1
|
Yazawa EM, Geddes-Sweeney JE, Cedeno-Laurent F, Walley KC, Barthel SR, Opperman MJ, Liang J, Lin JY, Schatton T, Laga AC, Mihm MC, Qureshi AA, Widlund HR, Murphy GF, Dimitroff CJ. Melanoma Cell Galectin-1 Ligands Functionally Correlate with Malignant Potential. J Invest Dermatol 2015; 135:1849-1862. [PMID: 25756799 DOI: 10.1038/jid.2015.95] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/10/2015] [Accepted: 02/25/2015] [Indexed: 01/08/2023]
Abstract
Galectin-1 (Gal-1)-binding to Gal-1 ligands on immune and endothelial cells can influence melanoma development through dampening antitumor immune responses and promoting angiogenesis. However, whether Gal-1 ligands are functionally expressed on melanoma cells to help control intrinsic malignant features remains poorly understood. Here, we analyzed expression, identity, and function of Gal-1 ligands in melanoma progression. Immunofluorescent analysis of benign and malignant human melanocytic neoplasms revealed that Gal-1 ligands were abundant in severely dysplastic nevi, as well as in primary and metastatic melanomas. Biochemical assessments indicated that melanoma cell adhesion molecule (MCAM) was a major Gal-1 ligand on melanoma cells that was largely dependent on its N-glycans. Other melanoma cell Gal-1 ligand activity conferred by O-glycans was negatively regulated by α2,6 sialyltransferase ST6GalNAc2. In Gal-1-deficient mice, MCAM-silenced (MCAM(KD)) or ST6GalNAc2-overexpressing (ST6(O/E)) melanoma cells exhibited slower growth rates, underscoring a key role for melanoma cell Gal-1 ligands and host Gal-1 in melanoma growth. Further analysis of MCAM(KD) or ST6(O/E) melanoma cells in cell migration assays indicated that Gal-1 ligand-dependent melanoma cell migration was severely inhibited. These findings provide a refined perspective on Gal-1/melanoma cell Gal-1 ligand interactions as contributors to melanoma malignancy.
Collapse
Affiliation(s)
- Erika M Yazawa
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | - Kempland C Walley
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Steven R Barthel
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew J Opperman
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jennifer Liang
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jennifer Y Lin
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Tobias Schatton
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Alvaro C Laga
- Harvard Medical School, Boston, Massachusetts, USA; Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Martin C Mihm
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Abrar A Qureshi
- Department of Dermatology, The Warren Albert Medical School, Brown University, Providence, Rhode Island, USA
| | - Hans R Widlund
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - George F Murphy
- Harvard Medical School, Boston, Massachusetts, USA; Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Charles J Dimitroff
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
2
|
Solís D, Bovin NV, Davis AP, Jiménez-Barbero J, Romero A, Roy R, Smetana K, Gabius HJ. A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim Biophys Acta Gen Subj 2014; 1850:186-235. [PMID: 24685397 DOI: 10.1016/j.bbagen.2014.03.016] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/13/2014] [Accepted: 03/18/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND The most demanding challenge in research on molecular aspects within the flow of biological information is posed by the complex carbohydrates (glycan part of cellular glycoconjugates). How the 'message' encoded in carbohydrate 'letters' is 'read' and 'translated' can only be unraveled by interdisciplinary efforts. SCOPE OF REVIEW This review provides a didactic step-by-step survey of the concept of the sugar code and the way strategic combination of experimental approaches characterizes structure-function relationships, with resources for teaching. MAJOR CONCLUSIONS The unsurpassed coding capacity of glycans is an ideal platform for generating a broad range of molecular 'messages'. Structural and functional analyses of complex carbohydrates have been made possible by advances in chemical synthesis, rendering production of oligosaccharides, glycoclusters and neoglycoconjugates possible. This availability facilitates to test the glycans as ligands for natural sugar receptors (lectins). Their interaction is a means to turn sugar-encoded information into cellular effects. Glycan/lectin structures and their spatial modes of presentation underlie the exquisite specificity of the endogenous lectins in counterreceptor selection, that is, to home in on certain cellular glycoproteins or glycolipids. GENERAL SIGNIFICANCE Understanding how sugar-encoded 'messages' are 'read' and 'translated' by lectins provides insights into fundamental mechanisms of life, with potential for medical applications.
Collapse
Affiliation(s)
- Dolores Solís
- Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 07110 Bunyola, Mallorca, Illes Baleares, Spain.
| | - Nicolai V Bovin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul Miklukho-Maklaya 16/10, 117871 GSP-7, V-437, Moscow, Russian Federation.
| | - Anthony P Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Jesús Jiménez-Barbero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Antonio Romero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| | - Karel Smetana
- Charles University, 1st Faculty of Medicine, Institute of Anatomy, U nemocnice 3, 128 00 Prague 2, Czech Republic.
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 München, Germany.
| |
Collapse
|
3
|
Göhler A, Büchner C, André S, Doose S, Kaltner H, Gabius HJ. Sensing ligand binding to a clinically relevant lectin by tryptophan fluorescence anisotropy. Analyst 2011; 136:5270-6. [DOI: 10.1039/c1an15692f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
4
|
Stowell SR, Cho M, Feasley CL, Arthur CM, Song X, Colucci JK, Karmakar S, Mehta P, Dias-Baruffi M, McEver RP, Cummings RD. Ligand reduces galectin-1 sensitivity to oxidative inactivation by enhancing dimer formation. J Biol Chem 2008; 284:4989-99. [PMID: 19103599 DOI: 10.1074/jbc.m808925200] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Galectin-1 (Gal-1) regulates leukocyte turnover by inducing the cell surface exposure of phosphatidylserine (PS), a ligand that targets cells for phagocytic removal, in the absence of apoptosis. Gal-1 monomer-dimer equilibrium appears to modulate Gal-1-induced PS exposure, although the mechanism underlying this regulation remains unclear. Here we show that monomer-dimer equilibrium regulates Gal-1 sensitivity to oxidation. A mutant form of Gal-1, containing C2S and V5D mutations (mGal-1), exhibits impaired dimerization and fails to induce cell surface PS exposure while retaining the ability to recognize carbohydrates and signal Ca(2+) flux in leukocytes. mGal-1 also displayed enhanced sensitivity to oxidation, whereas ligand, which partially protected Gal-1 from oxidation, enhanced Gal-1 dimerization. Continual incubation of leukocytes with Gal-1 resulted in gradual oxidative inactivation with concomitant loss of cell surface PS, whereas rapid oxidation prevented mGal-1 from inducing PS exposure. Stabilization of Gal-1 or mGal-1 with iodoacetamide fully protected Gal-1 and mGal-1 from oxidation. Alkylation-induced stabilization allowed Gal-1 to signal sustained PS exposure in leukocytes and mGal-1 to signal both Ca(2+) flux and PS exposure. Taken together, these results demonstrate that monomer-dimer equilibrium regulates Gal-1 sensitivity to oxidative inactivation and provides a mechanism whereby ligand partially protects Gal-1 from oxidation.
Collapse
Affiliation(s)
- Sean R Stowell
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kopitz J, Russwurm R, Kaltner H, André S, Dotti CG, Gabius HJ, Abad-Rodríguez J. Hippocampal neurons and recombinant galectins as tools for systematic carbohydrate structure-function studies in neuronal differentiation. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 153:189-96. [PMID: 15527886 DOI: 10.1016/j.devbrainres.2004.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2004] [Indexed: 11/17/2022]
Abstract
Membrane glycoconjugates play a central role in neuronal interactions and regulation. To define the precise links between membrane polysaccharides and neuronal functions, two main requirements must be fulfilled: (1) the availability of molecular tools able to finely discriminate among carbohydrate structures and (2) the use of an experimental system suitable for systematic and quantitative studies of particular neuronal processes. In this work, we used two chicken proto-type galectins, i.e., monomeric CG-14 and dimeric CG-16, with very similar carbohydrate affinities, and rat hippocampal neurons in culture to quantitatively measure the involvement of carbohydrate-protein interaction in axonal growth and directionality, neurite sprouting and axon regenerative capacity after section. CG-16 potently stimulated axonal growth and guidance. Neurite sprouting was enhanced by immobilized CG-16 and, notably, reduced by lectin in solution. Overall, cross-linking CG-16 invariably excelled CG-14 in these functional assays, although none of them were able to improve axon regenerative capacity when compared to mammalian galectin-1. Our results demonstrate the potential of the experimental set-up to perform a systematic study of galectin functionality in neuronal differentiation. In view of the concept of the sugar code, the presented results indicate that biological effects triggered by glycan binding engaging an endogenous lectin can be modulated by carbohydrate affinity and/or by other factors like differential cross-linking capacity.
Collapse
Affiliation(s)
- Jürgen Kopitz
- Institut für Molekulare Pathologie, Klinikum der Ruprecht-Karls-Universität, Im Neuenheimer Feld 220, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
André S, Kaltner H, Lensch M, Russwurm R, Siebert HC, Fallsehr C, Tajkhorshid E, Heck AJR, von Knebel Doeberitz M, Gabius HJ, Kopitz J. Determination of structural and functional overlap/divergence of five proto-type galectins by analysis of the growth-regulatory interaction with ganglioside GM1in silicoandin vitroon human neuroblastoma cells. Int J Cancer 2004; 114:46-57. [PMID: 15523676 DOI: 10.1002/ijc.20699] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The growth-regulatory interplay between ganglioside GM1 on human SK-N-MC neuroblastoma cells and an endogenous lectin provides a telling example for glycan (polysaccharide) functionality. Galectin-1 is the essential link between the sugar signal and the intracellular response. The emerging intrafamily complexity of galectins raises the question on defining extent of their structural and functional overlap/divergence. We address this problem for proto-type galectins in this system: ganglioside GM1 as ligand, neuroblastoma cells as target. Using the way human galectin-1 interacts with this complex natural ligand as template, we first defined equivalent positioning for distinct substitutions in the other tested proto-type galectins, e.g., Lys63 vs. Leu60/Gln72 in galectins-2 and -5. As predicted from our in silico work, the tested proto-type galectins have affinity for the pentasaccharide of ganglioside GM1. In contrast to solid-phase assays, cell surface presentation of the ganglioside did not support binding of galectin-5, revealing the first level of regulation. Next, a monomeric proto-type galectin (CG-14) can impair galectin-1-dependent negative growth control by competitively blocking access to the shared ligand without acting as effector. Thus, the quaternary structure of proto-type galectins is an efficient means to give rise to functional divergence. The identification of this second level of regulation is relevant for diagnostic monitoring. It might be exploited therapeutically by producing galectin variants tailored to interfere with galectin activities associated with the malignant phenotype. Moreover, the given strategy for comparative computational analysis of extended binding sites has implications for the rational design of galectin-type-specific ligands.
Collapse
Affiliation(s)
- Sabine André
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kopitz J, André S, von Reitzenstein C, Versluis K, Kaltner H, Pieters RJ, Wasano K, Kuwabara I, Liu FT, Cantz M, Heck AJR, Gabius HJ. Homodimeric galectin-7 (p53-induced gene 1) is a negative growth regulator for human neuroblastoma cells. Oncogene 2003; 22:6277-88. [PMID: 13679866 DOI: 10.1038/sj.onc.1206631] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The extracellular functions of galectin-7 (p53-induced gene 1) are largely unknown. On the surface of neuroblastoma cells (SK-N-MC), the increased GM1 density, a result of upregulated ganglioside sialidase activity, is a key factor for the switch from proliferation to differentiation. We show by solid-phase and cell assays that the sugar chain of this ganglioside is a ligand for galectin-7. In serum-supplemented proliferation assays, galectin-7 reduced neuroblastoma cell growth without the appearance of features characteristic for classical apoptosis. The presence of galectin-3 blocked this effect, which mechanistically resembles that of galectin-1. By virtue of carbohydrate binding, galectin-7 thus exerts neuroblastoma growth control similar to galectin-1 despite their structural differences. In addition to p53-linked proapoptotic activity intracellularly, galectin-7, acting as a lectin on the cell surface, appears to be capable of reducing cancer cell proliferation in susceptible systems.
Collapse
Affiliation(s)
- Jürgen Kopitz
- Institut für Molekulare Pathologie, Klinikum der Ruprecht-Karls-Universtiät, Im Neuenheimer Feld 220, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
He L, André S, Siebert HC, Helmholz H, Niemeyer B, Gabius HJ. Detection of ligand- and solvent-induced shape alterations of cell-growth-regulatory human lectin galectin-1 in solution by small angle neutron and x-ray scattering. Biophys J 2003; 85:511-24. [PMID: 12829506 PMCID: PMC1303107 DOI: 10.1016/s0006-3495(03)74496-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The bioactivity of galectin-1 in cell growth regulation and adhesion prompted us to answer the questions whether ligand presence and a shift to an aprotic solvent typical for bioaffinity chromatography might alter the shape of the homodimeric human lectin in solution. We used small angle neutron and synchrotron x-ray scattering studies for this purpose. Upon ligand accommodation, the radius of gyration of human galectin-1 decreased from 19.1 +/- 0.1 A in the absence of ligand to 18.2 +/- 0.1 A. In the aprotic solvent dimethyl sulfoxide, which did not impair binding capacity, galectin-1 formed dimers of a dimer, yielding tetramers with a cylindrical shape. Intriguingly, no dissociation into subunits occurred. In parallel, NMR monitoring was performed. The spectral resolution was in accord with these data. In contrast to the properties of the human protein, a nonhomologous agglutinin from mistletoe sharing galactose specificity was subject to a reduction in the radius of gyration from approximately 62 A in water to 48.7 A in dimethyl sulfoxide. Evidently, the solvent caused opposite responses in the two tested galactoside-binding lectins with different folding patterns. We have hereby proven that ligand presence and an aprotic solvent significantly affect the shape of galectin-1 in solution.
Collapse
Affiliation(s)
- Lizhong He
- Institute for Coastal Research, Physical and Chemical Analysis, Geesthacht, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Barondes S, Cooper D, Gitt M, Leffler H. Galectins. Structure and function of a large family of animal lectins. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31891-4] [Citation(s) in RCA: 1041] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Cooper DN, Massa SM, Barondes SH. Endogenous muscle lectin inhibits myoblast adhesion to laminin. J Biophys Biochem Cytol 1991; 115:1437-48. [PMID: 1955484 PMCID: PMC2289239 DOI: 10.1083/jcb.115.5.1437] [Citation(s) in RCA: 161] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
L-14, a dimeric lactose-binding lectin with subunits of 14 kD, is expressed in a wide range of vertebrate tissues. Several functions have been postulated for this lectin, but definitive evidence for a specific biological role has been elusive. In muscle, L-14 is secreted during differentiation and accumulates with laminin in basement membrane surrounding each myofiber. Here we present evidence that laminin is a major glycoprotein ligand for L-14 in differentiating mouse C2C12 muscle cells and that binding of secreted L-14 to polylactosamine oligosaccharides of substrate laminin induces loss of cell-substratum adhesion. These results suggest that one function of L-14 is to regulate myoblast detachment from laminin during differentiation and fusion into tubular myofibers.
Collapse
Affiliation(s)
- D N Cooper
- Department of Psychiatry, University of California, San Francisco 94143
| | | | | |
Collapse
|
11
|
Lectin localization in human nerve by biochemically defined lectin-binding glycoproteins, neoglycoprotein and lectin-specific antibody. ACTA ACUST UNITED AC 1991. [DOI: 10.1007/bf00744999] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Gabius HJ, Wosgien B, Hendrys M, Bardosi A. Lectin localization in human nerve by biochemically defined lectin-binding glycoproteins, neoglycoprotein and lectin-specific antibody. HISTOCHEMISTRY 1991; 95:269-77. [PMID: 2050547 DOI: 10.1007/bf00266777] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Molecular recognition can be mediated by protein (lectin)-carbohydrate interaction, explaining the interest in this topic. Plant lectins and, more recently, chemically glycosylated neoglycoproteins principally allow to map the occurrence of components of this putative recognition system. Labelled endogenous lectins and the lectin-binding ligands can add to the panel of glycohistochemical tools. They may be helpful to derive physiologically valid conclusions in this field for mammalian tissues. Consequently, experiments were prompted to employ the abundant beta-galactoside-specific lectin of human nerves in affinity chromatography and in histochemistry to purify and to localize its specific glycoprotein ligands. In comparison to the beta-galactoside-specific plant lectins from Ricinus communis and Erythrina cristagalli, notable similarities were especially detectable in the respective profiles of the mammalian and the Erythrina lectin. They appear to account for rather indistinguishable staining patterns in fixed tissue sections. Inhibitory controls within affinity chromatography, within solid-phase assays for each fraction of lectin-binding glycoproteins and within histochemistry as well as the demonstration of crossreactivity of the three fractions of lectin-binding glycoproteins with the biotinylated Erythrina lectin in blotting ascertained the specificity of the lectin-glycoprotein interaction. In addition to monitoring the accessible cellular ligand part by the endogenous lectin as probe, the comparison of immunohistochemical and glycohistochemical detection of the lectin in serial sections proved these methods for receptor analysis to be rather equally effective. The observation that the biotinylated lectin-binding glycoproteins are also appropriate ligands in glycohistochemical analysis warrants emphasis.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H J Gabius
- Max-Planck-Institut für experimentelle Medizin, Abteilung Chemie, Göttingen, Federal Republic of Germany
| | | | | | | |
Collapse
|
13
|
Avellana-Adalid V, Joubert R, Bladier D, Caron M. Biotinylated derivative of a human brain lectin: synthesis and use in affinoblotting for endogenous ligand studies. Anal Biochem 1990; 190:26-31. [PMID: 2285143 DOI: 10.1016/0003-2697(90)90128-v] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Coupling of biotin to an endogenous lectin yields a probe which can be used for selective nonradioactive detection of complementary endogenous ligands. To exemplify practical applications of this type of compounds, we have synthesized and characterized a biotinylated derivative of a beta-galactoside-specific human brain lectin. Proteins which bind this lectin can be located on nitrocellulose sheets after electrophoretic transfer from gradient polyacrylamide gels, by sequential incubation with biotinylated probes and streptavidin-peroxidase, with visualization by an insoluble reaction product (affinoblotting). Biotinylated galactoside-binding plant lectins were used in the same way to visualize human brain glycoproteins, and their binding specificity was compared with that of human brain lectin. The results obtained by means of these different probes showed the usefulness of the endogenous lectin derivative to actually identify its endogenous partners. Thus this approach may find extended applications in the study of biological activities of vertebrate lectins in homologous systems, i.e., with lectins and ligands coming from the same tissue origin.
Collapse
Affiliation(s)
- V Avellana-Adalid
- Laboratoire de Biochimie et Technologie des Proteines, Université Paris-Nord, Bobigny, France
| | | | | | | |
Collapse
|
14
|
Ali N, Salahuddin A. Isolation and characterization of soluble beta-galactoside-binding lectins from mammalian liver. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 992:30-4. [PMID: 2752036 DOI: 10.1016/0304-4165(89)90046-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Soluble beta-galactoside-binding lectins were isolated by chromatography on asialofetuin-Sepharose-4B column in 10 mM Tris-HCl buffer (pH 7.5) containing 150 mM NaCl, 5 mM CaCl2 and 1 mM 2-mercaptoethanol. The three lectins moved essentially as single polypeptide bands, of 18, 22 and 24 kDa, respectively, for sheep, goat and buffalo hepatic lectins. Sheep and goat lectins each contained 4 mol of hexose, whereas the hexose content of the buffalo lectin was 7 mol. The number of sulfhydryl groups in sheep, goat and buffalo lectins were determined to be 3.2, 4.3 and 4.8, respectively. The optical properties of the three lectins were similar to those of tryptophan-containing proteins. Lectin-mediated hemagglutination of trypsinized rabbit erythrocytes was most effectively inhibited by lactose, followed by o-nitrophenyl beta-galactopyranoside and galactose, but remained unaffected by glucose, mannose, fucose and fructose. Calcium ions substantially enhanced their hemagglutinating activity. Goat and buffalo lectins, but not sheep lectin, were also stimulated by Mg2+, Mn2+, Sr2+ and Ni2+ ions. The lectins lost activity after treatment with para-hydroxy-mercuribenzoate and N-ethylmaleimide. However, iodoacetamide treatment had no effect on the activity. The results show that the three lectins are different from the soluble beta-galactoside-binding lectins studied thus far.
Collapse
Affiliation(s)
- N Ali
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, India
| | | |
Collapse
|
15
|
|
16
|
|
17
|
Whitney PL, Powell JT, Sanford GL. Oxidation and chemical modification of lung beta-galactoside-specific lectin. Biochem J 1986; 238:683-9. [PMID: 3800956 PMCID: PMC1147192 DOI: 10.1042/bj2380683] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Galaptins are small, soluble, lectins with a specificity for beta-galactose residues. Many galaptins are inactivated by atmospheric oxygen and are protected by disulphide-reducing reagents. We find that each subunit of rat lung galaptin contains one residue of tryptophan and six of cysteine. Oxygen inactivates rat lung galaptin by oxidation of the cysteine residues. During oxidation, the normal dimeric structure is maintained and all disulphide bonds are formed within individual subunits. Exogenous thiols protect against inactivation, but oxidized thiols accelerate inactivation. Human lung fibroblast galaptin is almost completely inactivated within 1 h in tissue culture medium at 37 degrees C. Alkylation of native rat lung galaptin with iodoacetate or ethyleneimine causes substantial loss of activity. The dimeric galaptin structure is maintained. In contrast, alkylation with iodoacetamide yields carboxamidomethyl-galaptin, which is fully active and stable to atmospheric oxygen in the absence of disulphide-reducing reagents. This derivative is very useful for studies of galaptin properties and function.
Collapse
|
18
|
Leffler H, Barondes SH. Specificity of binding of three soluble rat lung lectins to substituted and unsubstituted mammalian beta-galactosides. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67499-x] [Citation(s) in RCA: 255] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Powell JT. Chemical modification of arginine residues of lung galaptin and fibronectin. Effects on fibroblast binding. Biochem J 1985; 232:919-22. [PMID: 4091829 PMCID: PMC1152970 DOI: 10.1042/bj2320919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lung galaptin bound to lung fibroblasts with a Kd of 190 nM, and this binding could be inhibited by 20 mM-lactose. Selective modifications of the arginine residues of galaptin with cyclohexane-1,2-dione did not change its lectin activity or its binding to fibroblasts. By contrast, modification of the arginine residues of plasma fibronectin resulted in a marked diminution of protein-fibroblast binding. Selective modification of arginine residues may provide a useful probe for -Arg-Gly-Asp-Xaa cell-binding sequences of proteins.
Collapse
|
20
|
|