1
|
Williamson DH, Lund P. Cellular mechanisms for the regulation of adipose tissue lipid metabolism in pregnancy and lactation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 352:45-70. [PMID: 7832059 DOI: 10.1007/978-1-4899-2575-6_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- D H Williamson
- Metabolic Research Laboratory, Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford, United Kingdom
| | | |
Collapse
|
2
|
Cowley DJ, Sheridan MA. Insulin stimulates hepatic lipogenesis in rainbow trout, Oncorhynchus mykiss. FISH PHYSIOLOGY AND BIOCHEMISTRY 1993; 11:421-428. [PMID: 24202502 DOI: 10.1007/bf00004592] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The effects of the pancreatic hormones, insulin and glucagon, on rates of lipid biosynthesis in liver removed from rainbow trout, Oncorhynchus mykiss, were evaluated in vitro. Livers were removed from animals fasted for 30-36h, cut into ca. 1 mm(3) pieces, and incubated in the presence of various concentrations of salmon insulin (sINS), bovine insulin (bINS), or a combination of BINS and bovine/porcine glucagon (GLU). Lipid synthesis was evaluated by total lipid concentration, (3)H2O incorporation into total lipid, and by fatty acid synthetase activity. Both mammalian and sINS tended to increase tissue total lipid concentration in hepatic tissue incubated for 5h. Insulin also stimulated (3)H2O incorporation into total lipid in a dose-dependent manner. Bovine INS (2 × 10(-6) M) stimulated de novo synthesis nearly 6-fold over control rates; sINS (2 × 10(-6) M) stimulated label incorporation more than 7-fold over control rates. Glucagon inhibited INS-stimulated (3)H2O incorporation; whereas, GLU alone had no effect on lipid synthesis in liver pieces incubated 5h. Lipid class analysis indicated that bINS significantly stimulated (3)H2O incorporation into phospholipids, fatty acids, and triacylglycerols. The greatest accumulation of label was in the triacylglycerol fraction, where incorporation was stimulated 17-fold over control levels. Hepatic enzymatic analysis indicated that bINS also significantly stimulated lipogenic enzyme activity 9-fold above control levels. These results indicate that INS is an important regulator of lipid synthesis in the liver of trout.
Collapse
Affiliation(s)
- D J Cowley
- Department of Zoology, North Dakota State University, Fargo, ND, 58105, U.S.A
| | | |
Collapse
|
3
|
Acute hormonal control of acetyl-CoA carboxylase. The roles of insulin, glucagon, and epinephrine. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39330-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
4
|
Zammit VA. Changes in the sensitivity to glucagon of lipolysis in adipocytes from pregnant and lactating rats. Biochem J 1988; 254:661-5. [PMID: 3058115 PMCID: PMC1135136 DOI: 10.1042/bj2540661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
1. Rates of lipolysis were measured at different concentrations of glucagon in adipocytes prepared from parametrial adipose tissue of fed or starved rats in different reproductive states. All experiments were performed in the presence of a high concentration of adenosine deaminase (1 unit/ml). 2. Maximal rates of lipolysis (elicited by 25 nM-glucagon in each instance) were higher in adipocytes from peak-lactating rats than those from pregnant animals in both the fed and starved states. 3. Of adipocytes from fed animals, those from peak-lactating rats were the most sensitive to glucagon, whereas those from late-pregnant and early-lactating rats were 1-2 orders of magnitude less sensitive. 4. Adipocytes from 24 h-starved rats showed a much smaller stimulation of lipolysis by glucagon, making the assessment of sensitivity difficult. Therefore, rates of lipolysis were also measured in the presence of a maximally anti-lipolytic dose of insulin. The presence of insulin did not alter the relative sensitivities to glucagon of adipocytes from fed animals in different reproductive states, although all dose-response curves were shifted to the right. When lipolysis in adipocytes from starved animals was measured in the presence of insulin, it became evident that starvation for 24 h markedly increased the sensitivity of adipocytes from late-pregnant rats to glucagon, but did not affect that of cells from animals in the other reproductive states. 5. It is concluded that the large changes in sensitivity to glucagon that occurred during the reproductive cycle may enable the modulation of adipose-tissue lipolysis in vivo to satisfy the different metabolic requirements of the animal in the transition from pregnancy to peak lactation.
Collapse
Affiliation(s)
- V A Zammit
- Hannah Research Institute, Ayr, Scotland, U.K
| |
Collapse
|
5
|
Clegg RA. Regulation of fatty acid uptake and synthesis in mammary and adipose tissues: contrasting roles for cyclic AMP. CURRENT TOPICS IN CELLULAR REGULATION 1988; 29:77-128. [PMID: 2840244 DOI: 10.1016/b978-0-12-152829-4.50005-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- R A Clegg
- Hannah Research Institute, Ayr, Scotland
| |
Collapse
|
6
|
Witters LA, Mendel DB, Colliton JW. Modulation of acetyl-CoA carboxylase by inhibitors of IMP dehydrogenase: implications for insulin regulation. Arch Biochem Biophys 1987; 252:130-5. [PMID: 2880560 DOI: 10.1016/0003-9861(87)90016-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The activity of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme of fatty acid biosynthesis, can be regulated by both adenine and guanine nucleotides in vitro. We have employed two inhibitors of IMP dehydrogenase, ribavarin and tiazofurin, to investigate a possible role for intracellular nucleotides in ACC regulation in rat adipocytes. Ribavarin, but not tiazofurin, leads to a profound time-dependent inhibition of ACC activity that is associated with a decrease in both intracellular ATP and GTP. This inactivating effect is largely reversed with guanosine, accompanied by increases in both ATP and GTP levels. Epinephrine-mediated inactivation of ACC in intact cells is not altered by ribavarin incubation. However, in these experiments, insulin-mediated activation is observed only after ribavarin-induced inhibition of the enzyme. These data suggest that nucleotides may modulate ACC activity and influence is regulation by insulin in intact cells. The possible mechanisms underlying the insulin activation of ACC and the role of intracellular nucleotides in insulin action are discussed.
Collapse
|
7
|
de Gomez Dumm IN, de Alaniz MJ, Brenner RR. Effect of malonyl-CoA on delta 6 desaturation activity of rat liver microsomes. Lipids 1986; 21:721-3. [PMID: 3796237 DOI: 10.1007/bf02537248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The effect of malonyl-CoA on linoleic acid desaturation and elongation reactions of rat liver microsomes was studied. Under strict desaturation conditions, the in vitro microsomal conversion of linoleic acid to gamma-linolenic acid is time-dependent. When malonyl-CoA was added to the aforementioned incubation medium, linoleic acid was desaturated to gamma-linolenic acid and elongated to its higher homologues. Under these conditions, delta 6 desaturation activity, calculated by adding gamma-18:3, 20:3 and 20:4 acids, was neither inhibited nor activated by malonyl-CoA. These results indicate that the elongation of gamma-linolenyl-CoA coupled to the desaturation of linoleic acid did not modify delta 6 desaturase activity.
Collapse
|
8
|
Haystead TA, Hardie DG. Both insulin and epidermal growth factor stimulate lipogenesis and acetyl-CoA carboxylase activity in isolated adipocytes. Importance of homogenization procedure in avoiding artefacts in acetyl-CoA carboxylase assay. Biochem J 1986; 234:279-84. [PMID: 2872882 PMCID: PMC1146563 DOI: 10.1042/bj2340279] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidermal growth factor (EGF) stimulates lipogenesis by 3-4-fold in isolated adipocytes, with a half-maximal effect at 10 nM-EGF. In the same batches of cells insulin stimulated lipogenesis by 15-fold. Freezing and prolonged homogenization of adipocytes results in release of large quantities of pyruvate carboxylase from broken mitochondria, and sufficient pyruvate can be carried through into assays for this enzyme to cause significant interference with assays of acetyl-CoA carboxylase in crude adipocyte extracts. This may account for the high amount of citrate-independent acetyl-CoA carboxylase activity reported to be present in adipocyte extracts in some previous publications. This problem may be eliminated by homogenizing very briefly without freezing. By using the modified homogenization procedure, EGF treatment of adipocytes was shown to produce an effect on acetyl-CoA carboxylase activity almost identical with that of insulin. Both messengers increase Vmax. without significant effect on the Ka for the allosteric activator, citrate.
Collapse
|
9
|
Holland R, Hardie DG. Both insulin and epidermal growth factor stimulate fatty acid synthesis and increase phosphorylation of acetyl-CoA carboxylase and ATP-citrate lyase in isolated hepatocytes. FEBS Lett 1985; 181:308-12. [PMID: 2857659 DOI: 10.1016/0014-5793(85)80282-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Insulin and EGF cause identical stimulation (congruent to 40%) of fatty acid synthesis in hepatocytes isolated from rats which have been starved and then refed a low-fat diet. In both cases this stimulation is associated with increased phosphorylation of ATP-citrate lyase and of a specific site on acetyl-CoA carboxylase. However, the altered phosphorylation of acetyl-CoA carboxylase is not associated with a change in kinetic parameters which is detectable in the purified enzyme. Whatever the mechanism involved, stimulation of fatty acid synthesis by growth factors may have a role in providing new phospholipid for growth of membranes.
Collapse
|
10
|
Holland R, Hardie DG, Clegg RA, Zammit VA. Evidence that glucagon-mediated inhibition of acetyl-CoA carboxylase in isolated adipocytes involves increased phosphorylation of the enzyme by cyclic AMP-dependent protein kinase. Biochem J 1985; 226:139-45. [PMID: 2858203 PMCID: PMC1144686 DOI: 10.1042/bj2260139] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The kinetic parameters and phosphorylation state of acetyl-CoA carboxylase were analysed after purification of the enzyme by avidin--Sepharose chromatography from extracts of isolated adipocytes treated with glucagon or adrenaline. The results provide evidence that the mechanism of inhibition of acetyl-CoA carboxylase in adipocytes treated with glucagon [Zammit & Corstorphine (1982) Biochem. J. 208, 783-788] involves increased phosphorylation of the enzyme. Hormone treatment had effects on the kinetic parameters of the enzyme similar to those of phosphorylation of the enzyme in vitro by cyclic AMP-dependent protein kinase. Glucagon treatment of adipocytes led to increased phosphorylation of acetyl-CoA carboxylase in the same chymotryptic peptide as that containing the major site phosphorylated on the enzyme by purified cyclic AMP-dependent protein kinase in vitro [Munday & Hardie (1984) Eur. J. Biochem. 141, 617-627]. The dose--response curves for inhibition of enzyme activity and increased phosphorylation of the enzyme were very similar, with half-maximal effects occurring at concentrations of glucagon (0.5-1 nM) which are close to the physiological range. In general, the patterns of increased 32P-labelling of chymotryptic peptides induced by glucagon or adrenaline were similar, although there were quantitative differences between the effects of the two hormones on individual peptides. The results are discussed in terms of the possible roles of cyclic AMP-dependent and -independent protein kinases in the regulation of acetyl-CoA carboxylase activity and of lipogenesis in white adipose tissue.
Collapse
|
11
|
Abdel-Halim MN, Farah SI. Short-term regulation of acetyl CoA carboxylase: is the key enzyme in long-chain fatty acid synthesis regulated by an existing physiological mechanism? COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1985; 81:9-19. [PMID: 2861941 DOI: 10.1016/0305-0491(85)90156-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Acetyl CoA carboxylase, the rate-limiting enzyme in regulating fatty acid synthesis, is thought to be controlled by allosteric effectors, its state of aggregation, covalent modulation and protein inhibitors. It is still obscure whether citrate, a positive allosteric effector, and long-chain fatty acyl CoA esters, negative allosteric effectors, function physiologically to regulate acetyl CoA carboxylase activity. New evidence from several laboratories reveals that the covalent phosphorylation may not involve regulation of acetyl CoA carboxylase activity. Protein inhibitors from liver cytosol and a peptide from fat cells were found to regulate acetyl CoA carboxylase both in vivo and in vitro. Coenzyme A, guanosine 5-monophosphate and phosphatidylinositol 4,5-bisphosphate may have an indirect effect, but certainly no direct involvement, on carboxylase activity.
Collapse
|
12
|
Easom RA, Zammit VA. Diurnal changes in the fraction of 3-hydroxy-3-methylglutaryl-CoA reductase in the active form in rat liver microsomal fractions. Biochem J 1984; 220:739-45. [PMID: 6087794 PMCID: PMC1153691 DOI: 10.1042/bj2200739] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
'Initial' and 'total' activities of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) were measured in cold-clamped samples of liver from rats at 2h intervals throughout the 24h light/dark cycle. Initial activities were obtained in microsomes (microsomal fractions) isolated and assayed in the presence of 100mM-KF, whereas 'total' activities were measured in microsomes prepared from the same homogenates but washed free of KF and incubated with exogenous partially purified rat liver protein phosphatase. The initial/total-activity ratio for HMG-CoA reductase underwent a diurnal cycle, which had a nadir 4h into the light phase (when initial activity was 28% of total activity) and a peak 12h later, i.e. 4h into the dark phase (when initial activity was 80% of total activity). These low and high points of the cycle were separated by gradual steady changes in the ratio. The characteristics of this diurnal cycle were different from those of the cycle observed for total activity, which had a plateau of high activity between 2 and 10h into the dark cycle preceded and succeeded by a very rapid increase and decrease, respectively, in the total activity of HMG-CoA reductase. The combination of the two cycles resulted in the dampening of the resultant cycle for the initial or effective activity of HMG-CoA reductase, such that the changes in initial activity around the beginning and and end of the dark phase were more gradual than would otherwise have been the case if the initial/total-activity ratio for HMG-CoA reductase were constant throughout the diurnal cycle. The physiological implications of the observed diurnal variation in the fraction of hepatic HMG-CoA reductase in the active form are discussed.
Collapse
|
13
|
Easom RA, Zammit VA. A cold-clamping technique for the rapid sampling of rat liver for studies on enzymes in separate cell fractions. Suitability for the study of enzymes regulated by reversible phosphorylation-dephosphorylation. Biochem J 1984; 220:733-8. [PMID: 6466299 PMCID: PMC1153690 DOI: 10.1042/bj2200733] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A technique for the rapid sampling, cooling and homogenization of rat liver is described. Its effectiveness in preserving the activity status of pyruvate kinase (soluble) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) (microsomal) during sampling is assessed in comparison with that of the freeze-clamping technique and of simple excision and mincing of liver tissue before homogenization. The results suggest that cold-clamping is equally effective as freeze-clamping in preserving the activity status of pyruvate kinase in liver samples obtained in situ, but in addition allows the subsequent separation of subcellular fractions, notably microsomes (microsomal fractions) and mitochondria. It is suggested that this property makes the technique useful in studying the activity status of enzymes (e.g. HMG-CoA reductase) the assay of which is subject to interference from the activity of other enzymes which are released from damaged organelles in crude homogenates of freeze-clamped liver samples. This suggestion was tested directly; the cold-clamping technique was found to preserve a substantially higher initial/total HMG-CoA reductase activity ratio [Easom & Zammit (1984) Biochem. J. 220, 739-745] in subsequently isolated microsomes compared with that obtained in microsomes prepared from liver samples processed in the conventional manner. The integrity of mitochondria isolated from homogenates of cold-clamped liver samples was preserved, as judged by the latency of intramitochondrial enzymes and by good respiratory control of the mitochondria. Possible further areas of metabolic studies to which the cold-clamping technique could be applied are suggested.
Collapse
|
14
|
Robson NA, Clegg RA, Zammit VA. Regulation of peripheral lipogenesis by glucagon. Inability of the hormone to inhibit lipogenesis in rat mammary acini in vitro in the presence or absence of agents which alter its effects on adipocytes. Biochem J 1984; 217:743-9. [PMID: 6370233 PMCID: PMC1153277 DOI: 10.1042/bj2170743] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The rate of lipogenesis in acini isolated from mammary glands of mid-lactating rats was studied by measuring the rate of incorporation of 3H from 3H2O into total lipid and fatty acids, with glucose as substrate. Glucagon did not affect the rate of lipogenesis in acini. Glucagon did not antagonize the maximal stimulatory effect of insulin, nor did it alter the insulin dose-response curve. Theophylline, at concentrations up to 20 mM, was a potent inhibitor of lipogenesis in acini. Glucagon did not augment the degree of inhibition of lipogenesis induced by 5 mM-theophylline. The results suggest that mammary-gland acini do not respond to glucagon in vitro under conditions in which the hormone induces inhibition of lipogenesis (the present paper) and of individual key steps in the lipogenic pathway in adipocytes [Zammit & Corstorphine (1982) Biochem. J. 208, 783-788; Green (1983) Biochem. J. 212, 189-195]. In agreement with these observations, we could detect only a minimal degree of specific binding of 125I-labelled glucagon to acini which bound insulin normally. This difference in responsiveness of mammary and adipose cell preparations in vitro to glucagon suggests that the two tissues may be differentially responsive to changes in the circulating insulin/glucagon concentration ratio in vivo. The significance of these findings for the regulation of substrate utilization for lipogenesis in the two tissues during lactation is discussed.
Collapse
|
15
|
Zammit VA. Mechanisms of regulation of the partition of fatty acids between oxidation and esterification in the liver. Prog Lipid Res 1984; 23:39-67. [PMID: 6152703 DOI: 10.1016/0163-7827(84)90005-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Klim RA, Williamson DH. Effects of glucose-containing peritoneal-dialysis solutions on rates of lipogenesis in vivo in the liver, brown and white adipose tissue of chronic uraemic rats. Biochem J 1983; 214:459-64. [PMID: 6351852 PMCID: PMC1152267 DOI: 10.1042/bj2140459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chronic uraemic rats had decreased food intake, and this was accompanied by decreased weight of the epididymal fat-pads and interscapular brown adipose tissue. Normal rats whose food intake was restricted to an amount similar to that of the uraemic rats showed similar decreases in weight of the adipose-tissue depots. In addition, the food-restricted rats had decreased liver weight compared with normal or uraemic rats. The basal rate of lipogenesis was decreased in liver and epididymal fat-pads of food-restricted and uraemic rats and in interscapular brown adipose tissue of uraemic rats. Administration of a low-glucose-containing (1.36%) peritoneal-dialysis solution slightly increased lipogenesis in liver of uraemic rats, but had no significant effect in epididymal fat-pads. For brown fat, the rate of lipogenesis was increased in normal, food-restricted and uraemic groups, but the values for the last group were 4-5-fold lower than for the food-restricted or control groups. A high-glucose-containing (3.86%) peritoneal-dialysis solution gave similar rates of lipogenesis in liver, epididymal fat-pads and brown fat of all three groups, but for brown fat moderately uraemic rats showed a considerably lower rate of lipogenesis than did mildly uraemic rats. The basal plasma insulin concentration was lower in the food-restricted (50%) and uraemic (70%) groups than in the control group. The low-glucose peritoneal-dialysis solution increased plasma insulin to control values in the food-restricted rats, but had no significant effect on plasma insulin in the uraemic rats, despite a significant increase in blood glucose in this group. It is concluded that there is an impairment of the lipogenic response to intraperitoneal glucose loads in interscapular brown adipose tissue of uraemic rats, and that this is not due to the accompanying decrease in food intake. The hypoinsulinaemia may be an important factor. The possible relevance of this finding to the obesity observed in some uraemic patients treated by peritoneal dialysis with glucose-containing solutions is discussed.
Collapse
|