1
|
Mobbs GW, Aziz AA, Dix SR, Blackburn GM, Sedelnikova SE, Minshull TC, Dickman MJ, Baker PJ, Nathan S, Raih MF, Rice DW. Molecular basis of specificity and deamidation of eIF4A by Burkholderia Lethal Factor 1. Commun Biol 2022; 5:272. [PMID: 35347220 PMCID: PMC8960835 DOI: 10.1038/s42003-022-03186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/17/2022] [Indexed: 12/22/2022] Open
Abstract
Burkholderiapseudomallei lethal factor 1 (BLF1) exhibits site-specific glutamine deamidase activity against the eukaryotic RNA helicase, eIF4A, thereby blocking mammalian protein synthesis. The structure of a complex between BLF1 C94S and human eIF4A shows that the toxin binds in the cleft between the two RecA-like eIF4A domains forming interactions with residues from both and with the scissile amide of the target glutamine, Gln339, adjacent to the toxin active site. The RecA-like domains adopt a radically twisted orientation compared to other eIF4A structures and the nature and position of conserved residues suggests this may represent a conformation associated with RNA binding. Comparison of the catalytic site of BLF1 with other deamidases and cysteine proteases reveals that they fall into two classes, related by pseudosymmetry, that present either the re or si faces of the target amide/peptide to the nucleophilic sulfur, highlighting constraints in the convergent evolution of their Cys-His active sites. The crystal structure of the toxin from the pathogenic bacterium Burkholderia pseudomallei in complex with its target, human eIF4A, provides insights into substrate specificity and may facilitate the design of inhibitors for the treatment of melioidosis.
Collapse
|
2
|
Oanca G, Asadi M, Saha A, Ramachandran B, Warshel A. Exploring the Catalytic Reaction of Cysteine Proteases. J Phys Chem B 2020; 124:11349-11356. [PMID: 33264018 DOI: 10.1021/acs.jpcb.0c08192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cysteine proteases play a major role in many life processes and are the target of key drugs. The reaction mechanism of these enzymes is a complex process, which involves several steps that are divided into two main groups: acylation and deacylation. In this work, we studied the energy profile for the acylation and a part of the deacylation reaction of three different enzymes, cruzain, papain, and the Q19A-mutated papain with the benzyloxycarbonyl-phenylalanylarginine-4-methylcoumaryl-7-amide (CBZ-FR-AMC) substrate. The calculations were performed using the EVB and PDLD/S-LRA methods. The overall agreement between the calculated and observed results is encouraging and indicates that we captured the correct reaction mechanism. Finally, our finding indicates that the minimum of the reaction profile, between the acylation and deacylation steps, should provide an excellent state for the binding of covalent inhibitors.
Collapse
Affiliation(s)
- Gabriel Oanca
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Mojgan Asadi
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Arjun Saha
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Balajee Ramachandran
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States.,Structural Biology and Bio-computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu 630 004, India
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| |
Collapse
|
3
|
Hofer F, Kraml J, Kahler U, Kamenik AS, Liedl KR. Catalytic Site p Ka Values of Aspartic, Cysteine, and Serine Proteases: Constant pH MD Simulations. J Chem Inf Model 2020; 60:3030-3042. [PMID: 32348143 PMCID: PMC7312390 DOI: 10.1021/acs.jcim.0c00190] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Enzymatic function and activity of
proteases is closely controlled
by the pH value. The protonation states of titratable residues in
the active site react to changes in the pH value, according to their
pKa, and thereby determine the functionality
of the enzyme. Knowledge of the titration behavior of these residues
is crucial for the development of drugs targeting the active site
residues. However, experimental pKa data
are scarce, since the systems’ size and complexity make determination
of these pKa values inherently difficult.
In this study, we use single pH constant pH MD simulations as a fast
and robust tool to estimate the active site pKa values of a set of aspartic, cysteine, and serine proteases.
We capture characteristic pKa shifts of
the active site residues, which dictate the experimentally determined
activity profiles of the respective protease family. We find clear
differences of active site pKa values
within the respective families, which closely match the experimentally
determined pH preferences of the respective proteases. These shifts
are caused by a distinct network of electrostatic interactions characteristic
for each protease family. While we find convincing agreement with
experimental data for serine and aspartic proteases, we observe clear
deficiencies in the description of the titration behavior of cysteines
within the constant pH MD framework and highlight opportunities for
improvement. Consequently, with this work, we provide a concise set
of active site pKa values of aspartic
and serine proteases, which could serve as reference for future theoretical
as well as experimental studies.
Collapse
Affiliation(s)
- Florian Hofer
- Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Johannes Kraml
- Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Ursula Kahler
- Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Anna S Kamenik
- Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Klaus R Liedl
- Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| |
Collapse
|
4
|
Amino Acid Residues Vary the Self‐Assembly and Photophysical Properties of Diphenylamine‐Cyanostilbene‐Capped Amphiphiles. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.201900279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Gimenez-Dejoz J, Tsuchiya K, Numata K. Insights into the Stereospecificity in Papain-Mediated Chemoenzymatic Polymerization from Quantum Mechanics/Molecular Mechanics Simulations. ACS Chem Biol 2019; 14:1280-1292. [PMID: 31063345 DOI: 10.1021/acschembio.9b00259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemoenzymatic peptide synthesis is an efficient and clean method to generate polypeptides for new applications in the fields of biomedical and functional materials. However, this enzyme-mediated synthesis is dependent on the reaction rate of the protease biocatalyst, which is essentially determined by the natural substrate specificity of the enzyme. Papain, one of the most studied cysteine proteases, is extensively used for the chemoenzymatic synthesis of new polypeptides. Similar to most proteases, papain displays high stereospecificity toward l-amino acids, with limited reactivity for the d-stereoisomer counterparts. However, the incorporation of d-amino acids into peptides is a promising approach to increase their biostability by conferring intrinsic resistance to proteolysis. Herein, we determined the stereospecific-limiting step of the papain-mediated polymerization reaction with the chiral substrates l/d-alanine ethyl ester (Ala-OEt). Afterward, we used Quantum Mechanics/Molecular Mechanics (QM/MM) simulations to study the catalytic mechanism at atomic level of detail and investigate the origin of its stereospecificity. The experimental and computational results show that papain is able to attack both l- and d-stereoisomers of Ala-OEt, forming an enzyme-substrate intermediate, and that the two reactions display a similar activation barrier. Moreover, we found that the reduced catalytic activity of papain in the polymerization of d-amino acids arises from the aminolysis step of the reaction, in which l-Ala-OEt displays a significantly lower free-energy barrier (12 kcal/mol) than d-Ala-OEt (30 kcal/mol). Further simulations suggest that the main factor affecting the polymerization of d-amino acids is the configuration of the d-acyl-intermediate enzyme, and in particular the orientation of its methyl group, which hinders the nucleophilic attack by other monomers and thus the formation of polypeptides.
Collapse
Affiliation(s)
- Joan Gimenez-Dejoz
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Kousuke Tsuchiya
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Fekete A, Komáromi I. Modeling the archetype cysteine protease reaction using dispersion corrected density functional methods in ONIOM-type hybrid QM/MM calculations; the proteolytic reaction of papain. Phys Chem Chem Phys 2018; 18:32847-32861. [PMID: 27883128 DOI: 10.1039/c6cp06869c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A proteolytic reaction of papain with a simple peptide model substrate N-methylacetamide has been studied. Our aim was twofold: (i) we proposed a plausible reaction mechanism with the aid of potential energy surface scans and second geometrical derivatives calculated at the stationary points, and (ii) we investigated the applicability of the dispersion corrected density functional methods in comparison with the popular hybrid generalized gradient approximations (GGA) method (B3LYP) without such a correction in the QM/MM calculations for this particular problem. In the resting state of papain the ion pair and neutral forms of the Cys-His catalytic dyad have approximately the same energy and they are separated by only a small barrier. Zero point vibrational energy correction shifted this equilibrium slightly to the neutral form. On the other hand, the electrostatic solvation free energy corrections, calculated using the Poisson-Boltzmann method for the structures sampled from molecular dynamics simulation trajectories, resulted in a more stable ion-pair form. All methods we applied predicted at least a two elementary step acylation process via a zwitterionic tetrahedral intermediate. Using dispersion corrected DFT methods the thioester S-C bond formation and the proton transfer from histidine occur in the same elementary step, although not synchronously. The proton transfer lags behind (or at least does not precede) the S-C bond formation. The predicted transition state corresponds mainly to the S-C bond formation while the proton is still on the histidine Nδ atom. In contrast, the B3LYP method using larger basis sets predicts a transition state in which the S-C bond is almost fully formed and the transition state can be mainly featured by the Nδ(histidine) to N(amid) proton transfer. Considerably lower activation energy was predicted (especially by the B3LYP method) for the next amide bond breaking elementary step of acyl-enzyme formation. Deacylation appeared to be a single elementary step process in all the methods we applied.
Collapse
Affiliation(s)
- Attila Fekete
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Debrecen, Hungary.
| | - István Komáromi
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Debrecen, Hungary.
| |
Collapse
|
7
|
Elsässer B, Zauner FB, Messner J, Soh WT, Dall E, Brandstetter H. Distinct Roles of Catalytic Cysteine and Histidine in the Protease and Ligase Mechanisms of Human Legumain As Revealed by DFT-Based QM/MM Simulations. ACS Catal 2017; 7:5585-5593. [PMID: 28932620 PMCID: PMC5600538 DOI: 10.1021/acscatal.7b01505] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/10/2017] [Indexed: 11/30/2022]
Abstract
![]()
The cysteine protease enzyme legumain hydrolyzes peptide bonds
with high specificity after asparagine and under more acidic conditions
after aspartic acid [BakerE. N.1980, 141, 441−4847003158; BakerE. N.; 1977, 111, 207–210859183; DrenthJ.; 1976, 15, 3731–3738952885; MenardR.; 1994, 137; PolgarL.1978, 88, 513–521689035; StorerA. C.; 1994, 244, 486–5007845227. Remarkably,
legumain additionally exhibits ligase activity that prevails at pH
> 5.5. The atomic reaction mechanisms including their pH dependence
are only partly understood. Here we present a density functional theory
(DFT)-based quantum mechanics/molecular mechanics (QM/MM) study of
the detailed reaction mechanism of both activities for human legumain
in solution. Contrasting the situation in other papain-like proteases,
our calculations reveal that the active site Cys189 must be present
in the protonated state for a productive nucleophilic attack and simultaneous
rupture of the scissile peptide bond, consistent with the experimental
pH profile of legumain-catalyzed cleavages. The resulting thioester
intermediate (INT1) is converted by water attack on the thioester
into a second intermediate, a diol (INT2), which is released by proton
abstraction by Cys189. Surprisingly, we found that ligation is not
the exact reverse of the proteolysis but can proceed via two distinct
routes. Whereas the transpeptidation route involves aminolysis of
the thioester (INT1), at pH 6 a cysteine-independent, histidine-assisted
ligation route was found. Given legumain’s important roles
in immunity, cancer, and neurodegenerative diseases, our findings
open up possibilities for targeted drug design in these fields.
Collapse
Affiliation(s)
- Brigitta Elsässer
- Department
of Molecular Biology, University of Salzburg, Billrothstrasse 11, A-5020 Salzburg, Austria
| | - Florian B. Zauner
- Department
of Molecular Biology, University of Salzburg, Billrothstrasse 11, A-5020 Salzburg, Austria
| | - Johann Messner
- Information
Management, University of Linz, Alternberger Strasse 69, A-4040 Linz, Austria
| | - Wai Tuck Soh
- Department
of Molecular Biology, University of Salzburg, Billrothstrasse 11, A-5020 Salzburg, Austria
| | - Elfriede Dall
- Department
of Molecular Biology, University of Salzburg, Billrothstrasse 11, A-5020 Salzburg, Austria
| | - Hans Brandstetter
- Department
of Molecular Biology, University of Salzburg, Billrothstrasse 11, A-5020 Salzburg, Austria
| |
Collapse
|
8
|
Singh RB, Dandekar SP, Elimban V, Gupta SK, Dhalla NS. Role of proteases in the pathophysiology of cardiac disease. Mol Cell Biochem 2016; 263:241-56. [PMID: 27520682 DOI: 10.1023/b:mcbi.0000041865.63445.40] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is a major cause of death and thus a great deal of effort has been made in salvaging the diseased myocardium. Although various factors have been identified as possible causes of different cardiac diseases such as heart failure and ischemic heart disease, there is a real need to elucidate their role for the better understanding of the cardiac disease pathology and formulation of strategies for developing newer therapeutic interventions. In view of the intimate involvement of different types of proteases in maintaining cellular structure, the role of proteases in various cardiac diseases has become the focus of recent research. Proteases are present in the cytosol as well as are localized in a number of subcellular organelles in the cell. These are known to use extracellular matrix, cytoskeletal, sarcolemmal, sarcoplasmic reticular, mitochondrial and myofibrillar proteins as substrates. Work from different laboratories using a wide variety of techniques has shown that the activation of proteases causes alterations of a number of specific proteins leading to subcellular remodeling and cardiac dysfunction. Inhibition of protease action by different drugs and agents, therefore, has a clinical relevance and is expected to form a part of new treatment paradigm for improving heart function. This review examines the biochemistry and localization of some of the proteases in the cardiac tissue in addition to identification of the sites of action of some protease inhibitors. (Mol Cell Biochem 263: 241-256, 2004).
Collapse
Affiliation(s)
- Raja B Singh
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada R2H 2A6
| | - Sucheta P Dandekar
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada R2H 2A6
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada R2H 2A6
| | - Suresh K Gupta
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada R2H 2A6
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada R2H 2A6
| |
Collapse
|
9
|
Cordara G, van Eerde A, Grahn EM, Winter HC, Goldstein IJ, Krengel U. An Unusual Member of the Papain Superfamily: Mapping the Catalytic Cleft of the Marasmius oreades agglutinin (MOA) with a Caspase Inhibitor. PLoS One 2016; 11:e0149407. [PMID: 26901797 PMCID: PMC4764322 DOI: 10.1371/journal.pone.0149407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/01/2016] [Indexed: 11/18/2022] Open
Abstract
Papain-like cysteine proteases (PLCPs) constitute the largest group of thiol-based protein degrading enzymes and are characterized by a highly conserved fold. They are found in bacteria, viruses, plants and animals and involved in a number of physiological and pathological processes, parasitic infections and host defense, making them interesting targets for drug design. The Marasmius oreades agglutinin (MOA) is a blood group B-specific fungal chimerolectin with calcium-dependent proteolytic activity. The proteolytic domain of MOA presents a unique structural arrangement, yet mimicking the main structural elements in known PLCPs. Here we present the X-ray crystal structure of MOA in complex with Z-VAD-fmk, an irreversible caspase inhibitor known to cross-react with PLCPs. The structural data allow modeling of the substrate binding geometry and mapping of the fundamental enzyme-substrate interactions. The new information consolidates MOA as a new, yet strongly atypical member of the papain superfamily. The reported complex is the first published structure of a PLCP in complex with the well characterized caspase inhibitor Z-VAD-fmk.
Collapse
Affiliation(s)
- Gabriele Cordara
- Department of Chemistry, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | | | - Elin M. Grahn
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Harry C. Winter
- Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Irwin J. Goldstein
- Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Tyukhtenko S, Karageorgos I, Rajarshi G, Zvonok N, Pavlopoulos S, Janero DR, Makriyannis A. Specific Inter-residue Interactions as Determinants of Human Monoacylglycerol Lipase Catalytic Competency: A ROLE FOR GLOBAL CONFORMATIONAL CHANGES. J Biol Chem 2015; 291:2556-65. [PMID: 26555264 DOI: 10.1074/jbc.m115.670257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Indexed: 11/06/2022] Open
Abstract
The serine hydrolase monoacylglycerol lipase (MGL) functions as the main metabolizing enzyme of 2-arachidonoyl glycerol, an endocannabinoid signaling lipid whose elevation through genetic or pharmacological MGL ablation exerts therapeutic effects in various preclinical disease models. To inform structure-based MGL inhibitor design, we report the direct NMR detection of a reversible equilibrium between active and inactive states of human MGL (hMGL) that is slow on the NMR time scale and can be modulated in a controlled manner by pH, temperature, and select point mutations. Kinetic measurements revealed that hMGL substrate turnover is rate-limited across this equilibrium. We identify a network of aromatic interactions and hydrogen bonds that regulates hMGL active-inactive state interconversion. The data highlight specific inter-residue interactions within hMGL modulating the enzymes function and implicate transitions between active (open) and inactive (closed) states of the hMGL lid domain in controlling substrate access to the enzymes active site.
Collapse
Affiliation(s)
- Sergiy Tyukhtenko
- From the Center for Drug Discovery and Departments of Pharmaceutical Sciences and Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115-5000 and
| | - Ioannis Karageorgos
- From the Center for Drug Discovery and Departments of Pharmaceutical Sciences and Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115-5000 and
| | - Girija Rajarshi
- From the Center for Drug Discovery and Departments of Pharmaceutical Sciences and Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115-5000 and
| | - Nikolai Zvonok
- From the Center for Drug Discovery and Departments of Pharmaceutical Sciences and Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115-5000 and
| | - Spiro Pavlopoulos
- From the Center for Drug Discovery and Departments of Pharmaceutical Sciences and Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115-5000 and
| | - David R Janero
- From the Center for Drug Discovery and Departments of Pharmaceutical Sciences and Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115-5000 and
| | - Alexandros Makriyannis
- From the Center for Drug Discovery and Departments of Pharmaceutical Sciences and Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115-5000 and King Abdulaziz University, Jeddah, 22254, Saudi Arabia
| |
Collapse
|
11
|
Arafet K, Ferrer S, Moliner V. First quantum mechanics/molecular mechanics studies of the inhibition mechanism of cruzain by peptidyl halomethyl ketones. Biochemistry 2015; 54:3381-91. [PMID: 25965914 DOI: 10.1021/bi501551g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cruzain is a primary cysteine protease expressed by the protozoan parasite Trypanosoma cruzi during Chagas disease infection, and thus, the development of inhibitors of this protein is a promising target for designing an effective therapy against the disease. In this paper, the mechanism of inhibition of cruzain by two different irreversible peptidyl halomethyl ketones (PHK) inhibitors has been studied by means of hybrid quantum mechanics/molecular mechanics-molecular dynamics (MD) simulations to obtain a complete representation of the possible free energy reaction paths. These have been traced on free energy surfaces in terms of the potential of mean force computed at AM1d/MM and DFT/MM levels of theory. An analysis of the possible reaction mechanisms of the inhibition process has been performed showing that the nucleophilic attack of an active site cysteine, Cys25, on a carbon atom of the inhibitor and the cleavage of the halogen-carbon bond take place in a single step. PClK appears to be much more favorable than PFK from a kinetic point of view. This result would be in agreement with experimental studies in other papain-like enzymes. A deeper analysis of the results suggests that the origin of the differences between PClK and PFK can be the different stabilizing interactions established between the inhibitors and the residues of the active site of the protein. Any attempt to explore the viability of the inhibition process through a stepwise mechanism involving the formation of a thiohemiketal intermediate and a three-membered sulfonium intermediate has been unsuccessful. Nevertheless, a mechanism through a protonated thiohemiketal, with participation of His159 as a proton donor, appears to be feasible despite showing higher free energy barriers. Our results suggest that PClK can be used as a starting point to develop a proper inhibitor of cruzain.
Collapse
Affiliation(s)
- Kemel Arafet
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain
| | - Silvia Ferrer
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain
| |
Collapse
|
12
|
Trichomonas vaginalis Cysteine Proteinases: Iron Response in Gene Expression and Proteolytic Activity. BIOMED RESEARCH INTERNATIONAL 2015; 2015:946787. [PMID: 26090464 PMCID: PMC4450334 DOI: 10.1155/2015/946787] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 03/09/2015] [Indexed: 12/29/2022]
Abstract
We focus on the iron response of Trichomonas vaginalis to gene family products such as the cysteine proteinases (CPs) involved in virulence properties. In particular, we examined the effect of iron on the gene expression regulation and function of cathepsin L-like and asparaginyl endopeptidase-like CPs as virulence factors. We addressed some important aspects about CPs genomic organization and we offer possible explanations to the fact that only few members of this large gene family are expressed at the RNA and protein levels and the way to control their proteolytic activity. We also summarized all known iron regulations of CPs at transcriptional, posttranscriptional, and posttranslational levels along with new insights into the possible epigenetic and miRNA processes.
Collapse
|
13
|
Theoretical insight into the mechanism for the inhibition of the cysteine protease cathepsin B by 1,2,4-thiadiazole derivatives. J Mol Model 2014; 20:2254. [DOI: 10.1007/s00894-014-2254-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
|
14
|
Design, synthesis, evaluation and thermodynamics of 1-substituted pyridylimidazo[1,5-a]pyridine derivatives as cysteine protease inhibitors. PLoS One 2013; 8:e69982. [PMID: 23940536 PMCID: PMC3734177 DOI: 10.1371/journal.pone.0069982] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 06/14/2013] [Indexed: 12/05/2022] Open
Abstract
Targeting papain family cysteine proteases is one of the novel strategies in the development of chemotherapy for a number of diseases. Novel cysteine protease inhibitors derived from 1-pyridylimidazo[1,5-a]pyridine representing pharmacologically important class of compounds are being reported here for the first time. The derivatives were initially designed and screened in silico by molecular docking studies against papain to explore the possible mode of action. The molecular interaction between the compounds and cysteine protease (papain) was found to be very similar to the interactions observed with the respective epoxide inhibitor (E-64c) of papain. Subsequently, compounds were synthesized to validate their efficacy in wet lab experiments. When characterized kinetically, these compounds show their Ki and IC50 values in the range of 13.75 to 99.30 µM and 13.40 to 96.50 µM, respectively. The thermodynamics studies suggest their binding with papain hydrophobically and entropically driven. These inhibitors also inhibit the growth of clinically important different types of Gram positive and Gram negative bacteria having MIC50 values in the range of 0.6–1.4 µg/ml. Based on Lipinski’s rule of Five, we also propose these compounds as potent antibacterial prodrugs. The most active antibacterial compound was found to be 1-(2-pyridyl)-3-(2-hydroxyphenyl)imidazo[1,5-a]pyridine (3a).
Collapse
|
15
|
Wei D, Huang X, Tang M, Zhan CG. Reaction pathway and free energy profile for papain-catalyzed hydrolysis of N-acetyl-Phe-Gly 4-nitroanilide. Biochemistry 2013; 52:5145-54. [PMID: 23862626 PMCID: PMC3770148 DOI: 10.1021/bi400629r] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Possible reaction pathways for papain-catalyzed hydrolysis of N-acetyl-Phe-Gly 4-nitroanilide (APGNA) have been studied by performing pseudobond first-principles quantum mechanical/molecular mechanical-free energy (QM/MM-FE) calculations. The whole hydrolysis process includes two stages: acylation and deacylation. For the acylation stage of the catalytic reaction, we have explored three possible paths (A, B, and C) and the corresponding free energy profiles along the reaction coordinates. It has been demonstrated that the most favorable reaction path in this stage is path B consisting of two reaction steps: the first step is a proton transfer to form a zwitterionic form (i.e., Cys-S⁻/His-H⁺ ion-pair), and the second step is the nucleophilic attack on the carboxyl carbon of the substrate accompanied by the dissociation of 4-nitroanilide. The deacylation stage includes the nucleophilic attack of a water molecule on the carboxyl carbon of the substrate and dissociation between the carboxyl carbon of the substrate and the sulfhydryl sulfur of Cys25 side chain. The free energy barriers calculated for the acylation and deacylation stages are 20.0 and 10.7 kcal/mol, respectively. Thus, the acylation is rate-limiting. The overall free energy barrier calculated for papain-catalyzed hydrolysis of APGNA is 20.0 kcal/mol, which is reasonably close to the experimentally derived activation free energy of 17.9 kcal/mol.
Collapse
Affiliation(s)
- Donghui Wei
- Department of Chemistry, Zhengzhou University, 75 Daxue Road, Zhengzhou, Henan, 450052, P. R. China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Xiaoqin Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Mingsheng Tang
- Department of Chemistry, Zhengzhou University, 75 Daxue Road, Zhengzhou, Henan, 450052, P. R. China
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| |
Collapse
|
16
|
Kumar A, Venkatesu P. Overview of the stability of α-chymotrypsin in different solvent media. Chem Rev 2012; 112:4283-307. [PMID: 22506806 DOI: 10.1021/cr2003773] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
|
18
|
Castro HC, Abreu PA, Geraldo RB, Martins RCA, dos Santos R, Loureiro NIV, Cabral LM, Rodrigues CR. Looking at the proteases from a simple perspective. J Mol Recognit 2011; 24:165-81. [PMID: 21360607 DOI: 10.1002/jmr.1091] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteases have received enormous interest from the research and medical communities because of their significant roles in several human diseases. Some examples include the involvement of thrombin in thrombosis, HIV-1 protease in Acquired Immune Deficiency Syndrome, cruzain in Trypanosoma cruzi infection, and membrane-type 1 matrix metalloproteinase in tumor invasion and metastasis. Many efforts has been undertaken to design effective inhibitors featuring potent inhibitory activity, specificity, and metabolic stability to those proteases involved in such pathologies. Protease inhibitors usually target the active site, but some of them act by other inhibitory mechanisms. The understanding of the structure-function relationships of proteases and inhibitors has an impact on new inhibitor drugs designing. In this paper, the structures of four proteases (thrombin, HIV-protease, cruzain, and a matrix metalloproteinase) are briefly reviewed, and used as examples of the importance of proteases for the development of new treatment strategies, leading to a longer and healthier life.
Collapse
Affiliation(s)
- Helena C Castro
- LABioMol, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, 24001-970, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Natural and synthetic small boron-containing molecules as potential inhibitors of bacterial and fungal quorum sensing. Chem Rev 2010; 111:209-37. [PMID: 21171664 DOI: 10.1021/cr100093b] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Torres MJ, Trejo SA, Martin MI, Natalucci CL, Avilés FX, López LMI. Purification and characterization of a cysteine endopeptidase from Vasconcellea quercifolia A. St.-Hil. latex displaying high substrate specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:11027-11035. [PMID: 20873836 DOI: 10.1021/jf904295x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A new proteolytic preparation from Vasconcellea quercifolia ("oak leaved papaya") latex containing several cysteine endopeptidases with high proteolytic activity has been obtained. The specific activity of the new enzymatic preparation (VQ) was higher than that of Carica papaya latex. VQ was able to coagulate milk and to hydrolyze caseins and then could be used to produce cheeses and/or casein hydrolysates. Ion exchange chromatography of VQ allowed the isolation of a new protease, named quercifoliain I, homogeneous when analyzed by SDS-PAGE, IEF and MALDI-TOF-MS. Molecular mass was 24195 Da, and its isoelectric point was >9.3. The N-terminal sequence was determined (YPESVDWRQ). Insulin B-chain cleavage showed higher specificity than that of papain and was restricted to glycyl and alanyl residues at P1' position. The tryptic peptide mass fingerprint of quercifoliain I analyzed with the MASCOT search tool did not find a match with papain or any other plant cysteine proteases.
Collapse
Affiliation(s)
- M José Torres
- Laboratorio de Investigación de Proteínas Vegetales (LIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 711, B1900AVW, La Plata, Argentina
| | | | | | | | | | | |
Collapse
|
21
|
Bacha U, Barrila J, Gabelli SB, Kiso Y, Mario Amzel L, Freire E. Development of broad-spectrum halomethyl ketone inhibitors against coronavirus main protease 3CL(pro). Chem Biol Drug Des 2008; 72:34-49. [PMID: 18611220 PMCID: PMC2597651 DOI: 10.1111/j.1747-0285.2008.00679.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 05/27/2008] [Indexed: 11/28/2022]
Abstract
Coronaviruses comprise a large group of RNA viruses with diverse host specificity. The emergence of highly pathogenic strains like the SARS coronavirus (SARS-CoV), and the discovery of two new coronaviruses, NL-63 and HKU1, corroborates the high rate of mutation and recombination that have enabled them to cross species barriers and infect novel hosts. For that reason, the development of broad-spectrum antivirals that are effective against several members of this family is highly desirable. This goal can be accomplished by designing inhibitors against a target, such as the main protease 3CL(pro) (M(pro)), which is highly conserved among all coronaviruses. Here 3CL(pro) derived from the SARS-CoV was used as the primary target to identify a new class of inhibitors containing a halomethyl ketone warhead. The compounds are highly potent against SARS 3CL(pro) with K(i)'s as low as 300 nM. The crystal structure of the complex of one of the compounds with 3CL(pro) indicates that this inhibitor forms a thioether linkage between the halomethyl carbon of the warhead and the catalytic Cys 145. Furthermore, Structure Activity Relationship (SAR) studies of these compounds have led to the identification of a pharmacophore that accurately defines the essential molecular features required for the high affinity.
Collapse
Affiliation(s)
- Usman Bacha
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jennifer Barrila
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sandra B. Gabelli
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yoshiaki Kiso
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina‐ku, Kyoto 607‐8412, Japan
| | - L. Mario Amzel
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ernesto Freire
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
22
|
Abstract
The name "cysteine protease" refers to the protease's nucleophilic cysteine residue that forms a covalent bond with the carbonyl group of the scissile peptide bond in substrates. The papain-like cysteine proteases, classified as the "C1 family" are the most predominant cysteine proteases. These proteases are found in viruses, plants, primitive parasites, invertebrates, and vertebrates alike. Mammalian papain-like cysteine proteases are also known as cathepsins. This unit discusses cathepsins, and their subcellular and tissue localization, catalytic mechanism, and substrate specificity. Several tables illustrate the properties of the various cathepsins.
Collapse
Affiliation(s)
- D Brömme
- Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
23
|
Funk VA, Olafson RW, Raap M, Smith D, Aitken L, Haddow JD, Wang D, Dawson-Coates JA, Burke RD, Miller KM. Identification, characterization and deduced amino acid sequence of the dominant protease from Kudoa paniformis and K. thyrsites: A unique cytoplasmic cysteine protease. Comp Biochem Physiol B Biochem Mol Biol 2008; 149:477-89. [DOI: 10.1016/j.cbpb.2007.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 11/05/2007] [Accepted: 11/26/2007] [Indexed: 11/29/2022]
|
24
|
Ma S, Devi-Kesavan LS, Gao J. Molecular dynamics simulations of the catalytic pathway of a cysteine protease: a combined QM/MM study of human cathepsin K. J Am Chem Soc 2007; 129:13633-45. [PMID: 17935329 PMCID: PMC2556303 DOI: 10.1021/ja074222+] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular dynamics simulations using a combined QM/MM potential have been performed to study the catalytic mechanism of human cathepsin K, a member of the papain family of cysteine proteases. We have determined the two-dimensional free energy surfaces of both acylation and deacylation steps to characterize the reaction mechanism. These free energy profiles show that the acylation step is rate limiting with a barrier height of 19.8 kcal/mol in human cathepsin K and of 29.3 kcal/mol in aqueous solution. The free energy of activation for the deacylation step is 16.7 kcal/mol in cathepsin K and 17.8 kcal/mol in aqueous solution. The reduction of free energy barrier is achieved by stabilization of the oxyanion in the transition state. Interestingly, although the "oxyanion hole" has been formed in the Michaelis complex, the amide units do not donate hydrogen bonds directly to the carbonyl oxygen of the substrate, but they stabilize the thiolate anion nucleophile. Hydrogen-bonding interactions are induced as the substrate amide group approaches the nucleophile, moving more than 2 A and placing the oxyanion in contact with Gln19 and the backbone amide of Cys25. The hydrolysis of peptide substrate shares a common mechanism both for the catalyzed reaction in human cathepsin K and for the uncatalyzed reaction in water. Overall, the nucleophilic attack by Cys25 thiolate and the proton-transfer reaction from His162 to the amide nitrogen are highly coupled, whereas a tetrahedral intermediate is formed along the nucleophilic reaction pathway.
Collapse
Affiliation(s)
- Shuhua Ma
- Department of Chemistry and Supercomputing Institute, Digital Technology Center, University of Minnesota, 207 Pleasant street SE, Minneapolis, MN 55455
| | - Lakshmi S. Devi-Kesavan
- Department of Chemistry and Supercomputing Institute, Digital Technology Center, University of Minnesota, 207 Pleasant street SE, Minneapolis, MN 55455
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, Digital Technology Center, University of Minnesota, 207 Pleasant street SE, Minneapolis, MN 55455
| |
Collapse
|
25
|
Myers MC, Napper AD, Motlekar N, Shah PP, Chiu CH, Beavers MP, Diamond SL, Huryn DM, Smith AB. Identification and characterization of 3-substituted pyrazolyl esters as alternate substrates for cathepsin B: the confounding effects of DTT and cysteine in biological assays. Bioorg Med Chem Lett 2007; 17:4761-6. [PMID: 17656088 PMCID: PMC2041802 DOI: 10.1016/j.bmcl.2007.06.091] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 06/20/2007] [Accepted: 06/21/2007] [Indexed: 10/23/2022]
Abstract
Substituted pyrazole esters were identified as hits in a high throughput screen (HTS) of the NIH Molecular Libraries Small Molecule Repository (MLSMR) to identify inhibitors of the enzyme cathepsin B. Members of this class, along with functional group analogs, were synthesized in an effort to define the structural requirements for activity. Analog characterization was hampered by the need to include a reducing agent such as dithiothreitol (DTT) or cysteine in the assay, highlighting the caution required in interpreting biological data gathered in the presence of such nucleophiles. Despite the confounding effects of DTT and cysteine, our studies demonstrate that the pyrazole 1 acts as alternate substrate for cathepsin B, rather than as an inhibitor.
Collapse
Affiliation(s)
- Michael C Myers
- Penn Center for Molecular Discovery, University of Pennsylvania, 1024 Vagelos Research Laboratories, Philadelphia, PA 19104-6383, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
RAMSOHOYE PAMELAV, KOZLOV IA. An investigation of enzyme activities found in thaumatin preparations. Int J Food Sci Technol 2007. [DOI: 10.1111/j.1365-2621.1989.tb00688.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Shaw E. Cysteinyl proteinases and their selective inactivation. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 63:271-347. [PMID: 2407065 DOI: 10.1002/9780470123096.ch5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The affinity-labeling of cysteinyl proteinases may now be carried out with a number of peptide-derived reagents with selectivity, particularly for reactions carried out in vitro. These reagents have been described with emphasis on their selectivity for cysteine proteinases and lack of action on serine proteinases, the most likely source of side reactions among proteinases. Perhaps a crucial feature of this selectivity is an enzyme-promoted activation due to initial formation of a hemiketal, which may destabilize the reagent. Prominent among the reagent types that have this class selectivity are the peptidyl diazomethyl ketones, the acyloxymethyl ketones, the peptidylmethyl sulfonium salts, and peptidyl oxides analogous to E-64. The need for specific inhibitors capable of inactivating the target enzyme in intact cells and animals is inevitably pushing the biochemical application of these inhibitors into more complex molecular environments where the possibilities of competing reactions are greatly increased. In dealing with the current state and potential developments for the in vivo use of affinity-labeling reagents of cysteine proteinases, the presently known variety of cysteinyl proteinases had to be considered. Therefore this chapter has, at the same time, attempted to survey these proteinases with respect to specificity and gene family. The continual discovery of new proteinases will increase the complexity of this picture. At present the lysosomal cysteine proteinases cathepsins B and L and the cytoplasmic calcium-dependent proteinases are reasonable goals for a fairly complete metabolic clarification. The ability of investigators to inactivate individual members of this family in vivo, possibly without complications due to concurrent inactivation of serine proteinases by improvements in reagent specificity, is increasing. Among the cysteine proteinases, at least those of the papain super family, hydrophobic interactions in the S2 and S3 subsites are important and some specificity has been achieved by taking advantage of topographical differences among members of this group. Some of this has probably involved surface differences removed from the regions involved in proteolytic action. The emerging cysteine proteinases include some which, in contrast to the papain family, have a pronounced specificity in S1 for the binding of basic side chains, familiar in the trypsin family of serine proteinases. At least a potential conflict with serine proteinases can be avoided by choice of a covalent bonding mechanism. The departing group region, has not been exploited. As a sole contributor to binding, this region may be rather limited as a source of specificity.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E Shaw
- Friedrich Miescher-Institut, Basel, Switzerland
| |
Collapse
|
28
|
Weber E, Czugler M. Functional group assisted clathrate formation — Scissor-like and roof-shaped host molecules. Top Curr Chem (Cham) 2005. [DOI: 10.1007/3-540-19338-3_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
29
|
Rajarathnam D, Jeyakumar T, Nadar PA. Mechanistic change in the reactivity of substituted phenyl acetates over phenyl thiolacetates toward imidazole in aqueous phase. INT J CHEM KINET 2005. [DOI: 10.1002/kin.20074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Ascenzi P, Bocedi A, Gentile M, Visca P, Gradoni L. Inactivation of parasite cysteine proteinases by the NO-donor 4-(phenylsulfonyl)-3-((2-(dimethylamino)ethyl)thio)-furoxan oxalate. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1703:69-77. [PMID: 15588704 DOI: 10.1016/j.bbapap.2004.09.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 09/16/2004] [Accepted: 09/21/2004] [Indexed: 11/28/2022]
Abstract
NO-donors block Plasmodium, Trypanosoma, and Leishmania life cycle by inactivating parasite enzymes, e.g., cysteine proteinases. In this study, the inactivation of falcipain, cruzipain, and Leishmania infantum cysteine proteinase by the NO-donor 4-(phenylsulfonyl)-3-((2-(dimethylamino)ethyl)thio)-furoxan oxalate (SNO-102) is reported. SNO-102 inactivates dose- and time-dependently parasite cysteine proteinases; one equivalent of NO, released from SNO-102, inactivates one equivalent of L. infantum cysteine proteinase. With SNO-102 in excess over the parasite cysteine proteinase, the time course of enzyme inhibition corresponds to a pseudo-first-order reaction for more than 90% of its course. The concentration dependence of the pseudo-first-order rate constant is second-order at low SNO-102 concentration but tends to first-order at high NO-donor concentration. This behavior may be explained by a relatively fast pre-equilibrium followed by a limiting pseudo-first order process. Kinetic parameters of L. infantum cysteine proteinase inactivation by SNO-102 are affected by the acidic pK shift of one apparent ionizing group (from pK(unl)=5.8 to pK(lig)=4.7) upon enzyme inhibition. Falcipain, cruzipain and L. infantum cysteine proteinase inactivation is prevented and reversed by dithiothreitol and L-ascorbic acid. Furthermore, the fluorogenic substrate N-alpha-benzyloxycarbonyl-Phe-Arg-(7-amino-4-methylcoumarin) protects parasite cysteine proteinases from inactivation by SNO-102. The absorption spectrum of the inactive S-nitrosylated SNO-102-treated L. infantum cysteine proteinase displays a maximum at about 340 nm. These results indicate that the parasite cysteine proteinase inactivation by SNO-102 occurs via the NO-mediated S-nitrosylation of the Cys25 catalytic residue.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Dipartimento di Biologia and Laboratorio Interdipartimentale di Microscopia Elettronica, Università Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | | | | | | | | |
Collapse
|
31
|
Bocedi A, Gradoni L, Menegatti E, Ascenzi P. Kinetics of parasite cysteine proteinase inactivation by NO-donors. Biochem Biophys Res Commun 2004; 315:710-8. [PMID: 14975759 DOI: 10.1016/j.bbrc.2004.01.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Indexed: 11/16/2022]
Abstract
NO-donors block Plasmodium, Trypanosoma, and Leishmania life cycle inactivating parasite cysteine proteinases. In this study, the inactivation of falcipain, cruzipain, and Leishmania infantum cysteine proteinase by S-nitroso-5-dimethylaminonaphthalene-1-sulphonyl (dansyl-SNO), S-nitrosoglutathione (GSNO), (+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide (NOR-3), and S-nitrosoacetylpenicillamine (SNAP) is reported. With NO-donors in excess over the parasite cysteine proteinase, the time course of enzyme inactivation corresponds to a pseudo-first-order reaction for more than 90% of its course. The concentration dependence of the pseudo-first-order rate constant is second-order at low NO-donor concentrations but tends to first-order at high NO-donor concentrations. This behavior may be explained by a relatively fast pre-equilibrium followed by a limiting pseudo-first-order process. Kinetic parameters of cruzipain inactivation by GSNO were affected by the acidic pK shift of one ionizing group (from pKunl = 5.7 to pKlig = 4.8) upon GSNO-induced enzyme inactivation. Falcipain, cruzipain, and L. infantum cysteine proteinase inactivation by dansyl-SNO, GSNO, NOR-3, and SNAP is prevented and reversed by dithionite and l-ascorbic acid. However, the incubation of L. infantum cysteine proteinase with dansyl-SNO does not result in the appearance of fluorescence of the enzyme. More than 90% of the S-transnitrosylation product GSH existed in the inactivation reaction, suggesting that S-transnitrosylation is the favorite process for parasite cysteine proteinase inactivation. Furthermore, the fluorogenic substrate N-alpha-benzyloxycarbonyl-l-phenylalanyl-l-arginine-(7-amino-4-methylcoumarin) protects L. infantum cysteine proteinase from inactivation by SNAP. These results indicate that parasite cysteine proteinase inactivation by NO-donors occurs via NO-mediated S-nitrosylation of the Cys25 catalytic residue.
Collapse
Affiliation(s)
- Alessio Bocedi
- Laboratorio di Parassitologia, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy
| | | | | | | |
Collapse
|
32
|
Ascenzi P, Bocedi A, Visca P, Antonini G, Gradoni L. Catalytic properties of cysteine proteinases from Trypanosoma cruzi and Leishmania infantum: a pre-steady-state and steady-state study. Biochem Biophys Res Commun 2003; 309:659-65. [PMID: 12963041 DOI: 10.1016/j.bbrc.2003.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cysteine proteinases are relevant to several aspects of the parasite life cycle and of parasite-host relationship. Moreover, they appear as promising targets for antiparasite chemotherapy. Here, the first quantitative investigation on the steady-state and pre-steady-state kinetics of the papain-like cysteine proteinases from epimastigotes of Trypanosoma cruzi (cruzipain), the agent of Chagas' disease, and from promastigotes of Leishmania infantum, an agent of visceral and cutaneous leishmaniases, is reported. The results indicate that kinetics for the parasite proteinase catalyzed hydrolysis of N-alpha-benzyloxycarbonyl-L-phenylalanyl-L-arginine-(7-amino-4-methylcoumarin) may be consistently fitted to the minimum three-step mechanism involving the acyl.enzyme intermediate E.P: [mechanism: see text] At neutral pH, the k(+3) step (deacylation process) is rate limiting in enzyme catalysis, whereas, at pH<6, the k(+2) step (acylation process) becomes rate limiting. This illustrates the potential danger in interpreting both kcat versus pH profile, given that the acylation or the deacylation step is rate limiting throughout the whole pH range explored, and Km as the true affinity constant for the E:S complex formation. Comparison with the steady-state and pre-steady-state kinetics of homologous plant enzymes suggests that the parasite cysteine proteinase catalytic behavior appears to be of general significance.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Dipartimento di Biologia, Università Roma Tre, Viale Guglielmo Marconi 446, I-00146 Rome, Italy.
| | | | | | | | | |
Collapse
|
33
|
Azarkan M, El Moussaoui A, van Wuytswinkel D, Dehon G, Looze Y. Fractionation and purification of the enzymes stored in the latex of Carica papaya. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 790:229-38. [PMID: 12767335 DOI: 10.1016/s1570-0232(03)00084-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The latex of the tropical species Carica papaya is well known for being a rich source of the four cysteine endopeptidases papain, chymopapain, glycyl endopeptidase and caricain. Altogether, these enzymes are present in the laticifers at a concentration higher than 1 mM. The proteinases are synthesized as inactive precursors that convert into mature enzymes within 2 min after wounding the plant when the latex is abruptly expelled. Papaya latex also contains other enzymes as minor constituents. Several of these enzymes namely a class-II and a class-III chitinase, an inhibitor of serine proteinases and a glutaminyl cyclotransferase have already been purified up to apparent homogeneity and characterized. The presence of a beta-1,3-glucanase and of a cystatin is also suspected but they have not yet been isolated. Purification of these papaya enzymes calls on the use of ion-exchange supports (such as SP-Sepharose Fast Flow) and hydrophobic supports [such as Fractogel TSK Butyl 650(M), Fractogel EMD Propyl 650(S) or Thiophilic gels]. The use of covalent or affinity gels is recommended to provide preparations of cysteine endopeptidases with a high free thiol content (ideally 1 mol of essential free thiol function per mol of enzyme). The selective grafting of activated methoxypoly(ethylene glycol) chains (with M(r) of 5000) on the free thiol functions of the proteinases provides an interesting alternative to the use of covalent and affinity chromatographies especially in the case of enzymes such as chymopapain that contains, in its native state, two thiol functions.
Collapse
Affiliation(s)
- Mohamed Azarkan
- Laboratoire de Chimie Générale, Unité de Chimie des Protéines (CP 609), Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | | | | | | | | |
Collapse
|
34
|
Dembitsky VM, Srebnik M. Synthesis and biological activity of α-aminoboronic acids, amine-carboxyboranes and their derivatives. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(02)01618-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Lecaille F, Kaleta J, Brömme D. Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev 2002; 102:4459-88. [PMID: 12475197 DOI: 10.1021/cr0101656] [Citation(s) in RCA: 395] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fabien Lecaille
- Mount Sinai School of Medicine, Department of Human Genetics, Fifth Avenue at 100th Street, New York, New York 10029, USA
| | | | | |
Collapse
|
36
|
Salvati L, Mattu M, Polticelli F, Tiberi F, Gradoni L, Venturini G, Bolognesi M, Ascenzi P. Modulation of the catalytic activity of cruzipain, the major cysteine proteinase from Trypanosoma cruzi, by temperature and pH. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3253-8. [PMID: 11389727 DOI: 10.1046/j.1432-1327.2001.02223.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cysteine proteinases are relevant to several aspects of the parasite life cycle and of parasite-host relationships. Here, a quantitative investigation of the effect of temperature and pH on the total substrate inhibition of cruzipain, the major papain-like cysteine proteinase from Trypanosoma cruzi, is reported. Values of the apparent catalytic and inhibition parameters Km, Vmax, Vmax/Km, and K(i) for the cruzipain-catalysed hydrolysis of N-alpha-benzyloxycarbonyl-L-phenylalanyl-L-arginine-(7-amino-4-methylcoumarin) (Z-Phe-Arg-AMC) and azocasein were determined between 10.0 degrees C and 40.0 degrees C and between pH 4.5 and 8.5. Values of Km were independent of temperature and pH, whereas values of Vmax, Vmax/Km, and K(i) were temperature-dependent and pH-dependent. Over the whole pH range explored, values of logVmax, log(Vmax/Km), and logK(i) increased linearly with respect to T(-1). Values of Vmax and Vmax/Km were affected by the acid-base equilibrium of one temperature-independent ionizing group (i.e. pK(unl)' = pK(lig)' = 5.7 +/- 0.1, at 25.0 degrees C). Moreover, values of K(i) were affected by the alkaline pK shift of one ionizing group of active cruzipain (from pK(unl)" = 5.7 +/- 0.1 to pK(lig)" = 6.1 +/- 0.1, at 25.0 degrees C) upon Z-Phe-Arg-AMC binding. Values of logK(unl)', logK(lig)', and logK(lig)" were temperature-independent. Conversely, values of logK(unl)" were linearly dependent on T(-1). As a whole, total substrate inhibition of cruzipain decreased with increasing temperature and pH. These data suggest that both synthetic and protein substrates can bind to the unique active centre of cruzipain either productively or following a binding mode which results in enzyme inhibition. However, allosteric effect(s) cannot be excluded.
Collapse
Affiliation(s)
- L Salvati
- Dipartimento di Biologia, Università 'Roma Tre', Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Metzler DE, Metzler CM, Sauke DJ. Transferring Groups by Displacement Reactions. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Yun M, Park CG, Kim JY, Park HW. Structural analysis of glyceraldehyde 3-phosphate dehydrogenase from Escherichia coli: direct evidence of substrate binding and cofactor-induced conformational changes. Biochemistry 2000; 39:10702-10. [PMID: 10978154 DOI: 10.1021/bi9927080] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The crystal structures of gyceraldehyde 3-phosphate dehydrogenase (GAPDH) from Escherichia coli have been determined in three different enzymatic states, NAD(+)-free, NAD(+)-bound, and hemiacetal intermediate. The NAD(+)-free structure reported here has been determined from monoclinic and tetragonal crystal forms. The conformational changes in GAPDH induced by cofactor binding are limited to the residues that bind the adenine moiety of NAD(+). Glyceraldehyde 3-phosphate (GAP), the substrate of GAPDH, binds to the enzyme with its C3 phosphate in a hydrophilic pocket, called the "new P(i)" site, which is different from the originally proposed binding site for inorganic phosphate. This observed location of the C3 phosphate is consistent with the flip-flop model proposed for the enzyme mechanism [Skarzynski, T., Moody, P. C., and Wonacott, A. J. (1987) J. Mol. Biol. 193, 171-187]. Via incorporation of the new P(i) site in this model, it is now proposed that the C3 phosphate of GAP initially binds at the new P(i) site and then flips to the P(s) site before hydride transfer. A superposition of NAD(+)-bound and hemiacetal intermediate structures reveals an interaction between the hydroxyl oxygen at the hemiacetal C1 of GAP and the nicotinamide ring. This finding suggests that the cofactor NAD(+) may stabilize the transition state oxyanion of the hemiacetal intermediate in support of the flip-flop model for GAP binding.
Collapse
Affiliation(s)
- M Yun
- Department of Structural Biology, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, Tennessee 38105, USA
| | | | | | | |
Collapse
|
39
|
|
40
|
Petinate SD, Branquinha MH, Coelho RR, Vermelho AB, Giovanni-De-Simone S. Purification and partial characterization of an extracellular serine-proteinase of Streptomyces cyaneus isolated from Brazilian cerrado soil. J Appl Microbiol 1999; 87:557-63. [PMID: 10583684 DOI: 10.1046/j.1365-2672.1999.00852.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptomyces cyaneus, a micro-organism isolated from Brazilian cerrado soil, produces an extracellular proteinase (SCP), which was purified 22-fold to homogeneity from culture supernatant fluid, using a single aprotinin-agarose affinity chromatography step. It is produced at a level corresponding to approximately 15% of total protein, but its physiological function has yet to be determined. The molecular mass of this S. cyaneus proteinase was estimated to be 120 kDa by gel filtration high performance liquid chromatography, and it migrates by SDS-PAGE as a single band of 30 kDa. It was optimally active at 25 degrees C and pH 9.0, and was fully inhibited by the serine-proteinase inhibitors PMSF and TPCK. A Km value of 1. 86 x 10-5 mmol l-1, and Vmax of 2.0 x 10-2 mmol l-1 (Abs247 nm microg-1 min-1), were calculated for alpha-N-p-tosyl-L-arginine-methyl ester (TAME) as substrate.
Collapse
Affiliation(s)
- S D Petinate
- Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
41
|
Guo Z, Ramirez J, Li J, Wang PG. Peptidyl N-Nitrosoanilines: A Novel Class of Cysteine Protease Inactivators,. J Am Chem Soc 1998. [DOI: 10.1021/ja974187e] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhengmao Guo
- Contribution from the Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| | - Johnny Ramirez
- Contribution from the Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| | - Jun Li
- Contribution from the Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| | - Peng George Wang
- Contribution from the Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
42
|
Khan AR, James MN. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci 1998; 7:815-36. [PMID: 9568890 PMCID: PMC2143990 DOI: 10.1002/pro.5560070401] [Citation(s) in RCA: 342] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Proteolytic enzymes are synthesized as inactive precursors, or "zymogens," to prevent unwanted protein degradation, and to enable spatial and temporal regulation of proteolytic activity. Upon sorting or appropriate compartmentalization, zymogen conversion to the active enzyme typically involves limited proteolysis and removal of an "activation segment." The sizes of activation segments range from dipeptide units to independently folding domains comprising more than 100 residues. A common form of the activation segment is an N-terminal extension of the mature enzyme, or "prosegment," that sterically blocks the active site, and thereby prevents binding of substrates. In addition to their inhibitory role, prosegments are frequently important for the folding, stability, and/or intracellular sorting of the zymogen. The mechanisms of conversion to active enzymes are diverse in nature, ranging from enzymatic or nonenzymatic cofactors that trigger activation, to a simple change in pH that results in conversion by an autocatalytic mechanism. Recent X-ray crystallographic studies of zymogens and comparisons with their active counterparts have identified the structural changes that accompany conversion. This review will focus upon the structural basis for inhibition by activation segments, as well as the molecular events that lead to the conversion of zymogens to active enzymes.
Collapse
Affiliation(s)
- A R Khan
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
43
|
Babine RE, Bender SL. Molecular Recognition of Proteinminus signLigand Complexes: Applications to Drug Design. Chem Rev 1997; 97:1359-1472. [PMID: 11851455 DOI: 10.1021/cr960370z] [Citation(s) in RCA: 712] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert E. Babine
- Agouron Pharmaceuticals, Inc., 3565 General Atomics Court, San Diego, California 92121-1122
| | | |
Collapse
|
44
|
Brown RS, Aman A. Intramolecular Catalysis of Thiol Ester Hydrolysis by a Tertiary Amine and a Carboxylate. J Org Chem 1997. [DOI: 10.1021/jo9623954] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. S. Brown
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada, K6L 3N6
| | - Ahmed Aman
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada, K6L 3N6
| |
Collapse
|
45
|
Albeck A, Kliper S. Mechanism of cysteine protease inactivation by peptidyl epoxides. Biochem J 1997; 322 ( Pt 3):879-84. [PMID: 9148764 PMCID: PMC1218270 DOI: 10.1042/bj3220879] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Peptidyl epoxides are time- and concentration-dependent selective cysteine protease inhibitors. The lack of recovery of enzymic activity and the retention of 1 molar equivalent of radioactive inhibitor associated with the enzyme on dialysis, shown in this study, indicate that they form a covalent irreversible equimolar complex with the enzyme. It is also shown that the peptidyl epoxide inhibitors alkylate the active-site thiol. This alkylation only occurs when the enzyme is in its native conformation, as the denatured enzyme does not undergo alkylation by the inhibitor to any appreciable extent. Finally, the inactivation process is compared with a model reaction between a peptidyl epoxide and a protected cysteine in neutral and basic aqueous media. The inactivation of cathepsin B by Cbz-Phe-(O-benzyl)-Thr-epoxide is accelerated by 5.5 orders of magnitude relative to the rate of the model reaction at pH 10.0 and 25 degrees C, and estimated to be at least 10(8) times faster than the model reaction at pH 7.0. These results, in conjunction with the selectivity exhibited by peptidyl epoxides at all levels, point to a mechanism-based inhibition, and may have mechanistic implications regarding the catalysis carried out by cysteine proteases.
Collapse
Affiliation(s)
- A Albeck
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | | |
Collapse
|
46
|
Tian ZQ, Brown BB, Mack DP, Hutton CA, Bartlett PA. Potentially Macrocyclic Peptidyl Boronic Acids as Chymotrypsin Inhibitors. J Org Chem 1997; 62:514-522. [PMID: 11671443 DOI: 10.1021/jo9615007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The possibility of forming a peptide boronate adduct in a serine protease active site that mimics the first tetrahedral intermediate in the peptide hydrolysis mechanism was explored with the complex boronic acid analogs 7, 8-OH, and 8-NH(2)(). In these structures, the P(1) and P(2) residues and the P(1)'-P(3)' residues are connected through the P(2) and P(1)' side chains, to encourage formation of the diester or amide-ester adducts via macrocyclization. These inhibitors were assembled from suitably protected derivatives of 2,4-diaminobutanoic acid or 2,4-diaminopentanoic acid (11), borophenylalanine (12), aspartic acid, malic acid or the substituted malic acid analog 13, and Leu-Arg dipeptide. Stereoselective syntheses were developed for the (S,S)-2,4-diaminopentanoate 11 and for the (S,S)-beta-isobutylmalate 13 derivatives. The complex peptidyl boronates 7 (K(i) = 26 nM) and 8-OH (68 nM) are potent inhibitors of alpha-chymotrypsin; however, the affinity of 7 is neither time- nor pH-dependent, and it is only moderately greater than that found for comparison compounds like 8-H (114 nM), 9 (356 nM), and 10 (219 nM) that cannot cyclize or form a diester adduct.
Collapse
Affiliation(s)
- Zong-Qiang Tian
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Hans-Hartwig Otto
- Department of Pharmaceutical Chemistry, University of Freiburg, Hermann-Herder-Str. 9, D-79104 Freiburg i.Br., Germany
| | | |
Collapse
|
48
|
Aguiar AS, Alves CR, Melgarejo A, Giovanni-de-Simone S. Purification and partial characterization of a thrombin-like/gyroxin enzyme from bushmaster (Lachesis muta rhombeata) venom. Toxicon 1996; 34:555-65. [PMID: 8783450 DOI: 10.1016/0041-0101(95)00159-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The acidic coagulating enzyme of the L. m. rhombeata venom was purified to homogeneity using one step on preparative isoelectric focusing followed by gel permeation on a high performance liquid chromatography system. The enzyme focused with pIs 3.1-5.0 and had a molecular mass of 47,000 mol. wt as determined by high performance liquid gel-filtration chromatography and about 45,000 mol. wt as judged by sodium dodecyl sulfate-polyacrylamide-gel electrophoresis. The enzyme is a glycoprotein containing sialic acid and 12.4% of neutral carbohydrates. The 30 N-terminal amino acid sequence of the L. m. rhombeata protein shows 100% identity with L. m. muta gyroxin and considerable sequence homology with gyroxin and thrombin-related proteins. The enzyme exhibits strong N-p-tosyl-L-arginine methyl esterase activity, hydrolyses tripeptide nitroanilide derivatives weakly or not at all, and cleaves specifically the fibropeptide A (alpha-chain).
Collapse
Affiliation(s)
- A S Aguiar
- Instituto Vital Brazil, Niterói RJ, Brazil
| | | | | | | |
Collapse
|
49
|
Grifantini R, Pratesi C, Galli G, Grandi G. Topological mapping of the cysteine residues of N-carbamyl-D-amino-acid amidohydrolase and their role in enzymatic activity. J Biol Chem 1996; 271:9326-31. [PMID: 8621596 DOI: 10.1074/jbc.271.16.9326] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The N-carbamyl-D-amino-acid amidohydrolase from Agrobacterium radiobacter NRRL B11291, the enzyme used for the industrial production Of D-amino acids, was cloned, sequenced, and expressed in Escherichia coli. The protein, a dimer constituted by two identical subunits of 34,000 Da with five cysteines each, was susceptible to aggregation under oxidizing conditions and highly sensitive to hydrogen peroxide. To investigate the role of the cysteines in enzyme stability and activity, mutant proteins were constructed by site-directed mutagenesis in which the five residues were substituted by either Ala or Ser. Only the mutant carrying the Cys172 substitution was catalytically inactive, and the other mutants maintained the same specific activity as the wild type enzyme. The crucial role of Cys172 in enzymatic activity was also confirmed by chemical derivatization of the protein with iodoacetate. Furthermore, chemical derivatizations using both acrylamide and Ellman's reagent revealed that (i) none of the five cysteines is engaged in disulfide bridges, (ii) Cys172 is easily accessible to the solvent, (iii) Cys193 and Cys250 appear to be buried in the protein core, and (iv) Cys243 and Cys279 seem to be located within or in proximity of external loops and are derivatized under mild denaturing conditions. These data are discussed in light of the possible mechanisms of enzyme inactivation and catalytic reaction.
Collapse
Affiliation(s)
- R Grifantini
- Eniricerche S.p.A., Genetic Engineering and Microbiology Laboratories, San Donato Milanese, Milan, Italy
| | | | | | | |
Collapse
|
50
|
Albeck A, Fluss S, Persky R. Peptidyl Epoxides: Novel Selective Inactivators of Cysteine Proteases1. J Am Chem Soc 1996. [DOI: 10.1021/ja954261y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amnon Albeck
- Contribution from the Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - Shulamit Fluss
- Contribution from the Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - Rachel Persky
- Contribution from the Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|