Sakamoto H, Omata Y, Adachi Y, Palmer G, Noguchi M. Separation and identification of the regioisomers of verdoheme by reversed-phase ion-pair high-performance liquid chromatography, and characterization of their complexes with heme oxygenase.
J Inorg Biochem 2000;
82:113-21. [PMID:
11132617 DOI:
10.1016/s0162-0134(00)00149-5]
[Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We report an HPLC method for separating the four regioisomers of verdoheme formed in the coupled oxidation of hemin with oxygen and ascorbate in aqueous pyridine. The reversed-phase ion-pair system uses hexafluoroacetone and pyridine as ion-pair agents. The regiochemistry of the separated isomers was established both by HPLC of the corresponding biliverdin IX derivatives and by 1H NMR of each isomer. Optical spectra of the pyridine verdohemochrome isomers were similar to each other, but showed differences in the absorption maxima in the red region, which appear at 680, 663, 648 and 660 nm for the alpha, beta, gamma, and delta-isomers, respectively. Each of the four isomers was incorporated anaerobically into heme oxygenase-1, yielding the corresponding verdoheme-enzyme complex. The ferrous forms had absorption maxima at 690, 667, 655, and 663 nm, and their CO-bound forms had maxima at 638, 624, 616, and 626 nm for alpha, beta, gamma, and delta-isomer, respectively. Addition of ferricyanide to the alpha-verdoheme-heme oxygenase complex brought about a ferric low-spin heme-like signal, which is identical with the ferric alpha-verdoheme complexed with the heme oxygenase that was observed in the heme oxygenase reaction.
Collapse