1
|
Castilho A, Neumann L, Daskalova S, Mason HS, Steinkellner H, Altmann F, Strasser R. Engineering of sialylated mucin-type O-glycosylation in plants. J Biol Chem 2012; 287:36518-26. [PMID: 22948156 PMCID: PMC3476317 DOI: 10.1074/jbc.m112.402685] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/24/2012] [Indexed: 11/15/2022] Open
Abstract
Proper N- and O-glycosylation of recombinant proteins is important for their biological function. Although the N-glycan processing pathway of different expression hosts has been successfully modified in the past, comparatively little attention has been paid to the generation of customized O-linked glycans. Plants are attractive hosts for engineering of O-glycosylation steps, as they contain no endogenous glycosyltransferases that perform mammalian-type Ser/Thr glycosylation and could interfere with the production of defined O-glycans. Here, we produced mucin-type O-GalNAc and core 1 O-linked glycan structures on recombinant human erythropoietin fused to an IgG heavy chain fragment (EPO-Fc) by transient expression in Nicotiana benthamiana plants. Furthermore, for the generation of sialylated core 1 structures constructs encoding human polypeptide:N-acetylgalactosaminyltransferase 2, Drosophila melanogaster core 1 β1,3-galactosyltransferase, human α2,3-sialyltransferase, and Mus musculus α2,6-sialyltransferase were transiently co-expressed in N. benthamiana together with EPO-Fc and the machinery for sialylation of N-glycans. The formation of significant amounts of mono- and disialylated O-linked glycans was confirmed by liquid chromatography-electrospray ionization-mass spectrometry. Analysis of the three EPO glycopeptides carrying N-glycans revealed the presence of biantennary structures with terminal sialic acid residues. Our data demonstrate that N. benthamiana plants are amenable to engineering of the O-glycosylation pathway and can produce well defined human-type O- and N-linked glycans on recombinant therapeutics.
Collapse
Affiliation(s)
- Alexandra Castilho
- From the Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna Austria
| | - Laura Neumann
- the Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria, and
| | - Sasha Daskalova
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Hugh S. Mason
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Herta Steinkellner
- From the Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna Austria
| | - Friedrich Altmann
- the Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria, and
| | - Richard Strasser
- From the Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna Austria
| |
Collapse
|
2
|
Lessons from GNE-deficient embryonic stem cells: sialic acid biosynthesis is involved in proliferation and gene expression. Glycobiology 2009; 20:107-17. [DOI: 10.1093/glycob/cwp153] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
3
|
Zhou Q, Kyazike J, Echelard Y, Meade HM, Higgins E, Cole ES, Edmunds T. Effect of genetic background on glycosylation heterogeneity in human antithrombin produced in the mammary gland of transgenic goats. J Biotechnol 2005; 117:57-72. [PMID: 15831248 DOI: 10.1016/j.jbiotec.2005.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 12/27/2004] [Accepted: 01/07/2005] [Indexed: 11/21/2022]
Abstract
Glycosylation is involved in the correct folding, targeting, bioactivity and clearance of therapeutic glycoproteins. With the development of transgenic animals as expression systems it is important to understand the impact of different genetic backgrounds and lactations on glycosylation. We have evaluated the glycosylation of recombinant antithrombin produced in several transgenic goat lines, from cloned animals and from different types of lactation including induced lactations. Our results show glycosylation patterns from the protein expressed in animals, derived from the same founder goat, are mostly comparable. Furthermore, the protein expressed in two cloned goats had highly consistent oligosaccharide profiles and similar carbohydrate composition. However, there were significantly different oligosaccharide profiles from the proteins derived from different founder goats. Artificial induction of lactation did not have significant effects on overall carbohydrate structures when compared to natural lactation. The only major difference was that recombinant antithrombin from induced lactations contained a slightly higher ratio of N-acetylneuraminic acid to N-glycolylneuraminic acid and less amount of oligosaccharides containing N-glycolylneuraminic acid. The oligosaccharides from all animals were a mixture of high mannose-, hybrid- and complex-type oligosaccharides. Sialic acid was present as alpha-2,6-linkage and no alpha-1,3-linked galactose was observed. These results indicate that transgenic animals with closely related genetic backgrounds express recombinant protein with comparable glycosylation.
Collapse
Affiliation(s)
- Qun Zhou
- Therapeutic Protein Research, Genzyme Corporation, P.O. Box 9322, Framingham, MA 01701-9322, USA.
| | | | | | | | | | | | | |
Collapse
|
4
|
Yagi T, Baroja-Fernández E, Yamamoto R, Muñoz FJ, Akazawa T, Hong KS, Pozueta-Romero J. Cloning, expression and characterization of a mammalian Nudix hydrolase-like enzyme that cleaves the pyrophosphate bond of UDP-glucose. Biochem J 2003; 370:409-15. [PMID: 12429023 PMCID: PMC1223183 DOI: 10.1042/bj20021140] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2002] [Revised: 11/08/2002] [Accepted: 11/12/2002] [Indexed: 11/17/2022]
Abstract
A distinct UDP-glucose (UDPG) pyrophosphatase (UGPPase, EC 3.6.1.45) has been characterized using pig kidney ( Sus scrofa ). This enzyme hydrolyses UDPG, the precursor molecule of numerous glycosylation reactions in animals, to produce glucose 1-phosphate (G1P) and UMP. Sequence analyses of the purified enzyme revealed that, similar to the case of a nucleotide-sugar hydrolase controlling the intracellular levels of ADP-glucose linked to glycogen biosynthesis in Escherichia coli [Moreno-Bruna, Baroja-Fernández, Muñoz, Bastarrica-Berasategui, Zandueta-Criado, Rodri;guez-López, Lasa, Akazawa and Pozueta-Romero (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 8128-8132], UGPPase appears to be a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated Nudix hydrolases. A complete cDNA of the UGPPase-encoding gene, designated UGPP, was isolated from a human thyroid cDNA library and expressed in E. coli. The resulting cells accumulated a protein that showed kinetic properties identical to those of pig UGPPase.
Collapse
Affiliation(s)
- Toshihiro Yagi
- JCR Pharmaceuticals Co. Ltd., Pharmacological Science, Research Division, 2-2-10 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Rodríguez-López M, Baroja-Fernández E, Zandueta-Criado A, Moreno-Bruna B, Muñoz FJ, Akazawa T, Pozueta-Romero J. Two isoforms of a nucleotide-sugar pyrophosphatase/phosphodiesterase from barley leaves (Hordeum vulgare L.) are distinct oligomers of HvGLP1, a germin-like protein. FEBS Lett 2001; 490:44-8. [PMID: 11172808 DOI: 10.1016/s0014-5793(01)02135-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two isoforms of ADPglucose pyrophosphatase/phosphodiesterase (AGPPase) have been characterized using barley leaves (Hordeum vulgare L.). Whilst one of the isoforms, designated as soluble AGPPase1 (SAGPPase1), is soluble in low ionic strength buffers, the other, SAGPPase2, is extractable using cell wall hydrolytic enzymes or high salt concentration solutions, thus indicating that it is adventitiously bound to the cell wall. Both AGPPase isoforms are highly resistant to SDS, this characteristic being utilized to purify them to homogeneity after zymographic detection of AGPPase activity in SDS-containing gels. N-terminal and internal amino acid sequencing analyses revealed that both SAGPPase1 and SAGPPase2 are distinct oligomers of the previously designated HvGLP1, which is a member of the ubiquitously distributed group of proteins of unknown function designated as germin-like proteins (GLPs).
Collapse
Affiliation(s)
- M Rodríguez-López
- Instituto de Agrobiotecnología y Recursos Naturales, Universidad Pública de Navarra/Consejo Superior de Investigaciones Científicas, Ctra. Mutilva s/n, 31192 Mutilva Baja, Navarra, Spain
| | | | | | | | | | | | | |
Collapse
|
6
|
Takeya A, Hosomi O, Kogure T. Vicia villosa B4 lectin inhibits nucleotide pyrophosphatase activity toward UDP-GalNAc specifically. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1425:215-23. [PMID: 9813334 DOI: 10.1016/s0304-4165(98)00074-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plant seed lectins play a defense role against plant-eating animals. Here, GalNAc-specific Vicia villosa B4 lectin was found to inhibit hydrolysis of UDP-GalNAc by animal nucleotide pyrophosphatases, which are suggested to regulate local levels of nucleotide sugars in cells. Inhibition was marked at low concentrations of UDP-GalNAc, and was reversed largely by the addition of GalNAc to the reaction mixture. In contrast, lectin inhibited enzymatic hydrolysis of other nucleotide sugars, such as UDP-Gal and UDP-GlcNAc, only to a small extent, and GalNAc did not affect such an inhibition. The binding constant of the lectin for UDP-GalNAc was as high as 2.8 x 10(5) M-1 at 4 degrees C, whereas that for GalNAcalpha-1-phosphate was 1.3 x 10(5) M-1. These findings indicate that lectin inhibition of pyrophosphatase activity toward low concentrations of UDP-GalNAc arises mainly from competition between lectin and enzyme molecules for UDP-GalNAc. This type of inhibition was also observed to a lesser extent with GalNAc-specific Wistaria floribunda lectin, but not apparently with GalNAc-specific soybean or Dolichos biflorus lectin. Thus, V. villosa B4 lectin shows unique binding specificity for UDP-GalNAc and has the capacity to modulate UDP-GalNAc metabolism in animal cells.
Collapse
Affiliation(s)
- A Takeya
- Department of Legal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan.
| | | | | |
Collapse
|
7
|
Canales J, Pinto RM, Costas MJ, Hernández MT, Miró A, Bernet D, Fernández A, Cameselle JC. Rat liver nucleoside diphosphosugar or diphosphoalcohol pyrophosphatases different from nucleotide pyrophosphatase or phosphodiesterase I: substrate specificities of Mg(2+)-and/or Mn(2+)-dependent hydrolases acting on ADP-ribose. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1246:167-77. [PMID: 7819284 DOI: 10.1016/0167-4838(94)00191-i] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Three rat liver nucleotides(5') diphosphosugar (NDP-sugar) or nucleoside(5') diphosphoalcohol pyrophosphatases are described: two were previously identified in experiments measuring Mg(2+)-dependent ADP-ribose pyrophosphatase activity (Miró et al. (1989) FEBS Lett. 244, 123-126), and the other is a new, Mn(2+)-dependent ADP-ribose pyrophosphatase. They are resolved by ion-exchange chromatography, and differ by their substrate and cation specificities, KM values for ADP-ribose, pH-activity profiles, molecular weights and isoelectric points. The enzymes were tested for activity towards: reducing (ADP-ribose, IDP-ribose) and non-reducing NDP-sugars (ADP-glucose, ADP-mannose, GDP-mannose, UDP-mannose, UDP-glucose, UDP-xylose, CDP-glucose), CDP-alcohols (CDP-glycerol, CDP-ethanolamine, CDP-choline), dinucleotides (diadenosine pyrophosphate, NADH, NAD+, FAD), nucleoside(5') mono- and diphosphates (AMP, CMP, GMP, ADP, CDP) and dTMP p-nitrophenyl ester. Since the enzymes have not been purified to homogeneity, more than three pyrophosphatases may be present, but the co-purification of activities, thermal co-inactivation, and inhibition experiments give support to: (i) and ADP-ribose pyrophosphatase highly specific for ADP(IDP)-ribose in the presence of Mg2+, but active also on non-reducing ADP-hexoses and dinucleotides (not on NAD+) when Mg2+ was replaced with Mn2+; (ii) a Mn(2+)-dependent pyrophosphatase active on ADP(IDP)-ribose, dinucleotides and CDP-alcohols; (iii) a rather unspecific pyrophosphatase that, with Mg2+, was active on AMP(IMP)-containing NDP-sugars and dinucleotides (not on NAD+), and with Mn2+, was also active on non-adenine NDP-sugars and CDP-alcohols. The enzymes differ from nucleotide pyrophosphatase/phosphodiesterase-I (NPPase/PDEaseI) by their substrate specificities and by their cytosolic location and solubility in the absence of detergents. Although NPPase/PDEaseI is much more active in rat liver, its known location in the non-cytoplasmic sides of plasma and endoplasmic reticulum membranes, together with the known cytoplasmic synthesis of NDP-sugars and CDP-alcohols, permit the speculation that the pyrophosphatases studied in this work may have a cellular role.
Collapse
Affiliation(s)
- J Canales
- Departmento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | | | | | | | | | | | | | | |
Collapse
|
8
|
van Dijk W, Turner GA, Mackiewicz A. Changes in glycosylation of acute-phase proteins in health and disease: Occurrence, regulation and function. Glycoconj J 1994. [DOI: 10.1007/bf00917463] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Rebbe NF, Tong BD, Hickman S. Expression of nucleotide pyrophosphatase and alkaline phosphodiesterase I activities of PC-1, the murine plasma cell antigen. Mol Immunol 1993; 30:87-93. [PMID: 7678057 DOI: 10.1016/0161-5890(93)90429-f] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nucleotide pyrophosphatase (EC 3.6.1.9) is a membrane enzyme purified from a number of mammalian sources that may have alkaline phosphodiesterase I (EC 3.1.4.1) activity as well. The mol. wt and subunit structure of this membrane glycoprotein are similar to that of the murine plasma cell alloantigen, PC-1. The PC-1 protein is a disulfide-bonded dimer of identical 115 kDa polypeptides that is selectively expressed on B lineage cells that have reached the degree of maturation associated with immunoglobulin secretion. It also has restricted expression in certain non-lymphoid tissues. In this report, we show that alkaline phosphodiesterase I activity parallels PC-1 mRNA expression in a number of B lineage cell lines at different stages of differentiation. Furthermore, we demonstrate increases in both nucleotide pyrophosphatase and alkaline phosphodiesterase I enzymatic activities in transiently transfected COS-7 cells expressing a cloned PC-1 cDNA construction. These results extend our previous immunological and correlative studies and directly ascribe an enzymatic activity to this cell surface differentiation antigen. These experiments also demonstrate that a single protein is responsible for both alkaline phosphodiesterase I and nucleotide pyrophosphatase activities.
Collapse
Affiliation(s)
- N F Rebbe
- Washington University Medical Service, Veterans Affairs Medical Center, John Cochran Division, St Louis, MO 63106
| | | | | |
Collapse
|
10
|
Oda-Tamai S, Kato S, Akamatsu N. Postnatal changes in sialylation of glycoproteins in rat liver. Biochem J 1991; 280 ( Pt 1):179-85. [PMID: 1741745 PMCID: PMC1130617 DOI: 10.1042/bj2800179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glycoproteins containing N-linked oligosaccharides were prepared from plasma and liver microsomes of rats aged 0-5 weeks, and galactose and sialic acid content were determined. The sialic acid/galactose ratios in plasma membrane N-glycans remained at about 1 throughout the postnatal period, suggesting that most of the galactose residues are sialylated. In the same way, it was suggested that most of the galactose residues of microsomal N-glycans were sialylated at 0, 4 and 5 weeks of age, but that the degree of sialylation was lower at the other ages, with a minimum at 2 weeks. When the activities of sialyltransferase and galactosyltransferase in liver Golgi membranes were determined, age-dependent changes were found, not only in the specific activities of the enzymes, but also in the Golgi membrane content per g of liver. The activity of galactosyltransferase per g of liver increased immediately after birth, whereas that of sialyltransferase remained at a low level for 2 weeks and then increased to a constant level at 4 weeks. It is probable that this delayed increase in the activity of sialyltransferase results in the decreased sialylation of microsomal N-glycans at 1, 2 and 3 weeks. Sialyltransferase was solubilized from the liver microsomes of rats aged 2, 3 and 4 weeks and characterized. Phosphocellulose column chromatography separated the activity into two subfractions, designated transferase I and transferase II in the order of elution. The increase in total sialyltransferase activity during this period was caused mainly by an increase in transferase I. Rechromatography of each transferase from 3-week-old rats after neuraminidase treatment showed that transferase I but not transferase II contained sialic acid residue(s) and that desialylated transferase I was eluted in a similar way as transferase II. Although the apparent Km value for CMP-N-acetylneuraminic acid and the heat stability of transferase I were different from those of transferase II, the difference was abolished by treating transferase I with neuraminidase, suggesting that transferase II may be a desialylated form of transferase I. These changes in the sialylation of membrane glycoproteins, including sialyltransferase, may be related to the control of liver growth during postnatal development.
Collapse
Affiliation(s)
- S Oda-Tamai
- Department of Biochemistry, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | |
Collapse
|
11
|
Lepers A, Shaw L, Schneckenburger P, Cacan R, Verbert A, Schauer R. A study on the regulation of N-glycoloylneuraminic acid biosynthesis and utilization in rat and mouse liver. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 193:715-23. [PMID: 2249689 DOI: 10.1111/j.1432-1033.1990.tb19391.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The relative contribution of N-glycoloyl-beta-D-neuraminic acid (Neu5Gc) to total sialic acids expressed in mouse and rat liver glycoconjugates was found to be 95% and 11%, respectively. This considerable difference in sialic acid composition made these two tissues suitable models for a comparative investigation into the regulation of Neu5Gc biosynthesis and utilization. An examination of the CMP-glycoside specificity of Golgi-associated sialyltransferases using CMP-N-acetyl-beta-D-neuraminic acid (CMP-Neu5Ac) and CMP-Neu5Gc revealed no significant tissue-dependent differences. The Golgi membrane CMP-sialic acid transport system from rat liver did, however, exhibit a slightly higher internalisation rate for CMP-Neu5Ac, though no preferential affinity for this sugar nucleotide over CMP-Neu5Gc was observed. In experiments, where Golgi membrane preparations were incubated with an equimolar mixture of labelled CMP-Neu5Ac and CMP-Neu5Gc, no significant tissue-dependent differences in [14C]sialic acid composition were observed, either in the luminal soluble sialic acid fraction or in the precipitable sialic acid fraction, results which are consistent with the above observations. From this experiment, evidence was also obtained for the presence of a Golgi-lumen-associated CMP--sialic acid hydrolase which exhibited no apparent specificity for either CMP-Neu5Ac or CMP-Neu5Gc. The specific activity of the CMP-Neu5Ac hydroxylase, the enzyme responsible for the biosynthesis of Neu5Gc, was found to be 28-fold greater in high-speed supernatants of mouse liver than of rat liver. No hydroxylase activity was detected in the Golgi membrane preparations. It is therefore proposed that the cytoplasmic ratio of CMP-Neu5Ac and CMP-Neu5Gc produced by the hydroxylase, remains largely unmodified after CMP-glycoside uptake into the Golgi apparatus and transfer on to growing glycoconjugate glycan chains. The close relationship between the total sialic acid composition and the sialic acid pattern in the CMP-glycoside pools of the tissues lends considerable weight to this hypothesis.
Collapse
Affiliation(s)
- A Lepers
- Laboratoire de Chimie Biologique, Centre National de Recherche Scientifique no. 111, Université de Sciences et Techniques de Lille Flandres-Artois, Villeneuve d'Ascq, France
| | | | | | | | | | | |
Collapse
|
12
|
Ishii I, Takahashi N, Kato S, Akamatsu N, Kawazoe Y. High-performance liquid chromatographic analysis of changes of asparagine-linked oligosaccharides in regenerating rat liver. JOURNAL OF CHROMATOGRAPHY 1985; 345:134-9. [PMID: 4086576 DOI: 10.1016/0378-4347(85)80143-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Rat intestinal nucleotide-sugar pyrophosphatase. Localization, partial purification, and substrate specificity. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39631-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Corfield AP, Clamp JR, Wagner SA. The metabolism of sialic acids in isolated rat colonic mucosal cells. Biochem J 1985; 226:163-74. [PMID: 3977862 PMCID: PMC1144689 DOI: 10.1042/bj2260163] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The activities of ten enzymes involved in sialic acid metabolism were measured in colonic mucosal cells from rats and compared with those in liver. A methodology was devised that enabled all ten enzyme activities to be evaluated in a single rat colon preparation. Enzyme assays with radioactively labelled substrates were developed for maximum sensitivity, and the identification of substrates and products was carefully checked to assess the contribution of contaminants to enzyme reactions with low activity. The activities of most enzymes involved in the biosynthesis of N-acetyl-D-neuraminic acid (NeuAc) from UDP-N-acetyl-D-glucosamine were found to be more than 20-fold lower than those in liver. The activities of CMP-NeuAc synthase, N-acetyl-D-glucosamine 2-epimerase, N-acetyl-D-glucosamine kinase, sialyltransferase and sialidase were similar to or 2-4-fold lower than in liver. The biosynthesis of NeuAc via its 9-phosphate was demonstrated in the 100 000 g supernatant of colonic-cell homogenates by enzymic assay and precursor experiments with N-acetyl[14C]-mannosamine. No alternative route for NeuAc formation could be detected. The 100 000g supernatant fractions of liver, kidney and colonic mucosal cells utilized N-acetyl[14C]mannosamine with differing efficiencies. Radioactive products identified as sialic acid biosynthetic intermediates amounted to 49%, 0.04% and 5.6% of added precursor in liver, kidney and colon respectively. Catabolism of labelled precursor to non-hexosamine products was high in kidney and colonic mucosal-cell fractions.
Collapse
|
15
|
Muilerman HG, Lasthuis AM, Hooghwinkel GJ, Van Dijk W. On the presence of two non-specific nucleotide-sugar-hydrolysing enzymes in rat liver. Biochem J 1984; 220:95-103. [PMID: 6331414 PMCID: PMC1153598 DOI: 10.1042/bj2200095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Evidence is presented for the occurrence of two different non-specific nucleotide-sugar hydrolases in rat liver and other rat tissues. These two enzymes (I and II) were separated by chromatography on a 5'-AMP-aminohexyl-Sepharose column. Enzyme I is most probably identical with phosphodiesterase I (EC 3.1.4.1). Enzyme II appeared to be identical with an enzyme described in literature as 'CMP-sialic acid hydrolase' [Kean & Bighouse (1974) J. Biol. Chem. 249, 7813-7823], since almost all activity with CMP-N-acetylneuraminate as substrate was recovered in this enzyme fraction. CMP-N-acetylneuraminate was a poor substrate for Enzyme I, whereas deoxythymidine-5'-p-nitrophenyl phosphate and all nucleoside-diphosphosugars tested were good substrates for both Enzyme I and II. Therefore it is suggested that CMP-N-acetylneuraminate is used as an additional substrate to discriminate between the activities of Enzyme I and II in homogenates or membrane preparations. The various substrates appeared to be competitive inhibitors of each other, suggesting that, in each enzyme preparation, only one enzyme is responsible for the hydrolysis of the various substrates. The dissimilar properties of the two enzymes are substantiated by studying the subunit molecular masses (Enzyme I, 125 kDa; Enzyme II, 50-55 kDa), the sensitivity towards Triton X-100, Sarkosyl and sodium dodecyl sulphate and towards trypsin treatment. It is discussed whether the alpha-N-acetylglucosamine phosphodiesterase described by Varki & Kornfeld [(1981) J. Biol. Chem. 256, 9937-9943] is identical with one of the nucleotide-sugar hydrolases described here.
Collapse
|
16
|
Parkkinen J, Finne J. Isolation and characterization of novel phosphate-containing sialyloligosaccharides from normal human urine. EUROPEAN JOURNAL OF BIOCHEMISTRY 1984; 140:427-31. [PMID: 6714239 DOI: 10.1111/j.1432-1033.1984.tb08120.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Three phosphate-containing sialyloligosaccharides were isolated from normal human urine using charcoal adsorption, gel-filtration chromatography, ion-exchange chromatography and paper chromatography. Studies including gas-liquid chromatography of monosaccharide and disaccharide derivatives, methylation analysis, phosphate determination, ion-exchange chromatography and glycosidase and phosphatase treatments indicated the following three structures for the compounds isolated: NeuAc(alpha 2-6)Gal(beta 1-4)GlcNAc(alpha)-P; NeuAc(alpha 2-3)Gal(beta 1-4)GlcNAc(alpha)-P; NeuAc(alpha 2-3)Gal(beta 1-3)GalNAc(alpha)-P. These sialyloligosaccharide 1-phosphates represent a novel class of oligosaccharides. Their oligosaccharide chains are identical with the common sialyloligosaccharide end groups of glycoproteins and glycolipids. The excretion of these compounds in normal human urine may indicate the existence of a novel, as yet unrevealed pathway in the metabolism of complex carbohydrates.
Collapse
|