiting the role of MicroRNAs in the pathogenesis of idiopathic pulmonary fibrosis. Front Cell Dev Biol 2024; 12:1470875. [PMID: 39479511 PMCID: PMC11521927 DOI: 10.3389/fcell.2024.1470875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a prevalent chronic pulmonary fibrosis disease characterized by alveolar epithelial cell damage, fibroblast proliferation and activation, excessive extracellular matrix deposition, and abnormal epithelial-mesenchymal transition (EMT), resulting in tissue remodeling and irreversible structural distortion. The mortality rate of IPF is very high, with a median survival time of 2-3 years after diagnosis. The exact cause of IPF remains unknown, but increasing evidence supports the central role of epigenetic changes, particularly microRNA (miRNA), in IPF. Approximately 10% of miRNAs in IPF lung tissue exhibit differential expression compared to normal lung tissue. Diverse miRNA phenotypes exert either a pro-fibrotic or anti-fibrotic influence on the progression of IPF. In the context of IPF, epigenetic factors such as DNA methylation and long non-coding RNAs (lncRNAs) regulate differentially expressed miRNAs, which in turn modulate various signaling pathways implicated in this process, including transforming growth factor-β1 (TGF-β1)/Smad, mitogen-activated protein kinase (MAPK), and phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) pathways. Therefore, this review presents the epidemiology of IPF, discusses the multifaceted regulatory roles of miRNAs in IPF, and explores the impact of miRNAs on IPF through various pathways, particularly the TGF-β1/Smad pathway and its constituent structures. Consequently, we investigate the potential for targeting miRNAs as a treatment for IPF, thereby contributing to advancements in IPF research.
Collapse
Affiliation(s)
| | | | | | | | - Zhihao Xu
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
2
|
Ko IG, Hwang L, Jin JJ, Kim SH, Kim CJ, Choi YH, Kim HY, Yoo JM, Kim SJ. Pirfenidone improves voiding function by suppressing bladder fibrosis in underactive bladder rats. Eur J Pharmacol 2024; 977:176721. [PMID: 38851561 DOI: 10.1016/j.ejphar.2024.176721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/12/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Underactive bladder (UAB), characterized by a complex set of symptoms with few treatment options, can significantly reduce the quality of life of affected people. UAB is characterized by hyperplasia and fibrosis of the bladder wall as well as decreased bladder compliance. Pirfenidone is a powerful anti-fibrotic agent that inhibits the progression of fibrosis in people with idiopathic pulmonary fibrosis. In the current study, we evaluated the efficacy of pirfenidone in the treatment of bladder fibrosis in a UAB rat model. UAB was induced by crushing damage to nerve bundles in the major pelvic ganglion. Forty-two days after surgery, 1 mL distilled water containing pirfenidone (100, 300, or 500 mg/kg) was orally administered once every 2 days for a total of 10 times for 20 days to the rats in the pirfenidone-treated groups. Crushing damage to the nerve bundles caused voiding dysfunction, resulting in increased bladder weight and the level of fibrous related factors in the bladder, leading to UAB symptoms. Pirfenidone treatment improved urinary function, increased bladder weight and suppressed the expression of fibrosis factors. The results of this experiment suggest that pirfenidone can be used to ameliorate difficult-to-treat urological conditions such as bladder fibrosis. Therefore, pirfenidone treatment can be considered an option to improve voiding function in patient with incurable UAB.
Collapse
Affiliation(s)
- Il-Gyu Ko
- Research Support Center, School of Medicine, Keimyung University, Deagu, 42601, South Korea
| | - Lakkyong Hwang
- Team of Efficacy Evaluation, Orient Genia Inc, Seongnam-si, 13201, South Korea; Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Jun-Jang Jin
- Team of Efficacy Evaluation, Orient Genia Inc, Seongnam-si, 13201, South Korea; Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Sang-Hoon Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School Rutgers, The Stat University of New Jersey, Piscataway, NJ, USA
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Young Hyo Choi
- Department of Urology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon-si, South Korea
| | - Hee Youn Kim
- Department of Urology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon-si, South Korea
| | - Je Mo Yoo
- Department of Urology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon-si, South Korea
| | - Su Jin Kim
- Department of Urology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon-si, South Korea.
| |
Collapse
|
3
|
Paik SS, Lee JM, Ko IG, Kim SR, Kang SW, An J, Kim JA, Kim D, Hwang L, Jin JJ, Kim SH, Cha JY, Choi CW. Pirfenidone Alleviates Inflammation and Fibrosis of Acute Respiratory Distress Syndrome by Modulating the Transforming Growth Factor-β/Smad Signaling Pathway. Int J Mol Sci 2024; 25:8014. [PMID: 39125585 PMCID: PMC11311955 DOI: 10.3390/ijms25158014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) occurs as an acute onset condition, and patients present with diffuse alveolar damage, refractory hypoxemia, and non-cardiac pulmonary edema. ARDS progresses through an initial exudative phase, an inflammatory phase, and a final fibrotic phase. Pirfenidone, a powerful anti-fibrotic agent, is known as an agent that inhibits the progression of fibrosis in idiopathic pulmonary fibrosis. In this study, we studied the treatment efficiency of pirfenidone on lipopolysaccharide (LPS) and bleomycin-induced ARDS using rats. The ARDS rat model was created by the intratracheal administration of 3 mg/kg LPS of and 3 mg/kg of bleomycin dissolved in 0.2 mL of normal saline. The pirfenidone treatment group was administered 100 or 200 mg/kg of pirfenidone dissolved in 0.5 mL distilled water orally 10 times every 2 days for 20 days. The administration of LPS and bleomycin intratracheally increased lung injury scores and significantly produced pro-inflammatory cytokines. ARDS induction increased the expressions of transforming growth factor (TGF)-β1/Smad-2 signaling factors. Additionally, matrix metalloproteinase (MMP)-9/tissue inhibitor of metalloproteinase (TIMP)-1 imbalance occurred, resulting in enhanced fibrosis-related factors. Treatment with pirfenidone strongly suppressed the expressions of TGF-β1/Smad-2 signaling factors and improved the imbalance of MMP-9/TIMP-1 compared to the untreated group. These effects led to a decrease in fibrosis factors and pro-inflammatory cytokines, promoting the recovery of damaged lung tissue. These results of this study showed that pirfenidone administration suppressed inflammation and fibrosis in the ARDS animal model. Therefore, pirfenidone can be considered a new early treatment for ARDS.
Collapse
Affiliation(s)
- Seung Sook Paik
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.S.P.); (D.K.)
| | - Jeong Mi Lee
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea; (J.M.L.); (S.R.K.); (S.W.K.); (J.A.)
| | - Il-Gyu Ko
- Research Support Center, School of Medicine, Keimyung University, Deagu 42601, Republic of Korea;
| | - Sae Rom Kim
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea; (J.M.L.); (S.R.K.); (S.W.K.); (J.A.)
| | - Sung Wook Kang
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea; (J.M.L.); (S.R.K.); (S.W.K.); (J.A.)
| | - Jin An
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea; (J.M.L.); (S.R.K.); (S.W.K.); (J.A.)
| | - Jin Ah Kim
- Department of Nursing, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Dongyon Kim
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.S.P.); (D.K.)
| | - Lakkyong Hwang
- Team of Efficacy Evaluation, Orient Genia Inc., Seongnam 13201, Republic of Korea; (L.H.); (J.-J.J.)
| | - Jun-Jang Jin
- Team of Efficacy Evaluation, Orient Genia Inc., Seongnam 13201, Republic of Korea; (L.H.); (J.-J.J.)
| | - Sang-Hoon Kim
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, The Stat University of New Jersey, Piscataway, NJ 08854, USA;
| | - Jun-Youl Cha
- Department of Sports and Martial Arts, Howon University, Gunsan 54058, Republic of Korea;
| | - Cheon Woong Choi
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea; (J.M.L.); (S.R.K.); (S.W.K.); (J.A.)
| |
Collapse
|
4
|
Mottais A, Riberi L, Falco A, Soccal S, Gohy S, De Rose V. Epithelial-Mesenchymal Transition Mechanisms in Chronic Airway Diseases: A Common Process to Target? Int J Mol Sci 2023; 24:12412. [PMID: 37569787 PMCID: PMC10418908 DOI: 10.3390/ijms241512412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a reversible process, in which epithelial cells lose their epithelial traits and acquire a mesenchymal phenotype. This transformation has been described in different lung diseases, such as lung cancer, interstitial lung diseases, asthma, chronic obstructive pulmonary disease and other muco-obstructive lung diseases, such as cystic fibrosis and non-cystic fibrosis bronchiectasis. The exaggerated chronic inflammation typical of these pulmonary diseases can induce molecular reprogramming with subsequent self-sustaining aberrant and excessive profibrotic tissue repair. Over time this process leads to structural changes with progressive organ dysfunction and lung function impairment. Although having common signalling pathways, specific triggers and regulation mechanisms might be present in each disease. This review aims to describe the various mechanisms associated with fibrotic changes and airway remodelling involved in chronic airway diseases. Having better knowledge of the mechanisms underlying the EMT process may help us to identify specific targets and thus lead to the development of novel therapeutic strategies to prevent or limit the onset of irreversible structural changes.
Collapse
Affiliation(s)
- Angélique Mottais
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (A.M.); (S.G.)
| | - Luca Riberi
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Andrea Falco
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Simone Soccal
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Sophie Gohy
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (A.M.); (S.G.)
- Department of Pneumology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Cystic Fibrosis Reference Centre, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Virginia De Rose
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| |
Collapse
|
5
|
Baig MS, Deepanshu, Prakash P, Alam P, Krishnan A. In silico analysis reveals hypoxia-induced miR-210-3p specifically targets SARS-CoV-2 RNA. J Biomol Struct Dyn 2023; 41:12305-12327. [PMID: 36752331 DOI: 10.1080/07391102.2023.2175255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/01/2023] [Indexed: 02/09/2023]
Abstract
Human coronaviruses (HCoVs) until the emergence of SARS in 2003 were associated with mild cold and upper respiratory tract infections. The ongoing pandemic caused by SARS-CoV-2 has enhanced the potential for infection and transmission as compared to other known members of this family. MicroRNAs (miRNA) are 21-25 nucleotides long non-coding RNA that bind to 3' UTR of genes and regulate almost every aspect of cellular function. Several human miRNAs have been known to target viral genomes, mostly to downregulate their expression and sometimes to upregulate also. In some cases, host miRNAs could be sequestered by the viral genome to create a condition for favourable virus existence. The ongoing SARS CoV-2 pandemic is unique based on its transmissibility and severity and we hypothesised that there could be a unique mechanism for its pathogenesis. In this study, we exploited in silico approach to identify human respiratory system-specific miRNAs targeting the viral genome of three highly pathogenic HCoVs (SARS-CoV-2 Wuhan strain, SARS-CoV, and MERS-CoV) and three low pathogenic HCoVs (OC43, NL63, and HKU1). We identified ten common microRNAs that target all HCoVs studied here. In addition, we identified unique miRNAs which targeted specifically one particular HCoV. miR-210-3p was the single unique lung-specific miRNA, which was found to target the NSP3, NSP4, and NSP13 genes of SARS-CoV-2. Further miR-210-NSP3, miR-210-NSP4, and miR-210-NSP13 SARS-CoV-2 duplexes were docked with the hAGO2 protein (PDB ID 4F3T) which showed Z-score values of -1.9, -1.7, and -1.6, respectively. The role of miR-210-3p as master hypoxia regulator and inflammation regulation may be important for SARS-CoV-2 pathogenesis. Overall, this analysis advocates that miR-210-3p be investigated experimentally in SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Deepanshu
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Prem Prakash
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Anuja Krishnan
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| |
Collapse
|
6
|
Systematic characterization of the components and molecular mechanisms of Jinshui Huanxian granules using UPLC-Orbitrap Fusion MS integrated with network pharmacology. Sci Rep 2022; 12:12476. [PMID: 35864295 PMCID: PMC9304367 DOI: 10.1038/s41598-022-16711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/14/2022] [Indexed: 11/29/2022] Open
Abstract
Jinshui Huanxian granules (JSHX) is a clinical Chinese medicine formula used for treating pulmonary fibrosis (PF). However, the effective components and molecular mechanisms of JSHX are still unclear. In this study, a combination approach using ultra-high performance liquid chromatography-Orbitrap Fusion mass spectrometry (UPLC-Orbitrap Fusion MS) integrated with network pharmacology was followed to identify the components of JSHX and the underlying molecular mechanisms against PF. UPLC-Orbitrap Fusion MS was used to identify the components present in JSHX. On the basis of the identified components, we performed target prediction using the SwissTargetPrediction database, protein–protein interaction (PPI) analysis using STRING database, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis using Metascape and constructed a component-target-pathway network using Cytoscape 3.7.2. Molecular docking technology was used to verify the affinity between the core components and targets. Finally, the pharmacological activities of three potentially bioactive components were validated in transforming growth factor β1 (TGF-β1)-induced A549 cell fibrosis model. As a result, we identified 266 components, including 56 flavonoids, 52 saponins, 31 alkaloids, 10 coumarins, 12 terpenoids and 105 other components. Of these, 90 validated components were predicted to act on 172 PF-related targets and they exhibited therapeutic effects against PF via regulation of cell migration, regulation of the mitogen-activated protein kinase (MAPK) cascade, reduction of oxidative stress, and anti-inflammatory activity. Molecular docking showed that the core components could spontaneously bind to receptor proteins with a strong binding force. In vitro, compared to model group, hesperetin, ruscogenin and liquiritin significantly inhibited the increase of α-smooth muscle actin (α-SMA) and fibronectin (FN) and the decrease of e-cadherin (E-cad) in TGF-β1-induced A549 cells. This study is the first to show, using UPLC-Orbitrap Fusion MS combined with network pharmacology and experimental validation, that JSHX might exert therapeutic actions against PF by suppressing the expression of key factors in PF. The findings provide a deeper understanding of the chemical profiling and pharmacological activities of JSHX and a reference for further scientific research and clinical use of JSHX in PF treatment.
Collapse
|
7
|
Cadena-Suárez AR, Hernández-Hernández HA, Alvarado-Vásquez N, Rangel-Escareño C, Sommer B, Negrete-García MC. Role of MicroRNAs in Signaling Pathways Associated with the Pathogenesis of Idiopathic Pulmonary Fibrosis: A Focus on Epithelial-Mesenchymal Transition. Int J Mol Sci 2022; 23:ijms23126613. [PMID: 35743055 PMCID: PMC9224458 DOI: 10.3390/ijms23126613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease with high mortality and unclear etiology. Previous evidence supports that the origin of this disease is associated with epigenetic alterations, age, and environmental factors. IPF initiates with chronic epithelial lung injuries, followed by basal membrane destruction, which promotes the activation of myofibroblasts and excessive synthesis of extracellular matrix (ECM) proteins, as well as epithelial-mesenchymal transition (EMT). Due to miRNAs’ role as regulators of apoptosis, proliferation, differentiation, and cell-cell interaction processes, some studies have involved miRNAs in the biogenesis and progression of IPF. In this context, the analysis and discussion of the probable association of miRNAs with the signaling pathways involved in the development of IPF would improve our knowledge of the associated molecular mechanisms, thereby facilitating its evaluation as a therapeutic target for this severe lung disease. In this work, the most recent publications evaluating the role of miRNAs as regulators or activators of signal pathways associated with the pathogenesis of IPF were analyzed. The search in Pubmed was made using the following terms: “miRNAs and idiopathic pulmonary fibrosis (IPF)”; “miRNAs and IPF and signaling pathways (SP)”; and “miRNAs and IPF and SP and IPF pathogenesis”. Additionally, we focus mainly on those works where the signaling pathways involved with EMT, fibroblast differentiation, and synthesis of ECM components were assessed. Finally, the importance and significance of miRNAs as potential therapeutic or diagnostic tools for the treatment of IPF are discussed.
Collapse
Affiliation(s)
- Ana Ruth Cadena-Suárez
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico; (A.R.C.-S.); (H.A.H.-H.)
| | - Hilda Arely Hernández-Hernández
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico; (A.R.C.-S.); (H.A.H.-H.)
| | - Noé Alvarado-Vásquez
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico;
| | - Claudia Rangel-Escareño
- Departamento de Genomica Computacional, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Col. Arenal Tepepan, Mexico City 14610, Mexico;
- Escuela de Ingenieria y Ciencias, Tecnológico de Monterrey, Epigmenio González 500, San Pablo 76130, Mexico
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico;
| | - María Cristina Negrete-García
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Calz. Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico; (A.R.C.-S.); (H.A.H.-H.)
- Correspondence:
| |
Collapse
|
8
|
Hasan I, Hossain A, Bhuiyan P, Miah S, Rahman H. A system biology approach to determine therapeutic targets by identifying molecular mechanisms and key pathways for type 2 diabetes that are linked to the development of tuberculosis and rheumatoid arthritis. Life Sci 2022; 297:120483. [DOI: 10.1016/j.lfs.2022.120483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/17/2022]
|
9
|
Qiu J, Ma C, Dai W, Fang E, Li W, Yang F. Ghrelin attenuates transforming growth factor-β1-induced pulmonary fibrosis via the miR-125a-5p/Kruppel-like factor 13 axis. Arch Biochem Biophys 2022; 715:109082. [PMID: 34767797 DOI: 10.1016/j.abb.2021.109082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 10/24/2021] [Accepted: 11/05/2021] [Indexed: 12/22/2022]
Abstract
Pulmonary fibrosis is a severe condition with limited therapeutic options and characterized by increased fibroblast activation and progressive accumulation of extracellular matrix. Ghrelin, a gastrointestinal hormone, has been reported to possess protective roles in lung diseases including pulmonary fibrosis. However, the precise mechanisms underlying the protective effects of ghrelin remain unknown. The present study was designed to investigate the effects of ghrelin on transforming growth factor-β1 (TGF-β1)-induced pulmonary fibrosis in vitro and in vivo and the possible mechanism of action. It was found that ghrelin significantly attenuated TGF-β1-induced fibrotic responses in human lung fibroblast (IMR-90) cells and bleomycin (BLM)-induced fibrotic lung tissues. Meanwhile, ghrelin decreased the expressions of miR-125a-5p and phosphorylated smad2/3 and increased protein expressions of Kruppel-like factor 13 (KLF13) in vivo and in vitro. Ghrelin-induced anti-fibrotic effects and smad2/3 downregulation in TGF-β1-stimulated IMR-90 cells were markedly reversed by miR-125a-5p mimics and KLF13 siRNA. Furthermore, miR-125a-5p directly targeted KLF13 in IMR-90 cells. Our findings suggest that ghrelin attenuates TGF-β1-induced pulmonary fibrosis via the miR-125a-5p/KLF13 axis, which supports ghrelin as a new therapeutic agent against pulmonary fibrosis by antagonizing the TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Jing Qiu
- Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Key Laboratory of Geriatic Respiratory Diseases of Sichuan Higher Education Institutes, No. 278, Baoguang Avenue, Xindu District, Chengdu , 610500, Sichuan, China
| | - Chunlan Ma
- Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Key Laboratory of Geriatic Respiratory Diseases of Sichuan Higher Education Institutes, No. 278, Baoguang Avenue, Xindu District, Chengdu , 610500, Sichuan, China
| | - Wenjing Dai
- Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Key Laboratory of Geriatic Respiratory Diseases of Sichuan Higher Education Institutes, No. 278, Baoguang Avenue, Xindu District, Chengdu , 610500, Sichuan, China
| | - Enrong Fang
- Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Key Laboratory of Geriatic Respiratory Diseases of Sichuan Higher Education Institutes, No. 278, Baoguang Avenue, Xindu District, Chengdu , 610500, Sichuan, China
| | - Wancheng Li
- Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Key Laboratory of Geriatic Respiratory Diseases of Sichuan Higher Education Institutes, No. 278, Baoguang Avenue, Xindu District, Chengdu , 610500, Sichuan, China
| | - Fan Yang
- Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, Sichuan, China; Key Laboratory of Geriatic Respiratory Diseases of Sichuan Higher Education Institutes, No. 278, Baoguang Avenue, Xindu District, Chengdu , 610500, Sichuan, China.
| |
Collapse
|
10
|
Gilani N, Arabi Belaghi R, Aftabi Y, Faramarzi E, Edgünlü T, Somi MH. Identifying Potential miRNA Biomarkers for Gastric Cancer Diagnosis Using Machine Learning Variable Selection Approach. Front Genet 2022; 12:779455. [PMID: 35082831 PMCID: PMC8785967 DOI: 10.3389/fgene.2021.779455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/22/2021] [Indexed: 01/21/2023] Open
Abstract
Aim: This study aimed to accurately identification of potential miRNAs for gastric cancer (GC) diagnosis at the early stages of the disease. Methods: We used GSE106817 data with 2,566 miRNAs to train the machine learning models. We used the Boruta machine learning variable selection approach to identify the strong miRNAs associated with GC in the training sample. We then validated the prediction models in the independent sample GSE113486 data. Finally, an ontological analysis was done on identified miRNAs to eliciting the relevant relationships. Results: Of those 2,874 patients in the training the model, there were 115 (4%) patients with GC. Boruta identified 30 miRNAs as potential biomarkers for GC diagnosis and hsa-miR-1343-3p was at the highest ranking. All of the machine learning algorithms showed that using hsa-miR-1343-3p as a biomarker, GC can be predicted with very high precision (AUC; 100%, sensitivity; 100%, specificity; 100% ROC; 100%, Kappa; 100) using with the cut-off point of 8.2 for hsa-miR-1343-3p. Also, ontological analysis of 30 identified miRNAs approved their strong relationship with cancer associated genes and molecular events. Conclusion: The hsa-miR-1343-3p could be introduced as a valuable target for studies on the GC diagnosis using reliable biomarkers.
Collapse
Affiliation(s)
- Neda Gilani
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Arabi Belaghi
- Department of Mathematics, Uppsala University, Uppsala, Sweden
- Department of Statistics, Faculty of Mathematical Science, University of Tabriz, Tabriz, Iran
| | - Younes Aftabi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Faramarzi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tuba Edgünlü
- Department of Medical Biology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
d’Alessandro M, Bergantini L, Bargagli E, Vidal S. Extracellular Vesicles in Pulmonary Fibrosis Models and Biological Fluids of Interstitial Lung Disease Patients: A Scoping Review. Life (Basel) 2021; 11:life11121401. [PMID: 34947932 PMCID: PMC8707559 DOI: 10.3390/life11121401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Interstitial lung diseases (ILDs) are a heterogeneous group of diffuse parenchymal lung disorders characterized by the pathogenetic involvement of interstitium. Therefore, an elucidation of the etiology and pathogenesis as well as the identification of diagnostic and prognostic biomarkers of such diseases is more compelling than ever. It is of note that there is increasing evidence of the involvement of extracellular vesicles (EVs) in the pathogenesis of lung diseases including lung cancer, chronic obstructive pulmonary disease and pulmonary fibrosis. It has been speculated that EVs play a pivotal role as mediators of intercellular communication, as well as the highlighting of the role of EVs as co-operators in the development of lung diseases such as IPF. METHODS The present study aimed to carry out a systematic exploratory search of the literature (through the scoping review approach) to identify and systematize the main results of the pathogenetic role of EVs in pulmonary fibrosis models and biological fluids from ILD patients, including plasma, bronchoalveolar lavage (BAL) and sputum. CONCLUSION Fibroblast-to-mesenchymal differentiation, collagen and extracellular matrix deposition are key mechanisms in the development and progression of IPF. EV-coupled miRNA are important modulators of biological processes in terms of intercellular communication as shown in pulmonary fibrosis models as well as biofluids. The helpfulness of EVs as diagnostic and theranostic markers is worth further investigation. The evolving potential of EVs to translate effective EV-based therapies into clinical practice is of growing interest, due to the urgent need for novel therapeutic strategies for IPF patients.
Collapse
Affiliation(s)
- Miriana d’Alessandro
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy; (L.B.); (E.B.)
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
- Correspondence: ; Tel.: +39-057-758-6713; Fax: +39-057-728-0744
| | - Laura Bergantini
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy; (L.B.); (E.B.)
| | - Elena Bargagli
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy; (L.B.); (E.B.)
| | - Silvia Vidal
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
| |
Collapse
|
12
|
Soni DK, Biswas R. Role of Non-Coding RNAs in Post-Transcriptional Regulation of Lung Diseases. Front Genet 2021; 12:767348. [PMID: 34819948 PMCID: PMC8606426 DOI: 10.3389/fgene.2021.767348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
Non-coding RNAs (ncRNAs), notably microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), have recently gained increasing consideration because of their versatile role as key regulators of gene expression. They adopt diverse mechanisms to regulate transcription and translation, and thereby, the function of the protein, which is associated with several major biological processes. For example, proliferation, differentiation, apoptosis, and metabolic pathways demand fine-tuning for the precise development of a specific tissue or organ. The deregulation of ncRNA expression is concomitant with multiple diseases, including lung diseases. This review highlights recent advances in the post-transcriptional regulation of miRNAs and lncRNAs in lung diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, and idiopathic pulmonary fibrosis. Further, we also discuss the emerging role of ncRNAs as biomarkers as well as therapeutic targets for lung diseases. However, more investigations are required to explore miRNAs and lncRNAs interaction, and their function in the regulation of mRNA expression. Understanding these mechanisms might lead to early diagnosis and the development of novel therapeutics for lung diseases.
Collapse
Affiliation(s)
- Dharmendra Kumar Soni
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
13
|
Pacurari M, Mitra A, Turner T. Idiopathic Pulmonary Comorbidities and Mechanisms. Int J Inflam 2021; 2021:3963659. [PMID: 34691383 PMCID: PMC8528608 DOI: 10.1155/2021/3963659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 11/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease with an unknown etiology mainly characterized by a progressive decline of lung function due to the scarring of the tissue deep in the lungs. The overall survival after diagnosis remains low between 3 and 5 years. IPF is a heterogeneous disease and much progress has been made in the past decade in understanding the disease mechanisms that contributed to the development of two new drugs, pirfenidone and nintedanib, which improved the therapeutic management of the disease. The understanding of the cofactors and comorbidities of IPF also contributed to improved management of the disease outcome. In the present review, we evaluate scientific evidence which indicates IPF as a risk factor for other diseases based on the complexity of molecular and cellular mechanisms involved in the disease development and of comorbidities. We conclude from the existing literature that while much progress has been made in understating the mechanisms involved in IPF development, further studies are still necessary to fully understand IPF pathogenesis which will contribute to the identification of novel therapeutic targets for IPF management as well as other diseases for which IPF is a major risk factor.
Collapse
Affiliation(s)
- Maricica Pacurari
- Department of Biology, College of Science, Engineering, and Technology, Jackson State University, Jackson, MS 39217, USA
| | - Amal Mitra
- Department of Epidemiology and Biostatistics, School of Public Health, Jackson State University, Jackson, MS 39217, USA
| | - Timothy Turner
- Department of Biology, College of Science, Engineering, and Technology, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|
14
|
Yuan J, Li P, Pan H, Xu Q, Xu T, Li Y, Wei D, Mo Y, Zhang Q, Chen J, Ni C. miR-770-5p inhibits the activation of pulmonary fibroblasts and silica-induced pulmonary fibrosis through targeting TGFBR1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112372. [PMID: 34082245 DOI: 10.1016/j.ecoenv.2021.112372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Silicosis is a devastating interstitial lung disease arising from long-term exposure to inhalable silica. Regrettably, no therapy currently can effectively reverse the silica-induced fibrotic lesion. Emerging evidence has indicated that the dysregulation of microRNAs is involved in silica-induced pulmonary fibrosis. The aim of this study is to explore the expression pattern and underlying mechanisms of miR-770-5p in silica-induced pulmonary fibrosis. Consistent with our previous miRNA microarray analysis, the results of qRT-PCR showed that miR-770-5p expression was downregulated in silica-induced pulmonary fibrosis in humans and animal models. Administration of miR-770-5p agomir significantly reduced the fibrotic lesions in the lungs of mice exposed to silica dust. MiR-770-5p also exhibited a dramatic reduction in TGF-β1-activated human pulmonary fibroblasts (MRC-5). Transfection of miR-770-5p mimics significantly decreased the viability, migration ability, and S/G0 phase distribution, as well as the expression of fibronectin, collagen I, and α-SMA in TGF-β1-treated MRC-5 cells. Transforming growth factor-β receptor 1 (TGFBR1) was confirmed as a direct target of regulation by miR-770-5p. The expression of TGFBR1 was significantly increased in pulmonary fibrosis. Knockdown of TGFBR1 blocked the transduction of the TGF-β1 signaling pathway and attenuated the activation of MRC-5 cells, while overexpression of TGFBR1 effectively restored the activation of MRC-5 cells inhibited by miR-770-5p. Together, our results demonstrated that miR-770-5p exerted an anti-fibrotic effect in silica-induced pulmonary fibrosis by targeting TGFBR1. Targeting miR-770-5p might provide a new therapeutic strategy to prevent the abnormal activation of pulmonary fibroblasts in silicosis.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Ping Li
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Honghong Pan
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Qi Xu
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Tiantian Xu
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yan Li
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Dong Wei
- The Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu 214003, China
| | - Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Jingyu Chen
- The Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu 214003, China
| | - Chunhui Ni
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
15
|
Xu X, Hong P, Wang Z, Tang Z, Li K. MicroRNAs in Transforming Growth Factor-Beta Signaling Pathway Associated With Fibrosis Involving Different Systems of the Human Body. Front Mol Biosci 2021; 8:707461. [PMID: 34381815 PMCID: PMC8350386 DOI: 10.3389/fmolb.2021.707461] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Fibrosis, a major cause of morbidity and mortality, is a histopathological manifestation of many chronic inflammatory diseases affecting different systems of the human body. Two types of transforming growth factor beta (TGF-β) signaling pathways regulate fibrosis: the canonical TGF-β signaling pathway, represented by SMAD-2 and SMAD-3, and the noncanonical pathway, which functions without SMAD-2/3 participation and currently includes TGF-β/mitogen-activated protein kinases, TGF-β/SMAD-1/5, TGF-β/phosphatidylinositol-3-kinase/Akt, TGF-β/Janus kinase/signal transducer and activator of transcription protein-3, and TGF-β/rho-associated coiled-coil containing kinase signaling pathways. MicroRNA (miRNA), a type of non-coding single-stranded small RNA, comprises approximately 22 nucleotides encoded by endogenous genes, which can regulate physiological and pathological processes in fibrotic diseases, particularly affecting organs such as the liver, the kidney, the lungs, and the heart. The aim of this review is to introduce the characteristics of the canonical and non-canonical TGF-β signaling pathways and to classify miRNAs with regulatory effects on these two pathways based on the influenced organ. Further, we aim to summarize the limitations of the current research of the mechanisms of fibrosis, provide insights into possible future research directions, and propose therapeutic options for fibrosis.
Collapse
Affiliation(s)
- Xiaoyang Xu
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, China
| | - Pengyu Hong
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, China
| | - Zhefu Wang
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, China
| | - Zhangui Tang
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, China
| | - Kun Li
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
16
|
Benincasa G, DeMeo DL, Glass K, Silverman EK, Napoli C. Epigenetics and pulmonary diseases in the horizon of precision medicine: a review. Eur Respir J 2021; 57:13993003.03406-2020. [PMID: 33214212 DOI: 10.1183/13993003.03406-2020] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Epigenetic mechanisms represent potential molecular routes which could bridge the gap between genetic background and environmental risk factors contributing to the pathogenesis of pulmonary diseases. In patients with COPD, asthma and pulmonary arterial hypertension (PAH), there is emerging evidence of aberrant epigenetic marks, mainly including DNA methylation and histone modifications which directly mediate reversible modifications to the DNA without affecting the genomic sequence. Post-translational events and microRNAs can be also regulated epigenetically and potentially participate in disease pathogenesis. Thus, novel pathogenic mechanisms and putative biomarkers may be detectable in peripheral blood, sputum, nasal and buccal swabs or lung tissue. Besides, DNA methylation plays an important role during the early phases of fetal development and may be impacted by environmental exposures, ultimately influencing an individual's susceptibility to COPD, asthma and PAH later in life. With the advances in omics platforms and the application of computational biology tools, modelling the epigenetic variability in a network framework, rather than as single molecular defects, provides insights into the possible molecular pathways underlying the pathogenesis of COPD, asthma and PAH. Epigenetic modifications may have clinical applications as noninvasive biomarkers of pulmonary diseases. Moreover, combining molecular assays with network analysis of epigenomic data may aid in clarifying the multistage transition from a "pre-disease" to "disease" state, with the goal of improving primary prevention of lung diseases and its subsequent clinical management.We describe epigenetic mechanisms known to be associated with pulmonary diseases and discuss how network analysis could improve our understanding of lung diseases.
Collapse
Affiliation(s)
- Giuditta Benincasa
- Dept of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Dawn L DeMeo
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kimberly Glass
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Claudio Napoli
- Dept of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy .,Clinical Dept of Internal and Specialty Medicine (DAI), University Hospital (AOU), University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
17
|
Tian H, He Z. Anti-hepatoma effect of taccalonolide A through suppression of sonic hedgehog pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:939-947. [PMID: 32496832 DOI: 10.1080/21691401.2020.1773484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Taccalonolide A has been reported to have anti-tumour efficiency. However, the underlying mechanism for taccalonolides A therapy of hepatocellular carcinoma (HCC) is still obscure. Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. Apoptosis was determined by flow cytometry. Protein expression of B cell lymphoma (Bcl-2), Bcl-2 associated X (Bax), sonic hedgehog (Shh), Smoothened (Smo) and Gli family zinc finger 1 (Gli1) was analyzed by western blot. The expression of Shh, Smo and Gli1 mRNA was determined using quantitative real-time polymerase chain reaction (qRT-PCR). Results showed that taccalonolide A inhibited cell proliferation, induced apoptosis and cell cycle arrest at the G0/G1 phase, and improved the cytotoxicity of sorafenib in HCC cells. The expressions of Shh, Smo, Gli1 mRNA and protein were decreased after taccalonolide A treatment. More importantly, activation of the Shh pathway attenuated taccalonolide A-induced inhibition on cell viability and promotion on apoptosis and cell cycle arrest in HCC. Also, activation of the Shh pathway neutralized the effect of taccalonolide A on sorafenib cytotoxicity in HCC. We clarified that taccalonolide A suppressed cell viability facilitated apoptosis, and improved the cytotoxicity of sorafenib in HCC by inhibition of the activation of the Shh pathway, providing alternative treatments for HCC.
Collapse
Affiliation(s)
- Hui Tian
- Department of Infectious Disease, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Zhenkun He
- Department of Infectious Disease, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| |
Collapse
|
18
|
DUOX2 As a Potential Prognostic Marker which Promotes Cell Motility and Proliferation in Pancreatic Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6530298. [PMID: 33748270 PMCID: PMC7943273 DOI: 10.1155/2021/6530298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/04/2020] [Accepted: 01/18/2021] [Indexed: 12/25/2022]
Abstract
DUOX2 has been reported to highly express in several types of cancers. However, the prognostic significance and the biological function of DUOX2 expression with pancreatic cancer (PC) still remain unclear. The present study is aimed at investigating whether DUOX2 could act as a novel biomarker of prognosis and evaluating its effect on PC cell progression. The mRNA and protein expression of DUOX2 in PC cells and tissues were assessed by quantitative real-time PCR (RT-qPCR) and immunohistochemistry. The effect of DUOX2 expression on PC cell motility and proliferation was evaluated in vitro. The correlation between DUOX2 mRNA expression and clinicopathological features and its prognostic significance were analyzed according to the Gene Expression Profiling Interactive Analysis (GEPIA) website based on The Cancer Genome Atlas (TCGA) and the GTEx databases combined with our clinical information. According to bioinformatics analysis, we forecasted the upstream transcription factors (TFs) and microRNA (miRNA) regulatory mechanism of DUOX2 in PC. The expression of DUOX2 at transcriptional and protein level was dramatically increased in PC specimens when compared to adjacent nontumor specimens. Functionally, DUOX2 knockdown inhibited cell motility and proliferation activities. Our clinical data revealed that the patients had better postoperative overall survival (OS) with lower expression of DUOX2, which is consistent with GEPIA data. Multivariate analysis revealed that high DUOX2 expression was considered as an independent prognostic indicator for OS (P = 0.031). Based on Cistrome database, the top 5 TFs of each positively and negatively association with DUOX2 were predicted. hsa-miR-5193 and hsa-miR-1343-3p targeting DUOX2 were forecasted from TargetScan, miRDB, and DIANA-TarBase databases, which were negatively correlated with OS (P = 0.043 and P = 0.0088, respectively) and DUOX2 expression (P = 0.0093 and P = 0.0032, respectively) in PC from TCGA data. These findings suggest that DUOX2 acts as a promising predictive biomarker and an oncogene in PC, which could be a therapeutic target for PC.
Collapse
|
19
|
Natarelli L, Parca L, Mazza T, Weber C, Virgili F, Fratantonio D. MicroRNAs and Long Non-Coding RNAs as Potential Candidates to Target Specific Motifs of SARS-CoV-2. Noncoding RNA 2021; 7:14. [PMID: 33670580 PMCID: PMC7931055 DOI: 10.3390/ncrna7010014] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
The respiratory system is one of the most affected targets of SARS-CoV-2. Various therapies have been utilized to counter viral-induced inflammatory complications, with diverse success rates. Pending the distribution of an effective vaccine to the whole population and the achievement of "herd immunity", the discovery of novel specific therapies is to be considered a very important objective. Here, we report a computational study demonstrating the existence of target motifs in the SARS-CoV-2 genome suitable for specific binding with endogenous human micro and long non-coding RNAs (miRNAs and lncRNAs, respectively), which can, therefore, be considered a conceptual background for the development of miRNA-based drugs against COVID-19. The SARS-CoV-2 genome contains three motifs in the 5'UTR leader sequence recognized by selective nucleotides within the seed sequence of specific human miRNAs. The seed of 57 microRNAs contained a "GGG" motif that promoted leader sequence-recognition, primarily through offset-6mer sites able to promote microRNAs noncanonical binding to viral RNA. Similarly, lncRNA H19 binds to the 5'UTR of the viral genome and, more specifically, to the transcript of the viral gene Spike, which has a pivotal role in viral infection. Notably, some of the non-coding RNAs identified in our study as candidates for inhibiting SARS-CoV-2 gene expression have already been proposed against diverse viral infections, pulmonary arterial hypertension, and related diseases.
Collapse
Affiliation(s)
- Lucia Natarelli
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), 800336 Munich, Germany
| | - Luca Parca
- IRCCS Casa sollievo della Sofferenza, Laboratory of Bioinformatics, 71013 San Giovanni Rotondo (FG), Italy; (L.P.); (T.M.)
| | - Tommaso Mazza
- IRCCS Casa sollievo della Sofferenza, Laboratory of Bioinformatics, 71013 San Giovanni Rotondo (FG), Italy; (L.P.); (T.M.)
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), 800336 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Fabio Virgili
- Council for Agricultural Research and Economics, Research Center for Food and Nutrition, 00178 Rome, Italy;
| | - Deborah Fratantonio
- Biotechnology and Biopharmaceutics, Department of Biosciences, University of Bari Aldo Moro, 70125 Bari, Italy;
| |
Collapse
|
20
|
Hu H, Fu Y, Zhou B, Li Z, Liu Z, Jia Q. Long non-coding RNA TCONS_00814106 regulates porcine granulosa cell proliferation and apoptosis by sponging miR-1343. Mol Cell Endocrinol 2021; 520:111064. [PMID: 33091558 DOI: 10.1016/j.mce.2020.111064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 12/14/2022]
Abstract
Recent evidence shows that long non-coding RNAs (lncRNAs), a class of non-coding RNAs, are involved in the regulation of reproductive processes. In this study, we identified a lncRNA, TCONS_00814106, that was upregulated in high-fecundity sow ovarian tissues and influenced by reproductive hormones. Bioinformatics analyses and luciferase reporter assays showed that TCONS_00814106 is a miR-1343 target. Cell counting kit (CCK)-8 and apoptosis assays showed that TCONS_00814106 promotes proliferation and inhibits apoptosis in porcine granulosa cells (GCs), and that this could be reversed by miR-1343. Also, we observed that transforming growth factor-β receptor type I (TGFBR1) is a functional target of miR-1343 in GCs. TCONS_00814106 serves as a competing endogenous RNA to regulate TGFBR1 expression by sponging miR-1343, thereby exerting regulatory functions in GCs. Overall, these results provide new insights into the biological function of the lncRNA TCONS_00814106.
Collapse
Affiliation(s)
- Huiyan Hu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Yanfang Fu
- Hebei Provincial Animal Husbandry Station, Shijiazhuang, 050000, China
| | - Bo Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Zhiqiang Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Zhongwu Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Qing Jia
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China; Hebei Technology Innovation Center for Agriculture in Mountainous Areas, Baoding, 071000, China.
| |
Collapse
|
21
|
Cañas JA, Rodrigo-Muñoz JM, Sastre B, Gil-Martinez M, Redondo N, del Pozo V. MicroRNAs as Potential Regulators of Immune Response Networks in Asthma and Chronic Obstructive Pulmonary Disease. Front Immunol 2021; 11:608666. [PMID: 33488613 PMCID: PMC7819856 DOI: 10.3389/fimmu.2020.608666] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic respiratory diseases (CRDs) are an important factor of morbidity and mortality, accounting for approximately 6% of total deaths worldwide. The main CRDs are asthma and chronic obstructive pulmonary disease (COPD). These complex diseases have different triggers including allergens, pollutants, tobacco smoke, and other risk factors. It is important to highlight that although CRDs are incurable, various forms of treatment improve shortness of breath and quality of life. The search for tools that can ensure accurate diagnosis and treatment is crucial. MicroRNAs (miRNAs) are small non-coding RNAs and have been described as promising diagnostic and therapeutic biomarkers for CRDs. They are implicated in multiple processes of asthma and COPD, regulating pathways associated with inflammation, thereby showing that miRNAs are critical regulators of the immune response. Indeed, miRNAs have been found to be deregulated in several biofluids (sputum, bronchoalveolar lavage, and serum) and in both structural lung and immune cells of patients in comparison to healthy subjects, showing their potential role as biomarkers. Also, miRNAs play a part in the development or termination of histopathological changes and comorbidities, revealing the complexity of miRNA regulation and opening up new treatment possibilities. Finally, miRNAs have been proposed as prognostic tools in response to both conventional and biologic treatments for asthma or COPD, and miRNA-based treatment has emerged as a potential approach for clinical intervention in these respiratory diseases; however, this field is still in development. The present review applies a systems biology approach to the understanding of miRNA regulatory networks in asthma and COPD, summarizing their roles in pathophysiology, diagnosis, and treatment.
Collapse
Affiliation(s)
- José A. Cañas
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - José M. Rodrigo-Muñoz
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Beatriz Sastre
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Marta Gil-Martinez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Natalia Redondo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Victoria del Pozo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
22
|
De Palma FDE, Raia V, Kroemer G, Maiuri MC. The Multifaceted Roles of MicroRNAs in Cystic Fibrosis. Diagnostics (Basel) 2020; 10:E1102. [PMID: 33348555 PMCID: PMC7765910 DOI: 10.3390/diagnostics10121102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is a lifelong disorder affecting 1 in 3500 live births worldwide. It is a monogenetic autosomal recessive disease caused by loss-of-function mutations in the gene encoding the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR), the impairment of which leads to ionic disequilibria in exocrine organs. This translates into a chronic multisystemic disease characterized by airway obstruction, respiratory infections, and pancreatic insufficiency as well as hepatobiliary and gastrointestinal dysfunction. Molecular characterization of the mutational heterogeneity of CFTR (affected by more than 2000 variants) improved the understanding and management of CF. However, these CFTR variants are linked to different clinical manifestations and phenotypes, and they affect response to treatments. Expanding evidence suggests that multisystemic disease affects CF pathology via impairing either CFTR or proteins regulated by CFTR. Thus, altering the expression of miRNAs in vivo could constitute an appealing strategy for developing new CF therapies. In this review, we will first describe the pathophysiology and clinical management of CF. Then, we will summarize the current knowledge on altered miRNAs in CF patients, with a focus on the miRNAs involved in the deregulation of CFTR and in the modulation of inflammation. We will highlight recent findings on the potential utility of measuring circulating miRNAs in CF as diagnostic, prognostic, and predictive biomarkers. Finally, we will provide an overview on potential miRNA-based therapeutic approaches.
Collapse
Affiliation(s)
- Fatima Domenica Elisa De Palma
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université of Paris, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
- CEINGE-Biotecnologie Avanzate, 80145 Naples, Italy
| | - Valeria Raia
- Pediatric Unit, Department of Translational Medical Sciences, Regional Cystic Fibrosis Center, Federico II University Naples, 80131 Naples, Italy;
| | - Guido Kroemer
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université of Paris, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou 215123, China
- Karolinska Institutet, Department of Women’s and Children’s Health, 17176 Stockholm, Sweden
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
- Institut Universitaire de France, 75005 Paris, France
| | - Maria Chiara Maiuri
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université of Paris, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| |
Collapse
|
23
|
Microarray Analysis of Small Extracellular Vesicle-Derived miRNAs Involved in Oxidative Stress of RPE Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7658921. [PMID: 33194007 PMCID: PMC7641673 DOI: 10.1155/2020/7658921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022]
Abstract
The aim of this study was to investigate the miRNA profiles of nanosized small extracellular vesicles (sEVs) from human retinal pigment epithelial (RPE) cells under oxidative damage. ARPE-19 cells were cultured with ox-LDL (100 mg/L) or serum-free medium for 48 hours, sEVs were then extracted, and miRNA sequencing was conducted to identify the differentially expressed genes (DEGs) between the 2 groups. RNA sequence results were validated using quantitative real-time PCR. The Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes pathway, and ingenuity pathway analyses (IPA) were performed for the DEGs. Results revealed that oxidative stress inhibited RPE cell viability and promoted sEV secretion. A total of 877 DEGs from sEVs were identified, of which 272 were downregulated and 605 were upregulated. In total, 66 enriched GO terms showed that the 3 most significant enrichment terms were cellular processes (biological processes), cell (cellular component), and catalytic activity (molecular function). IPA were used to explore DEGs associated with oxidation damage and further construct a miRNA-target regulatory network. This study identified several DEGs from oxidation-stimulated RPE cells, which may act as potential RNA targets for prognosis and diagnosis of RPE degeneration.
Collapse
|
24
|
Fabbri E, Tamanini A, Jakova T, Gasparello J, Manicardi A, Corradini R, Finotti A, Borgatti M, Lampronti I, Munari S, Dechecchi MC, Cabrini G, Gambari R. Treatment of human airway epithelial Calu-3 cells with a peptide-nucleic acid (PNA) targeting the microRNA miR-101-3p is associated with increased expression of the cystic fibrosis Transmembrane Conductance Regulator () gene. Eur J Med Chem 2020; 209:112876. [PMID: 33127171 DOI: 10.1016/j.ejmech.2020.112876] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Since the identification of microRNAs (miRNAs) involved in the regulation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene, miRNAs known to down-regulate the expression of the CFTR and associated proteins have been investigated as potential therapeutic targets. Here we show that miR-101-3p, targeting the 3'-UTR sequence of the CFTR mRNA, can be selectively inhibited by a peptide nucleic acid (PNA) carrying a full complementary sequence. With respect to clinical relevance of microRNA targeting, it is expected that reduction in concentration of miRNAs (the anti-miRNA approach) could be associated with increasing amounts of target mRNAs. Consistently to this hypothesis, we report that PNA-mediated inhibition of miR-101-3p was accompanied by CFTR up-regulation. Next Generation Sequencing (NGS) was performed in order to verify the effects of the anti-miR-101-3p PNA on the Calu-3 miRNome. Upon inhibition of miR-101-3p we observed a fold change (FC) expression <2 of the majority of miRNAs (403/479, 84.13%), whereas we identified a list of dysregulated miRNAs, suggesting that specific miRNA inhibition (in our case miR-101-3p) might be accompanied by alteration of expression of other miRNAs, some of them known to be involved in Cystic Fibrosis (CF), such as miR-155-5p and miR-125b-5p.
Collapse
Affiliation(s)
- Enrica Fabbri
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - Anna Tamanini
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Italy
| | - Tiziana Jakova
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Section of Clinical Biochemistry, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - Alex Manicardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Section of Clinical Biochemistry, Italy; Department of Organic and Macromolecular Chemistry, University of Ghent, Belgium
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Section of Clinical Biochemistry, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - Silvia Munari
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Italy
| | | | - Giulio Cabrini
- Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy; Research Center for Innovative Therapies of Cystic Fibrosis, University of Ferrara, Italy
| | - Roberto Gambari
- Research Center for Innovative Therapies of Cystic Fibrosis, University of Ferrara, Italy.
| |
Collapse
|
25
|
Qi Y, Zhao A, Yang P, Jin L, Hao C. miR-34a-5p Attenuates EMT through targeting SMAD4 in silica-induced pulmonary fibrosis. J Cell Mol Med 2020; 24:12219-12224. [PMID: 32929850 PMCID: PMC7579717 DOI: 10.1111/jcmm.15853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/29/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022] Open
Abstract
Silicosis is an incurable occupational disease, and its pathological feature is diffuse pulmonary fibrosis. Pulmonary epithelial-mesenchymal transition (EMT) is one of the important events in the pathogenesis of silicosis. Previous studies found that abnormal expression of various microRNAs (miRNAs) involved in the development of lung fibrosis. However, their roles in silicosis have not been elucidated. To research the biological effects of miR-34a in EMT process in silica-induced lung fibrosis, we established the silicosis model in mouse and miR-34a intervention in a cell model of TGF-β1 stimulated lung epithelial cells (A549). The results showed that miR-34a expression was down-regulated in the fibrotic lung tissue after silica treatment, and it was similarly expressed in A549 cells stimulated by TGF-β1. Meanwhile, silica-induced EMT process can increase expression of two mesenchymal markers, α-SMA and vimentin. Furthermore, overexpression miR-34a markedly inhibited EMT stimulated by TGF-β1. Mechanistically, SMAD4 was identified as the target of miR-34a. SMAD4 levels decreased in mRNA and protein levels in A549 cells upon miR-34a overexpression. In addition, the knockdown of SMAD4 blocked the EMT process. Taken together, miR-34a regulated EMT, which might be partially realized by targeting SMAD4. Our data might provide new insight into treatment targets for silica-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuanmeng Qi
- School of public health, Zhengzhou University, Henan, China
| | - Ahui Zhao
- School of public health, Zhengzhou University, Henan, China
| | - Peiyan Yang
- School of public health, Zhengzhou University, Henan, China
| | - Luheng Jin
- School of public health, Zhengzhou University, Henan, China
| | - Changfu Hao
- School of public health, Zhengzhou University, Henan, China
| |
Collapse
|
26
|
Rezaei S, Mahjoubin-Tehran M, Aghaee-Bakhtiari SH, Jalili A, Movahedpour A, Khan H, Moghoofei M, Shojaei Z, R Hamblin M, Mirzaei H. Autophagy-related MicroRNAs in chronic lung diseases and lung cancer. Crit Rev Oncol Hematol 2020; 153:103063. [DOI: 10.1016/j.critrevonc.2020.103063] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/11/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022] Open
|
27
|
Schisandra Inhibit Bleomycin-Induced Idiopathic Pulmonary Fibrosis in Rats via Suppressing M2 Macrophage Polarization. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5137349. [PMID: 32884941 PMCID: PMC7455820 DOI: 10.1155/2020/5137349] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia of unknown cause and limited to the lungs. Schisandrae chinensis fructus (Wuweizi, Schisandra) is commonly used traditional Chinese medicines (TCM) for the treatment of pulmonary fibrosis, bronchitis, and other lung diseases in China. In this study, we investigated the therapeutic effect of Schisandra on IPF which is induced by bleomycin (BLM) in rats and the inhibition of alternatively activated macrophage (M2) polarization. Bleomycin-induced pulmonary fibrosis was used as a model for IPF, and rats were given drug interventions for 7 and 28 days to evaluate the role of Schisandra in the early oxidative phase and late fibrotic phases of BLM-induced pulmonary injury. The data showed that Schisandra exerted protective effects on BLM-induced pulmonary injury in two phases, which were improving inflammatory cell infiltration and severe damages of lung architectures and decreasing markers of M2 subtype. In order to prove the inhibitory effect of Schisandra on M2 polarization, in vitro experiments, we found that Schisandra downregulated the M2 ratio, which confirmed that the polarization of M2 was suppressed. Moreover, Schisandra blocked TGF-β1 signaling in AMs by reducing the levels of Smad3 and Smad4; meanwhile, the upregulation of Smad7 by Schisandra also promoted the effect of inhibition on the TGF-β1/Smad pathway. These results demonstrate that suppression of M2 polarization by Schisandra is associated with the development of IPF in rats.
Collapse
|
28
|
Zhang X, Du L, Han J, Li X, Wang H, Zheng G, Wang Y, Yang Y, Hu Y, Wang C. Novel long non-coding RNA LINC02323 promotes epithelial-mesenchymal transition and metastasis via sponging miR-1343-3p in lung adenocarcinoma. Thorac Cancer 2020; 11:2506-2516. [PMID: 32643848 PMCID: PMC7471025 DOI: 10.1111/1759-7714.13562] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We have previously developed a unique metastasis-associated signature consisting of six long non-coding RNAs (lncRNAs), including a novel lncRNA, namely LINC02323. In the present study, we aimed to investigate the underlying roles of LINC02323 in the migration, invasion and TGF-β-induced epithelial-mesenchymal transition (EMT) of lung adenocarcinoma (LUAD) cells. METHODS The distribution of LINC02323 was detected by the nuclear-plasma separation experiment. Cell proliferation was assessd by MTT assay, and cell migration and invation were detected by transwell assays. EMT was detected by RT-qPCR and western blotting. Interaction between miRNA and LINC02323 was predicted by starBase v2.0 and confirmed by the double luciferase reporting system. RESULTS LINC02323 was distributed in the cytoplasm and nucleus. The overexpression or deletion of LINC02323 did not affect the proliferation of LUAD cells, while significantly affected the migration and invasion of LUAD cells. TGF-β-induced EMT process was significantly affected by both RNA interference (RNAi) and overexpression of LINC02323. The predicted results showed that there were binding sites between LINC02323 and miR-1343-3p. The expression of LINC02323 was found to be negatively correlated with miR-1343-3p in LUAD by analyzing The Cancer Genome Atlas (TCGA) database. The double luciferase reporting system, RT-qPCR and western blotting experiments confirmed that LINC02323 could bind to miR-1343-3p, which bound to TGF-β receptor 1 (TGFBR1). Inhibition of miR-1343-3p reversed LINC02323 silencing-mediated suppression of migration, invasion and EMT. CONCLUSIONS LINC02323 acts as a competing endogenous RNA (ceRNA), which sponged miR-1343-3p to upregulate the TGFBR1 expression and promote the EMT and metastasis in LUAD. KEY POINTS SIGNIFICANT FINDINGS OF THE STUDY: LINC02323 promotes epithelial-mesenchymal transition and metastasis via sponging miR-1343-3p in lung adenocarcinoma. WHAT THIS STUDY ADDS LINC02323 is a key molecule in the process of invasion and metastasis of LUAD and might be used as a potential target in metastatic cancer.
Collapse
Affiliation(s)
- Xiaoshi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Jingyi Han
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoli Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Hongchun Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Guixi Zheng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Yongmei Yang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
29
|
Abstract
Fibrosis is characterized by aberrant myofibroblast accumulation and excessive extracellular matrix deposition, which leads to organ failure and significantly contributes to mortality worldwide. Exosomes, which are extracellular nanovesicles with a diameter of 30-100 nm that are secreted into the extracellular space by various types of cells, facilitate intercellular communication by delivering different cargos such as proteins, mRNAs and microRNAs. Growing evidence indicates that exosomes play an important role in various fibrotic diseases. A deeper understanding of the effects of exosomes in fibrosis may help in exploring new diagnostic and therapeutic targets. In this review, we summarize recent findings on exosomes in fibrotic diseases, with a special focus on exosomal cargo dysregulation and their potential diagnostic and therapeutic value in fibrosis.
Collapse
Affiliation(s)
- Xi-Ji Qin
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jia-Xiang Zhang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Rui-Lan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Zeng B, Chen T, Luo J, Xie M, Wei L, Xi Q, Sun J, Zhang Y. Exploration of Long Non-coding RNAs and Circular RNAs in Porcine Milk Exosomes. Front Genet 2020; 11:652. [PMID: 32714373 PMCID: PMC7343709 DOI: 10.3389/fgene.2020.00652] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
RNA in milk exosomes can be absorbed in the mammalian intestinal tract and function in gene expression regulations. Our previous work demonstrated that porcine milk exosomes (PME) contain large amounts of miRNAs and mRNAs. Increasing evidence suggests that long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are of particular interest, given their key role in diverse biological processes of animals. However, the expression profiles and the potential functions of lncRNAs and circRNAs in PME are still unknown. In the present study, we isolated PME by ultracentrifugation and performed a comprehensive analysis of lncRNA and circRNA in PME by using RNA sequencing. As a result, 2,466 novel lncRNAs, 809 annotated lncRNAs, and 61 circRNAs were identified in PME. The lncRNAs shared similar characteristics with other mammals in terms of length, exon number, and open reading frames. However, lncRNAs showed a higher level compared with mRNAs. Eight lncRNAs and five circRNAs in PME were selected for PCR identification. A functional enrichment analysis on the target genes of lncRNAs indicated that these genes were involved in cellular macromolecule metabolic, RNA metabolic, and immune processes. The circRNAs host genes were enriched in nucleic acid binding and adherence junction. We also evaluated the potential interaction targets between miRNAs and PME lncRNAs or circRNAs, and the results showed that the PME lncRNAs and the circRNAs have a high density of miRNA target sites. The top 20 highly expressed lncRNAs were found to interact with the proliferation-related miRNAs, and the circRNAs potentially targeted many miRNAs that are associated with the intestinal barrier. This study is the first to provide a resource for lncRNA and circRNA research of porcine milk. Moreover, the potential interaction between lncRNA/circRNA and miRNA is revealed. The present study expands our knowledge of non-coding RNAs in milk, and additional research is necessary to confirm their exactly physiological functions.
Collapse
Affiliation(s)
- Bin Zeng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Meiying Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Limin Wei
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
31
|
Lin D, Chen T, Xie M, Li M, Zeng B, Sun R, Zhu Y, Ye D, Wu J, Sun J, Xi Q, Jiang Q, Zhang Y. Oral Administration of Bovine and Porcine Milk Exosome Alter miRNAs Profiles in Piglet Serum. Sci Rep 2020; 10:6983. [PMID: 32332796 PMCID: PMC7181743 DOI: 10.1038/s41598-020-63485-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Breast milk is the most important nutrient source for newborn mammals. Studies have reported that milk contains microRNAs (miRNAs), which are potential regulatory components. Currently, existing functional and nutritional two competing hypotheses in milk field though little date have been provided for nutritional hypothesis. In this study, we used the qRT-PCR method to evaluated whether milk miRNAs can be absorbed by newborn piglets by feeding them porcine or bovine milk. The result showed that miRNA levels (miR-2284×, 2291, 7134, 1343, 500, 223) were significantly different between bovine and porcine milk. Four miRNAs (miR-2284×, 2291, 7134, 1343) were significantly different in piglet serum after feeding porcine or bovine milk. After separated milk exosomes by ultracentrifugation, the results showed the selected milk miRNAs (miR-2284×, 2291, 7134, 1343) were present in both exosomes and supernatants, and the miRNAs showed the coincidental expression in IPEC-J2 cells. All our founding suggested that the milk miRNAs can be absorbed both in vivo and in vitro, which will building the foundation for understanding whether these sort of miRNAs exert physiological functions after being absorbed and provided additional evidence for the nutritional hypotheses.
Collapse
Affiliation(s)
- Delin Lin
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Ting Chen
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Meiying Xie
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Meng Li
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Bin Zeng
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Ruiping Sun
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Yanling Zhu
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Dingze Ye
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Jiahan Wu
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Jiajie Sun
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Qianyun Xi
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Qingyan Jiang
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Yongliang Zhang
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
32
|
NandyMazumdar M, Yin S, Paranjapye A, Kerschner JL, Swahn H, Ge A, Leir SH, Harris A. Looping of upstream cis-regulatory elements is required for CFTR expression in human airway epithelial cells. Nucleic Acids Res 2020; 48:3513-3524. [PMID: 32095812 PMCID: PMC7144911 DOI: 10.1093/nar/gkaa089] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
The CFTR gene lies within an invariant topologically associated domain (TAD) demarcated by CTCF and cohesin, but shows cell-type specific control mechanisms utilizing different cis-regulatory elements (CRE) within the TAD. Within the respiratory epithelium, more than one cell type expresses CFTR and the molecular mechanisms controlling its transcription are likely divergent between them. Here, we determine how two extragenic CREs that are prominent in epithelial cells in the lung, regulate expression of the gene. We showed earlier that these CREs, located at -44 and -35 kb upstream of the promoter, have strong cell-type-selective enhancer function. They are also responsive to inflammatory mediators and to oxidative stress, consistent with a key role in CF lung disease. Here, we use CRISPR/Cas9 technology to remove these CREs from the endogenous locus in human bronchial epithelial cells. Loss of either site extinguished CFTR expression and abolished long-range interactions between these sites and the gene promoter, suggesting non-redundant enhancers. The deletions also greatly reduced promoter interactions with the 5' TAD boundary. We show substantial recruitment of RNAPII to the -35 kb element and identify CEBPβ as a key activator of airway expression of CFTR, likely through occupancy at this CRE and the gene promoter.
Collapse
Affiliation(s)
- Monali NandyMazumdar
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44116, USA
| | - Shiyi Yin
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44116, USA
| | - Alekh Paranjapye
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44116, USA
| | - Jenny L Kerschner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44116, USA
| | - Hannah Swahn
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44116, USA
| | - Alex Ge
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44116, USA
| | - Shih-Hsing Leir
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44116, USA
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44116, USA
| |
Collapse
|
33
|
miRNAs in Lung Development and Diseases. Int J Mol Sci 2020; 21:ijms21082765. [PMID: 32316149 PMCID: PMC7216056 DOI: 10.3390/ijms21082765] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023] Open
Abstract
The development of the lung involves a diverse group of molecules that regulate cellular processes, organ formation, and maturation. The various stages of lung development are marked by accumulation of small RNAs that promote or repress underlying mechanisms, depending on the physiological environment in utero and postnatally. To some extent, the pathogenesis of various lung diseases is regulated by small RNAs. In this review, we discussed miRNAs regulation of lung development and diseases, that is, COPD, asthma, pulmonary fibrosis, and pulmonary arterial hypertension, and also highlighted possible connotations for human lung health.
Collapse
|
34
|
Guan S, Wu Y, Zhang Q, Zhou J. TGF‑β1 induces CREB1‑mediated miR‑1290 upregulation to antagonize lung fibrosis via Napsin A. Int J Mol Med 2020; 46:141-148. [PMID: 32319530 PMCID: PMC7255477 DOI: 10.3892/ijmm.2020.4565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/06/2020] [Indexed: 12/19/2022] Open
Abstract
The pathologic mechanisms of pulmonary fibrosis (PF), one of the most common chronic pulmonary diseases, remain unclear. Napsin A is an aspartic proteinase that has been regarded as a hallmark of pulmonary adenocarcinoma. The present study aimed to investigate the specific function and molecular mechanisms of Napsin A in PF from the perspective of microRNA (miRNA or miR) regulation. In the present study, it was found that miR-1290 downregulated the expression of Napsin A by binding to its 3′-UTR. Cell viability was examined by MTT assay. The protein levels of α-smooth muscle actin (α-SMA), Collagen I and Napsin A were examined by western blot analysis. The predicted targeting of Napsin A by miR-1290 was validated by luciferase reporter assay. The protein content of α-SMA was examined by immunofluorescence staining. miR-1290 was found to be upregulated in blood samples from patients with PF and in TGF-β1-stimulated A549 cells. miR-1290 was found to directly target Napsin A. miR-1290 overexpression also significantly promoted A549 cell proliferation and increased the protein levels of markers of fibrosis. Napsin A knockdown exerted effects on A549 cell proliferation and TGF-β1-induced fibrosis that were similar to those induced by miR-1290 overexpression; more importantly, Napsin A knockdown significantly reversed the effects of miR-1290 inhibition, indicating that miR-1290 promotes TGF-β1-induced fibrosis by targeting Napsin A. Moreover, TGF-β1-induced CAMP responsive element binding protein 1 (CREB1) overexpression promoted the transcription of miR-1290 in A549 cells. On the whole, the findings of the present study demonstrate that TGF-β1-induced CREB1 over-expression induces the significant upregulation of miR-1290 expression, thus aggravating TGF-β1-induced fibrotic changes in A549 cells via the miR-1290 downstream target, Napsin A.
Collapse
Affiliation(s)
- Shuhong Guan
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| | - Yudi Wu
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| | - Qiudi Zhang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| | - Jun Zhou
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
35
|
SAILO LALRENGPUII, KUMAR AMIT, SAH VAISHALI, CHAUDHARY RAJNI, SAHOO NR, SAXENA SHIKHA, GANDHAM RAVIKUMAR, MISHRA BP. Expression profiling of miR-146a-3p and miR-1343 with their target genes after classical swine fever vaccination. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v90i2.98779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The expression profiling of the miRNAs, ssc-miR-146a- 3p and ssc-miR-1343 in the PBMCs of classical swine fever (CSF) vaccinated crossbred pigs were investigated on 7 days post vaccination (7 dpv) as compared to unvaccinated pigs. It was observed that ssc-miR-146a-3p was up-regulated (1.243 Log2 FC) and ssc-miR-1343 was down-regulated (-1.63 Log2 FC) on 7 dpv compared to unvaccinated crossbred pigs which were in concordance with earlier report of miRNA Seq expression profiling. Two target genes, (CD86 for ssc-miR-146a-3p and IFIT1 for ssc-miR-1343) were validated by qRT-PCR and were also found to be in concordance with miRNA expression profile. The CD86 was downregulated with log2 fold changes -5.99, whereas the IFIT1 was upregulated with log2 fold changes 3.19 at 7 dpv. Both of these miRNA was actively involved in cell mediated immune response at 7dpv after CSF vaccination. The CSF vaccine virus triggered the expression of host miRNAs and its target mRNA and enriched immune system processes/pathways.
Collapse
|
36
|
Pillman KA, Scheer KG, Hackett-Jones E, Saunders K, Bert AG, Toubia J, Whitfield HJ, Sapkota S, Sourdin L, Pham H, Le TD, Cursons J, Davis MJ, Gregory PA, Goodall GJ, Bracken CP. Extensive transcriptional responses are co-ordinated by microRNAs as revealed by Exon-Intron Split Analysis (EISA). Nucleic Acids Res 2019; 47:8606-8619. [PMID: 31372646 PMCID: PMC6895270 DOI: 10.1093/nar/gkz664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 12/29/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) has been a subject of intense scrutiny as it facilitates metastasis and alters drug sensitivity. Although EMT-regulatory roles for numerous miRNAs and transcription factors are known, their functions can be difficult to disentangle, in part due to the difficulty in identifying direct miRNA targets from complex datasets and in deciding how to incorporate 'indirect' miRNA effects that may, or may not, represent biologically relevant information. To better understand how miRNAs exert effects throughout the transcriptome during EMT, we employed Exon-Intron Split Analysis (EISA), a bioinformatic technique that separates transcriptional and post-transcriptional effects through the separate analysis of RNA-Seq reads mapping to exons and introns. We find that in response to the manipulation of miRNAs, a major effect on gene expression is transcriptional. We also find extensive co-ordination of transcriptional and post-transcriptional regulatory mechanisms during both EMT and mesenchymal to epithelial transition (MET) in response to TGF-β or miR-200c respectively. The prominent transcriptional influence of miRNAs was also observed in other datasets where miRNA levels were perturbed. This work cautions against a narrow approach that is limited to the analysis of direct targets, and demonstrates the utility of EISA to examine complex regulatory networks involving both transcriptional and post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Katherine A Pillman
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Kaitlin G Scheer
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Emily Hackett-Jones
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Klay Saunders
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - John Toubia
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Holly J Whitfield
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Sunil Sapkota
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Laura Sourdin
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Hoang Pham
- School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, Australia
| | - Thuc D Le
- School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, Australia
| | - Joseph Cursons
- School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Melissa J Davis
- School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia.,School of Medicine, Discipline of Medicine, University of Adelaide, SA, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia.,School of Medicine, Discipline of Medicine, University of Adelaide, SA, Australia
| | - Cameron P Bracken
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia.,School of Medicine, Discipline of Medicine, University of Adelaide, SA, Australia
| |
Collapse
|
37
|
Kuse N, Kamio K, Azuma A, Matsuda K, Inomata M, Usuki J, Morinaga A, Tanaka T, Kashiwada T, Atsumi K, Hayashi H, Saito Y, Seike M, Gemma A. Exosome-Derived microRNA-22 Ameliorates Pulmonary Fibrosis by Regulating Fibroblast-to-Myofibroblast Differentiation in Vitro and in Vivo. J NIPPON MED SCH 2019; 87:118-128. [PMID: 31776321 DOI: 10.1272/jnms.jnms.2020_87-302] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Although aberrant proliferation and activation of lung fibroblasts are implicated in the initiation and progression of idiopathic pulmonary fibrosis (IPF), the underlying mechanisms are not well characterized. Numerous microRNAs (miRNAs) have been implicated in this process; however, miRNAs derived from exosomes and the relevance of such miRNAs to fibroblast-to-myofibroblast differentiation are not well understood. In this study, we attempted to identify exosome-derived miRNAs relevant to fibrosis development. METHODS Using miRNA array analysis, we profiled exosome-derived miRNA expression in sera of C57BL/6 mice exhibiting bleomycin-induced pulmonary fibrosis. After validating a selected miRNA by quantitative reverse-transcription polymerase chain reaction, its effect on fibroblast-to-myofibroblast differentiation was investigated in human lung fibroblasts. Furthermore, we determined the role of the selected miRNA in an in vivo model of pulmonary fibrosis. RESULTS MiRNA array analysis revealed that miR-22 expression was increased by up to 2 fold on day 7 after bleomycin treatment compared with that in vehicle-treated mice. In vitro, miR-22 transfection suppressed TGF-β1-induced α-SMA expression. This was mediated via inhibition of the ERK1/2 pathway. Baseline α-SMA expression was increased upon miR-22 inhibitor transfection. Furthermore, miR-22 negatively regulated connective tissue growth factor expression in the presence of TGF-β1. In vivo, administration of a miR-22 mimic on day 10 after bleomycin challenge ameliorated pulmonary fibrosis lesions accompanied by decreased α-SMA expression in the model mice. CONCLUSIONS Exosomal miR-22 modulates fibroblast-to-myofibroblast differentiation. The present findings warrant further study, which could shed light on miR-22 as a novel therapeutic target in IPF.
Collapse
Affiliation(s)
- Naoyuki Kuse
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Koichiro Kamio
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Arata Azuma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Kuniko Matsuda
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Minoru Inomata
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Jiro Usuki
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Akemi Morinaga
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Toru Tanaka
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Takeru Kashiwada
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Kenichiro Atsumi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Hiroki Hayashi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Yoshinobu Saito
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School
| |
Collapse
|
38
|
Browne JA, Leir SH, Eggener SE, Harris A. Region-specific microRNA signatures in the human epididymis. Asian J Androl 2019; 20:539-544. [PMID: 30058558 PMCID: PMC6219309 DOI: 10.4103/aja.aja_40_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The epithelium of the human epididymis maintains an appropriate luminal environment for sperm maturation that is essential for male fertility. Regional expression of small noncoding RNAs such as microRNAs contributes to segment-specific gene expression and differentiated functions. MicroRNA profiles were reported in human epididymal tissues but not specifically in the epithelial cells derived from those regions. Here, we reveal miRNA signatures of primary cultures of caput, corpus, and cauda epididymis epithelial cells and of the tissues from which they were derived. We identify 324 epithelial cell-derived microRNAs and 259 tissue-derived microRNAs in the epididymis, some of which displayed regionalized expression patterns in cells and/or tissues. Caput cell-enriched miRNAs included miR-573 and miR-155. Cauda cell-enriched miRNAs included miR-1204 and miR-770. Next, we determined the gene ontology pathways associated with in silico predicted target genes of the differentially expressed miRNAs. The effect of androgen receptor stimulation on miRNA expression was also investigated. These data show novel epithelial cell-derived miRNAs that may regulate the expression of important gene networks that are responsible for the regionalized gene expression and function of the epididymis.
Collapse
Affiliation(s)
- James A Browne
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.,Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shih-Hsing Leir
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.,Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Scott E Eggener
- Section of Urology, University of Chicago Medical Center, Chicago, IL 60611, USA
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.,Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
39
|
Exosomes in Systemic Sclerosis: Messengers Between Immune, Vascular and Fibrotic Components? Int J Mol Sci 2019; 20:ijms20184337. [PMID: 31487964 PMCID: PMC6770454 DOI: 10.3390/ijms20184337] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/18/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare autoimmune disease, characterized by vasculopathy and fibrosis of the skin and internal organs. This disease is still considered incurable and is associated with a high risk of mortality, which is related to fibrotic events. An early diagnosis is useful for preventing complications, and targeted therapies reduce disease progression and ameliorate patients’ quality of life. Nevertheless, there are no validated biomarkers for early diagnosis with predictive prognostic value. Exosomes are membrane vesicles, transporting proteins and nucleic acids that may be delivered to target cells, which influences cellular behavior. They play important roles in cell–cell communication, both in physiological and pathological conditions, and may be useful as circulating biomarkers. Recent evidences suggest a role for these microvesicles in the three main aspects related to the pathogenesis of SSc (immunity, vascular damage, and fibrosis). Moreover, exosomes are of particular interest in the field of nano-delivery and are used as biological carriers. In this review, we report the latest information concerning SSc pathogenesis, clinical aspects of SSc, and current approaches to the treatment of SSc. Furthermore, we indicate a possible role of exosomes in SSc pathogenesis and suggest their potential use as diagnostic and prognostic biomarkers, as well as therapeutic tools.
Collapse
|
40
|
Liang Y, Wang Y, Ma L, Zhong Z, Yang X, Tao X, Chen X, He Z, Yang Y, Zeng K, Kang R, Gong J, Ying S, Lei Y, Pang J, Lv X, Gu Y. Comparison of microRNAs in adipose and muscle tissue from seven indigenous Chinese breeds and Yorkshire pigs. Anim Genet 2019; 50:439-448. [PMID: 31328299 DOI: 10.1111/age.12826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 01/29/2023]
Abstract
Elucidation of the pig microRNAome is essential for interpreting functional elements of the genome and understanding the genetic architecture of complex traits. Here, we extracted small RNAs from skeletal muscle and adipose tissue, and we compared their expression levels between one Western breed (Yorkshire) and seven indigenous Chinese breeds. We detected the expression of 172 known porcine microRNAs (miRNAs) and 181 novel miRNAs. Differential expression analysis found 92 and 12 differentially expressed miRNAs in adipose and muscle tissue respectively. We found that different Chinese breeds shared common directional miRNA expression changes compared to Yorkshire pigs. Some miRNAs differentially expressed across multiple Chinese breeds, including ssc-miR-129-5p, ssc-miR-30 and ssc-miR-150, are involved in adipose tissue function. Functional enrichment analysis revealed that the target genes of the differentially expressed miRNAs are associated mainly with signaling pathways rather than metabolic and biosynthetic processes. The miRNA-target gene and miRNA-phenotypic traits networks identified many hub miRNAs that regulate a large number of target genes or phenotypic traits. Specifically, we found that intramuscular fat content is regulated by the greatest number of miRNAs in muscle tissue. This study provides valuable new candidate miRNAs that will aid in the improvement of meat quality and production.
Collapse
Affiliation(s)
- Y Liang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - Y Wang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - L Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, 610052, Sichuan Province China
| | - Z Zhong
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - X Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - X Tao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - X Chen
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - Z He
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - Y Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - K Zeng
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - R Kang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - J Gong
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - S Ying
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - Y Lei
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - J Pang
- Chengdu Biotechservice Institute, Chengdu, 610041, Sichuan Province China
| | - X Lv
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| | - Y Gu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan Province China
| |
Collapse
|
41
|
Kramer EL, Clancy JP. MicroRNA-145, Cystic Fibrosis Transmembrane Conductance Regulator, and Transforming Growth Factor-β. An (Un)tangled Regulatory Web. Am J Respir Crit Care Med 2019; 197:551-552. [PMID: 29253345 DOI: 10.1164/rccm.201711-2297ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - John P Clancy
- 1 Cincinnati Children's Hospital Medical Center Cincinnati, Ohio
| |
Collapse
|
42
|
Xie Y, Cao H, Zhang Z, Zhang S, Wang H. Molecular network of miR-1343 regulates the pluripotency of porcine pluripotent stem cells via repressing OTX2 expression. RNA Biol 2018; 16:82-92. [PMID: 30567463 DOI: 10.1080/15476286.2018.1559688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Porcine OTX2 was found to be highly activated in porcine iPS cells (piPSCs) that were reported by different laboratories worldwide. To reveal the regulatory function of OTX2 in porcine reprogrammed cells, we screened porcine miRNA-seq databases and found two miRNAs, miR-1343 and miR-545, that could specifically bind to 3'UTR of OTX2 and suppress endogenous OTX2 expression in piPSCs. Knockdown of OTX2 by miR-1343 and miR-545 could significantly increase the expression of SOX2 and ESRRB, but did not alter the expressions of OCT4 and KLF4, and improve the pluripotency of piPSCs. The promoter-based assays showed that OTX2 potentially bound to the promoter region of SOX2 and ESRRB and suppressed their expression. On the other hand, SOX2 could interact with OTX2 promoter. Ectopic expression of SOX2 could significantly decrease OTX2 promoter activity, showing that there is a negative feedback loop between SOX2 and OTX2. Additionally, SOX2 and ESRRB significantly stimulated miR-1343 expression in piPSCs, but OTX2 down regulated the expression of miR-1343 in either direct or indirect manners. In summary, this study demonstrates that there is a regulatory network mediated by miR-1343, in which downregulation of OTX2 by miR-1343 can elevate the expression of pluripotent genes that were then sustain the pluripotency of piPSCs.
Collapse
Affiliation(s)
- Youlong Xie
- a Department of Animal Biotechnology , College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi , China
| | - Hongxia Cao
- a Department of Animal Biotechnology , College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi , China
| | - Zhiyi Zhang
- a Department of Animal Biotechnology , College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi , China
| | - Shiqiang Zhang
- a Department of Animal Biotechnology , College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi , China
| | - Huayan Wang
- a Department of Animal Biotechnology , College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi , China
| |
Collapse
|
43
|
Stolzenburg LR, Harris A. The role of microRNAs in chronic respiratory disease: recent insights. Biol Chem 2018; 399:219-234. [PMID: 29148977 DOI: 10.1515/hsz-2017-0249] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/24/2017] [Indexed: 01/16/2023]
Abstract
Chronic respiratory diseases encompass a group of diverse conditions affecting the airways, which all impair lung function over time. They include cystic fibrosis (CF), idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and asthma, which together affect hundreds of millions of people worldwide. MicroRNAs (miRNAs), a class of small non-coding RNAs involved in post-transcriptional gene repression, are now recognized as major regulators in the development and progression of chronic lung disease. Alterations in miRNA abundance occur in lung tissue, inflammatory cells, and freely circulating in blood and are thought to function both as drivers and modifiers of disease. Their importance in lung pathology has prompted the development of miRNA-based therapies and biomarker tools. Here, we review the current literature on miRNA expression and function in chronic respiratory disease and highlight further research that is needed to propel miRNA treatments for lung disorders towards the clinic.
Collapse
Affiliation(s)
- Lindsay R Stolzenburg
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ann Harris
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44016, USA
| |
Collapse
|
44
|
miR-542-5p Attenuates Fibroblast Activation by Targeting Integrin α6 in Silica-Induced Pulmonary Fibrosis. Int J Mol Sci 2018; 19:ijms19123717. [PMID: 30467286 PMCID: PMC6320929 DOI: 10.3390/ijms19123717] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/12/2018] [Accepted: 11/17/2018] [Indexed: 11/28/2022] Open
Abstract
Silicosis is a very serious occupational disease and it features pathological manifestations of inflammatory infiltration, excessive proliferation of fibroblasts and massive depositions of the extracellular matrix in the lungs. Recent studies described the roles of a variety of microRNAs (miRNAs) in fibrotic diseases. Here, we aimed to explore the potential mechanism of miR-542-5p in the activation of lung fibroblasts. To induce a pulmonary fibrosis mouse model, silica suspension and the miR-542-5p agomir were administered to mice by intratracheal instillation and tail vein injection. We found that miR-542-5p was significantly decreased in mouse fibrotic lung tissues and up-regulation of miR-542-5p visually attenuated a series of fibrotic lesions, including alveolar structural damage, alveolar interstitial thickening and silica-induced nodule formation. The down-regulation of miR-542-5p was also observed in mouse fibroblast (NIH-3T3) treated with transforming growth factor β1 (TGF-β1). The proliferation and migration ability of NIH-3T3 cells were also inhibited by the transfection of miR-542-5p mimic. Integrin α6 (Itga6), reported as a cell surface protein associated with fibroblast proliferation, was confirmed to be a direct target of miR-542-5p. The knockdown of Itga6 significantly inhibited the phosphorylation of FAK/PI3K/AKT. In conclusion, miR-542-5p has a potential function for reducing the proliferation of fibroblasts and inhibiting silica-induced pulmonary fibrosis, which might be partially realized by directly binding to Itga6. Our data suggested that miR-542-5p might be a new therapeutic target for silicosis or other pulmonary fibrosis.
Collapse
|
45
|
Bardin P, Sonneville F, Corvol H, Tabary O. Emerging microRNA Therapeutic Approaches for Cystic Fibrosis. Front Pharmacol 2018; 9:1113. [PMID: 30349480 PMCID: PMC6186820 DOI: 10.3389/fphar.2018.01113] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and remains the most common life-shortening diseases affecting the exocrine organs. The absence of this channel results in an imbalance of ion concentrations across the cell membrane and results in more abnormal secretion and mucus plugging in the gastrointestinal tract and in the lungs of CF patients. The direct introduction of fully functional CFTR by gene therapy has long been pursued as a therapeutical option to restore CFTR function independent of the specific CFTR mutation, but the different clinical trials failed to propose persuasive evidence of this strategy. The last ten years has led to the development of new pharmacotherapies which can activate CFTR function in a mutation-specific manner. Although approximately 2,000 different disease-associated mutations have been identified, a single codon deletion, F508del, is by far the most common and is present on at least one allele in approximately 70% of the patients in CF populations. This strategy is limited by chemistry, the knowledge on CFTR and the heterogenicity of the patients. New research efforts in CF aim to develop other therapeutical approaches to combine different strategies. Targeting RNA appears as a new and an important opportunity to modulate dysregulated biological processes. Abnormal miRNA activity has been linked to numerous diseases, and over the last decade, the critical role of miRNA in regulating biological processes has fostered interest in how miRNA binds to and interacts explicitly with the target protein. Herein, this review describes the different strategies to identify dysregulated miRNA opens up a new concept and new opportunities to correct CFTR deficiency. This review describes therapeutic applications of antisense techniques currently under investigation in CF.
Collapse
Affiliation(s)
- Pauline Bardin
- INSERM UMR-S938, Centre de Recherche Saint Antoine, Faculté des Sciences, Sorbonne Université, Paris, France
| | - Florence Sonneville
- INSERM UMR-S938, Centre de Recherche Saint Antoine, Faculté des Sciences, Sorbonne Université, Paris, France
| | - Harriet Corvol
- INSERM UMR-S938, Centre de Recherche Saint Antoine, Faculté des Sciences, Sorbonne Université, Paris, France.,Paediatric Respiratory Department, Hôpital Trousseau, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Olivier Tabary
- INSERM UMR-S938, Centre de Recherche Saint Antoine, Faculté des Sciences, Sorbonne Université, Paris, France
| |
Collapse
|
46
|
Kim HR, Shin DY, Chung KH. A review of current studies on cellular and molecular mechanisms underlying pulmonary fibrosis induced by chemicals. ENVIRONMENTAL HEALTH AND TOXICOLOGY 2018; 33:e2018014-0. [PMID: 30286590 PMCID: PMC6182244 DOI: 10.5620/eht.e2018014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/19/2018] [Indexed: 05/04/2023]
Abstract
Several studies showed that the inflammatory and fibrotic responses induced by polyhexamethylene guanidine phosphate (PHMG-p) were similar to those observed for idiopathic pulmonary fibrosis in South Korea in 2011. "Omic" technologies can be used to understand the mechanisms underlying chemical-induced diseases. Studies to determine the toxicity of chemicals may facilitate understanding of the mechanisms underlying the development of pulmonary fibrosis at a molecular level; thus, such studies may provide information about the toxic characteristics of various substances. In this review, we have outlined the cellular and molecular mechanisms underlying idiopathic pulmonary fibrosis and described pulmonary fibrosis induced by various chemicals, including bleomycin, paraquat, and PHMG-p, based on the results of studies performed to date.
Collapse
Affiliation(s)
- Ha Ryong Kim
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Gyeongsangbuk-do 38430, Republic of Korea
| | - Da Young Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Kyu Hyuck Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- Corresponding author: Kyu Hyuck Chung School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Korea. E-mail:
| |
Collapse
|
47
|
Abedini Bakhshmand E, Mohammad Soltani B, Fasihi A, Mowla SJ. Hsa-miR-5582-3P regulatory effect on TGFβ signaling through targeting of TGFβ-R1, TGFβ-R2, SMAD3, and SMAD4 transcripts. J Cell Biochem 2018; 119:9921-9930. [PMID: 30129155 DOI: 10.1002/jcb.27314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 06/26/2018] [Indexed: 11/06/2022]
Abstract
Transforming growth factor β (TGFβ) signaling pathway which is regulated by factors such as microRNAs (miRNAs) has pivotal roles in various cellular processes. Here, we intended to verify bioinformatics predicted regulatory effect of hsa-miR-5582-3P against TGFβ/SMAD signaling pathway components. Quantitative reverse-transcription polymerase chain reaction (RT-qPCR) analysis indicated a negative correlation of expression between hsa-miR-5582-3P against TGFβ-R1, TGFβ-R2, SMAD3, and SMAD4 putative target genes in all of tested cell lines. Also, hsa-miR-5582-3P was significantly downregulated in glioma, breast, and ovarian tumor tissues compared with their normal pairs, detected by RT-qPCR. Then dual luciferase assay supported direct interaction between this miRNA and TGFβ-R1, TGFβ-R2, SMAD3, and SMAD4, 3' untranslated region sequences. Western blot analysis confirmed negative effect of hsa-miR-5582-3P overexpression on at least TGFβ-R1 expression. Consistently, hsa-miR-5582-3P overexpression brought about downregulation of TGFβ-R1, TGFβ-R2, SMAD3, and SMAD4 expression in HCT-116 cell line, followed by cell cycle arrest in sub-G1 phase, detected by flow cytometry. Altogether, our data suggest that hsa-miR-5582-3P reduces the TGFβ/SMAD signaling pathway through downregulation of TGFβ-R1, TGFβ-R2, SMAD3, and SMAD4 transcripts. These data introduce hsa-miR-5582-3P as a potential tumor suppressors-miR and a therapy candidate to be tested in cancers in which TGFβ/SMAD is deregulated.
Collapse
Affiliation(s)
- Elham Abedini Bakhshmand
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram Mohammad Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Fasihi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
48
|
Rout-Pitt N, Farrow N, Parsons D, Donnelley M. Epithelial mesenchymal transition (EMT): a universal process in lung diseases with implications for cystic fibrosis pathophysiology. Respir Res 2018; 19:136. [PMID: 30021582 PMCID: PMC6052671 DOI: 10.1186/s12931-018-0834-8] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022] Open
Abstract
Cystic Fibrosis (CF) is a genetic disorder that arises due to mutations in the Cystic Fibrosis Transmembrane Conductance Regulator gene, which encodes for a protein responsible for ion transport out of epithelial cells. This leads to a disruption in transepithelial Cl-, Na + and HCO3− ion transport and the subsequent dehydration of the airway epithelium, resulting in infection, inflammation and development of fibrotic tissue. Unlike in CF, fibrosis in other lung diseases including asthma, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis has been well characterised. One of the driving forces behind fibrosis is Epithelial Mesenchymal Transition (EMT), a process where epithelial cells lose epithelial proteins including E-Cadherin, which is responsible for tight junctions. The cell moves to a more mesenchymal phenotype as it gains mesenchymal markers such as N-Cadherin (providing the cells with migration potential), Vimentin and Fibronectin (proteins excreted to help form the extracellular matrix), and the fibroblast proliferation transcription factors Snail, Slug and Twist. This review paper explores the EMT process in a range of lung diseases, details the common links that these have to cystic fibrosis, and explores how understanding EMT in cystic fibrosis may open up novel methods of treating patients with cystic fibrosis.
Collapse
Affiliation(s)
- Nathan Rout-Pitt
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia. .,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia. .,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia, 5006, Australia.
| | - Nigel Farrow
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia, 5006, Australia.,Australian Respiratory Epithelium Consortium (AusRec), Perth, Western Australia, 6105, Australia
| | - David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia, 5006, Australia.,Australian Respiratory Epithelium Consortium (AusRec), Perth, Western Australia, 6105, Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia, 5006, Australia
| |
Collapse
|
49
|
Yu H, Ju J, Liu J, Li D. Aberrant expression of miR-663 and transforming growth factor-β1 in nasal polyposis in children. Exp Ther Med 2018; 15:4550-4556. [PMID: 29849780 DOI: 10.3892/etm.2018.5927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 04/11/2017] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to investigate the expression of microRNA (miR)-663 and its regulatory effects on the pathogenesis of nasal polyposis in children. Nasal polyp tissue, as well as serum and peripheral blood eosinophils were collected from 35 children diagnosed with nasal polypectomy between August 2013 and August 2015. As a control, the inferior nasal concha, serum and peripheral blood eosinophils were collected from 46 patients with nasal septal deviation complicated by inferior turbinate hypertrophy or patients with simple inferior turbinate hypertrophy who had undergone surgical removal of the inferior nasal concha. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to measure the expression of miR-663 and transforming growth factor-β1 (TGF-β1) in the nasal polyp tissue, serum and peripheral blood eosinophils of patients with nasal polyposis and controls. Western blotting was used to measure the expression of TGF-β1 protein in nasal tissue and eosinophils and an enzyme-linked immunosorbent assay was used to measure serum level of TGF-β1 protein. A dual luciferase reporter assay was used to determine whether TGF-β1 was a target gene of miR-663. Compared with the control group, levels of TGF-β1 mRNA and protein were significantly increased in all three types of specimens from pediatric patients with nasal polyposis (P<0.05). miR-663 expression was significantly decreased in nasal polyp tissue and peripheral blood eosinophils (P<0.05). The dual luciferase reporter assay confirmed that TGF-β1 was a target gene of miR-663. The current study suggests that the upregulation of TGF-β1 may be associated with the downregulation of miR-663 in nasal polyposis in children. miR-663 may have regulatory effects on the pathogenesis of nasal polyposis by regulating TGF-β1 and may be developed as a genetic marker of nasal polyposis in children.
Collapse
Affiliation(s)
- Hailing Yu
- Department of Otolaryngology, The Women and Children's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| | - Jianbao Ju
- Department of Otolaryngology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266033, P.R. China
| | - Jingdong Liu
- Department of Medicine, The Women and Children's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| | - Da Li
- Department of Otolaryngology, The Women and Children's Hospital of Qingdao, Qingdao, Shandong 266033, P.R. China
| |
Collapse
|
50
|
Abstract
La mucoviscidose est la plus fréquente des maladies génétiques dans les populations d’origine caucasienne, caractérisée par des mutations du gène codant le canal chlorure CFTR. Bien que ce gène soit connu depuis 1989, les solutions thérapeutiques curatives proposées aux patients restent limitées. De nouvelles stratégies thérapeutiques sont explorées, comme celles ciblant les microARN qui participent à la régulation de l’expression d’ARN messagers cibles. Cette revue fait le point sur les travaux portant sur l’implication de ces microARN dans la mucoviscidose, notamment dans le contrôle des canaux ioniques, de l’inflammation, de l’infection et de l’obstruction bronchique, et leurs potentiels thérapeutiques.
Collapse
|