1
|
Ferrarini MG, Nisimura LM, Girard RMBM, Alencar MB, Fragoso MSI, Araújo-Silva CA, Veiga ADA, Abud APR, Nardelli SC, Vommaro RC, Silber AM, France-Sagot M, Ávila AR. Dichloroacetate and Pyruvate Metabolism: Pyruvate Dehydrogenase Kinases as Targets Worth Investigating for Effective Therapy of Toxoplasmosis. mSphere 2021; 6:e01002-20. [PMID: 33408226 PMCID: PMC7845590 DOI: 10.1128/msphere.01002-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022] Open
Abstract
Toxoplasmosis, a protozoan infection caused by Toxoplasma gondii, is estimated to affect around 2.5 billion people worldwide. Nevertheless, the side effects of drugs combined with the long period of therapy usually result in discontinuation of the treatment. New therapies should be developed by exploring peculiarities of the parasite's metabolic pathways, similarly to what has been well described in cancer cell metabolism. An example is the switch in the metabolism of cancer that blocks the conversion of pyruvate into acetyl coenzyme A in mitochondria. In this context, dichloroacetate (DCA) is an anticancer drug that reverts the tumor proliferation by inhibiting the enzymes responsible for this switch: the pyruvate dehydrogenase kinases (PDKs). DCA has also been used in the treatment of certain symptoms of malaria; however, there is no evidence of how this drug affects apicomplexan species. In this paper, we studied the metabolism of T. gondii and demonstrate that DCA also inhibits T. gondii's in vitro infection with no toxic effects on host cells. DCA caused an increase in the activity of pyruvate dehydrogenase followed by an unbalanced mitochondrial activity. We also observed morphological alterations frequently in mitochondria and in a few apicoplasts, essential organelles for parasite survival. To date, the kinases that potentially regulate the activity of pyruvate metabolism in both organelles have never been described. Here, we confirmed the presence in the genome of two putative kinases (T. gondii PDK [TgPDK] and T. gondii branched-chain α-keto acid dehydrogenase kinase [TgBCKDK]), verified their cellular localization in the mitochondrion, and provided in silico data suggesting that they are potential targets of DCA.IMPORTANCE Currently, the drugs used for toxoplasmosis have severe toxicity to human cells, and the treatment still lacks effective and safer alternatives. The search for novel drug targets is timely. We report here that the treatment of T. gondii with an anticancer drug, dichloroacetate (DCA), was effective in decreasing in vitro infection without toxicity to human cells. It is known that PDK is the main target of DCA in mammals, and this inactivation increases the conversion of pyruvate into acetyl coenzyme A and reverts the proliferation of tumor cells. Moreover, we verified the mitochondrial localization of two kinases that possibly regulate the activity of pyruvate metabolism in T. gondii, which has never been studied. DCA increased pyruvate dehydrogenase (PDH) activity in T. gondii, followed by an unbalanced mitochondrial activity, in a manner similar to what was previously observed in cancer cells. Thus, we propose the conserved kinases as potential regulators of pyruvate metabolism and interesting targets for new therapies.
Collapse
Affiliation(s)
- Mariana Galvão Ferrarini
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon 1, Villeurbanne, France
| | - Lindice Mitie Nisimura
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fiocruz, Paraná, Brazil
| | - Richard Marcel Bruno Moreira Girard
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mayke Bezerra Alencar
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Carlla Assis Araújo-Silva
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alan de Almeida Veiga
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fiocruz, Paraná, Brazil
| | | | | | - Rossiane C Vommaro
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ariel Mariano Silber
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marie France-Sagot
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon 1, Villeurbanne, France
- INRIA Grenoble Rhône-Alpes, Montbonnot-Saint-Martin, France
| | - Andréa Rodrigues Ávila
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fiocruz, Paraná, Brazil
| |
Collapse
|
2
|
Modified Method for Purifying Rat Liver Branched-Chain α-Ketoacid Dehydrogenase Complex. Biosci Biotechnol Biochem 2014; 73:766-8. [DOI: 10.1271/bbb.80744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
Muller EA, Danner DJ. Tissue-specific translation of murine branched-chain alpha-ketoacid dehydrogenase kinase mRNA is dependent upon an upstream open reading frame in the 5'-untranslated region. J Biol Chem 2004; 279:44645-55. [PMID: 15302860 DOI: 10.1074/jbc.m406550200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The committed step in the pathway for leucine, isoleucine, and valine catabolism is catalyzed by branched-chain alpha-ketoacid dehydrogenase (BCKD). This multienzyme complex is itself regulated through reversible subunit phosphorylation by a specific kinase (BCKD-kinase). Although BCKD is present in the mitochondria of all mammalian cells, BCKD-kinase has a tissue-specific pattern of expression. Various experimental, nutritional, and hormonal conditions have been used to alter the expression of BCKD-kinase, yet little is known regarding the regulation of basal BCKD-kinase expression under normal conditions including the mechanism of its tissue specificity in any organism. Here we use tissue-derived cultured cells to explore the mechanisms used to control BCKD-kinase expression. Whereas the amount of BCKD-kinase protein is significantly higher in mitochondria from C2C12 myotubes than in BNL Cl.2 liver cells, gene transcription and stability of BCKD-kinase mRNA share similar properties in these two cell types. Our results show that the amount of protein synthesized is regulated at the level of translation of BCKD-kinase mRNA and that an upstream open reading frame in the 5'-untranslated region of this transcript controls its translation. The location and putative 19-residue peptide are conserved in the mouse, rat, chimpanzee, and human genes. Likewise, gene structure of mouse, chimpanzee, and human BCKD-kinase is conserved, whereas the rat gene has lost intron 9.
Collapse
Affiliation(s)
- Eric A Muller
- Graduate Program in Genetics and Molecular Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
4
|
Shingaki R, Kasahara Y, Iwano M, Kuwano M, Takatsuka T, Inoue T, Kokeguchi S, Fukui K. Induction of L-form-like cell shape change of Bacillus subtilis under microculture conditions. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2501-2511. [PMID: 12949175 DOI: 10.1099/mic.0.26259-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A remarkable cell shape change was observed in Bacillus subtilis strain 168 under microculture conditions on CI agar medium (Spizizen's minimal medium supplemented with a trace amount of yeast extract and Casamino acids). Cells cultured under a cover glass changed in form from rod-shaped to spherical, large and irregular shapes that closely resembled L-form cells. The cell shape change was observed only with CI medium, not with Spizizen's minimum medium alone or other rich media. The whole-cell protein profile of cells grown under cover glass and cells grown on CI agar plates differed in several respects. Tandem mass analysis of nine gel bands which differed in protein expression between the two conditions showed that proteins related to nitrate respiration and fermentation were expressed in the shape-changed cells grown under cover glass. The cell shape change of CI cultures was repressed when excess KNO3 was added to the medium. Whole-cell protein analysis of the normal rod-shaped cells grown with 0.1% KNO3 and the shape-changed cells grown without KNO3 revealed that the expression of the branched-chain alpha-keto acid dehydrogenase complex (coded by the bfmB gene locus) was elevated in the shape-changed cells. Inactivation of the bfmB locus resulted in the repression of cell shape change, and cells in which bfmB expression was induced by IPTG did show changes in shape. Transmission electron microscopy of ultrathin sections demonstrated that the shape-changed cells had thin walls, and plasmolysis of cells fixed with a solution including 0.1 M sucrose was observed. Clarifying the mechanism of thinning of the cell wall may lead to the development of a new type of cell wall biosynthetic inhibitor.
Collapse
Affiliation(s)
- Ryuji Shingaki
- Department of Oral Microbiology, Okayama University Graduate School of Medicine and Dentistry, Shikata-cho, Okayama 700-8525, Japan
| | - Yasuhiro Kasahara
- Department of Bioresource Science, Ibaraki University, School of Agriculture, Ami, Ibaraki 300-0393, Japan
| | - Megumi Iwano
- Department of Intercellular Communication, Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Masayoshi Kuwano
- Department of Bioinformatics and Genomics, Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Tomomasa Takatsuka
- Department of Operative Dentistry, Okayama University Graduate School of Medicine and Dentistry, Shikata-cho, Okayama 700-8525, Japan
| | - Tetsuyoshi Inoue
- Department of Oral Microbiology, Okayama University Graduate School of Medicine and Dentistry, Shikata-cho, Okayama 700-8525, Japan
| | - Susumu Kokeguchi
- Department of Oral Microbiology, Okayama University Graduate School of Medicine and Dentistry, Shikata-cho, Okayama 700-8525, Japan
| | - Kazuhiro Fukui
- Department of Oral Microbiology, Okayama University Graduate School of Medicine and Dentistry, Shikata-cho, Okayama 700-8525, Japan
| |
Collapse
|
5
|
Abstract
Plant cells are unique in that they contain four species of alpha-ketoacid dehydrogenase complex: plastidial pyruvate dehydrogenase, mitochondrial pyruvate dehydrogenase, alpha-ketoglutarate (2-oxoglutarate) dehydrogenase, and branched-chain alpha-ketoacid dehydrogenase. All complexes include multiple copies of three components: an alpha-ketoacid dehydrogenase/decarboxylase, a dihydrolipoyl acyltransferase, and a dihydrolipoyl dehydrogenase. The mitochondrial pyruvate dehydrogenase complex additionally includes intrinsic regulatory protein-kinase and -phosphatase enzymes. The acyltransferases form the intricate geometric core structures of the complexes. Substrate channeling plus active-site coupling combine to greatly enhance the catalytic efficiency of these complexes. These alpha-ketoacid dehydrogenase complexes occupy key positions in intermediary metabolism, and a basic understanding of their properties is critical to genetic and metabolic engineering. The current status of knowledge of the biochemical, regulatory, structural, genomic, and evolutionary aspects of these fascinating multienzyme complexes are reviewed.
Collapse
Affiliation(s)
- Brian P Mooney
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | |
Collapse
|
6
|
Madhusudhan KT, Sokatch JR. Purification of branched-chain keto acid dehydrogenase regulator from Pseudomonas putida. Methods Enzymol 2001; 324:329-35. [PMID: 10989441 DOI: 10.1016/s0076-6879(00)24242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
BkdR can be isolated in nearly pure form as a tetramer by this procedure, which involves hyperexpressing bkdR from a plasmid, purification by chromatography on DEAE-Sepharose CL-6B, heparin-Sepharose CL-6B, and dialysis to precipitate BkdR. BkdR is relatively insoluble in aqueous buffers but can be kept in solution in buffer with 50% (v/v) glycerol and 0.2 M NaCl. Cultures of E. coli DH5 alpha (pJRS119) should be maintained at 30 degrees to promote plasmid stability. Because BkdR is prone to form intermolecular disulfide bonds, buffers for SDS-PAGE should contain fresh 0.5% (v/v) 2-mercaptoethanol.
Collapse
Affiliation(s)
- K T Madhusudhan
- Central Arkansas Veterans Healthcare System, Pathology and Laboratory Medicine, Little Rock 72205, USA
| | | |
Collapse
|
7
|
Huang YS, Chuang DT. Regulation of branched-chain alpha-keto acid dehydrogenase kinase gene expression by glucocorticoids in hepatoma cells and rat liver. Methods Enzymol 2001; 324:498-511. [PMID: 10989456 DOI: 10.1016/s0076-6879(00)24257-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Y S Huang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75390-9038, USA
| | | |
Collapse
|
8
|
Doering CB, Danner DJ. Expression of murine branched-chain alpha-keto acid dehydrogenase kinase. Methods Enzymol 2001; 324:491-7. [PMID: 10989455 DOI: 10.1016/s0076-6879(00)24256-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- C B Doering
- Department of Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
9
|
Danner DJ. Mitochondrial import of mammalian branched-chain alpha-keto acid dehydrogenase complex subunits. Methods Enzymol 2001; 324:336-42. [PMID: 10989442 DOI: 10.1016/s0076-6879(00)24243-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- D J Danner
- Department of Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
10
|
Ward DE, Ross RP, van der Weijden CC, Snoep JL, Claiborne A. Catabolism of branched-chain alpha-keto acids in Enterococcus faecalis: the bkd gene cluster, enzymes, and metabolic route. J Bacteriol 1999; 181:5433-42. [PMID: 10464218 PMCID: PMC94053 DOI: 10.1128/jb.181.17.5433-5442.1999] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes encoding a branched-chain alpha-keto acid dehydrogenase from Enterococcus faecalis 10C1, E1alpha (bkdA), E1beta (bkdB), E2 (bkdC), and E3 (bkdD), were found to reside in the gene cluster ptb-buk-bkdDABC. The predicted products of ptb and buk exhibited significant homology to the phosphotransbutyrylase and butyrate kinase, respectively, from Clostridium acetobutylicum. Activity and redox properties of the purified recombinant enzyme encoded by bkdD indicate that E. faecalis has a lipoamide dehydrogenase that is distinct from the lipoamide dehydrogenase associated with the pyruvate dehydrogenase complex. Specific activity of the ptb gene product expressed in Escherichia coli was highest with the substrates valeryl-coenzyme A (CoA), isovaleryl-CoA, and isobutyryl-CoA. In cultures, a stoichiometric conversion of alpha-ketoisocaproate to isovalerate was observed, with a concomitant increase in biomass. We propose that alpha-ketoisocaproate is converted via the BKDH complex to isovaleryl-CoA and subsequently converted into isovalerate via the combined actions of the ptb and buk gene products with the concomitant phosphorylation of ADP. In contrast, an E. faecalis bkd mutant constructed by disruption of the bkdA gene did not benefit from having alpha-ketoisocaproate in the growth medium, and conversion to isovalerate was less than 2% of the wild-type conversion. It is concluded that the bkd gene cluster encodes the enzymes that constitute a catabolic pathway for branched-chain alpha-keto acids that was previously unidentified in E. faecalis.
Collapse
Affiliation(s)
- D E Ward
- Department of Biochemistry, Wake Forest University Medical Center, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | |
Collapse
|
11
|
Huang YS, Chuang DT. Down-regulation of rat mitochondrial branched-chain 2-oxoacid dehydrogenase kinase gene expression by glucocorticoids. Biochem J 1999; 339 ( Pt 3):503-10. [PMID: 10215586 PMCID: PMC1220183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The mammalian mitochondrial branched-chain 2-oxoacid dehydrogenase (BCOD) complex is regulated by a reversible phosphorylation (inactivation)/dephosphorylation (activation) cycle. In the present study, the effects of glucocorticoids on the level of BCOD kinase mRNA were investigated in rat hepatoma cell lines (H4IIE and FTO-2B), as well as in the rat. In H4IIE cells, dexamethasone was found to significantly reduce steady-state concentrations of BCOD kinase mRNA after a 48 h culture, and this was correlated with a 2-fold increase in the dephosphorylated form of the BCOD complex. The half-life of the kinase mRNA in H4IIE cells was not affected by dexamethasone treatment. Therefore, the decrease in the steady-state kinase mRNA level resulting from dexamethasone treatment was not caused by changes in mRNA stability, which raised the possibility of regulation at the level of gene transcription. To identify the negative glucocorticoid-responsive element in the kinase promoter, nested deletion constucts in the 3.0 kb promoter region were examined in H4IIE cells cultured in the presence or absence of dexamethasone. No significant differences in promoter activity were observed on either transient or stable transfection. The data showed that the glucocorticoid-responsive element was located outside the 3. 0 kb promoter region. At the physiological level, hepatic BCOD kinase mRNA levels were reduced in rats injected intraperitoneally with dexamethasone. This effect was liver-specific, and was not detected in other tissues. These results suggest that the down-regulation of kinase gene expression by glucocorticoids is mediated through a liver-specific or -enriched transcription factor(s).
Collapse
Affiliation(s)
- Y S Huang
- Department of Biochemistry and the Biochemistry and Molecular Biology Graduate Program, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235, USA
| | | |
Collapse
|
12
|
Debarbouille M, Gardan R, Arnaud M, Rapoport G. Role of bkdR, a transcriptional activator of the sigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis. J Bacteriol 1999; 181:2059-66. [PMID: 10094682 PMCID: PMC93617 DOI: 10.1128/jb.181.7.2059-2066.1999] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new gene, bkdR (formerly called yqiR), encoding a regulator with a central (catalytic) domain was found in Bacillus subtilis. This gene controls the utilization of isoleucine and valine as sole nitrogen sources. Seven genes, previously called yqiS, yqiT, yqiU, yqiV, bfmBAA, bfmBAB, and bfmBB and now referred to as ptb, bcd, buk, lpd, bkdA1, bkdA2, and bkdB, are located downstream from the bkdR gene in B. subtilis. The products of these genes are similar to phosphate butyryl coenzyme A transferase, leucine dehydrogenase, butyrate kinase, and four components of the branched-chain keto acid dehydrogenase complex: E3 (dihydrolipoamide dehydrogenase), E1alpha (dehydrogenase), E1beta (decarboxylase), and E2 (dihydrolipoamide acyltransferase). Isoleucine and valine utilization was abolished in bcd and bkdR null mutants of B. subtilis. The seven genes appear to be organized as an operon, bkd, transcribed from a -12, -24 promoter. The expression of the bkd operon was induced by the presence of isoleucine or valine in the growth medium and depended upon the presence of the sigma factor SigL, a member of the sigma 54 family. Transcription of this operon was abolished in strains containing a null mutation in the regulatory gene bkdR. Deletion analysis showed that upstream activating sequences are involved in the expression of the bkd operon and are probably the target of bkdR. Transcription of the bkd operon is also negatively controlled by CodY, a global regulator of gene expression in response to nutritional conditions.
Collapse
Affiliation(s)
- M Debarbouille
- Unité de Biochimie Microbienne, Institut Pasteur, URA 1300 du Centre National de la Recherche Scientifique, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
13
|
Huang YS, Chuang DT. Mechanism for basal expression of rat mitochondrial branched-chain-2-oxo-acid dehydrogenase kinase [corrected]. Biochem J 1998; 334 ( Pt 3):713-22. [PMID: 9729481 PMCID: PMC1219742 DOI: 10.1042/bj3340713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The rat branched-chain-2-oxo-acid dehydrogenase (BCOD) kinase mRNA is transcribed from a TATA-less promoter that has GC-rich sequences and two putative Sp1 binding sites near the transcription start site. We demonstrated previously that the 5' region of the kinase gene, base pairs -128 to +264, contained promoter activity when assayed using luciferase as a reporter (Huang and Chuang (1996) Biochem. J. 313, 603-609). To define DNA elements required for efficient expression of the kinase gene, nested deletion constructs of the above promoter region fused with a luciferase reporter gene were transfected into cultured H4IIE (hepatoma) and NRK-52E (kidney) cells. The results showed that the region between nucleotides -58 and +21 was indispensable for the kinase basal promoter activity. Methylation-interference and mutagenesis-promoter assays identified nucleotides -50 to -40 (ACAACTCCCA) as cis-acting DNA sequences that are required for nuclear protein binding and efficient promoter activity. Gel-supershift analysis with anti-Sp1 antibody suggested that the nuclear protein capable of binding to the -58 oligonucleotide (bp -58 to -34) was immunologically related to the Sp1 protein. The -58 oligonucleotide formed a DNA-protein complex with recombinant Sp1 protein with an affinity approximately ten-fold lower than that of the consensus Sp1 oligonucleotide. Co-transfection of the Sp1 expression plasmid and the -58 promoter construct into Drosophila Schneider cells revealed that Sp1 contributed to the kinase basal promoter activity by binding to the non-consensus site in the -58 region. Deletion of two consensus Sp1 binding sites (bases -150 to -140 and bases +29 to +38) in the kinase gene did not affect the basal promoter activity. Therefore binding of Sp1 or Sp1-like proteins to the above single non-consensus Sp1 sequence in the -58 region plays a major role of transactivating basal expression of the BCOD kinase.
Collapse
Affiliation(s)
- Y S Huang
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9038, USA
| | | |
Collapse
|
14
|
Rodríguez-Bayona B, Peragón J. Stimulation of rat-liver branched-chain alpha-keto acid dehydrogenase activity by chronic metabolic acidosis. Int J Biochem Cell Biol 1998; 30:529-34. [PMID: 9675886 DOI: 10.1016/s1357-2725(97)00158-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During chronic metabolic acidosis, the degradation of protein and amino acids reportedly increases. Branched-chain alpha-keto acid dehydrogenase complex (BCKDH) relates amino-acid catabolism and mitochondrial-energy metabolism. This study was designed to evaluate the effect of acidosis on the activity of liver BCKDH, the key regulatory enzyme in the catabolism of branched-chain amino acids. Experimental acidosis was induced in rats by ingestion of 0.28 M ammonium chloride solution for 10 days. We made two different liver-mitochondrial extracts to assay independently the active form of BCKDH and the total BCKDH activity. Acidosis significantly increased both active and total BCKDH specific activities (P < 0.05). The mean value for the active form of the BCKDH complex was 9.27 +/- 1.10 (S.E.M., n = 7) mU/mg of mitochondrial protein in acidotic rats and 5.18 +/- 0.84 (n = 7) for the control rats. The value of the total complex was 16.10 +/- 1.22 (n = 7) for the acidosis and 11.51 +/- 0.58 (n = 7) for the control. No significant changes were found in the activity state of the complex. Citrate synthase activity did not show significant variations between treatments. The stimulation of liver BCKDH activities by the acidosis may contribute to maintaining the level of intermediates of the tricarboxylic-acid cycle in this metabolic situation in which the net release of glutamine are produced.
Collapse
Affiliation(s)
- B Rodríguez-Bayona
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Spain
| | | |
Collapse
|
15
|
Hester K, Luo J, Burns G, Braswell EH, Sokatch JR. Purification of active E1 alpha 2 beta 2 of Pseudomonas putida branched-chain-oxoacid dehydrogenase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:828-36. [PMID: 8521848 DOI: 10.1111/j.1432-1033.1995.828_3.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Active E1 component of Pseudomonas putida branched-chain-oxoacid dehydrogenase was purified from P. putida strains carrying pJRS84 which contains bkdR (encoding the transcriptional activator) and bkdA1 and bkdA2 (encoding the alpha and beta subunits). Expression was inducible, however, 45-, 39- and 37-kDa proteins were produced instead of the expected 45-kDa and 37-kDa proteins. The 45-kDa protein was identified as E1 alpha and the 37-kDa and 39-kDa proteins were identified as separate translational products of bkdA2 by their N-terminal sequences. The N-terminal amino acid of the 39-kDa protein was leucine instead of methionine. The 45-, 39- and 37-kDa proteins were also produced in wild-type P.putida. Translation of bkdA1 and bkdA2 from an Escherichia coli expression plasmid produced only 45-kDa and 39-kDa proteins, with N-terminal methionine on the 39-kDa protein. The insertion of guanine residues 5' to the first ATG of bkdA2 did not affect expression of E1 beta in P. putida including the N-terminal leucine which appears to eliminate the possibility of ribosome jumping. The Z-average molecular mass of the E1 component was determined by sedimentation equilibrium to be 172 +/- 9 kDa compared to a calculated value of 166 kDa for the heterotetramer and a Stokes radius of 5.1 nm. E1 alpha Ser313, which is homologous to the phosphorylated residue of rat liver E1 alpha, was converted to alanine resulting in about a twofold increase in Km, but no change in Kcat. S315A and S319A mutations had no effect on Km or Kcat indicating that these residues do not play a major part in catalysis of E1 alpha beta 2.
Collapse
Affiliation(s)
- K Hester
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190, USA
| | | | | | | | | |
Collapse
|
16
|
Skinner DD, Morgenstern MR, Fedechko RW, Denoya CD. Cloning and sequencing of a cluster of genes encoding branched-chain alpha-keto acid dehydrogenase from Streptomyces avermitilis and the production of a functional E1 [alpha beta] component in Escherichia coli. J Bacteriol 1995; 177:183-90. [PMID: 8002616 PMCID: PMC176571 DOI: 10.1128/jb.177.1.183-190.1995] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A cluster of genes encoding the E1 alpha, E1 beta, and E2 subunits of branched-chain alpha-keto acid dehydrogenase (BCDH) of Streptomyces avermitilis has been cloned and sequenced. Open reading frame 1 (ORF1) (E1 alpha), 1,146 nucleotides long, would encode a polypeptide of 40,969 Da (381 amino acids). ORF2 (E1 beta), 1,005 nucleotides long, would encode a polypeptide of 35,577 Da (334 amino acids). The intergenic distance between ORF1 and ORF2 is 73 bp. The putative ATG start codon of the incomplete ORF3 (E2) overlaps the stop codon of ORF2. Computer-aided searches showed that the deduced products of ORF1 and ORF2 resembled the corresponding E1 subunit (alpha or beta) of several prokaryotic and eukaryotic BCDH complexes. When these ORFs were overexpressed in Escherichia coli, proteins of about 41 and 34 kDa, which are the approximate masses of the predicted S. avermitilis ORF1 and ORF2 products, respectively, were detected. In addition, specific E1 [alpha beta] BCDH activity was detected in E. coli cells carrying the S. avermitilis ORF1 (E1 alpha) and ORF2 (E1 beta) coexpressed under the control of the T7 promoter.
Collapse
Affiliation(s)
- D D Skinner
- Bioprocess Research, Central Research Division, Pfizer Inc., Groton, Connecticut 06340
| | | | | | | |
Collapse
|
17
|
Madhusudhan KT, Lorenz D, Sokatch JR. The bkdR gene of Pseudomonas putida is required for expression of the bkd operon and encodes a protein related to Lrp of Escherichia coli. J Bacteriol 1993; 175:3934-40. [PMID: 8320210 PMCID: PMC204820 DOI: 10.1128/jb.175.13.3934-3940.1993] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Branched-chain keto acid dehydrogenase is a multienzyme complex which is required for the metabolism of the branched-chain amino acids in Pseudomonas putida. The structural genes encoding all four proteins of the bkd operon have been cloned, and their nucleotide sequences have been determined (G. Burns, K. T. Madhusudhan, K. Hatter, and J. R. Sokatch, p. 177-184 in S. Silver, A. M. Chakrabarty, B. Iglewski, and S. Kaplan [ed.], Pseudomonas: Biotransformations, Pathogenesis, and Evolving Biotechnology, American Society for Microbiology, Washington D.C., 1990). An open reading frame which encoded a protein with 36.5% amino acid identity to the leucine-responsive regulatory protein (Lrp) of Escherichia coli was found immediately upstream of the bkd operon. Chromosomal mutations affecting this gene, named bkdR, resulted in a loss of ability to use branched-chain amino acids as carbon and energy sources and failure to produce branched-chain keto acid dehydrogenase. These mutations were complemented in trans by plasmids which contained intact bkdR. Mutations affecting bkdR did not have any effect on transport of branched-chain amino acids or transamination. Therefore, the bkdR gene product must affect expression of the bkd operon and regulation must be positive. Mutations affecting bkdR could also be complemented by plasmids containing lrp of E. coli. This is the first instance of a Lrp-like protein demonstrated to regulate expression of an operon outside of E. coli.
Collapse
Affiliation(s)
- K T Madhusudhan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190
| | | | | |
Collapse
|
18
|
Chuang J, Cox R, Chuang D. Characterization of the promoter-regulatory region and structural organization of E1 alpha gene (BCKDHA) of human branched-chain alpha-keto acid dehydrogenase complex. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53097-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
Davie J, Wynn R, Cox R, Chuang D. Expression and assembly of a functional E1 component (alpha 2 beta 2) of mammalian branched-chain alpha-ketoacid dehydrogenase complex in Escherichia coli. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42045-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Wynn RM, Chuang JL, Davie JR, Fisher CW, Hale MA, Cox RP, Chuang DT. Cloning and expression in Escherichia coli of mature E1 beta subunit of bovine mitochondrial branched-chain alpha-keto acid dehydrogenase complex. Mapping of the E1 beta-binding region on E2. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)46029-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
21
|
Shimomura Y, Nanaumi N, Suzuki M, Harris RA. Immunochemical identification of branched-chain 2-oxo acid dehydrogenase kinase. FEBS Lett 1991; 288:95-7. [PMID: 1879567 DOI: 10.1016/0014-5793(91)81010-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Branched-chain 2-oxo acid dehydrogenase kinase was characterized using anti-kinase polyclonal antibodies. The antibodies were purified from rabbit antiserum by an epitope selection method. The antibodies bound only to a 44 kDa polypeptide in the dehydrogenase-kinase complex and inhibited the kinase activity, substantiating that the 44 kDa polypeptide is the catalytic subunit of the kinase. The purified liver dehydrogenase-kinase complex, but not either the purified heart complex or the partially purified liver complex, contained 2 additional polypeptides of lower molecular weight which also reacted with the anti-kinase antibodies, suggesting that the liver kinase is subject to proteolytic degradation during purification.
Collapse
Affiliation(s)
- Y Shimomura
- Laboratory of Biochemistry of Exercise and Nutrition, University of Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
22
|
Popov KM, Shimomura Y, Harris RA. Purification and comparative study of the kinases specific for branched chain alpha-ketoacid dehydrogenase and pyruvate dehydrogenase. Protein Expr Purif 1991; 2:278-86. [PMID: 1821799 DOI: 10.1016/1046-5928(91)90084-v] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rat heart branched chain alpha-ketoacid dehydrogenase kinase (BCKDH kinase) and pyruvate dehydrogenase kinase (PDH kinase) were purified from their respective complexes to apparent homogeneity. BCKDH kinase consisted of one subunit with molecular weight 44,000-45,000 Da, whereas PDH kinase consisted of two subunits with molecular weight 48,000 Da (alpha) and 45,000 Da (beta) as previously shown for the bovine kidney enzyme (Stepp et al., 1983, J. Biol. Chem. 258, 9454-9458). Proteolysis maps of BCKDH kinase and the two subunits of PDH kinase were different, suggesting that all subunits are different entities. The alpha subunit of the rat heart PDH kinase could be cleaved selectively by chymotrypsin with concomitant loss of kinase activity, as previously shown for the bovine kidney enzyme, suggesting that the catalytic activity of PDH kinase resides in the alpha subunit. The beta subunit appeared to be a different entity unique to the PDH kinase. Both kinases exhibited marked substrate specificity toward their respective complexes and would not inactivate heterologous complexes. The kinases possessed slightly different substrate specificity toward histones. BCKDH kinase preferentially phosphorylated histones in the order f1 greater than f2B much greater than f2A much greater than f3. The relative order for PDH kinase was the same, but f2A and f3 were considerably better substrates than they were for BCKDH kinase. These observations suggest that the kinases have different requirements for the structure of the protein at their phosphorylation sites.
Collapse
Affiliation(s)
- K M Popov
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202-5122
| | | | | |
Collapse
|
23
|
Zneimer SM, Lau KS, Eddy RL, Shows TB, Chuang JL, Chuang DT, Cox RP. Regional assignment of two genes of the human branched-chain alpha-keto acid dehydrogenase complex: the E1 beta gene (BCKDHB) to chromosome 6p21-22 and the E2 gene (DBT) to chromosome 1p31. Genomics 1991; 10:740-7. [PMID: 1889817 DOI: 10.1016/0888-7543(91)90458-q] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Maple syrup urine disease (MSUD) is caused by the deficiency of the mitochondrial branched-chain alpha-keto acid dehydrogenase complex. The multienzyme complex is a macromolecule (Mr 4 X 10(6] consisting of at least six distinct subunits. In this study, the human E1 beta gene (BCKDHB) has been localized to human chromosome 6 by hybrid somatic cell analysis, and regionally assigned to chromosome bands 6p21-22 by in situ hybridization. The E2 gene (DBT), which was previously localized to chromosome 1, is regionally assigned to the chromosome band 1p31 also by in situ hybridization. Localization of the E1 beta gene to chromosome 6p21-22 assigns another major human disease locus to a region that contains several important genes, including the major histocompatability complex, tumor necrosis factor, and heat-shock protein HSP70. Mapping of the E1 beta and the E2 genes may provide information for the linkage analysis of MSUD families with mutations in these two loci.
Collapse
Affiliation(s)
- S M Zneimer
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas 75235
| | | | | | | | | | | | | |
Collapse
|
24
|
Mitsubuchi H, Nobukuni Y, Akaboshi I, Indo Y, Endo F, Matsuda I. Maple syrup urine disease caused by a partial deletion in the inner E2 core domain of the branched chain alpha-keto acid dehydrogenase complex due to aberrant splicing. A single base deletion at a 5'-splice donor site of an intron of the E2 gene disrupts the consensus sequence in this region. J Clin Invest 1991; 87:1207-11. [PMID: 2010537 PMCID: PMC295137 DOI: 10.1172/jci115120] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have studied the molecular bases of maple syrup urine disease by analyzing the activity, subunit structure, mRNA sequence, and the genome of the affected enzyme. The branched chain alpha-keto acid dehydrogenase (BCKDH) activity in the patient was 4.2-4.5% of the control level. Immunoblot analysis revealed that the E2 subunit of BCKDH (Mr 52,000) was absent and another protein band with an Mr of 49,000 was present. We amplified the cDNA of the E2 subunit obtained from the patient's cell using the polymerase chain reaction method, then sequenced the amplified cDNA, in which a 78-bp deletion was identified. The consanguineous parents and a sister had two species of mRNA; the one corresponding to the normal E2 subunit and the other with a 78-bp deletion, whereas findings in a brother were normal. The molecular size of the translation products as deduced from the abnormal mRNA sequence was compatible with an abnormal protein band (Mr 49,000) detected in the patient's cells by immunoblot analysis. Analysis of genomic DNA of BCKDH-E2 subunit revealed that the 78-bp deletion in the mRNA was caused by an exon skipping due to a single base deletion in the 5'-splice donor site. As a result of the mutation, part of the inner E2 core domain was omitted. The specified region of the inner E2 core domain was highly homologous to the region of the E2 subunit of pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase. These observations imply the biological importance of the region in the inner E2 core domain of BCKDH to maintain normal function of the activity.
Collapse
Affiliation(s)
- H Mitsubuchi
- Department of Pediatrics, Kumamoto University Medical School, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Clarkson GH, Lindsay JG. Immunology, biosynthesis and in vivo assembly of the branched-chain 2-oxoacid dehydrogenase complex from bovine kidney. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 196:95-100. [PMID: 2001711 DOI: 10.1111/j.1432-1033.1991.tb15790.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Specific, polyclonal antisera have been raised to the native branched-chain 2-oxoacid dehydrogenase complex (BCOADC) from bovine kidney and each of its three constituent enzymes: E1, the substrate-specific 2-oxoacid dehydrogenase; E2, the multimeric dihydrolipoamide acyltransferase 'core' enzyme and E3, dihydrolipoamide dehydrogenase. Purified BCOADC, isolated by selective poly(ethyleneglycol) precipitation and hydroxyapatite chromatography, contains only traces of endogenous E3 as detected by a requirement for this enzyme in assaying overall complex activity and by immunoblotting criteria. A weak antibody response was elicited by the E1 beta subunit relative to the E2 and E1 alpha polypeptides employing either purified E1 or BCOADC as antigens. Anti-BCOADC serum showed no cross-reaction with high levels of pig heart E3 indicating the absence of antibody directed against this component. However, immunoprecipitates of mature BCOADC from detergent extracts of NBL-1 (bovine kidney) or PK-15 (porcine kidney) cell lines incubated for 3-4 h in the presence of [35S]methionine contained an additional 55,000-Mr species which was identified as E3 on the basis of immunocompetition studies. Accumulation of newly synthesised [35S]methionine-labelled precursors for E2, E1 alpha and E3 was achieved by incubation of PK-15 cells for 4 h in the presence of uncouplers of oxidative phosphorylation. Pre-E2 exhibited an apparent Mr value of 56,500, pre-E1 alpha, 49,000 and pre-E3, 57,000 compared to subunit Mr values of 50,000, 46,000 and 55,000, respectively, for the mature polypeptides. Thus, like the equivalent lipoate acyltransferases of the mammalian pyruvate dehydrogenase (PDC) and 2-oxoglutarate dehydrogenase (OGDC) complexes, pre-E2 of BCOADC characteristically contains an extended presequence. In NBL-1 cells, pre-E2 was found to be unstable since no cytoplasmic pool of this precursor could be detected; moreover, processed E1 alpha was not assembled into intact BCOADC as evidenced by the absence of E2 or E3 in immunoprecipitates with anti-(BCOADC) serum after a 45-min 'chase' period in the absence of uncoupler. Dihydrolipoamide dehydrogenase (E3), in its precursor state, was not present in immune complexes with anti-(BCOADC) serum, indicating that its co-precipitation with mature complex is by virtue of its high affinity for assembled complex in vivo whereas no equivalent interaction of pre-E3 with its companion precursors occurs prior to mitochondrial import.
Collapse
Affiliation(s)
- G H Clarkson
- Department of Biochemistry, University of Glasgow, Scotland, UK
| | | |
Collapse
|
26
|
Lau KS, Lee J, Fisher CW, Cox RP, Chuang DT. Premature termination of transcription and alternative splicing in the human transacylase (E2) gene of the branched-chain alpha-ketoacid dehydrogenase complex. FEBS Lett 1991; 279:229-32. [PMID: 2001734 DOI: 10.1016/0014-5793(91)80155-v] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have isolated a human genomic clone hgE2-14 containing exons 5, 6, 7 and 8 of the branched-chain alpha-ketoacid dehydrogenase E2 transacylase gene. Sequencing of exon 8 and its surrounding intronic sequences reveals complete identity with the previously reported truncated E2 cDNA (hE2-1) sequence between nucleotides 938 and 1521. We have identified consensus splice site junctions flanking exon 8 and also a cryptic 3' splice site 370 bases upstream from the start of exon 8 in the gene. In addition, two polyadenylation signals located in the hE2-1 cDNA are also present in the intronic sequence downstream of exon 8 which promote termination of transcription. The data indicate that shortened human liver E2 transcripts undergo alternative splicing to yield mRNA of the hE2-1 type.
Collapse
Affiliation(s)
- K S Lau
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235-9038
| | | | | | | | | |
Collapse
|
27
|
Kure S, Koyata H, Kume A, Ishiguro Y, Hiraga K. The glycine cleavage system. The coupled expression of the glycine decarboxylase gene and the H-protein gene in the chicken. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)49992-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Shimomura Y, Nanaumi N, Suzuki M, Popov KM, Harris RA. Purification and partial characterization of branched-chain alpha-ketoacid dehydrogenase kinase from rat liver and rat heart. Arch Biochem Biophys 1990; 283:293-9. [PMID: 2177326 DOI: 10.1016/0003-9861(90)90645-f] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Branched-chain alpha-ketoacid dehydrogenase kinase was purified to homogeneity from rat liver and rat heart. The initial step was the purification of rat liver and heart branched-chain alpha-ketoacid dehydrogenase complex with high kinase activity by a modification of a method described previously. Preservation of high kinase activity during purification of the complex required the presence of fresh dithiothreitol throughout the procedure. The kinase was released from the complex by oxidation of dithiothreitol with potassium ferricyanide and purified by high-speed centrifugation, immunoadsorption chromatography, and DEAE-Sephacel chromatography. Both kinase preparations gave only one polypeptide band with a molecular weight of 44,000 on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Phosphorylation and inactivation of the branched-chain alpha-ketoacid dehydrogenase complex by the purified kinase was inhibited by alpha-chloroisocaproate and dichloroacetate, established inhibitors of the phosphorylation of the branched-chain alpha-ketoacid dehydrogenase complex. The kinase did not exhibit autophosphorylation and does not correspond to the same protein as pyruvate dehydrogenase kinase. The kinase phosphorylated histone (type II-S), but this reaction was slow relative to the phosphorylation of the branched-chain alpha-ketoacid dehydrogenase complex and was not inhibited by alpha-chloroisocaproate.
Collapse
Affiliation(s)
- Y Shimomura
- Laboratory of Biochemistry of Exercise and Nutrition, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
29
|
Matsuda I, Nobukuni Y, Mitsubuchi H, Indo Y, Endo F, Asaka J, Harada A. A T-to-A substitution in the E1 alpha subunit gene of the branched-chain alpha-ketoacid dehydrogenase complex in two cell lines derived from Menonite maple syrup urine disease patients. Biochem Biophys Res Commun 1990; 172:646-51. [PMID: 2241958 DOI: 10.1016/0006-291x(90)90723-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We cloned and sequenced cDNAs of the E1 alpha and E1 beta subunits of the branched chain alpha-ketoacid dehydrogenase complex (BCKDH) in two cell lines derived from two different Menonite MSUD patients (GM 1655, GM 1099). A T-to-A substitution which generates an asparagine in place of a tyrosine at amino acid 394 of the mature E1 alpha subunit was present in both alleles in these two cell lines, whereas cDNAs of the E1 beta subunit in these cell lines were identical to that of normal human lymphoid cell line and that of the clone from a human placenta cDNA library. It is suggested that the Menonite MSUD is caused by the missense mutation of the E1 alpha subunit of the BCKDH complex.
Collapse
Affiliation(s)
- I Matsuda
- Department of Pediatrics, Kumamoto University Medical School, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Nobukuni Y, Mitsubuchi H, Endo F, Akaboshi I, Asaka J, Matsuda I. Maple syrup urine disease. Complete primary structure of the E1 beta subunit of human branched chain alpha-ketoacid dehydrogenase complex deduced from the nucleotide sequence and a gene analysis of patients with this disease. J Clin Invest 1990; 86:242-7. [PMID: 2365818 PMCID: PMC296713 DOI: 10.1172/jci114690] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A defect in the E1 beta subunit of the branched chain alpha-ketoacid dehydrogenase (BCKDH) complex is one cause of maple syrup urine disease (MSUD). In an attempt to elucidate the molecular basis of MSUD, we isolated and characterized a 1.35 kbp cDNA clone encoding the entire precursor of the E1 beta subunit of BCKDH complex from a human placental cDNA library. Nucleotide sequence analysis revealed that the isolated cDNA clone (lambda hBE1 beta-1) contained a 5'-untranslated sequence of four nucleotides, the translated sequence of 1,176 nucleotides and the 3'-untranslated sequence of 169 nucleotides. Comparison of the amino acid sequence predicted from the nucleotide sequence of the cDNA insert of the clone with the NH2-terminal amino acid sequence of the purified mature bovine BCKDH-E1 beta subunit showed that the cDNA insert encodes for a 342-amino acid subunit with a Mr = 37,585. The subunit is synthesized as the precursor with a leader sequence of 50 amino acids and is processed at the NH2 terminus. A search for protein homology revealed that the primary structure of human BCKDH-E1 beta was similar to the bovine BCKDH-E1 beta and to the E1 beta subunit of human pyruvate dehydrogenase complex, in all regions. The structures and functions of mammalian alpha-ketoacid dehydrogenase complexes are apparently highly conserved. Genomic DNA from lymphoblastoid cell lines derived from normal and five MSUD patients, in whom E1 beta was not detected by immunoblot analysis, gave the same restriction maps on Southern blot analysis. The gene has at least 80 kbp.
Collapse
Affiliation(s)
- Y Nobukuni
- Department of Pediatrics, Kumamoto University Medical School, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Nobukuni Y, Mitsubuchi H, Endo F, Asaka J, Oyama R, Titani K, Matsuda I. Isolation and characterization of a complementary DNA clone coding for the E1 beta subunit of the bovine branched-chain alpha-ketoacid dehydrogenase complex: complete amino acid sequence of the precursor protein and its proteolytic processing. Biochemistry 1990; 29:1154-60. [PMID: 2322554 DOI: 10.1021/bi00457a009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A 1.7-kb cDNA clone encoding the entire precursor of the E1 beta subunit of the branched-chain alpha-ketoacid dehydrogenase (BCKDH) complex was isolated from a bovine liver cDNA library by screening with a mixture of synthetic oligonucleotide probes corresponding to the C-terminal five-residue sequence of the mature E1 beta subunit. A partial amino acid sequence was determined by Edman degradation of the intact subunit and the peptides generated by cleavage at the lysyl bonds. Nucleotide sequence analysis revealed that the isolated cDNA clone contained the 5'-untranslated sequence of 186 nucleotides, the translated sequence of 1176 nucleotides, and the 3'-untranslated sequence of 306 nucleotides with a poly(A) tail. A type AATAAA polyadenylation signal was located 17 nucleotides upstream of the start of a poly(A) tail. Comparison of the amino acid sequence predicted from the nucleotide sequence of the cDNA insert of the clone with the partial amino acid sequence of the mature BCKDH E1 beta subunit showed that the cDNA insert encodes for a 342 amino acid subunit with Mr 37,745 and that the subunit is synthesized as the precursor with a leader sequence of 50 amino acids and processed at the N-terminus. Northern blot analysis using the cDNA insert as a probe showed the presence of a 1.8-1.9-kb mRNA in bovine liver, suggesting that the insert covers nearly a full length of mRNA. Alignment of the deduced amino acid sequence of bovine BCKDH E1 beta with that of the human pyruvate dehydrogenase (PDH) complex E1 beta subunit revealed a high degree of sequence homology throughout the two enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Y Nobukuni
- Department of Pediatrics, Kumamoto University Medical School, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Premature translation termination of the pre-E1 alpha subunit of the branched chain alpha-ketoacid dehydrogenase as a cause of maple syrup urine disease in Polled Hereford calves. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39814-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
33
|
Harris RA, Zhang B, Goodwin GW, Kuntz MJ, Shimomura Y, Rougraff P, Dexter P, Zhao Y, Gibson R, Crabb DW. Regulation of the branched-chain alpha-ketoacid dehydrogenase and elucidation of a molecular basis for maple syrup urine disease. ADVANCES IN ENZYME REGULATION 1990; 30:245-63. [PMID: 2403034 DOI: 10.1016/0065-2571(90)90021-s] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hepatic branched-chain alpha-ketoacid dehydrogenase complex plays an important role in regulating branched-chain amino acid levels. These compounds are essential for protein synthesis but toxic if present in excess. When dietary protein is deficient, the hepatic enzyme is converted to the inactive, phosphorylated state to conserve branched-chain amino acids for protein synthesis. When dietary protein is excessive, the enzyme is in the active, dephosphorylated state to commit the excess branched-chain amino acids to degradation. Inhibition of protein synthesis by cycloheximide, even when the animal is starving for dietary protein, results in activation of the hepatic branched-chain alpha-ketoacid dehydrogenase complex to prevent accumulation of branched-chain amino acids. Likewise, the increase in branched-chain amino acids caused by body wasting during starvation and uncontrolled diabetes is blunted by activation of the hepatic branched-chain alpha-ketoacid dehydrogenase complex. The activity state of the complex is regulated in the short term by the concentration of branched-chain alpha-ketoacids (inhibitors of branched-chain alpha-ketoacid dehydrogenase kinase) and in the long term by alteration in total branched-chain alpha-ketoacid dehydrogenase kinase activity. cDNAs have been cloned and the primary structure of the mature proteins deduced for the E1 alpha subunit of the human and rat liver branched-chain alpha-ketoacid dehydrogenase complex. The cDNA and protein sequences are highly conserved for the two species. Considerable sequence similarity is also apparent between the E1 alpha subunits of the human branched-chain alpha-ketoacid dehydrogenase complex and the pyruvate dehydrogenase complex. Maple syrup urine disease is caused by an inherited deficiency in the branched-chain alpha-ketoacid dehydrogenase complex. The molecular basis of one maple syrup urine disease family has been determined for the first time. The patient was found to be a compound heterozygote, inheriting an allele encoding an abnormal E1 alpha from the father, and an allele which is not expressed from the mother. The only known animal model for the disease (Polled Hereford cattle) has also been characterized. The mutation in these animals introduces a stop codon in the leader peptide of the E1 alpha subunit, resulting in premature termination of translation. Two thiamine responsive patients have been studied. The deduced amino acid sequences of the mature E1 alpha subunit and its leader sequence were normal, suggesting that the defect in these patients must exist in some other subunit of the complex. 3-Hydroxyisobutyrate dehydrogenase and methylmalonate-semialdehyde dehydrogenase, two enzymes of the valine catabolic pathway, were purified from liver tissue and characterized.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R A Harris
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis 46202
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Harris RA, Goodwin GW, Paxton R, Dexter P, Powell SM, Zhang B, Han A, Shimomura Y, Gibson R. Nutritional and hormonal regulation of the activity state of hepatic branched-chain alpha-keto acid dehydrogenase complex. Ann N Y Acad Sci 1989; 573:306-13. [PMID: 2634349 DOI: 10.1111/j.1749-6632.1989.tb15007.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The hepatic branched-chain alpha-keto acid dehydrogenase complex plays an important role in regulating branched-chain amino acid levels. These compounds are essential for protein synthesis but are toxic if present in excess. When dietary protein is deficient, the hepatic enzyme is present in the inactive, phosphorylated state to allow conservation of branched-chain amino acids for protein synthesis. When dietary protein is excessive, the enzyme is in the active, dephosphorylated state to commit the excess branched-chain amino acids to degradation. Inhibition of protein synthesis by cycloheximide, even when the animal is starving for protein, results in activation of the hepatic branched-chain alpha-keto acid dehydrogenase complex to prevent accumulation of branched-chain amino acids. Likewise, the increase in branched-chain amino acids caused by body wasting during starvation and uncontrolled diabetes is blunted by activation of the hepatic branched-chain alpha-keto acid dehydrogenase complex. The activity state of the hepatic branched-chain alpha-keto acid dehydrogenase complex is regulated in the short term by the concentration of branched-chain alpha-keto acids (inhibitors of branched-chain alpha-keto acid dehydrogenase kinase) and in the long term by alteration in the total branched chain alpha-keto acid dehydrogenase kinase activity.
Collapse
Affiliation(s)
- R A Harris
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis 46223
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nobukuni Y, Mitsubuchi H, Endo F, Matsuda I. Complete primary structure of the transacylase (E2b) subunit of the human branched chain alpha-keto acid dehydrogenase complex. Biochem Biophys Res Commun 1989; 161:1035-41. [PMID: 2742576 DOI: 10.1016/0006-291x(89)91347-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We isolated from a placental cDNA library by immunoscreening a cDNA clone encoding the transacylase (E2b) precursor of the human branched chain alpha-keto acid dehydrogenase (BCKDH) complex. The cDNA insert consists of 2,649 base pairs with an open reading frame of 1,431 base pairs which can be translated into 477 amino acids and a 3'-untranslated region of 1,205 base pairs. The deduced amino acid sequence includes a leader peptide of 56 amino acid residues, a lipoyl-bearing domain, a E3-binding domain and an inner core domain. A mature human E2b subunit is likely to contain 421 amino acid residues with a calculated Mr 46,322. The nucleotide sequence of the open reading frame and the deduced amino acid sequence of the human E2b shows 91.6% and 92.0% homology with those of the bovine E2b subunit, respectively.
Collapse
Affiliation(s)
- Y Nobukuni
- Department of Pediatrics, Kumamoto University Medical School, Japan
| | | | | | | |
Collapse
|
36
|
Frick GP, Goodman HM. Insulin regulation of the activity and phosphorylation of branched-chain 2-oxo acid dehydrogenase in adipose tissue. Biochem J 1989; 258:229-35. [PMID: 2649086 PMCID: PMC1138345 DOI: 10.1042/bj2580229] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The activity of the intramitochondrial branched-chain 2-oxo acid dehydrogenase (BCDH), like that of pyruvate dehydrogenase, is regulated, at least in part, by interconversion between the active dephosphorylated enzyme and its inactive phosphorylated form. The stimulatory effect of insulin on BCDH activity was compared with its effect on phosphorylation of the enzyme. Intact tissues were incubated in the presence or the absence of insulin, and then mitochondria were isolated and disrupted before assaying for enzyme activity or estimating the extent of enzyme phosphorylation. Tissues were incubated in either the presence or the absence of leucine, which also stimulated BCDH activity up to 10-fold. Insulin (1 munit/ml) doubled the activity of BCDH in the absence and in the presence of leucine. Together, 1 mM-leucine and insulin appeared to stimulate BCDH activity fully. Phosphorylation of BCDH was estimated indirectly by measuring the incorporation of 32P into phosphorylation sites that remained unesterified after preparing mitochondrial extracts under conditions that preserved the effect of insulin on BCDH activity. Increased incorporation of 32P in these experiments implies decreased phosphorylation in situ when tissues were incubated with insulin and leucine. In the absence of leucine, little incorporation of 32P into BCDH was detected. In the presence of leucine, however, incorporation of 32P into BCDH was markedly increased, and insulin increased 32P incorporation still further. The results support the hypothesis that leucine and insulin both stimulate the activity of BCDH by promoting its dephosphorylation.
Collapse
Affiliation(s)
- G P Frick
- Department of Physiology, University of Massachusetts Medical School, Worcester 01655
| | | |
Collapse
|
37
|
|
38
|
Beggs M, Shaw JM, Randle PJ. Longer-term regulation of branched-chain-2-oxoacid dehydrogenase complex studied in rat hepatocytes in culture. Biochem J 1989; 257:271-5. [PMID: 2920017 PMCID: PMC1135566 DOI: 10.1042/bj2570271] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effect of protein-free diet to decrease liver activity of branched-chain (-2-oxoacid) dehydrogenase (BCD) complex (active form) and increase BCD kinase activity was unaffected by preparation of hepatocytes, but partially reversed by 25 h of culture of hepatocytes in medium 199. Activation of BCD complex preceded loss of BCD kinase. The effect of culture on BCD complex was completely prevented by omission of branched-chain amino acids and partially prevented by 1 mM-alpha-cyano-4-hydroxycinnamate or 0.2 mM-pyruvate/2 mM-lactate. Protein-free diet decreased plasma branched-chain amino and oxo ('keto') acids and increased plasma pyruvate and lactate. It is concluded: (1) that branched-chain amino acids are involved directly in regulation of activities of BCD complex and BCD kinase; (2) that mitochondrial uptake of branched-chain oxo acids is necessary for regulation of BCD complex activity; and (3) that the stable increase in BCD kinase may function as a hysteresis mechanism.
Collapse
Affiliation(s)
- M Beggs
- Nuffield Department of Clinical Biochemistry, University of Oxford, U.K
| | | | | |
Collapse
|
39
|
Beggs M, Randle PJ. Activity of branched-chain 2-oxo acid dehydrogenase complex in rat liver mitochondria and in rat liver. Biochem J 1988; 256:929-34. [PMID: 3223962 PMCID: PMC1135505 DOI: 10.1042/bj2560929] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Four mitochondrial marker enzymes were used to show that: (1) high-protein (24%) diet increased the rat liver concentration and content of total branched-chain 2-oxo acid dehydrogenase complex (BCDC) by 31% by increasing mitochondrial specific activity of BCDC; (2) starvation increased the liver concentration of BCDC by 25% by decreasing liver weight; the liver content of mitochondria and the mitochondrial specific activity of BCDC were unchanged; (3) protein-free diet decreased rat liver BCDC concentration and content by 20%, by decreasing the liver concentration and content of mitochondria. Protein-free diet increased liver mitochondrial specific activities of L-glutamate, 2-oxoglutarate and NAD-isocitrate dehydrogenases. The validity of a mitochondrial method for the determination of the liver concentration of BCDC and the percentage in the active form in vivo is confirmed, and improvements are described. The experimental basis of criticisms of its use in this regard by Zhang, Paxton, Goodwin, Shimomura & Harris [(1987) Biochem. J. 246, 625-631] was not confirmed. The finding by Harris, Powell, Paxton, Gillim & Nagae [(1985) Arch. Biochem. Biophys. 243, 542-555], that starvation has no effect on the percentage of BCDC in the active form in rat liver, is confirmed.
Collapse
Affiliation(s)
- M Beggs
- Department of Clinical Biochemistry, University of Oxford, John Radcliffe Hospital, U.K
| | | |
Collapse
|
40
|
Shimomura Y, Kuntz MJ, Suzuki M, Ozawa T, Harris RA. Monovalent cations and inorganic phosphate alter branched-chain alpha-ketoacid dehydrogenase-kinase activity and inhibitor sensitivity. Arch Biochem Biophys 1988; 266:210-8. [PMID: 3178224 DOI: 10.1016/0003-9861(88)90252-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Potassium ion protects the branched-chain alpha-ketoacid dehydrogenase complex against inactivation by thermal denaturation and protease digestion. Rubidium was effective but sodium and lithium were not, suggesting that the ionic size of the cation is important for stabilization of the enzyme. Thiamine pyrophosphate stabilization of the complex [Danner, D. J., Lemmon, S. K., and Elsas, S. J. (1980) Arch. Biochem. Biophys. 202, 23-28] was found dependent on the presence of potassium ion. Studies with resolved components indicate that the thiamine pyrophosphate-dependent enzyme of the complex, i.e., the 2-oxoisovalerate dehydrogenase (lipoamide) (EC 1.2.4.4), is the component stabilized by potassium ion. Branched-chain alpha-ketoacid dehydrogenase-kinase activity measured by inactivation of the branched-chain alpha-ketoacid dehydrogenase complex was maximized at a potassium ion concentration of 100 mM. Stimulation of kinase activity was also found with rubidium ion but not with lithium and sodium ions. All salts tested increased the efficiency of inactivation by phosphorylation, i.e., decreased the degree of enzyme phosphorylation required to cause inactivation of the complex. The effectiveness and efficacy of alpha-chloroisocaproate as an inhibitor of branched-chain alpha-ketoacid dehydrogenase kinase were enhanced by the presence of monovalent cations, and further increased by inorganic phosphate. These findings suggest that monovalent cations and anions, particularly potassium and phosphate, cause structural changes in the dehydrogenase-kinase complex that alter its susceptibility to phosphorylation and responsiveness to kinase inhibitors.
Collapse
Affiliation(s)
- Y Shimomura
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis 46223
| | | | | | | | | |
Collapse
|
41
|
Griffin TA, Lau KS, Chuang DT. Characterization and conservation of the inner E2 core domain structure of branched-chain alpha-keto acid dehydrogenase complex from bovine liver. Construction of a cDNA encoding the entire transacylase (E2b) precursor. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68177-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
42
|
Hu CW, Lau KS, Griffin TA, Chuang JL, Fisher CW, Cox RP, Chuang DT. Isolation and sequencing of a cDNA encoding the decarboxylase (E1)alpha precursor of bovine branched-chain alpha-keto acid dehydrogenase complex. Expression of E1 alpha mRNA and subunit in maple-syrup-urine-disease and 3T3-L1 cells. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68408-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Lau KS, Griffin TA, Hu CW, Chuang DT. Conservation of primary structure in the lipoyl-bearing and dihydrolipoyl dehydrogenase binding domains of mammalian branched-chain alpha-keto acid dehydrogenase complex: molecular cloning of human and bovine transacylase (E2) cDNAs. Biochemistry 1988; 27:1972-81. [PMID: 2837277 DOI: 10.1021/bi00406a025] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The subunit structures and conservation of the dihydrolipoyl transacylase (E2) components of bovine and human branched-chain alpha-keto acid dehydrogenase complexes were investigated by Western blotting, peptide sequencing, and cDNA cloning methods. Rabbit antiserum prepared against the sodium dodecyl sulfate (SDS) denaturated bovine E2 subunit recognized the inner E2 core, and the first hinge region of the E2 chain, but failed to react with the lipoyl-bearing domain as determined by Western blot analysis. The lack of antigenicity in the lipoyl-bearing domain was confirmed with antibodies directed against the native E2 component. A human E2 cDNA (1.6 kb) was isolated from a human liver cDNA library in lambda gt11 with a combination of the above anti-native and anti-SDS-denatured E2 immunoglobulin G's as a probe. The fidelity of the human E2 cDNA was established by nucleotide sequencing which showed the determined peptide sequences of the amino terminus and tryptic fragments of bovine E2. A bovine E2 cDNA (0.7 kb) was also isolated from a bovine liver cDNA library in lambda ZAP with the human E2 cDNA as a probe. Northern blot analysis using the human E2 cDNA probe showed that E2 mRNAs in bovine liver and human kidney mesangial cells are 3.3 and 4.6 kb in size, respectively. Primary structures derived from human and bovine E2 cDNAs show leader sequences including the initiator methionine and the homologous mature peptides consisting of complete lipoyl-bearing and dihydrolipoyl dehydrogenase (E3) binding domains and two hinge regions. In addition, the human E2 cDNA contains a portion of the inner E2 core sequence, a 3'-untranslated region, and a poly(A+) tail. Deduced amino acid sequences of the mammalian E2's were compared with those of Escherichia coli transacetylase and transsuccinylase and bovine kidney transacetylase. The results indicate a high degree of conservation in the sequence flanking the lipoyl-attachment site and in the E3-binding domain. Models are presented to discuss implications for the conserved structure-function relationship in the lipoyl-bearing and E3-binding domains of alpha-keto acid dehydrogenase complexes.
Collapse
Affiliation(s)
- K S Lau
- Department of Medicine, Veterans Administration Medical Center, Cleveland, Ohio 44106
| | | | | | | |
Collapse
|
44
|
Miller RH, Eisenstein RS, Harper AE. Effects of dietary protein intake on branched-chain keto acid dehydrogenase activity of the rat. Immunochemical analysis of the enzyme complex. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)69092-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
45
|
Espinal J, Beggs M, Randle PJ. Assay of branched-chain alpha-keto acid dehydrogenase kinase in mitochondrial extracts and purified branched-chain alpha-keto acid dehydrogenase complexes. Methods Enzymol 1988; 166:166-75. [PMID: 2977212 DOI: 10.1016/s0076-6879(88)66023-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
46
|
Damuni Z, Reed LJ. Branched-chain alpha-keto acid dehydrogenase phosphatase and its inhibitor protein from bovine kidney. Methods Enzymol 1988; 166:321-9. [PMID: 2853819 DOI: 10.1016/s0076-6879(88)66044-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
47
|
Harris RA, Kuntz MJ, Simpson R. Inhibition of branched-chain alpha-keto acid dehydrogenase kinase by alpha-chloroisocaproate. Methods Enzymol 1988; 166:114-23. [PMID: 3071696 DOI: 10.1016/s0076-6879(88)66017-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
48
|
Chuang DT. Assays for E1 and E2 components of the branched-chain keto acid dehydrogenase complex. Methods Enzymol 1988; 166:146-54. [PMID: 3071698 DOI: 10.1016/s0076-6879(88)66021-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
49
|
Zhang B, Kuntz MJ, Goodwin GW, Harris RA, Crabb DW. Molecular cloning of a cDNA for the E1 alpha subunit of rat liver branched chain alpha-ketoacid dehydrogenase. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)48161-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Han AC, Goodwin GW, Paxton R, Harris RA. Activation of branched-chain alpha-ketoacid dehydrogenase in isolated hepatocytes by branched-chain alpha-ketoacids. Arch Biochem Biophys 1987; 258:85-94. [PMID: 3662542 DOI: 10.1016/0003-9861(87)90325-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The effects of branched-chain alpha-ketoacids on flux through and activity state of the branched-chain alpha-ketoacid dehydrogenase complex were studied in hepatocytes prepared from chow-fed, starved, and low-protein-diet-fed rats. Very low concentrations of alpha-ketoisocaproate caused a dramatic stimulation (50% activation at 20 microM) of alpha-ketoisovalerate decarboxylation in hepatocytes from low-protein-fed rats. alpha-Keto-beta-methylvalerate was also effective, but less so than alpha-ketoisocaproate. alpha-Ketoisocaproate did not stimulate alpha-ketoisovalerate decarboxylation by hepatocytes from chow-fed or starved rats. To a smaller degree, alpha-keto-beta-methylvalerate and alpha-ketoisovalerate stimulated alpha-ketoisocaproate decarboxylation by hepatocytes from low-protein-fed rats. The implied order of potency of stimulation of flux through branched-chain alpha-ketoacid dehydrogenase was alpha-ketoisocaproate greater than alpha-keto-beta-methylvalerate greater than alpha-ketoisovalerate, i.e., the same order of potency of these compounds as branched-chain alpha-ketoacid dehydrogenase kinase inhibitors. Fluoride, known to inhibit branched-chain alpha-ketoacid dehydrogenase phosphatase, largely prevented alpha-ketoisocaproate and alpha-chloroisocaproate activation of flux through the branched-chain alpha-ketoacid dehydrogenase. Assay of the branched-chain alpha-ketoacid complex in cell-free extracts of hepatocytes isolated from low-protein-diet-fed rats confirmed that alpha-ketoacids affected the activity state of the complex. Branched-chain alpha-ketoacids failed to activate flux in hepatocytes prepared from chow-fed and starved rats because essentially all of the complex was already in the dephosphorylated, active state. These findings indicate that inhibition of branched-chain alpha-ketoacid dehydrogenase kinase activity by branched-chain alpha-ketoacids is important for regulation of the activity state of hepatic branched-chain alpha-ketoacid dehydrogenase.
Collapse
Affiliation(s)
- A C Han
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis 46223
| | | | | | | |
Collapse
|