1
|
Schrader M, Costello J, Godinho LF, Islinger M. Peroxisome-mitochondria interplay and disease. J Inherit Metab Dis 2015; 38:681-702. [PMID: 25687155 DOI: 10.1007/s10545-015-9819-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 12/16/2022]
Abstract
Peroxisomes and mitochondria are ubiquitous, highly dynamic organelles with an oxidative type of metabolism in eukaryotic cells. Over the years, substantial evidence has been provided that peroxisomes and mitochondria exhibit a close functional interplay which impacts on human health and development. The so-called "peroxisome-mitochondria connection" includes metabolic cooperation in the degradation of fatty acids, a redox-sensitive relationship, an overlap in key components of the membrane fission machineries and cooperation in anti-viral signalling and defence. Furthermore, combined peroxisome-mitochondria disorders with defects in organelle division have been revealed. In this review, we present the latest progress in the emerging field of peroxisomal and mitochondrial interplay in mammals with a particular emphasis on cooperative fatty acid β-oxidation, redox interplay, organelle dynamics, cooperation in anti-viral signalling and the resulting implications for disease.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK,
| | | | | | | |
Collapse
|
2
|
Watkins PA, Ellis JM. Peroxisomal acyl-CoA synthetases. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1411-20. [PMID: 22366061 DOI: 10.1016/j.bbadis.2012.02.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/12/2012] [Accepted: 02/10/2012] [Indexed: 01/26/2023]
Abstract
Peroxisomes carry out many essential lipid metabolic functions. Nearly all of these functions require that an acyl group-either a fatty acid or the acyl side chain of a steroid derivative-be thioesterified to coenzyme A (CoA) for subsequent reactions to proceed. This thioesterification, or "activation", reaction, catalyzed by enzymes belonging to the acyl-CoA synthetase family, is thus central to cellular lipid metabolism. However, despite our rather thorough understanding of peroxisomal metabolic pathways, surprisingly little is known about the specific peroxisomal acyl-CoA synthetases that participate in these pathways. Of the 26 acyl-CoA synthetases encoded by the human and mouse genomes, only a few have been reported to be peroxisomal, including ACSL4, SLC27A2, and SLC27A4. In this review, we briefly describe the primary peroxisomal lipid metabolic pathways in which fatty acyl-CoAs participate. Then, we examine the evidence for presence and functions of acyl-CoA synthetases in peroxisomes, much of which was obtained before the existence of multiple acyl-CoA synthetase isoenzymes was known. Finally, we discuss the role(s) of peroxisome-specific acyl-CoA synthetase isoforms in lipid metabolism.
Collapse
|
3
|
Qiao S, Tuohimaa P. Expression and vitamin D3 regulation of long-chain fatty-acid-CoA ligase 3 in human prostate cancer cells. Prostaglandins Leukot Essent Fatty Acids 2011; 84:19-23. [PMID: 21041072 DOI: 10.1016/j.plefa.2010.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 12/27/2008] [Accepted: 10/18/2010] [Indexed: 11/15/2022]
Abstract
We found previously that long-chain fatty-acid-CoA ligase 3 (FACL3), a critical enzyme for activation of long-chain fatty acids, was upregulated by 1α, 25(OH)(2)D(3) at an mRNA and enzyme activity levels in prostate cancer cells. Our further study indicated that the FACL3 mediated 1α,25(OH)(2)D(3) inhibition of fatty acid synthase (FAS), which is associated with many cancers, including prostate cancer. In the current study, we investigated an FACL3 protein expression and its regulation by 1α, 25(OH)(2)D(3) and its synthetic analogs EB1089 and CB1093 in prostate cancer cells. The results showed that the expression of an FACL3 protein was upregulated by 1α, 25(OH)(2)D(3), EB1089 and CB1093 in LNCaP cells, consistent with their upregulation of an FACL3 mRNA expression. In addition, the FACL3 expression was found to be markedly low at both mRNA and protein levels in more transformed prostate cancer PC-3 and DU145 cells compared with less transformed LNCaP cells. The data suggest that decreased FACL3 expression might be associated with a more malignant phenotype of prostate cancer.
Collapse
Affiliation(s)
- Shengjun Qiao
- Department of Anatomy, Medical School, University of Tampere, 33014 Tampere, Finland
| | | |
Collapse
|
4
|
Hostetler HA, Kier AB, Schroeder F. Very-long-chain and branched-chain fatty acyl-CoAs are high affinity ligands for the peroxisome proliferator-activated receptor alpha (PPARalpha). Biochemistry 2006; 45:7669-81. [PMID: 16768463 PMCID: PMC2593851 DOI: 10.1021/bi060198l] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Very-long-chain fatty acids (VLCFA) and branched-chain fatty acids (BCFA) are potent inducers of the peroxisome proliferator-activated receptor PPARalpha, a nuclear receptor that enhances transcription of peroxisomal enzymes mediating beta-oxidation of these potentially toxic fatty acids. However, it is not known whether the respective free fatty acids or their activated metabolites, i.e., CoA thioesters, (i) are the endogenous high-affinity PPARalpha ligands, (ii) alter PPARalpha conformation, and (iii) alter recruitment of coregulatory proteins to PPARalpha. As shown by quenching of PPARalpha intrinsic amino acid fluorescence, PPARalpha exhibited high affinity (3-29 nM Kds) for the CoA thioesters of the common (C20-C24) VLCFA. In contrast, with the exception of arachidonic acid (Kd = 20 nM), PPARalpha only weakly bound the VLCFA. PPARalpha also exhibited higher affinity for the CoA thioesters of BCFA (phytanoyl-CoA, pristanoyl-CoA; Kds near 11 nM) than for the respective free branched-chain fatty acids. As shown by circular dichroism, the high affinity VLCFA-CoA and BCFA-CoA strongly altered PPARalpha conformation. Likewise, the high affinity VLCFA-CoA and BCFA-CoA altered cofactor recruitment to PPARalpha as shown by coimmunoprecipitation from liver homogenates. In contrast, nearly all the respective free fatty acids elicited only weak conformational changes in PPARalpha and did not alter cofactor recruitment to PPARalpha. In summary, the CoA thioesters of very-long-chain and branched-chain fatty acids are much more potent PPARalpha ligands than the free acids, resulting in altered PPARalpha conformation and cofactor recruitment. Since these are hallmarks of ligand-activated nuclear receptors, this suggests that the CoA thioesters are the active forms of these PPARalpha ligands.
Collapse
Affiliation(s)
- Heather A Hostetler
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas 77843-4466, USA
| | | | | |
Collapse
|
5
|
Srinivas KS, Chandrasekar G, Srivastava R, Puvanakrishnan R. A novel protocol for the subcellular fractionation of C3A hepatoma cells using sucrose density gradient centrifugation. ACTA ACUST UNITED AC 2005; 60:23-7. [PMID: 15236907 DOI: 10.1016/j.jbbm.2004.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 04/07/2004] [Accepted: 04/17/2004] [Indexed: 11/19/2022]
Abstract
In this paper, we describe a method to obtain a relatively pure mitochondrial and microsomal fractions by subcellular fractionation of human hepatoma cell line C3A using sucrose as the hypoosmotic medium. The cells were subjected to osmotic stress with sucrose and homogenized. Osmolarity was then restored to the cells and the organelles were separated by density gradient centrifugation. The protein profiles were examined by SDS-PAGE and the purity was analysed by marker enzymes and Western blotting. Our results indicate a good separation of mitochondrial and microsomal fractions from human hepatoma C3A cells.
Collapse
Affiliation(s)
- Kitambi Satish Srinivas
- Department of Biotechnology, Central Leather Research Institute, Adyar, Chennai-600 020, India
| | | | | | | |
Collapse
|
6
|
Affiliation(s)
- Inderjit Singh
- Medical University of South Carolina, Charleston, South Carolina 29425, USA
| |
Collapse
|
7
|
Yu XX, Odle J, Drackley JK. Differential induction of peroxisomal beta-oxidation enzymes by clofibric acid and aspirin in piglet tissues. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1553-61. [PMID: 11641128 DOI: 10.1152/ajpregu.2001.281.5.r1553] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisomal beta-oxidation (POX) of fatty acids is important in lipid catabolism and thermogenesis. To investigate the effects of peroxisome proliferators on peroxisomal and mitochondrial beta-oxidation in piglet tissues, newborn pigs (1-2 days old) were allowed ad libitum access to milk replacer supplemented with 0.5% clofibric acid (CA) or 1% aspirin for 14 days. CA increased ratios of liver weight to body weight (P < 0.07), kidney weight to body weight (P < 0.05), and heart weight to body weight (P < 0.001). Aspirin decreased daily food intake and final body weight but increased the ratio of heart weight to body weight (P < 0.01). In liver, activities of POX, fatty acyl-CoA oxidase (FAO), total carnitine palmitoyltransferase (CPT), and catalase were 2.7-, 2.2-, 1.5-fold, and 33% greater, respectively, for pigs given CA than for control pigs. In heart, these variables were 2.2-, 4.1-, 1.9-, and 1.8-fold greater, respectively, for pigs given CA than for control pigs. CA did not change these variables in either kidney or muscle, except that CPT activity was increased approximately 110% (P < 0.01) in kidney. Aspirin increased only hepatic FAO and CPT activities. Northern blot analysis revealed that CA increased the abundance of catalase mRNA in heart by approximately 2.2-fold. We conclude that 1) POX and CPT in newborn pigs can be induced by peroxisomal proliferators with tissue specificity and 2) the relatively smaller induction of POX in piglets (compared with that in young or adult rodents) may be related to either age or species differences.
Collapse
Affiliation(s)
- X X Yu
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
8
|
Coleman RA, Lewin TM, Muoio DM. Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annu Rev Nutr 2001; 20:77-103. [PMID: 10940327 DOI: 10.1146/annurev.nutr.20.1.77] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although triacylglycerol stores play the critical role in an organism's ability to withstand fuel deprivation and are strongly associated with such disorders as diabetes, obesity, and atherosclerotic heart disease, information concerning the enzymes of triacylglycerol synthesis, their regulation by hormones, nutrients, and physiological conditions, their mechanisms of action, and the roles of specific isoforms has been limited by a lack of cloned cDNAs and purified proteins. Fortunately, molecular tools for several key enzymes in the synthetic pathway are becoming available. This review summarizes recent studies of these enzymes, their regulation under varying physiological conditions, their purported roles in synthesis of triacylglycerol and related glycerolipids, the possible functions of different isoenzymes, and the evidence for specialized cellular pools of triacylglycerol and glycerolipid intermediates.
Collapse
Affiliation(s)
- R A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
9
|
|
10
|
Rusyn I, Rose ML, Bojes HK, Thurman RG. Novel role of oxidants in the molecular mechanism of action of peroxisome proliferators. Antioxid Redox Signal 2000; 2:607-21. [PMID: 11229371 DOI: 10.1089/15230860050192350] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Peroxisome proliferators are nongenotoxic rodent carcinogens that act as tumor promoters by increasing cell proliferation; however, their precise mechanism of action is not well understood. Oxidative DNA damage caused by leakage of hydrogen peroxide (H2O2) from peroxisomes was hypothesized initially as the mechanism by which these compounds cause liver tumors. It seems unlikely that oxidants of peroxisomal origin explain the mechanism of action of peroxisome proliferators because treatment with these compounds in vivo does not lead to increased H2O2 production. On the other hand, Kupffer cell-derived oxidants, such as superoxide, may play a role in initiating tumor nerosis factor-alpha (TNF-alpha) production that leads to hepatocyte proliferation. Peroxisome proliferators have been shown to activate Kupffer cells both in vitro and in vivo, and the use of Kupffer cell inhibitors such as methyl palmitate and dietary glycine have demonstrated that Kupffer cells are responsible for hepatocyte proliferation by mechanisms involve TNF-alpha. Moreover, peroxisome proliferators activate the transcription factor NF-kappaB, one of the major regulators of TNF-alpha expression, in Kupffer cells. Importantly, activation of NF-kappaB by peroxisome proliferators was shown to be oxidant-dependent, leading to the hypothesis that oxidants of Kupffer cell origin are involved in the mechanism of action. Many of the effects of peroxisome proliferators, including peroxisome induction and hepatomegaly, involve the peroxisome proliferator-activated receptor-alpha (PPARalpha). Recently, it was shown that peroxisome proliferator-induced cell proliferation and tumors require the PPARalpha. However, PPARalpha is not involved in TNF-alpha production by Kupffer cells because it is not expressed in this cell type. How it is involved in liver tumor remains unclear and one possible explanation is that both Kupffer cell TNF-alpha and parenchymal cell PPARalpha are required. Collectively, recent data are consistent with the hypothesis that oxidants play a role in signaling hepatocellular proliferation due to peroxisome proliferators via activation of NF-kappaB and incrase in mitogenic cytokines such as TNF-alpha.
Collapse
Affiliation(s)
- I Rusyn
- Department of Pharmacology and Curriculum in Toxicology, University of North Carolina, Chapel Hill 27599-7365, USA.
| | | | | | | |
Collapse
|
11
|
Abstract
A study on the kinetic properties of the nonspecific acyl-coenzyme A (CoA) synthetase activity in liver microsomal vesicles from both normal and calcium-deficient Wistar rats was carried out. After a 65-d treatment, the calcium-deficient diet reflected a 75% increase in the synthetase activity with respect to control animals. The apparent Vm was significantly enhanced, while the Km remained unchanged. We also provided experimental evidence about various fatty acids of different carbon length and unsaturation which depressed the biosynthesis of palmitoyl-CoA following different behaviors in control or calcium-deprived liver microsomes. In addition, we studied in detail the inhibition reflected by stearic, alpha-linolenic, or arachidonic acids, in the biosynthesis of palmitoyl-CoA in microsomal suspensions either from control or hypocalcemic rats. In control microsomes, stearic acid produced a pure competitive effect, while the other fatty acids followed a mixed-type inhibition. The competitive effect of stearic acid was not observed in calcium-deprived microsomes. At the same time, a mixed-type inhibition produced by either alpha-linolenic or arachidonic acid was diminished in deprived microsomes due to an increase in the noncompetitive component (alphaKi). These changes observed in apparent kinetic constants (Km, Vm, Ki, and alphaKi), as determined by Lineweaver-Burks and Dixon plots, were attributed to the important alterations in the physicochemical properties of the endoplasmic reticulum membranes induced by the calcium-deficient diet. The solubilization of the enzyme activity from both types of microsomes demonstrated that the kinetic behavior of the enzyme depends on the microenvironment in the membrane, and that the calcium ion plays a crucial role in determining the alterations observed.
Collapse
Affiliation(s)
- C A Marra
- Instituto Nac. de Investigaciones Bioquímicas (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Bioquímica, Facultad de Ciencias Médicas de la UNLP (Universidad Nacional de La Plata), Argenti
| | | |
Collapse
|
12
|
Amigo L, Mendoza H, Zanlungo S, Miquel JF, Rigotti A, González S, Nervi F. Enrichment of canalicular membrane with cholesterol and sphingomyelin prevents bile salt-induced hepatic damage. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32458-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Knights KM. Role of hepatic fatty acid:coenzyme A ligases in the metabolism of xenobiotic carboxylic acids. Clin Exp Pharmacol Physiol 1998; 25:776-82. [PMID: 9784915 DOI: 10.1111/j.1440-1681.1998.tb02152.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Formation of acyl-coenzymes (Co)A occurs as an obligatory step in the metabolism of a variety of endogenous substrates, including fatty acids. The reaction is catalysed by ATP-dependent acid:CoA ligases (EC 6.2.1.1-2.1.3; AMP forming), classified on the basis of their ability to conjugate saturated fatty acids of differing chain lengths, short (C2-C4), medium (C4-C12) and long (C10-C22). The enzymes are located in various cell compartments (cytosol, smooth endoplasmic reticulum, mitochondria and peroxisomes) and exhibit wide tissue distribution, with highest activity associated with liver and adipose tissue. 2. Formation of acyl-CoA is not unique to endogenous substrates, but also occurs as an obligatory step in the metabolism of some xenobiotic carboxylic acids. The mitochondrial medium-chain CoA ligase is principally associated with metabolism via amino acid conjugation and activates substrates such as benzoic and salicylic acids. Although amino acid conjugation was previously considered an a priori route of metabolism for xenobiotic-CoA, it is now recognized that these highly reactive and potentially toxic intermediates function as alternative substrates in pathways of intermediary metabolism, particularly those associated with lipid biosyntheses. 3. In addition to a role in fatty acid metabolism, the hepatic microsomal and peroxisomal long-chain-CoA-ligases have been implicated in the formation of the acyl-CoA thioesters of a variety of hypolipidaemic and peroxisome proliferating agents (e.g. clofibric acid) and of the R(-)-enantiomers of the commonly used 2-arylpropionic acid non-steroidal anti-inflammatory drugs (e.g. ibuprofen). In vitro kinetic studies using rat hepatic microsomes and peroxisomes have alluded to the possibility of xenobiotic-CoA ligase multiplicity. Although cDNA encoding a long-chain ligase have been isolated from rat and human liver, there is currently no molecular evidence of multiple isoforms. The gene has been localized to chromosome 4 and homology searches have revealed a significant similarity with enzymes of the luciferase family. 4. Increasing recognition that formation of a CoA conjugate increases chemical reactivity of xenobiotic carboxylic acids has led to an awareness that the relative activity, substrate specificity and intracellular location of the xenobiotic-CoA ligases may explain differences in toxicity. 5. Continued characterization of the human xenobiotic-CoA ligases in terms of substrate/inhibitor profiles and regulation, will allow a greater understanding of the role of these enzymes in the metabolism of carboxylic acids.
Collapse
Affiliation(s)
- K M Knights
- Department of Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Flinders University of South Australia, Australia.
| |
Collapse
|
14
|
Bronfman M, Loyola G, Koenig CS. Isolation of intact organelles by differential centrifugation of digitonin-treated hepatocytes using a table Eppendorf centrifuge. Anal Biochem 1998; 255:252-6. [PMID: 9451511 DOI: 10.1006/abio.1997.2453] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A quick subcellular fractionation procedure using differential centrifugation, which is applicable to isolated and cultured cells, is presented. This technique was developed for studying the subcellular localization of phosphorylated proteins in isolated liver cells after various stimuli, but is also applicable to many other situations. The main difference with the usual techniques is that by including digitonin in the homogenization buffer, the procedure is greatly shortened. Furthermore, because the soluble fraction is separated from the particulate fraction very early in the fractionation procedure, subcellular organelles are not exposed to phosphatases and other soluble enzymes such as esterases and proteases during the fractionation. The entire procedure is carried out in an Eppendorf centrifuge, which allows isolation of the cytosolic fraction in less than 1 min, a washed nuclear fraction in about 4 min, a mitochondrial fraction in less than 10 min, and a washed light mitochondrial L fraction in about 40 min. Judging by the behavior of marker enzymes and the morphology of the fractions, the method is highly comparable to classical procedures.
Collapse
Affiliation(s)
- M Bronfman
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | | | | |
Collapse
|
15
|
Sáez DE, Figueroa CD, Concha II, Slebe JC. Localization of the fructose 1,6-bisphosphatase at the nuclear periphery. J Cell Biochem 1996; 63:453-62. [PMID: 8978461 DOI: 10.1002/(sici)1097-4644(19961215)63:4%3c453::aid-jcb7%3e3.0.co;2-s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The localization of fructose 1,6-bisphosphatase (D-Fru-1,6-)2-1-phosphohydrolase, EC 3.1.3.11) in rat kidney and liver was determined immunohistochemically using a polyclonal antibody raised against the enzyme purified from pig kidney. The immunohistochemical analysis revealed that the bisphosphatase was preferentially localized in hepatocytes of the periportal region of the liver and was absent from the perivenous region. Fructose-1,6-bisphosphatase was also preferentially localized in the cortex of the kidney proximal tubules and was absent in the glomeruli, loops of Henle, collecting and distal tubules, and in the renal medulla. As indicated by immunocytochemistry using light microscopy and confirmed with the use of reflection confocal microscopy, the enzyme was preferentially localized in a perinuclear position in the liver and the renal cells. Subcellular fractionation studies followed by enzyme activity assays revealed that a majority of the cellular fructose-1,6-bisphosphatase activity was associated to subcellular particulate structures. Overall, the data support the concept of metabolic zonation in liver as well as in kidney, and establish the concept that the Fructose-1,6-bisphosphatase is a particulate enzyme that can not be considered a soluble enzyme in the classical sense.
Collapse
Affiliation(s)
- D E Sáez
- Instituto de Bioquímica, Universidad Austral de Chile, Chile
| | | | | | | |
Collapse
|
16
|
|
17
|
|
18
|
Holmes RD, Moore KH, Ofenstein JP, Tsatsos P, Kiechle FL. Lactic acidosis and mitochondrial dysfunction in two children with peroxisomal disorders. J Inherit Metab Dis 1993; 16:368-80. [PMID: 8105143 DOI: 10.1007/bf00710284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mitochondrial myopathies and defects in oxidative phosphorylation have been described in some patients with peroxisomal disorders. Although peroxisomes and mitochondria play a role in the beta-oxidation of fatty acids, the metabolic interactions between the two are not well defined. Defects in peroxisomal beta-oxidation are associated with extracellular accumulation of very long-chain fatty acids and may be accompanied by alterations in the intracellular pool of fatty acyl-CoAs, which are known to alter mitochondrial function. This study was initiated to examine alterations in the intracellular pool of acyl-CoAs and mitochondrial function in two children with generalized disorders of peroxisomal function and clinical lactic/pyruvic acidaemia. Fibroblasts were cultured from skin biopsies obtained from one child with neonatal adrenoleukodystrophy (NALD) and another with rhizomelic chondrodysplasia punctata (RCDP). Fibroblast lactate oxidation was significantly inhibited in NALD by 76% and RCDP by 92% compared to control values of 1.9 +/- 0.1 nmol/min per mg protein. Pyruvate dehydrogenase (PDH) (mean +/- SEM; activity nmol/min per mg protein) was: NALD 0.55 +/- 0.02 (p < 0.01), RCDP 0.44 +/- 0.02 (P < 0.01), and controls 0.83 +/- 0.02. The acid-insoluble (long-chain and very long-chain) acyl-CoA levels (mean +/- SEM; pmol/mg protein) were: NALD 129 +/- 69 (p < 0.01), RCDP 65 +/- 15 (p < 0.05), and control 45 +/- 7. These two patients with generalized peroxisomal disorders exhibited an increase in intracellular acyl-CoA species accompanied by decreased PDH activity and clinical lactic/pyruvic acidaemia.
Collapse
Affiliation(s)
- R D Holmes
- Department of Pediatrics, William Beaumont Hospital, Royal Oak, MI 48073
| | | | | | | | | |
Collapse
|
19
|
Abstract
This article summarizes our current knowledge of the metabolic pathways present in mammalian peroxisomes. Emphasis is placed on those aspects that are not covered by other articles in this issue: peroxisomal enzyme content and topology; the peroxisomal beta-oxidation system; substrates of peroxisomal beta-oxidation such as very-long-chain fatty acids, branched fatty acids, dicarboxylic fatty acids, prostaglandins and xenobiotics; the role of peroxisomes in the metabolism of purines, polyamines, amino acids, glyoxylate and reactive oxygen products such as hydrogen peroxide, superoxide anions and epoxides.
Collapse
Affiliation(s)
- G P Mannaerts
- Afdeling Farmacologie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Belgium
| | | |
Collapse
|
20
|
Alvarez A, Hidalgo U, Kawada ME, Munizaga A, Zúñiga A, Ibánez L, Koenig CS, Santos MJ. Isolation of peroxisomes from frozen human liver samples. Anal Biochem 1992; 206:147-54. [PMID: 1456427 DOI: 10.1016/s0003-2697(05)80025-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This paper shows the successful isolation of peroxisomes from human liver samples that were kept frozen at -70 degrees C. Purification of these peroxisomes was obtained by a combination of two subcellular fractionation techniques: differential centrifugation and isopycnic fractionation in Nycodenz density gradients. Peroxisome integrity was evaluated by latency measurements and by ultrastructural observation. The procedure described here may be useful for the isolation of other subcellular organelles from frozen human samples.
Collapse
Affiliation(s)
- A Alvarez
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Catholic University of Chile, Santiago
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Bronfman M, Morales MN, Amigo L, Orellana A, Nuñez L, Cárdenas L, Hidalgo PC. Hypolipidaemic drugs are activated to acyl-CoA esters in isolated rat hepatocytes. Detection of drug activation by human liver homogenates and by human platelets. Biochem J 1992; 284 ( Pt 1):289-95. [PMID: 1599408 PMCID: PMC1132729 DOI: 10.1042/bj2840289] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The formation of acyl-CoA esters of the hypolipidaemic peroxisome proliferators clofibric acid, ciprofibrate and nafenopin was studied in isolated rat hepatocytes. The concentration of ciprofibroyl-CoA in the liver of ciprofibrate-treated rats was in the range of 10-30 microM. The three drugs formed acyl-CoA esters when incubated with isolated hepatocytes. Their formation was saturable and reached a plateau after 30 min incubation. Maximal intracellular concentrations of ciprofibroyl-CoA and clofibroyl-CoA (100 microM and 55 microM respectively) were attained at 0.5 mM of the free drugs in the incubation medium, whereas for nafenopin-CoA, the maximal intracellular concentration (9 microM) was reached at 1 mM-nafenopin. At low concentrations of the hypolipidaemic compounds in the incubation medium a significant proportion of the total intracellular drug was present as its acyl-CoA ester (25-35% for ciprofibrate). When isolated hepatocytes were incubated with a ciprofibrate concentration comparable with that observed in the blood of drug-treated rats (0.1 mM), ciprofibroyl-CoA attained an intracellular concentration similar to that previously observed in the liver of treated rats. The formation of ciprofibroyl-CoA by isolated rat hepatocytes was stimulated by the addition of carnitine and partially inhibited by the addition of palmitate. Further, it was shown that human liver homogenates synthesized ciprofibroyl-CoA at a rate similar to that observed for rat liver homogenates. Solubilized human platelets also formed ciprofibroyl-CoA, although at a rate two orders of magnitude lower than that of liver. The results support the view that acyl-CoA esters of hypolipidaemic peroxisome proliferators may be the pharmacologically active species of the drugs.
Collapse
Affiliation(s)
- M Bronfman
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago
| | | | | | | | | | | | | |
Collapse
|
22
|
Amigo L, McElroy MC, Morales MN, Bronfman M. Subcellular distribution and characteristics of ciprofibroyl-CoA synthetase in rat liver. Its possible identity with long-chain acyl-CoA synthetase. Biochem J 1992; 284 ( Pt 1):283-7. [PMID: 1599407 PMCID: PMC1132728 DOI: 10.1042/bj2840283] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The subcellular distribution and characteristics of ciprofibroyl-CoA synthetase were studied in rat liver and compared with those of long-chain acyl-CoA synthetase (palmitate as substrate) which, as already known, is distributed among mitochondria, microsomes and peroxisomes. Upon differential centrifugation, the subcellular distribution of ciprofibroyl-CoA synthetase followed closely that of palmitoyl-CoA synthetase and was specifically inactivated in the mitochondrial fraction by freezing and thawing, a behaviour already described for palmitoyl-CoA synthetase. Both enzyme activities were found to co-purify through several steps from rat liver microsomes. By using a partially purified enzyme, the activation of ciprofibrate to its acyl-CoA ester followed Michaelis-Menten kinetics with an apparent Km of 0.63 +/- 0.1 mM. Ciprofibroyl-CoA synthetase was competitively inhibited by 25 and 50 microM-palmitic acid. Higher concentrations of the fatty acid resulted in a mixed type of inhibition. Conversely, ciprofibrate up to 0.5 mM was found to inhibit competitively palmitoyl-CoA synthetase, whereas higher concentrations also resulted in a mixed inhibition. The highest activity of ciprofibroyl-CoA synthetase was found in fat and liver homogenates. The distribution of the enzyme in different rat tissues was similar to that of palmitoyl-CoA synthetase. The present results suggest that long-chain acyl-CoA synthetase and ciprofibroyl-CoA synthetase activities reside in identical or closely related proteins.
Collapse
Affiliation(s)
- L Amigo
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago
| | | | | | | |
Collapse
|
23
|
Skorin C, Necochea C, Johow V, Soto U, Grau AM, Bremer J, Leighton F. Peroxisomal fatty acid oxidation and inhibitors of the mitochondrial carnitine palmitoyltransferase I in isolated rat hepatocytes. Biochem J 1992; 281 ( Pt 2):561-7. [PMID: 1736904 PMCID: PMC1130722 DOI: 10.1042/bj2810561] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fatty acid oxidation was studied in the presence of inhibitors of carnitine palmitoyltransferase I (CPT I), in normal and in peroxisome-proliferated rat hepatocytes. The oxidation decreased in mitochondria, as expected, but in peroxisomes it increased. These two effects were seen, in variable proportions, with (+)-decanoylcarnitine, 2-tetradecylglycidic acid (TDGA) and etomoxir. The decrease in mitochondrial oxidation (ketogenesis) affected saturated fatty acids with 12 or more carbon atoms, whereas the increase in peroxisomal oxidation (H2O2 production) affected saturated fatty acids with 8 or more carbon atoms. The peroxisomal increase was sensitive to chlorpromazine, a peroxisomal inhibitor. To study possible mechanisms, palmitoyl-, octanoyl- and acetyl-carnitine acyltransferase activities were measured, in homogenates and in subcellular fractions from control and TDGA-treated cells. The palmitoylcarnitine acyltransferase was inhibited, as expected, but the octanoyltransferase activity also decreased. The CoA derivative of TDGA was synthesized and tentatively identified as being responsible for inhibition of the octanoylcarnitine acyltransferase. These results show that inhibitors of the mitochondrial CPT I may also inhibit the peroxisomal octanoyl transferase; they also support the hypothesis that the octanoyltransferase has the capacity to control or regulate peroxisomal fatty acid oxidation.
Collapse
Affiliation(s)
- C Skorin
- Departamento de Biología Celular y Molecular, Universidad Católica de Chile
| | | | | | | | | | | | | |
Collapse
|
24
|
Orellana A, Kawada ME, Morales MN, Vargas L, Bronfman M. Induction of peroxisomal fatty acyl-coenzyme A oxidase and total carnitine acetyl-coenzyme A transferase in primary cultures of rat hepatocytes by garlic extracts. Toxicol Lett 1992; 60:11-7. [PMID: 1539178 DOI: 10.1016/0378-4274(92)90042-i] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Garlic has been proposed as a natural hypolipidemic substance. Most hypolipidemic compounds induce peroxisomal proliferation and increase enzyme activities associated with peroxisomal beta-oxidation in rat liver. Here we report that garlic methanol-extracts behave as hypolipidemic drugs, increasing the activity of peroxisomal fatty acyl-coenzyme A oxidase and of total carnitine acetyl-coenzyme A transferase in primary cultures of rat hepatocytes. Both enzymes are considered markers associated with increased peroxisomal beta-oxidation. As in the case of hypolipidemic peroxisome proliferators, garlic extracts partially prevented the decrease in fatty acyl-coenzyme A oxidase as the culture aged. No changes were observed in the activity of microsomal NADPH cytochrome c reductase or of mitochondrial glutamate dehydrogenase.
Collapse
Affiliation(s)
- A Orellana
- Faculty of Biological Sciences, P. Universidad Catolica de Chile, Santiago
| | | | | | | | | |
Collapse
|
25
|
Van Veldhoven PP, Brees C, Mannaerts GP. D-aspartate oxidase, a peroxisomal enzyme in liver of rat and man. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1073:203-8. [PMID: 1991137 DOI: 10.1016/0304-4165(91)90203-s] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
By means of subcellular fractionation D-aspartate oxidase was shown to be localized in peroxisomes in rat and human liver. The oxidase from both sources was most active on D-aspartate and N-methyl-D-aspartate. In different rat tissues, the highest enzyme activity was found in kidney, followed by liver and brain. In these tissues, oxidase activities became detectable 1-4 days after birth, reaching adult values after 4 weeks. Analysis of liver samples from patients with Zellweger syndrome, a generalized peroxisomal dysfunction, demonstrated no significant deficiency of this particular oxidase.
Collapse
|
26
|
Cellular oxidation of lignoceric acid is regulated by the subcellular localization of lignoceroyl-CoA ligases. J Lipid Res 1990. [DOI: 10.1016/s0022-2275(20)42826-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
27
|
Yoshida Y, Singh I. Effect of clofibrate on peroxisomal lignoceroyl-CoA ligase activity. BIOCHEMICAL MEDICINE AND METABOLIC BIOLOGY 1990; 43:22-9. [PMID: 2310609 DOI: 10.1016/0885-4505(90)90004-k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effect of a 2-week clofibrate (0.5%)-fortified diet on peroxisomal palmitoyl-CoA and lignoceroyl-CoA ligases was studied. The activities of palmitoyl-CoA and lignoceroyl-CoA ligases in peroxisomes isolated from clofibrate-treated animals were 4.4- and 4.0-fold higher than those of the controls. The different degrees of increases in these two enzyme activities support the previous conclusions that in peroxisomes palmitoyl-CoA ligase and lignoceroyl-CoA ligase are different enzymes. Since clofibrate treatment increases both of these peroxisomal acyl-CoA ligase activities and normal palmitoyl-CoA ligase is the source of the partial activity for the oxidation of lignoceric acid in X-ALD, treatment with a hypolipidemic drug, which can increase human peroxisomal enzyme activities, may be helpful in lowering the amount of the pathogen, VLC fatty acids, in X-ALD.
Collapse
Affiliation(s)
- Y Yoshida
- Department of Pediatrics, Medical University of South Carolina, Charleston 29425
| | | |
Collapse
|
28
|
Guerroui S, Aubourg P, Chen WW, Hashimoto T, Scotto J. Molecular analysis of peroxisomal beta-oxidation enzymes in infants with peroxisomal disorders indicates heterogeneity of the primary defect. Biochem Biophys Res Commun 1989; 161:242-51. [PMID: 2471528 DOI: 10.1016/0006-291x(89)91587-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Immunoblot analysis of peroxisomal beta-oxidation enzymes proteins was carried on liver samples from 15 patients with peroxisomal disorders in which accumulation of very long chain fatty acids was always observed in plasma. In 11 cases including 4 cerebro-hepatorenal syndrome (CHRS), 4 neonatal adrenoleukodystrophy (NALD) and 3 infantile Refsum's disease, the liver peroxisomes could not be detected by electron microscopy. Immunoblot analysis revealed the absence, or presence in weak amounts, of the 72-kDa subunit of acyl-CoA oxidase, and the complete absence of the 52-kDa and 21-kDa subunits which are processed from the 72-kDa. The bifunctional protein (78-kDa) was absent or very reduced, as was the mature form of peroxisomal 3-ketoacyl-CoA thiolase (41-kDa). Multiple defects of peroxisomal beta-oxidation enzymes may be caused by an absence of synthesis or an inability to import proteins into peroxisomes in these patients. One patient, diagnosed as NALD, had no detectable liver peroxisomes but the presence, in normal amounts, of the three peroxisomal beta-oxidation enzyme proteins suggests that the transport of these enzymes into "peroxisomal ghosts" was still intact. The last 3 patients, clinically diagnosed as NALD, had normal liver peroxisomes. One patient had an isolated deficiency of the bifunctional protein and the 2 others had normal amounts of the 3 peroxisomal beta-oxidation enzymes, as shown by immunoblotting. This suggests that import and translocation of some peroxisomal proteins had occurred and that a mechanism is therefore required to explain the defect in these patients.
Collapse
Affiliation(s)
- S Guerroui
- INSERM U 56, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | | | | | | | | |
Collapse
|
29
|
Lazo O, Contreras M, Bhushan A, Stanley W, Singh I. Adrenoleukodystrophy: impaired oxidation of fatty acids due to peroxisomal lignoceroyl-CoA ligase deficiency. Arch Biochem Biophys 1989; 270:722-8. [PMID: 2705786 DOI: 10.1016/0003-9861(89)90555-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Very long chain fatty acids (lignoceric acid) are oxidized in peroxisomes and pathognomonic amounts of these fatty acids accumulate in X-adrenoleukodystrophy (X-ALD) due to a defect in their oxidation. However, in cellular homogenates from X-ALD cells, lignoceric acid is oxidized at a rate of 38% of control cells. Therefore, to identify the source of this residual activity we raised antibody to palmitoyl-CoA ligase and examined its effect on the activation and oxidation of palmitic and lignoceric acids in isolated peroxisomes from control and X-ALD fibroblasts. The normalization of peroxisomal lignoceric acid oxidation in the presence of exogenously added acyl-CoA ligases and along with the complete inhibition of activation and oxidation of palmitic and lignoceric acids in peroxisomes from X-ALD by antibody to palmitoyl-CoA ligase provides direct evidence that lignoceroyl-CoA ligase is deficient in X-ALD and demonstrates that the residual activity for the oxidation of lignoceric acid was derived from the activation of lignoceric acid by peroxisomal palmitoyl-CoA ligase. This antibody inhibited the activation and oxidation of palmitic acid but had little effect on these activities for lignoceric acid in peroxisomes from control cells. Furthermore, these data provide evidence that peroxisomal palmitoyl-CoA and lignoceroyl-CoA ligases are two different enzymes.
Collapse
Affiliation(s)
- O Lazo
- Department of Pediatrics, Medical University of South Carolina, Charleston 29425
| | | | | | | | | |
Collapse
|
30
|
Schepers L, Casteels M, Verheyden K, Parmentier G, Asselberghs S, Eyssen HJ, Mannaerts GP. Subcellular distribution and characteristics of trihydroxycoprostanoyl-CoA synthetase in rat liver. Biochem J 1989; 257:221-9. [PMID: 2521999 PMCID: PMC1135559 DOI: 10.1042/bj2570221] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The subcellular distribution and characteristics of trihydroxycoprostanoyl-CoA synthetase were studied in rat liver and were compared with those of palmitoyl-CoA synthetase and choloyl-CoA synthetase. Trihydroxycoprostanoyl-CoA synthetase and choloyl-CoA synthetase were localized almost completely in the endoplasmic reticulum. A quantitatively insignificant part of trihydroxycoprostanoyl-CoA synthetase was perhaps present in mitochondria. Peroxisomes, which convert trihydroxycoprostanoyl-CoA into choloyl-CoA, were devoid of trihydroxycoprostanoyl-CoA synthetase. As already known, palmitoyl-CoA synthetase was distributed among mitochondria, peroxisomes and endoplasmic reticulum. Substrate- and cofactor- (ATP, CoASH) dependence of the three synthesis activities were also studied. Cholic acid and trihydroxycoprostanic acid did not inhibit palmitoyl-CoA synthetase; palmitate inhibited the other synthetases non-competitively. Likewise, cholic acid inhibited trihydroxycoprostanic acid activation non-competitively and vice versa. The pH curves of the synthetases did not coincide. Triton X-100 affected the activity of each of the synthetases differently. Trihydroxycoprostanoyl-CoA synthetase was less sensitive towards inhibition by pyrophosphate than choloyl-CoA synthetase. The synthetases could not be solubilized from microsomal membranes by treatment with 1 M-NaCl, but could be solubilized with Triton X-100 or Triton X-100 plus NaCl. The detergent-solubilized trihydroxycoprostanoyl-CoA synthetase could be separated from the solubilized choloyl-CoA synthetase and palmitoyl-CoA synthetase by affinity chromatograpy on Sepharose to which trihydroxycoprostanic acid was bound. Choloyl-CoA synthetase and trihydroxycoprostanoyl-CoA synthetase could not be detected in homogenates from kidney or intestinal mucosa. The results indicate that long-chain fatty acids, cholic acid and trihydroxycoprostanic acid are activated by three separate enzymes.
Collapse
Affiliation(s)
- L Schepers
- Afdeling Farmacologie, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
31
|
Wanders RJ, Romeyn GJ, van Roermund CW, Schutgens RB, van den Bosch H, Tager JM. Identification of L-pipecolate oxidase in human liver and its deficiency in the Zellweger syndrome. Biochem Biophys Res Commun 1988; 154:33-8. [PMID: 3395335 DOI: 10.1016/0006-291x(88)90645-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ability of human liver to oxidize L-pipecolic acid was investigated. Liver from control subjects was found to contain L-pipecolic acid oxidase, an H2O2-producing enzyme not previously demonstrated in mammals. In livers from patients with the cerebro-hepato-renal syndrome of Zellweger, a genetic disease characterized by the absence of morphologically distinguishable peroxisomes, L-pipecolic acid oxidase was found to be deficient. These results indicate that L-pipecolic acid oxidase is a peroxisomal enzyme in man and provide an explanation for the fact that elevated levels of L-pipecolic acid are found in body fluids of patients with the Zellweger syndrome.
Collapse
Affiliation(s)
- R J Wanders
- Department of Pediatrics, University Hospital Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Santos MJ, Imanaka T, Shio H, Lazarow PB. Peroxisomal integral membrane proteins in control and Zellweger fibroblasts. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)81544-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Reubsaet FA, Veerkamp JH, Bukkens SG, Trijbels JM, Monnens LA. Acyl-CoA oxidase activity and peroxisomal fatty acid oxidation in rat tissues. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 958:434-42. [PMID: 3342250 DOI: 10.1016/0005-2760(88)90229-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Acyl-CoA oxidase, the first enzyme of the peroxisomal beta-oxidation, was proved to be rate-limiting for this process in homogenates of rat liver, kidney, adrenal gland, heart and skeletal muscle. Acyl-CoA oxidase activity, based on H2O2-dependent leuko-dichlorofluorescein oxidation in tissue extract, was compared with radiochemically assayed peroxisomal beta-oxidation rates. Dichlorofluorescein production was a valid measure of peroxisomal fatty acid oxidation only in liver and kidney, but not in adrenal gland, heart or skeletal muscle. Production of 14C-labeled acid-soluble products from 1-14C-labeled fatty acids in the presence of antimycin-rotenone appears to be a more accurate and sensitive estimate of peroxisomal beta-oxidation than the acyl-CoA oxidase activity on base of H2O2 production. Chain-length specificity of acyl-CoA oxidase changed with the acyl-CoA concentrations used. Below 80 microM, palmitoyl-CoA showed the highest activity of the measured substrates in rat liver extract. No indications were obtained for the presence in rat liver of more forms of acyl-CoA oxidase with different chain-length specificity.
Collapse
Affiliation(s)
- F A Reubsaet
- Department of Pediatrics, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Litwin JA, Völkl A, Müller-Höcker J, Fahimi HD. Immunocytochemical demonstration of peroxisomal enzymes in human kidney biopsies. VIRCHOWS ARCHIV. B, CELL PATHOLOGY INCLUDING MOLECULAR PATHOLOGY 1987; 54:207-13. [PMID: 2895531 DOI: 10.1007/bf02899213] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Peroxisomes are particularly abundant in the proximal tubules of the mammalian kidney. We describe the immunocytochemical localization of catalase and three peroxisomal lipid beta-oxidation enzymes: acyl-CoA oxidase, bifunctional protein (enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase) and 3-ketoacyl-CoA thiolase, in human renal biopsies fixed with glutaraldehyde and embedded in Epon. For light microscopy of semithin sections, satisfactory immunostaining required removal of the resin and controlled proteolytic digestion followed by the indirect immunoperoxidase technique. Brief etching of ultrathin sections with alkoxide followed by the protein A-gold method were used for electron microscopic localization of the enzymes. The immunoreactive peroxisomes were distinctly visualized in proximal tubular epithelial cells with no staining of any other cell organelles. The results establish the presence of catalase and of peroxisomal lipid beta-oxidation system proteins in human kidney. The immunocytochemical procedure described herein provides a simple approach for the investigation of peroxisomal structure and function in human renal biopsies processed for ultrastructural studies.
Collapse
Affiliation(s)
- J A Litwin
- Institute of Anatomy, University of Heidelberg, Federal Republic of Germany
| | | | | | | |
Collapse
|
35
|
Koenig CS, Dabiké M, Bronfman M. Quantitative subcellular study of apical pole membranes from chicken oxyntic cells in resting and HCl secretory state. J Biophys Biochem Cytol 1987; 105:2945-58. [PMID: 2826494 PMCID: PMC2114702 DOI: 10.1083/jcb.105.6.2945] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Vertebrate oxyntic cells, responsible for gastric HCl production, undergo a remarkable morphological reorganization in relation to their secretory cycle. In resting state, the luminal surface of the cells is smooth; a peculiar system of endocellular membranes, the tubular system, occupies the luminal cytoplasm. Actin filaments frame a cortical network between the tubular system and the luminal plasma membrane. With the onset of HCl secretion, the tubular system becomes incorporated into the luminal plasma membrane. Villous processes containing microfilaments fill the secretory surface. This morphological reorganization of membranes and cytoskeletal matrix could regulate HCl secretion by translocation of membranes containing the proton pump from the endocellular compartment to the secretory surface. In this paper, we describe the isolation of membranes that selectively belong to the tubular system or to the cytoplasmic processes of the secretory surface of chicken oxyntic cells. Chicken oxyntic cells are the main cellular component of the proventricular glands. A resting state was obtained after cimetidine treatment, whereas the HCl-secretory state was induced by histamine. We present a comparative analysis of resting and stimulated chicken gastric glands by quantitative subcellular fractionation. The HCl secretory state was related to specific modifications in membrane fractions derived from the secretory pole of oxyntic cells. Morphological and functional reorganization of oxyntic cells was closely correlated with changes in: the sedimentation pattern of the marker enzyme of the apical pole membrane (K-NPPase), the total activity of K-NPPase and nonmitochondrial Mg-ATPase, the valinomycin dependence of K-ATPase, and polypeptides that cosediment in purified membrane fractions. Changes in the distribution pattern of K-NPPase after fractionation of histamine-stimulated glands were consistent with the replacement of the small vesicles typical of resting glands by dense membrane profiles, analogous to the luminal processes of stimulated oxyntic cells. SDS-PAGE showed that, in purified membrane fractions of stimulated glands, the concentration of 28-, 43-, and 200-kD polypeptides increased while that of 95- and 250-kD polypeptides decreased. The present results define the tubular system of oxyntic cells as an organelle with properties different from those of endoplasmic reticulum, mitochondria, and plasma membrane. The biochemical and physico-chemical properties of this membraneous system changed when the organization of the membranes and the cytoskeletal matrix of the apical pole was modified by the onset of HCl secretion.
Collapse
Affiliation(s)
- C S Koenig
- Departmento de Biolgia Celular, Universidad Católica de Chile, Santiago
| | | | | |
Collapse
|
36
|
Singh H, Derwas N, Poulos A. Very long chain fatty acid beta-oxidation by rat liver mitochondria and peroxisomes. Arch Biochem Biophys 1987; 259:382-90. [PMID: 3426234 DOI: 10.1016/0003-9861(87)90504-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Crude mitochondrial fractions were isolated by differential centrifugation of rat liver homogenates. Subfractionation of these fractions on self-generating continuous Percoll gradients resulted in clearcut separation of peroxisomes from mitochondria. Hexacosanoic acid beta-oxidation was present mainly in peroxisomal fractions whereas hexacosanoyl CoA oxidation was present in the mitochondrial as well as in the peroxisomal fractions. The presence of much greater hexacosanoyl CoA synthetase activity in the purified preparations of microsomes and peroxisomes compared to mitochondria, suggests that the synthesis of coenzyme A derivatives of very long chain fatty acids (VLCFA) is limited in mitochondria. We postulate that a specific VLCFA CoA synthetase may be required to effectively convert VLCFA to VLCFA CoA in the cell. This specific synthetase activity is absent from the mitochondrial membrane, but present in the peroxisomal and the microsomal membranes. We postulate that substrate specificity and the subcellular localization of the specific VLCFA CoA synthetase directs and regulates VLCFA oxidation in the cell.
Collapse
Affiliation(s)
- H Singh
- Department of Chemical Pathology, Adelaide Children's Hospital, Australia
| | | | | |
Collapse
|
37
|
Singh H, Derwas N, Poulos A. Very long chain fatty acid beta-oxidation by subcellular fractions of normal and Zellweger syndrome skin fibroblasts. Arch Biochem Biophys 1987; 257:302-14. [PMID: 3662528 DOI: 10.1016/0003-9861(87)90570-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Very long chain fatty acid (VLCFA) beta-oxidation was compared in homogenates and subcellular fractions of cultured skin fibroblasts from normal individuals and from Zellweger patients who show greatly reduced numbers of peroxisomes in their tissues. beta-Oxidation of lignoceric (C24:0) acid was greatly reduced compared to controls in the homogenates and the subcellular fractions of Zellweger fibroblasts. The specific activity of C24:0 acid beta-oxidation was highest in the crude peroxisomal pellets of control fibroblasts. Fractionation of the crude mitochondrial and the crude peroxisomal pellets on Percoll density gradients revealed that the C24:0 acid oxidation was carried out entirely by peroxisomes, and the peroxisomal beta-oxidation activity was missing in Zellweger fibroblasts. In contrast to the beta-oxidation of C24:0 acid, the beta-oxidation of C24:0 CoA was observed in both mitochondria and peroxisomes. We postulate that a very long chain fatty acyl CoA (VLCFA CoA) synthetase, which is different from long chain fatty acyl CoA synthetase, is required for the effective conversion of C24:0 acid to C24:0 CoA. The VLCFA CoA synthetase appears to be absent from the mitochondrial membrane but present in the peroxisomal membrane.
Collapse
Affiliation(s)
- H Singh
- Department of Chemical Pathology, Adelaide Children's Hospital, South Australia
| | | | | |
Collapse
|
38
|
Litwin JA, Völkl A, Müller-Höcker J, Hashimoto T, Fahimi HD. Immunocytochemical localization of peroxisomal enzymes in human liver biopsies. THE AMERICAN JOURNAL OF PATHOLOGY 1987; 128:141-50. [PMID: 2886050 PMCID: PMC1899788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The immunocytochemical localization of catalase and three enzymes of the peroxisomal lipid beta-oxidation system--acyl-CoA oxidase, the bifunctional protein enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase--in human liver biopsies was investigated by means of light and electron microscopy. The antisera raised against all four enzymes from rat liver cross-reacted with the corresponding proteins in homogenates of human liver as revealed by immunoblotting. For light-microscopic localization in glutaraldehyde-fixed Epon-embedded material, the removal of resin and controlled digestion with trypsin was necessary. At the ultrastructural level specific labeling for all four antigens was found by the protein A-gold technique in peroxisomes of liver parenchymal cells fixed with formaldehyde-low glutaraldehyde concentrations and embedded in Lowicryl K4M. In biopsies fixed with glutaraldehyde and embedded in Epon, treatment with metaperiodate or etching with sodium ethoxide improved the immunolabeling. After such treatment catalase showed the most intense labeling and acyl-CoA oxidase the weakest, the two other proteins exhibiting an intermediate immunoreaction. In material postfixed with osmium only catalase could be visualized in peroxisomes. The immunocytochemical investigation of peroxisomal proteins in human liver biopsies provides a simple and highly promising approach for further elucidation of the pathophysiology of peroxisomal disorders.
Collapse
|
39
|
Wanders RJ, Schutgens RB, Heymans HS. Deficient cholesterol side chain oxidation in patients without peroxisomes (Zellweger syndrome): evidence for the involvement of peroxisomes in bile acid synthesis in man. Clin Chim Acta 1987; 162:295-301. [PMID: 3568406 DOI: 10.1016/0009-8981(87)90048-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The absence of peroxisomes in patients with the cerebro-hepato-renal (Zellweger) syndrome is accompanied by a number of biochemical abnormalities including the accumulation of the bile acid intermediates di- and trihydroxycoprostanoic acid. In this paper we show that there is a marked deficiency in the oxidative side chain cleavage of cholesterol in liver from Zellweger patients. These findings not only provide an explanation for the low levels of the major naturally occurring bile acids, cholic acid and chenodeoxycholic acid and the accumulation of di- and trihydroxycoprostanoic acid in Zellweger patients, but also suggest that peroxisomes are essential in bile acid synthesis in man.
Collapse
|
40
|
Peroxisomal Properties with Potential Regulatory Implications: Selective ATP Requirement for Fatty Acid Oxidation and Membrane Protein Phosphorylation. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/978-3-642-71325-5_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
41
|
Vianey-Liaud C, Divry P, Gregersen N, Mathieu M. The inborn errors of mitochondrial fatty acid oxidation. J Inherit Metab Dis 1987; 10 Suppl 1:159-200. [PMID: 3119938 DOI: 10.1007/bf01812855] [Citation(s) in RCA: 108] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To date, seven inborn errors of mitochondrial fatty acid oxidation have been identified. A total of about 100 patients in the world have been reported. Clinically the beta-oxidation defects are more often characterized by episodic hypoglycaemia leading to a coma mimicking Reye's syndrome. The hypoglycaemia is non-ketotic since the synthesis of ketone bodies is deficient. Periods of decompensation occur when carbohydrate supply is poor, e.g. prolonged fasting, vomiting, or increased caloric requirements, as and when lipid stores are used. Defects in beta-oxidation have also been reported to be one cause of sudden infant death syndrome. The diagnosis of these inborn errors is by biochemical investigation since where symptoms suggest such a defect, the precise aetiology cannot be assessed. The biochemical diagnosis is based firstly on identification of abnormal plasma and of urinary metabolites during acute attacks. Derivatives of the omega-oxidation and omega-1-oxidation of medium chain fatty acids have been identified, as well as acylglycine and acylcarnitine conjugates. These metabolites are nearly always absent when patients are in good clinical condition. Secondly, the diagnosis must be based on the identification of the enzymatic defects: this involves global assays which allow a localization of the 'level' of the defect (i.e. the oxidation of long, medium or short chain fatty acids) and specific measurement of enzyme activities (acyl-CoA dehydrogenases and electron carriers: ETF and ETF-DH). The diagnosis of these disorders is of prime importance because of the severity of the clinical symptoms. These can be prevented, in some cases, by an appropriate diet (a high carbohydrate, low fat diet, sometimes supplemented with L-carnitine). In other cases, genetic counselling can be offered.
Collapse
Affiliation(s)
- C Vianey-Liaud
- Laboratoire de Biochimie, Hôpital Debrousse, Lyon, France
| | | | | | | |
Collapse
|
42
|
Bronfman M, Amigo L, Morales MN. Activation of hypolipidaemic drugs to acyl-coenzyme A thioesters. Biochem J 1986; 239:781-4. [PMID: 3827829 PMCID: PMC1147356 DOI: 10.1042/bj2390781] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Compounds possessing the characteristics of CoA thioesters of the hypolipidaemic peroxisome proliferators clofibric acid, nafenopin and ciprofibrate were formed on incubation of the drugs with rat liver microsomal fractions, ATP and CoA. The reactivity of the drugs correlated with their pharmacological potency. It is proposed that the active species of these compounds are their acyl-CoA thioesters.
Collapse
|
43
|
Abstract
The possible presence of phosphorylated proteins in peroxisomes was studied in hepatocytes from nafenopin-treated and normal rats. A 63 kDa phosphorylated protein was consistently and exclusively found in the membrane of peroxisomes from hepatocytes incubated in the presence of 32P-phosphate. The peroxisomes were isolated in metrizamide isopycnic gradients of postnuclear supernatants and were subfractionated by alkaline extraction to separate the membrane and the matrix proteins. Polyacrylamide gel electrophoresis, autoradiography and densitometry were employed to characterize the proteins. The 63 kDa membrane protein copurifies with peroxisomes in metrizamide gradients and apparently can be phosphorylated, in purified peroxisomes, with ATP and catalytic subunit of cAMP-dependent protein kinase.
Collapse
|
44
|
Wanders RJ, van Roermund CW, de Vries CT, van den Bosch H, Schrakamp G, Tager JM, Schram AW, Schutgens RB. Peroxisomal beta-oxidation of palmitoyl-CoA in human liver homogenates and its deficiency in the cerebro-hepato-renal (Zellweger) syndrome. Clin Chim Acta 1986; 159:1-10. [PMID: 2944672 DOI: 10.1016/0009-8981(86)90160-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The presence of a beta-oxidation system in peroxisomes has been well documented. Rather than a duplicate of the mitochondrial beta-oxidation system, peroxisomes seem specially equipped to initiate the oxidation of very-long-chain fatty acids. Thus, the accumulation of very-long-chain fatty acids in tissues and body fluids from patients with a limited (X-linked adrenoleukodystrophy) or generalized (cerebro-hepato-renal (Zellweger) syndrome, infantile Refsum disease, neonatal adrenoleukodystrophy) peroxisomal dysfunction probably results from an impairment in the peroxisomal beta-oxidation system. In order to study this, we have developed an original assay which allows measurement of the overall peroxisomal beta-oxidation activity in human liver homogenates. Compared to controls, a strong deficiency of this activity was detected in liver from Zellweger patients using palmitoyl-CoA as a substrate.
Collapse
|
45
|
Hashmi M, Stanley W, Singh I. Lignoceroyl-CoASH ligase: enzyme defect in fatty acid beta-oxidation system in X-linked childhood adrenoleukodystrophy. FEBS Lett 1986; 196:247-50. [PMID: 3948997 DOI: 10.1016/0014-5793(86)80256-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have previously reported that the peroxisomal beta-oxidation system for very long chain fatty acids is defective in X-linked childhood adrenoleukodystrophy [(1984) Proc. Natl. Acad. Sci. USA 81, 4203-4207]. In order to elucidate the specific enzyme defect, we examined the oxidation of [1-14C]lignoceric acid, [1-14C]lignoceroyl-CoA and (1-14C)-labelled alpha,beta-unsaturated lignoceroyl-CoA (substrates for the 1st, 2nd, and 3rd steps of the beta-oxidation cycle, respectively). These studies suggest that the pathognomonic accumulation of very long chain fatty acids in X-linked childhood ALD may be due to the defective activity of peroxisomal very long chain (lignoceroyl-CoA) acyl-CoA ligase.
Collapse
|
46
|
Veerkamp JH, van Moerkerk HT. Peroxisomal fatty acid oxidation in rat and human tissues. Effect of nutritional state, clofibrate treatment and postnatal development in the rat. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 875:301-10. [PMID: 3942767 DOI: 10.1016/0005-2760(86)90180-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Oxidation of palmitate 14C-labeled in different positions was assayed in the absence and presence of antimycin and rotenone in homogenates of various rat and human tissues to determine total and peroxisomal oxidation and acetyl group production. Total and antimycin-insensitive palmitate oxidation rates were higher in rat heart, liver and quadriceps muscle than in the corresponding human tissues. The proportion of antimycin-insensitive oxidation of [1-14C]palmitate was 17-35% in tissues of starved rats and in human muscles and fibroblasts, but peroxisomal production of acetyl groups amounted only to 5-11% of that by mitochondria. The mean number of peroxisomal beta-oxidation cycles was 1.5-2.5 per palmitate molecule. The nutritional state markedly influenced the total oxidation rate and the antimycin-insensitive proportion in rat liver. Clofibrate feeding increased total and antimycin-insensitive oxidation rates in liver, heart and kidney, but not in quadriceps muscle. Total oxidation capacity was maximal in rat liver at weaning, and in rat heart at an age of 70 days. Antimycin-insensitive oxidation rates increased in rat liver and heart at postnatal development up to weaning. A marked proportion of lignocerate oxidation was antimycin-sensitive in rat tissues.
Collapse
|
47
|
Santos MJ, Garrido J, Oliver C, Robbins AR, Leighton F. Characterization of peroxisomes in Chinese hamster ovary cells in culture. Exp Cell Res 1985; 161:189-98. [PMID: 4054230 DOI: 10.1016/0014-4827(85)90503-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In order to explore the potential value of Chinese hamster ovary (CHO) cells for the isolation of peroxisomal mutants defective in the peroxisomal fatty acid oxidation system, some characteristics of their peroxisomes were studied. Catalase was detected biochemically and histochemically in peroxisome-like particles in cells or in subcellular fractions prepared by differential centrifugation or isopyknic equilibrium in Percoll or Metrizamide with catalase in the high density fractions of the isopyknic equilibrium gradients. By oxidation system, exhibited an unusually high specific activity, 2.46 +/- 1.09 mU/mg protein, in CHO cell homogenates, a value comparable to that of rat liver. This enzyme copurifies with catalase in the high density fractions of the isopycnic equilibrium gradients. By analogy with other cell types and from the ultrastructural analysis, it is concluded that these enzymes are contained in peroxisomes. These findings support the value of CHO cells for studies of peroxisomal function and organization.
Collapse
|
48
|
Santos MJ, Ojeda JM, Garrido J, Leighton F. Peroxisomal organization in normal and cerebrohepatorenal (Zellweger) syndrome fibroblasts. Proc Natl Acad Sci U S A 1985; 82:6556-60. [PMID: 2995971 PMCID: PMC391248 DOI: 10.1073/pnas.82.19.6556] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The reported absence of morphologically detectable peroxisomes in liver and kidney tissue cells from patients affected by the autosomic recessive, inherited metabolic disease known as cerebrohepatorenal, or Zellweger, syndrome was studied in fibroblasts, assuming it to be a generalized defect. Normal cultured fibroblasts were shown to contain peroxisomes according to morphological, biochemical, and subcellular fractionation criteria: particle-bound catalase and fatty acyl-CoA oxidase copurify in subcellular fractionation by differential centrifugation or isopycnic equilibrium in continuous density gradients and peroxidase-positive organelles of approximately equal to 0.1 micron in diameter are detected in the cytoplasm. In Zellweger cultured fibroblasts, these peroxisomal enzymes are present; however, they behave as cytosolic enzymes in the different subcellular fractionation procedures employed and peroxisomes are not detected cytochemically. These findings support the hypothesis that the lack of peroxisomes in this genetic disease is the consequence of a defect in the assembly of the peroxisomal constituents. Furthermore, the value of fibroblasts for subcellular analysis of peroxisomal defects is illustrated.
Collapse
|
49
|
Bronfman M, Leighton F. Carnitine acyltransferase and acyl-coenzyme A hydrolase activities in human liver. Quantitative analysis of their subcellular localization. Biochem J 1984; 224:721-30. [PMID: 6151837 PMCID: PMC1144506 DOI: 10.1042/bj2240721] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The subcellular localizations of carnitine acyltransferase and acyl-CoA hydrolase activities with different chain-length substrates were quantitatively evaluated in human liver by fractionation of total homogenates in metrizamide density gradients and by differential centrifugation. Peroxisomes were found to contain 8-37% of the liver acyltransferase activity, the relative amount depending on the chain length of the substrate. The remaining activity was ascribed to mitochondria, except for carnitine octanoyltransferase, for which 25% of the activity was present in microsomal fractions. In contrast with rat liver, where the activity in peroxisomes is very low or absent, human liver peroxisomes contain about 20% of the carnitine palmitoyltransferase. Short-chain acyl-CoA hydrolase activity was found to be localized mainly in the mitochondrial and soluble compartments, whereas the long-chain activity was present in both microsomal fractions and the soluble compartment. Particle-bound acyl-CoA hydrolase activity for medium-chain substrates exhibited an intermediate distribution, in mitochondria and microsomal fractions, with 30-40% of the activity in the soluble fraction. No acyl-CoA hydrolase activity appears to be present in human liver peroxisomes.
Collapse
|