1
|
Dagar J, Maurya S, Antil S, Abraham JS, Somasundaram S, Lal R, Makhija S, Toteja R. Symbionts of Ciliates and Ciliates as Symbionts. Indian J Microbiol 2024; 64:304-317. [PMID: 39010998 PMCID: PMC11246404 DOI: 10.1007/s12088-024-01203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/06/2024] [Indexed: 07/17/2024] Open
Abstract
Endosymbiotic relationships between ciliates and others are critical for their ecological roles, physiological adaptations, and evolutionary implications. These can be obligate and facultative. Symbionts often provide essential nutrients, contribute to the ciliate's metabolism, aid in digestion, and offer protection against predators or environmental stressors. In turn, ciliates provide a protected environment and resources for their symbionts, facilitating their survival and proliferation. Ultrastructural and full-cycle rRNA approaches are utilized to identify these endosymbionts. Fluorescence in situ hybridization using "species- and group-specific probes" which are complementary to the genetic material (DNA or RNA) of a particular species or group of interest represent convenient tools for their detection directly in the environment. A systematic survey of these endosymbionts has been conducted using both traditional and metagenomic approaches. Ciliophora and other protists have a wide range of prokaryotic symbionts, which may contain potentially pathogenic bacteria. Ciliates can establish symbiotic relationships with a variety of hosts also, ranging from protists to metazoans. Understanding ciliate symbiosis can provide useful insights into the complex relationships that drive microbial communities and ecosystems in general.
Collapse
Affiliation(s)
- Jyoti Dagar
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Swati Maurya
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Sandeep Antil
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | | | | | - Rup Lal
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Seema Makhija
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Ravi Toteja
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| |
Collapse
|
2
|
Hackmann TJ, Sen A, Firkins JL. Culture techniques for ciliate protozoa from the rumen: Recent advances and persistent challenges. Anaerobe 2024; 87:102865. [PMID: 38782297 DOI: 10.1016/j.anaerobe.2024.102865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/22/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Ciliate protozoa are key members of the microbial community of the rumen. Their study is important to the health and productivity of cattle, which are their hosts. However, there have been persistent challenges in culturing this microbial group in the laboratory. This review will sum up recent advances along with these persistent challenges. Protozoa have been maintained in three types of cultures (ex vivo, in vitro batch, in vitro continuous). Ex vivo cultures are prepared readily from rumen contents by washing away contaminating cells (e.g., bacteria). They have been useful in making basic observations of metabolism, such as which types of fermentation products protozoa form. However, these cultures can be maintained for only short periods (minutes or hours). In vitro batch and in vitro continuous cultures can be used in longer experiments (weeks or longer). However, it is not currently possible to maintain protozoa in these cultures unless bacteria are also present. We conclude the review with a protocol for preparing ex vivo cultures of protozoa. Our protocol has been standardized and used successfully across animal diets, users, and institutions. We anticipate this review will prepare others to culture rumen ciliate protozoa and reach new insights into this important microbial group.
Collapse
Affiliation(s)
- Timothy J Hackmann
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, 95168, CA, USA.
| | - Arup Sen
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, 95168, CA, USA
| | - Jeffrey L Firkins
- Department of Animal Sciences, The Ohio State University, 2029 Fyffe Ct, Columbus, 43210, OH, USA
| |
Collapse
|
3
|
Yarlett N, Jarroll EL, Morada M, Lloyd D. Protists: Eukaryotic single-celled organisms and the functioning of their organelles. Adv Microb Physiol 2024; 84:243-307. [PMID: 38821633 DOI: 10.1016/bs.ampbs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Organelles are membrane bound structures that compartmentalize biochemical and molecular functions. With improved molecular, biochemical and microscopy tools the diversity and function of protistan organelles has increased in recent years, providing a complex panoply of structure/function relationships. This is particularly noticeable with the description of hydrogenosomes, and the diverse array of structures that followed, having hybrid hydrogenosome/mitochondria attributes. These diverse organelles have lost the major, at one time, definitive components of the mitochondrion (tricarboxylic cycle enzymes and cytochromes), however they all contain the machinery for the assembly of Fe-S clusters, which is the single unifying feature they share. The plasticity of organelles, like the mitochondrion, is therefore evident from its ability to lose its identity as an aerobic energy generating powerhouse while retaining key ancestral functions common to both aerobes and anaerobes. It is interesting to note that the apicoplast, a non-photosynthetic plastid that is present in all apicomplexan protozoa, apart from Cryptosporidium and possibly the gregarines, is also the site of Fe-S cluster assembly proteins. It turns out that in Cryptosporidium proteins involved in Fe-S cluster biosynthesis are localized in the mitochondrial remnant organelle termed the mitosome. Hence, different organisms have solved the same problem of packaging a life-requiring set of reactions in different ways, using different ancestral organelles, discarding what is not needed and keeping what is essential. Don't judge an organelle by its cover, more by the things it does, and always be prepared for surprises.
Collapse
Affiliation(s)
- Nigel Yarlett
- Haskins Laboratories, Pace University, New York, NY, United States; The Department of Chemistry and Physical Sciences, Pace University, New York, NY, United States.
| | - Edward L Jarroll
- Department of Biological Sciences, CUNY-Lehman College, Bronx, NY, United States
| | - Mary Morada
- Haskins Laboratories, Pace University, New York, NY, United States
| | - David Lloyd
- Schools of Biosciences and Engineering, Cardiff University, Wales, United Kingdom
| |
Collapse
|
4
|
Oxygen levels are key to understanding "Anaerobic" protozoan pathogens with micro-aerophilic lifestyles. Adv Microb Physiol 2021; 79:163-240. [PMID: 34836611 DOI: 10.1016/bs.ampbs.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Publications abound on the physiology, biochemistry and molecular biology of "anaerobic" protozoal parasites as usually grown under "anaerobic" culture conditions. The media routinely used are poised at low redox potentials using techniques that remove O2 to "undetectable" levels in sealed containers. However there is growing understanding that these culture conditions do not faithfully resemble the O2 environments these organisms inhabit. Here we review for protists lacking oxidative energy metabolism, the oxygen cascade from atmospheric to intracellular concentrations and relevant methods of measurements of O2, some well-studied parasitic or symbiotic protozoan lifestyles, their homeodynamic metabolic and redox balances, organism-drug-oxygen interactions, and the present and future prospects for improved drugs and treatment regimes.
Collapse
|
5
|
Park T, Wijeratne S, Meulia T, Firkins JL, Yu Z. The macronuclear genome of anaerobic ciliate Entodinium caudatum reveals its biological features adapted to the distinct rumen environment. Genomics 2021; 113:1416-1427. [PMID: 33722656 DOI: 10.1016/j.ygeno.2021.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/02/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Entodinium caudatum is an anaerobic binucleated ciliate representing the most dominant protozoal species in the rumen. However, its biological features are largely unknown due to the inability to establish an axenic culture. In this study, we primally sequenced its macronucleus (MAC) genome to aid the understanding of its metabolism, physiology, ecology. We isolated the MAC of E. caudatum strain MZG-1 and sequenced the MAC genome using Illumina MiSeq, MinION, and PacBio RSII systems. De novo assembly of the MiSeq sequence reads followed with subsequent scaffolding with MinION and PacBio reads resulted in a draft MAC genome about 117 Mbp. A large number of carbohydrate-active enzymes were likely acquired through horizontal gene transfer. About 8.74% of the E. caudatum predicted proteome was predicted as proteases. The MAC genome of E. caudatum will help better understand its important roles in rumen carbohydrate metabolism, and interaction with other members of the rumen microbiome.
Collapse
Affiliation(s)
- Tansol Park
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Saranga Wijeratne
- Molecular and Cellular Imaging Center, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, 44691, USA
| | - Tea Meulia
- Molecular and Cellular Imaging Center, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, 44691, USA; Department of Plant Pathology, The Ohio State University, Wooster, OH, 44691, USA
| | - Jeffrey L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Singh A, Dhume K, Tejero JD, Strutt TM, McKinstry KK. CD122-targetted IL-2 signals cause acute and selective apoptosis of B cells in Peyer's Patches. Sci Rep 2020; 10:12668. [PMID: 32728053 PMCID: PMC7391758 DOI: 10.1038/s41598-020-69632-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Interleukin-2 (IL-2) has both pro- and anti-inflammatory properties that have been harnessed clinically and that are used experimentally to modulate leukocyte subsets in vivo. In mice, the bioavailability and half-life of IL-2 in vivo can be increased by complexing recombinant IL-2 with different clones of anti-IL-2 monoclonal antibodies that differentially target the cytokine to cells expressing different kinds of IL-2 receptors. While the impacts of systemic IL-2: anti-IL-2 antibody complex (IL-2C) administration are well-defined in the spleen and peripheral lymph nodes, how immune cells in the gut and gut-associated lymphoid tissues respond to IL-2C is not well characterized. Here, we analyze how major leukocyte populations in these tissues respond to IL-2C. We find that IL-2C targeting cells expressing IL-2 receptor beta cause an acute decrease in cellularity of Peyer's Patches while cell numbers in the lamina propria and intraepithelial lymphocytes are unaffected. Cell contraction in Peyer's Patches is associated with the apoptosis of multiple B cell subsets. Our results are important to consider for understanding off-target impacts of IL-2C regimes in experimental models and for considering how IL-2 may contribute to the etiology or severity of gut-associated conditions such as Crohn's Disease.
Collapse
Affiliation(s)
- Ayushi Singh
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Kunal Dhume
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Joanne D Tejero
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Tara M Strutt
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.,NanoScience Technology Center, University of Central Florida, Orlando, USA
| | - K Kai McKinstry
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA. .,NanoScience Technology Center, University of Central Florida, Orlando, USA.
| |
Collapse
|
7
|
Zimorski V, Mentel M, Tielens AGM, Martin WF. Energy metabolism in anaerobic eukaryotes and Earth's late oxygenation. Free Radic Biol Med 2019; 140:279-294. [PMID: 30935869 PMCID: PMC6856725 DOI: 10.1016/j.freeradbiomed.2019.03.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Eukaryotes arose about 1.6 billion years ago, at a time when oxygen levels were still very low on Earth, both in the atmosphere and in the ocean. According to newer geochemical data, oxygen rose to approximately its present atmospheric levels very late in evolution, perhaps as late as the origin of land plants (only about 450 million years ago). It is therefore natural that many lineages of eukaryotes harbor, and use, enzymes for oxygen-independent energy metabolism. This paper provides a concise overview of anaerobic energy metabolism in eukaryotes with a focus on anaerobic energy metabolism in mitochondria. We also address the widespread assumption that oxygen improves the overall energetic state of a cell. While it is true that ATP yield from glucose or amino acids is increased in the presence of oxygen, it is also true that the synthesis of biomass costs thirteen times more energy per cell in the presence of oxygen than in anoxic conditions. This is because in the reaction of cellular biomass with O2, the equilibrium lies very far on the side of CO2. The absence of oxygen offers energetic benefits of the same magnitude as the presence of oxygen. Anaerobic and low oxygen environments are ancient. During evolution, some eukaryotes have specialized to life in permanently oxic environments (life on land), other eukaryotes have remained specialized to low oxygen habitats. We suggest that the Km of mitochondrial cytochrome c oxidase of 0.1-10 μM for O2, which corresponds to about 0.04%-4% (avg. 0.4%) of present atmospheric O2 levels, reflects environmental O2 concentrations that existed at the time that the eukaryotes arose.
Collapse
Affiliation(s)
- Verena Zimorski
- Institute of Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 851 04, Bratislava, Slovakia.
| | - Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center Rotterdam, The Netherlands; Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| |
Collapse
|
8
|
Hackstein JHP, de Graaf RM, van Hellemond JJ, Tielens AGM. Hydrogenosomes of Anaerobic Ciliates. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-17941-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
9
|
Hydrogenosomes and Mitosomes: Mitochondrial Adaptations to Life in Anaerobic Environments. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2012. [DOI: 10.1007/978-94-007-1896-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Tielens AGM, van Grinsven KWA, Henze K, van Hellemond JJ, Martin W. Acetate formation in the energy metabolism of parasitic helminths and protists. Int J Parasitol 2010; 40:387-97. [PMID: 20085767 DOI: 10.1016/j.ijpara.2009.12.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/08/2009] [Accepted: 12/09/2009] [Indexed: 10/19/2022]
Abstract
Formation and excretion of acetate as a metabolic end product of energy metabolism occurs in many protist and helminth parasites, such as the parasitic helminths Fasciola hepatica, Haemonchus contortus and Ascaris suum, and the protist parasites, Giardia lamblia, Entamoeba histolytica, Trichomonas vaginalis as well as Trypanosoma and Leishmania spp. In all of these parasites acetate is a main end product of their energy metabolism, whereas acetate formation does not occur in their mammalian hosts. Acetate production might therefore harbour novel targets for the development of new anti-parasitic drugs. In parasites, acetate is produced from acetyl-CoA by two different reactions, both involving substrate level phosphorylation, that are catalysed by either a cytosolic acetyl-CoA synthetase (ACS) or an organellar acetate:succinate CoA-transferase (ASCT). The ACS reaction is directly coupled to ATP synthesis, whereas the ASCT reaction yields succinyl-CoA for ATP formation via succinyl-CoA synthetase (SCS). Based on recent work on the ASCTs of F. hepatica, T. vaginalis and Trypanosoma brucei we suggest the existence of three subfamilies of enzymes within the CoA-transferase family I. Enzymes of these three subfamilies catalyse the ASCT reaction in eukaryotes via the same mechanism, but the subfamilies share little sequence homology. The CoA-transferases of the three subfamilies are all present inside ATP-producing organelles of parasites, those of subfamily IA in the mitochondria of trypanosomatids, subfamily IB in the mitochondria of parasitic worms and subfamily IC in hydrogenosome-bearing parasites. Together with the recent characterisation among non-parasitic protists of yet a third route of acetate formation involving acetate kinase (ACK) and phosphotransacetylase (PTA) that was previously unknown among eukaryotes, these recent developments provide a good opportunity to have a closer look at eukaryotic acetate formation.
Collapse
Affiliation(s)
- Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, 's Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
11
|
|
12
|
Mentel M, Martin W. Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry. Philos Trans R Soc Lond B Biol Sci 2008; 363:2717-29. [PMID: 18468979 PMCID: PMC2606767 DOI: 10.1098/rstb.2008.0031] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent years have witnessed major upheavals in views about early eukaryotic evolution. One very significant finding was that mitochondria, including hydrogenosomes and the newly discovered mitosomes, are just as ubiquitous and defining among eukaryotes as the nucleus itself. A second important advance concerns the readjustment, still in progress, about phylogenetic relationships among eukaryotic groups and the roughly six new eukaryotic supergroups that are currently at the focus of much attention. From the standpoint of energy metabolism (the biochemical means through which eukaryotes gain their ATP, thereby enabling any and all evolution of other traits), understanding of mitochondria among eukaryotic anaerobes has improved. The mainstream formulations of endosymbiotic theory did not predict the ubiquity of mitochondria among anaerobic eukaryotes, while an alternative hypothesis that specifically addressed the evolutionary origin of energy metabolism among eukaryotic anaerobes did. Those developments in biology have been paralleled by a similar upheaval in the Earth sciences regarding views about the prevalence of oxygen in the oceans during the Proterozoic (the time from ca 2.5 to 0.6 Ga ago). The new model of Proterozoic ocean chemistry indicates that the oceans were anoxic and sulphidic during most of the Proterozoic. Its proponents suggest the underlying geochemical mechanism to entail the weathering of continental sulphides by atmospheric oxygen to sulphate, which was carried into the oceans as sulphate, fueling marine sulphate reducers (anaerobic, hydrogen sulphide-producing prokaryotes) on a global scale. Taken together, these two mutually compatible developments in biology and geology underscore the evolutionary significance of oxygen-independent ATP-generating pathways in mitochondria, including those of various metazoan groups, as a watermark of the environments within which eukaryotes arose and diversified into their major lineages.
Collapse
Affiliation(s)
| | - William Martin
- Institute of Botany, University of DüsseldorfUniversitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
13
|
Yarlett N, Scott R, Williams A, Lloyd D. A note on the effects of oxygen on hydrogen production by the rumen protozoonDasytricha ruminantiumSchuberg. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2672.1983.tb01332.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Hydrogenosomes of Anaerobic Ciliates. HYDROGENOSOMES AND MITOSOMES: MITOCHONDRIA OF ANAEROBIC EUKARYOTES 2008. [DOI: 10.1007/7171_2007_109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
15
|
Lloyd D. Noninvasive methods for the investigation of organisms at low oxygen levels. ADVANCES IN APPLIED MICROBIOLOGY 2003; 51:155-83. [PMID: 12236057 DOI: 10.1016/s0065-2164(02)51005-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- David Lloyd
- School of Biosciences (Microbiology), Main Building, Cardiff University, P. O. Box 915, Cardiff CF10 3TL, Wales, United Kingdom
| |
Collapse
|
16
|
Lloyd D, Ralphs JR, Harris JC. Giardia intestinalis, a eukaryote without hydrogenosomes, produces hydrogen. MICROBIOLOGY (READING, ENGLAND) 2002; 148:727-733. [PMID: 11882707 DOI: 10.1099/00221287-148-3-727] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The microaerophilic flagellated protist Giardia intestinalis, the commonest protozoal agent of intestinal infections worldwide, is of uncertain phylogeny, but is usually regarded as the earliest branching of the eukaryotic clades. Under strictly anaerobic conditions, a mass spectrometric investigation of gas production indicated a low level of generation of dihydrogen (2 nmol x min(-1) per 10(7) organisms), about 10-fold lower than that in Trichomonas vaginalis under similar conditions. Hydrogen evolution was O2 sensitive, and inhibited by 100 microM metronidazole. Fluorescent labelling of G. intestinalis cells using monoclonal antibodies to typical hydrogenosomal enzymes from T. vaginalis (malate enzyme, and succinyl-CoA synthetase alpha and beta subunits), and to the large-granule fraction (hydrogenosome-enriched, also from T. vaginalis) gave no discrete localization of epitopes. Cell-free extracts prepared under anaerobic conditions showed the presence of a CO-sensitive hydrogenase activity. This first report of hydrogen production in a eukaryote with no recognizable hydrogenosomes raises further questions about the early branching status of G. intestinalis; the physiological characterization of its hydrogenase, and its recently elucidated gene sequence, will aid further phylogenetic investigations.
Collapse
Affiliation(s)
- David Lloyd
- Microbiology (BIOSI 1, Main Building), Cardiff University, PO Box 915, Cardiff CF10 3TL, Wales, UK1
| | - James R Ralphs
- Microbiology (BIOSI 1, Main Building), Cardiff University, PO Box 915, Cardiff CF10 3TL, Wales, UK1
| | - Janine C Harris
- Microbiology (BIOSI 1, Main Building), Cardiff University, PO Box 915, Cardiff CF10 3TL, Wales, UK1
| |
Collapse
|
17
|
Akhmanova A, Voncken FG, Hosea KM, Harhangi H, Keltjens JT, op den Camp HJ, Vogels GD, Hackstein JH. A hydrogenosome with pyruvate formate-lyase: anaerobic chytrid fungi use an alternative route for pyruvate catabolism. Mol Microbiol 1999; 32:1103-14. [PMID: 10361311 DOI: 10.1046/j.1365-2958.1999.01434.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chytrid fungi Piromyces sp. E2 and Neocallimastix sp. L2 are obligatory amitochondriate anaerobes that possess hydrogenosomes. Hydrogenosomes are highly specialized organelles engaged in anaerobic carbon metabolism; they generate molecular hydrogen and ATP. Here, we show for the first time that chytrid hydrogenosomes use pyruvate formate-lyase (PFL) and not pyruvate:ferredoxin oxidoreductase (PFO) for pyruvate catabolism, unlike all other hydrogenosomes studied to date. Chytrid PFLs are encoded by a multigene family and are abundantly expressed in Piromyces sp. E2 and Neocallimastix sp. L2. Western blotting after cellular fractionation, proteinase K protection assays and determinations of enzyme activities reveal that PFL is present in the hydrogenosomes of Piromyces sp. E2. The main route of the hydrogenosomal carbon metabolism involves PFL; the formation of equimolar amounts of formate and acetate by isolated hydrogenosomes excludes a significant contribution by PFO. Our data support the assumption that chytrid hydrogenosomes are unique and argue for a polyphyletic origin of these organelles.
Collapse
Affiliation(s)
- A Akhmanova
- Department of Microbiology and Evolutionary Biology, Faculty of Science, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Brown DM, Upcroft JA, Edwards MR, Upcroft P. Anaerobic bacterial metabolism in the ancient eukaryote Giardia duodenalis. Int J Parasitol 1998; 28:149-64. [PMID: 9504342 DOI: 10.1016/s0020-7519(97)00172-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The protozoan parasite, Giardia duodenalis, shares many metabolic and genetic attributes of the bacteria, including fermentative energy metabolism which relies heavily on pyrophosphate rather than adenosine triphosphate and as a result contains two typically bacterial glycolytic enzymes which are pyrophosphate dependent. Pyruvate decarboxylation and subsequent electron transport to as yet unidentified anaerobic electron acceptors relies on a eubacterial-like pyruvate:ferredoxin oxidoreductase and an archaebacterial/eubacterial-like ferredoxin. The presence of another 2-ketoacid oxidoreductase (with a preference for alpha-ketobutyrate) and multiple ferredoxins in Giardia is also a trait shared with the anaerobic bacteria. Giardia pyruvate:ferredoxin oxidoreductase is distinct from the pyruvate dehydrogenase multienzyme complex invariably found in mitochondria. This is consistent with a lack of mitochondria, citric acid cycle, oxidative phosphorylation and glutathione in Giardia. Giardia duodenalis actively consumes oxygen and yet lacks the conventional mechanisms of oxidative stress management, including superoxide dismutase, catalase, peroxidase, and glutathione cycling, which are present in most eukaryotes. In their place Giardia contains a prokaryotic H2O-producing NADH oxidase, a membrane-associated NADH peroxidase, a broad-range prokaryotic thioredoxin reductase-like disulphide reductase and the low molecular weight thiols, cysteine, thioglycolate, sulphite and coenzyme A. NADH oxidase is a major component of the electron transport pathway of Giardia which, in conjunction with disulphide reductase, protects oxygen-labile proteins such as ferredoxin and pyruvate:ferredoxin oxidoreductase against oxidative stress by maintaining a reduced intracellular environment. As the terminal oxidase, NADH oxidase provides a means of removing excess H+, thereby enabling continued pyruvate decarboxylation and the resultant production of acetate and adenosine triphosphate. A further example of the bacterial-like metabolism of Giardia is the utilisation of the amino acid arginine as an energy source. Giardia contain the arginine dihydrolase pathway, which occurs in a number of anaerobic prokaryotes, but not in other eukaryotes apart from trichomonads and Chlamydomonas reinhardtii. The pathway includes substrate level phosphorylation and is sufficiently active to make a major contribution to adenosine triphosphate production. Two enzymes of the pathway, arginine deiminase and carbamate kinase, are rare in eukaryotes and do not occur in higher animals. Arginine is transported into the trophozoite via a bacterial-like arginine:ornithine antiport. Together these metabolic pathways in Giardia provide a wide range of potential drug targets for future consideration.
Collapse
Affiliation(s)
- D M Brown
- Queensland Institute of Medical Research, The Bancroft Centre, Brisbane, Australia
| | | | | | | |
Collapse
|
19
|
Lloyd D, Williams AG, Amann R, Hayes AJ, Durrant L, Ralphs JR. Intracellular prokaryotes in rumen ciliate protozoa: Detection by confocal laser scanning microscopy after in situ hybridization with fluorescent 16S rRNA probes. Eur J Protistol 1996. [DOI: 10.1016/s0932-4739(96)80011-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Yarlett N, Martinez MP, Moharrami MA, Tachezy J. The contribution of the arginine dihydrolase pathway to energy metabolism by Trichomonas vaginalis. Mol Biochem Parasitol 1996; 78:117-25. [PMID: 8813682 DOI: 10.1016/s0166-6851(96)02616-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The enzymes of the arginine dihydrolase pathway were measured in Trichomonas vaginalis hydrogenosome-deficient lines MR-5 and MR-100, and the parent strain TV 10-02. The activities and substrate affinities of arginine deiminase, carbamate kinase and ornithine decarboxylase were similar for the hydrogenosome-deficient lines and the parent TV 10-02. The activity of catabolic ornithine carbamyltransferase, however, was found to be 5-7-fold elevated in the hydrogenosome-deficient lines; the apparent K(m) for citrulline was similar for all of the lines. Putrescine biosynthesis by the hydrogenosome-deficient cell lines was found to be significantly higher than the parent. Incubation of strain MR-100 with U-[14C]-arginine resulted in a 5-fold greater amount of 14CO2 liberated compared to the parent strain TV 10-02. Inclusion of the ornithine decarboxylase inhibitor difluoromethylornithine in these incubations reduced the CO2 production of strain TV 10-02 by 42%, but only inhibited the MR-100 strain by 14.5%, indicative that the majority of the CO2 liberated from arginine by this strain is derived from the elevated activity of ornithine carbamyltransferase. Despite the increased flow through the arginine dihydrolase pathway, the energy gain to the parasite is approximately 10% of that from glucose, thus, under the growth conditions used in this study carbohydrate metabolism provides the bulk of the ATP for the parasite.
Collapse
Affiliation(s)
- N Yarlett
- Haskins Laboratories, Pace University, New York, NY 10038-1502, USA.
| | | | | | | |
Collapse
|
21
|
Sanchez LB, Müller M. Purification and characterization of the acetate forming enzyme, acetyl-CoA synthetase (ADP-forming) from the amitochondriate protist, Giardia lamblia. FEBS Lett 1996; 378:240-4. [PMID: 8557109 DOI: 10.1016/0014-5793(95)01463-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Giardia lamblia, an amitochondriate eukaryote, contains acetyl-CoA synthetase (ADP-forming), an enzyme known only from one other eukaryote (Entamoeba histolytica) and a few anaerobic prokaryotes. The enzyme has been purified about 350-fold. The activity in the direction of acetate formation was dependent on ADP and inorganic phosphate. The reverse reaction could not be detected. Succinyl-CoA, propionyl-CoA and dADP were utilized with lower efficiency. The enzyme did not utilize AMP plus PPi thus differs from the broadly distributed acetyl-CoA synthetase (AMP-forming). The enzyme is responsible for acetate production accompanied by ATP generation, thus plays an important role in G. lamblia metabolism.
Collapse
Affiliation(s)
- L B Sanchez
- Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
22
|
FARMER MARKA. Ultrastructure of Ditrichomonas honigbergii N. G., N. Sp. (Parabasalia) and Its Relationship to Amitochondrial Protists. J Eukaryot Microbiol 1993. [DOI: 10.1111/j.1550-7408.1993.tb06119.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Acetyl-CoA synthetase (ADP forming) in archaea, a novel enzyme involved in acetate formation and ATP synthesis. Arch Microbiol 1993. [DOI: 10.1007/bf00244267] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Williams AG, Lloyd D. Biological Activities of Symbiotic and Parasitic Protozoa and Fungi in Low-Oxygen Environments. ADVANCES IN MICROBIAL ECOLOGY 1993. [DOI: 10.1007/978-1-4615-2858-6_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Lloyd D, Ellis JE, Hillman K, Williams AG. Membrane inlet mass spectrometry: probing the rumen ecosystem. SOCIETY FOR APPLIED BACTERIOLOGY SYMPOSIUM SERIES 1992; 21:155S-163S. [PMID: 1502598 DOI: 10.1111/j.1365-2672.1992.tb03635.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- D Lloyd
- Microbiology Group (PABIO), University of Wales College of Cardiff, UK
| | | | | | | |
Collapse
|
26
|
Ellis JE, Mcintyre PS, Saleh M, Williams AG, Lloyd D. The influence of ruminal concentrations of O2 and CO2 on fermentative metabolism of the rumen entodiniomorphid ciliateEudiplodinium maggii. Curr Microbiol 1991. [DOI: 10.1007/bf02092025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
27
|
Ellis JE, McIntyre PS, Saleh M, Williams AG, Lloyd D. Influence of CO2 and low concentrations of O2 on fermentative metabolism of the ruminal ciliate Polyplastron multivesiculatum. Appl Environ Microbiol 1991; 57:1400-7. [PMID: 1906698 PMCID: PMC182961 DOI: 10.1128/aem.57.5.1400-1407.1991] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The effects of ruminal concentrations of CO2 and oxygen on the end products of endogenous metabolism and fermentation of D-glucose by the ruminal entodiniomorphid ciliate Polyplastron multivesiculatum were investigated. The principal metabolic products were butyric, acetic, and lactic acids, H2, and CO2. 13C nuclear magnetic resonance spectroscopy identified glycerol as a previously unknown major product of D-[1-13C]glucose fermentation by this protozoan. Metabolite formation rates were clearly influenced by the headspace gas composition. In the presence of 1 to 3 microM O2, acetate, H2, and CO2 formation was partially depressed. A gas headspace with a high CO2 content (66 kPa) was found to suppress hydrogenosomal pathways and to favor butyrate accumulation. Cytochromes were not detected (less than 2 pmol/mg of protein) in P. multivesiculatum; protozoal suspensions, however, consumed O2 for up to 3 h at 1 kPa of O2. Under gas phases of greater than 2.6 kPa of O2, the organisms rapidly became vacuolate and the cilia became inactive. The results suggest that fermentative pathways in P. multivesiculatum are influenced by the O2 and CO2 concentrations that prevail in situ in the rumen.
Collapse
Affiliation(s)
- J E Ellis
- Microbiology Group, School of Pure and Applied Biology, University of Wales College of Cardiff, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Goosen NK, Wagener S, Stumm CK. A comparison of two strains of the anaerobic ciliate Trimyema compressum. Arch Microbiol 1990. [DOI: 10.1007/bf00247819] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Ellis JE, Williams AG, Lloyd D. Oxygen consumption by ruminal microorganisms: protozoal and bacterial contributions. Appl Environ Microbiol 1989; 55:2583-7. [PMID: 2513776 PMCID: PMC203126 DOI: 10.1128/aem.55.10.2583-2587.1989] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The relative contributions to O2 consumption made by the protozoal and bacterial populations present within the rumen were determined by using an open-type oxygen electrode system. Measurements indicated that two separate microbial populations contributed approximately equally to ruminal O2 consumption over the O2 concentration range experienced in situ (0.25 to 1.0 microM). The populations were observed to consume O2 under liquid-phase O2 concentrations of up to 7 microM, above which point rapid inactivation of O2 utilization was observed. Km values for the mixed population of bacteria and protozoa were 0.36 +/- 0.17 and 3.2 +/- 0.4 microM at concentrations of less than 1.6 and greater than 1.6 microM, respectively. O2 affinity values obtained for both the protozoal and bacterial populations were similar. O2 affinities of the isolated entodiniomorphid ciliates Polyplastron multivesiculatum and Eudiplodinium maggii showed O2 inhibition thresholds of 10 and 5, respectively, and apparent half-saturation constants (Km values) of 1.7 and 5.2 microM O2, respectively. Corresponding Vmax values were 7.8 microM O2 per min per 10(5) organisms for P. multivesiculatum and 3.6 microM O2 per min per 10(5) organisms for E. maggii. Mass spectroscopic analysis detected average rates of H2 production of 12.0 and 3.7 microM H2 per min per 10(5) organisms for P. multivesiculatum and E. maggii, respectively. Trace levels of dissolved O2 (less than 0.25 microM) stimulated the H2 production rate of E. maggii eightfold but inhibited that of P. multivesiculatum by 18%.
Collapse
Affiliation(s)
- J E Ellis
- Microbiology Group (PABIO), University of Wales College of Cardiff
| | | | | |
Collapse
|
31
|
Lloyd D, Hillman K, Yarlett N, Williams AG. Hydrogen production by rumen holotrich protozoa: effects of oxygen and implications for metabolic control by in situ conditions. THE JOURNAL OF PROTOZOOLOGY 1989; 36:205-13. [PMID: 2657036 DOI: 10.1111/j.1550-7408.1989.tb01075.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Experiments with washed suspensions of holotrich protozoa (Isotricha spp. and Dasytricha ruminantium) showed that both organisms have an efficient O2-scavenging capability (apparent Km values 2.3 and 0.3 microM, respectively). Reversible inhibition of H2 production increased almost linearly with increasing O2 up to 1.5 microM; higher levels of O2 gave irreversible inhibition. In situ determinations of H2, CH4, O2 and CO2 in ovine rumen liquor, using a membrane inlet mass spectrometer probe, indicated that O2 was present before feeding at 1-1.5 microM and decreased to undetectable levels (less than 0.25 microM) within 25 min after feeding. A transient increase in O2 concentration after feeding occurred only in defaunated animals and resulted in suppression of CH4 and CO2 production. The presence of washed holotrich protozoa decreases the O2 sensitivity of CH4 production by suspensions of a cultured methanogenic bacterium Methanosarcina barkeri. It is concluded that holotrich protozoa play a role in ruminal O2 utilization as well as in the production of fermentation end products (especially short-chain volatile fatty acids) utilized by the ruminant and H2 utilized by methanogenic bacteria. These hydrogenosome-containing protozoa thus both control patterns of fermentation by influencing O2 levels, and are themselves regulated by the low ambient O2 concentrations they experience in the rumen.
Collapse
Affiliation(s)
- D Lloyd
- Department of Microbiology, University College, Cardiff, Wales, United Kingdom
| | | | | | | |
Collapse
|
32
|
Yarlett N, Rowlands C, Evans JC, Lloyd D. Respiration of the hydrogenosome-containing fungus Neocallimastix patriciarum. Arch Microbiol 1987. [DOI: 10.1007/bf00429642] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
|
34
|
Yarlett N, Yarlett NC, Lloyd D. Metronidazole-resistant clinical isolates of Trichomonas vaginalis have lowered oxygen affinities. Mol Biochem Parasitol 1986; 19:111-6. [PMID: 3487729 DOI: 10.1016/0166-6851(86)90115-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Oxygen affinities of metronidazole susceptible and resistant isolates of the parasitic flagellate protozoon Trichomonas vaginalis were determined by mass spectrometric methods. Apparent O2Km values for the respiration of non-proliferating cell suspensions were about 10-fold higher for metronidazole resistant strains than for the susceptible strains C1-NIH or NYH-286. Simultaneous monitoring of hydrogen evolution in the presence of increasing O2 tensions enabled apparent Ki values for H2 to be determined; and this function was independent of metronidazole susceptibility. Apparent O2 affinities of the hydrogenosomal and non-sedimentable fractions were determined for the strains CDC 85 (metronidazole resistant) and C1-NIH, which showed the deficiency in the O2 scavenging capacity by the resistant strain to be associated with the hydrogenosome-containing fraction.
Collapse
|
35
|
|
36
|
Yarlett N, Lloyd D, Williams AG. Butyrate formation from glucose by the rumen protozoon Dasytricha ruminantium. Biochem J 1985; 228:187-92. [PMID: 3924032 PMCID: PMC1144968 DOI: 10.1042/bj2280187] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Production of butyrate by the holotrich protozoon Dasytricha ruminantium involves the enzymes of glycolysis, pyruvate:ferredoxin oxidoreductase, acetyl-CoA:acetyl-CoA C-acetyltransferase, 3-hydroxybutyryl-CoA dehydrogenase, 3-hydroxyacyl-CoA hydro-lyase, 3-hydroxyacyl-CoA reductase, phosphate butyryltransferase and butyrate kinase. Subcellular fractionation by differential and density-gradient centrifugation on sucrose gradients indicated that all those enzymes except pyruvate:ferredoxin oxidoreductase were non-sedimentable at 6 X 10(6) g-min. Butyrate kinase and phosphate butyryltransferase were associated with the large- and small-granule fractions. Thus, although metabolic reactions necessary for butyrate production proceed predominantly in the cytosol, hydrogenosomes play a key role in the conversion of pyruvate into acetyl-CoA.
Collapse
|
37
|
Lozeman FJ, Milligan LP. The effect of lumen conditions on oxygen uptake in perfused omasal laminae. Br J Nutr 1985; 53:311-22. [PMID: 4063276 DOI: 10.1079/bjn19850039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The vascular anatomy of the bovine omasal lamina permitted perfusion of a discrete area of the tissue. As occurs in vivo, oxygen was provided through the vascular system, while the luminal sides of the tissue could be kept in an anaerobic environment, thus allowing study of foregut tissue metabolism under physiologically realistic conditions. O2 consumption of perfused leaves in the presence of anaerobic buffer was 64.9 and 73.5 nmol O2/mg dry weight per h in Expts 1 and 2 respectively, and was elevated (P less than 0.05) when the lumen side of the tissue was exposed to an atmosphere of nitrogen gas. In Expt 1, the rate of O2 consumption was increased (P less than 0.01) by 35% as a result of suspension of a boiled preparation of rumen micro-organisms and particles (less than 1 mm) in the anaerobic lumen buffer. Replacement of the boiled preparation with an unboiled suspension increased O2 consumption further by 11%, but this was not statistically significant (P greater than 0.05). In Expt 2, sequential addition of the following substrates or preparations to the lumen chambers all resulted in stepwise increases (P less than 0.05) in O2 consumption; 8 mM-butyrate, boiled rumen micro-organisms and particles and, finally, unboiled rumen micro-organisms and particles. Identities of the heat-labile and heat-stable components of the microbial and particle suspensions that caused enhancement of O2 removal across the perfused tissue are discussed.
Collapse
|
38
|
Yarlett N, Hann AC, Lloyd D, Williams AG. Hydrogenosomes in a mixed isolate of Isotricha prostoma and Isotricha intestinalis from ovine rumen contents. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1983; 74:357-64. [PMID: 6403285 DOI: 10.1016/0305-0491(83)90025-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
1. Both Isotricha intestinalis and I. prostoma possess microbody-like organelles, with a highly granular appearance. 2. These organelles, which are sedimentable at 10(5) g-min, bear no morphological similarity to mitochondria, but are enzymatically similar to organelles possessed by certain other anaerobic protozoa and termed hydrogenosomes. 3. The hydrogenosomes isolated from a preparation of mixed isotrichs bear a closer similarity to those isolated from the other rumen holotrich. Dasytricha ruminantium, than those recently identified in a mixed entodiniomorph preparation, or the trichomonads, in that the enzyme malate dehydrogenase (decarboxylating) is non-sedimentable and phosphoacetyl transferase together with acetate kinase are involved in the transformation of acetyl CoA to acetate. 4. The results enable a scheme of acetate, CO2 and H2 formation from carbohydrates to be proposed and extends the number of protozoa known to possess this organelle.
Collapse
|