1
|
Underhill GH, Khetani SR. Bioengineered Liver Models for Drug Testing and Cell Differentiation Studies. Cell Mol Gastroenterol Hepatol 2018; 5:426-439.e1. [PMID: 29675458 PMCID: PMC5904032 DOI: 10.1016/j.jcmgh.2017.11.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/21/2017] [Indexed: 12/19/2022]
Abstract
In vitro models of the human liver are important for the following: (1) mitigating the risk of drug-induced liver injury to human beings, (2) modeling human liver diseases, (3) elucidating the role of single and combinatorial microenvironmental cues on liver cell function, and (4) enabling cell-based therapies in the clinic. Methods to isolate and culture primary human hepatocytes (PHHs), the gold standard for building human liver models, were developed several decades ago; however, PHHs show a precipitous decline in phenotypic functions in 2-dimensional extracellular matrix-coated conventional culture formats, which does not allow chronic treatment with drugs and other stimuli. The development of several engineering tools, such as cellular microarrays, protein micropatterning, microfluidics, biomaterial scaffolds, and bioprinting, now allow precise control over the cellular microenvironment for enhancing the function of both PHHs and induced pluripotent stem cell-derived human hepatocyte-like cells; long-term (4+ weeks) stabilization of hepatocellular function typically requires co-cultivation with liver-derived or non-liver-derived nonparenchymal cell types. In addition, the recent development of liver organoid culture systems can provide a strategy for the enhanced expansion of therapeutically relevant cell types. Here, we discuss advances in engineering approaches for constructing in vitro human liver models that have utility in drug screening and for determining microenvironmental determinants of liver cell differentiation/function. Design features and validation data of representative models are presented to highlight major trends followed by the discussion of pending issues that need to be addressed. Overall, bioengineered liver models have significantly advanced our understanding of liver function and injury, which will prove useful for drug development and ultimately cell-based therapies.
Collapse
Key Words
- 3D, 3-dimensional
- BAL, bioartificial liver
- Bioprinting
- CRP, C-reactive protein
- CYP450, cytochrome P450
- Cellular Microarrays
- DILI, drug-induced liver injury
- ECM, extracellular matrix
- HSC, hepatic stellate cell
- Hepatocytes
- IL, interleukin
- KC, Kupffer cell
- LSEC, liver sinusoidal endothelial cell
- MPCC, micropatterned co-culture
- Microfluidics
- Micropatterned Co-Cultures
- NPC, nonparenchymal cell
- PEG, polyethylene glycol
- PHH, primary human hepatocyte
- Spheroids
- iHep, induced pluripotent stem cell-derived human hepatocyte-like cell
- iPS, induced pluripotent stem
Collapse
Affiliation(s)
- Gregory H. Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Salman R. Khetani
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
2
|
Ogoke O, Oluwole J, Parashurama N. Bioengineering considerations in liver regenerative medicine. J Biol Eng 2017; 11:46. [PMID: 29204185 PMCID: PMC5702480 DOI: 10.1186/s13036-017-0081-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
Background Liver disease contributes significantly to global disease burden and is associated with rising incidence and escalating costs. It is likely that innovative approaches, arising from the emerging field of liver regenerative medicine, will counter these trends. Main body Liver regenerative medicine is a rapidly expanding field based on a rich history of basic investigations into the nature of liver structure, physiology, development, regeneration, and function. With a bioengineering perspective, we discuss all major subfields within liver regenerative medicine, focusing on the history, seminal publications, recent progress within these fields, and commercialization efforts. The areas reviewed include fundamental aspects of liver transplantation, liver regeneration, primary hepatocyte cell culture, bioartificial liver, hepatocyte transplantation and liver cell therapies, mouse liver repopulation, adult liver stem cell/progenitor cells, pluripotent stem cells, hepatic microdevices, and decellularized liver grafts. Conclusion These studies highlight the creative directions of liver regenerative medicine, the collective efforts of scientists, engineers, and doctors, and the bright outlook for a wide range of approaches and applications which will impact patients with liver disease.
Collapse
Affiliation(s)
- Ogechi Ogoke
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Furnas Hall, Buffalo, NY 14260 USA.,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), 875 Ellicott St., Buffalo, NY 14203 USA
| | - Janet Oluwole
- Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), 875 Ellicott St., Buffalo, NY 14203 USA.,Department of Biomedical Engineering, University at Buffalo (State University of New York), Furnas Hall, 907 Furnas Hall, Buffalo, NY 14260 USA
| | - Natesh Parashurama
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Furnas Hall, Buffalo, NY 14260 USA.,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), 875 Ellicott St., Buffalo, NY 14203 USA.,Department of Biomedical Engineering, University at Buffalo (State University of New York), Furnas Hall, 907 Furnas Hall, Buffalo, NY 14260 USA
| |
Collapse
|
3
|
Gebhardt R, Baldysiak-Figiel A, Krügel V, Ueberham E, Gaunitz F. Hepatocellular expression of glutamine synthetase: an indicator of morphogen actions as master regulators of zonation in adult liver. ACTA ACUST UNITED AC 2007; 41:201-66. [PMID: 17368308 DOI: 10.1016/j.proghi.2006.12.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glutamine synthetase (GS) has long been known to be expressed exclusively in pericentral hepatocytes most proximal to the central veins of liver lobuli. This enzyme as well as its peculiar distribution complementary to the periportal compartment for ureogenesis plays an important role in nitrogen metabolism, particularly in homeostasis of blood levels of ammonium ions and glutamine. Despite this fact and intensive studies in vivo and in vitro, many aspects of the regulation of its activity on the protein and on the genetic level remained enigmatic. Recent experimental advances using transgenic mice and new analytic tools have revealed the fundamental role of morphogens such as wingless-type MMTV integration site family member signals (Wnt), beta-catenin, and adenomatous polyposis coli in the regulation of this particular enzyme. In addition, novel information concerning the structure of transcription factor binding sites within regulatory regions of the GS gene and their interactions with signalling pathways could be collected. In this review we focus on all aspects of the regulation of GS in the liver and demonstrate how the new findings have changed our view of the determinants of liver zonation. What appeared as a simple response of hepatocytes to blood-derived factors and local cellular interactions must now be perceived as a fundamental mechanism of adult tissue patterning by morphogens that were considered mainly as regulators of developmental processes. Though GS may be the most obvious indicator of morphogen action among many other targets, elucidation of the complex regulation of the expression of the GS gene could pave the road for a better understanding of the mechanisms involved in patterning of liver parenchyma. Based on current knowledge we propose a new concept of how morphogens, hormones and other factors may act in concert, in order to restrict gene expression to small subpopulations of one differentiated cell type, the hepatocyte, in different anatomical locations. Although many details of this regulatory network are still missing, and an era of exciting new discoveries is still about to come, it can already be envisioned that similar mechanisms may well be active in other organs contributing to the fine-tuning of organ-specific functions.
Collapse
Affiliation(s)
- Rolf Gebhardt
- Institut für Biochemie, Medizinische Fakultät, Universität Leipzig, Johannisallee 30, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
4
|
Bhatia SN, Balis UJ, Yarmush ML, Toner M. Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J 1999; 13:1883-900. [PMID: 10544172 DOI: 10.1096/fasebj.13.14.1883] [Citation(s) in RCA: 732] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Heterotypic cell interaction between parenchymal cells and nonparenchymal neighbors has been reported to modulate cell growth, migration, and/or differentiation. In both the developing and adult liver, cell-cell interactions are imperative for coordinated organ function. In vitro, cocultivation of hepatocytes and nonparenchymal cells has been used to preserve and modulate the hepatocyte phenotype. We summarize previous studies in this area as well as recent advances in microfabrication that have allowed for more precise control over cell-cell interactions through 'cellular patterning' or 'micropatterning'. Although the precise mechanisms by which nonparenchymal cells modulate the hepatocyte phenotype remain unelucidated, some new insights on the modes of cell signaling, the extent of cell-cell interaction, and the ratio of cell populations are noted. Proposed clinical applications of hepatocyte cocultures, typically extracorporeal bioartificial liver support systems, are reviewed in the context of these new findings. Continued advances in microfabrication and cell culture will allow further study of the role of cell communication in physiological and pathophysiological processes as well as in the development of functional tissue constructs for medical applications.
Collapse
Affiliation(s)
- S N Bhatia
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | |
Collapse
|
5
|
Guillouzo A. Liver cell models in in vitro toxicology. ENVIRONMENTAL HEALTH PERSPECTIVES 1998; 106 Suppl 2:511-32. [PMID: 9599700 PMCID: PMC1533385 DOI: 10.1289/ehp.98106511] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In vitro liver preparations are increasingly used for the study of hepatotoxicity of chemicals. In recent years their actual advantages and limitations have been better defined. The cell models, slices, and mainly primary hepatocyte cultures, appear to be the most powerful in vitro systems, as liver-specific functions and responsiveness to inducers are retained either for a few days or several weeks depending on culture conditions. Maintenance of phase I and phase II xenobiotic metabolizing enzyme activities allows various chemical investigations to be performed, including determination of kinetic parameters, metabolic profile, interspecies comparison, inhibition and induction effects, and drug-drug interactions. In vitro liver cell models also have various applications in toxicology: screening of cytotoxic and genotoxic compounds, evaluation of chemoprotective agents, and determination of characteristic liver lesions and associated biochemical mechanisms induced by toxic compounds. Extrapolation of the results to the in vivo situation remains a matter of debate. Presently, the most convincing applications of liver cell models are the studies on different aspects of metabolism and mechanisms of toxicity. For the future, there is a need for better culture conditions and differentiated hepatocyte cell lines to overcome the limited availability of human liver tissues. In addition, strategies for in vitro analysis of potentially toxic chemicals must be better defined.
Collapse
Affiliation(s)
- A Guillouzo
- INSERM U456, Unité Détoxication et Réparation Tissulaire, Faculté de Pharmacie, Rennes, France.
| |
Collapse
|
6
|
Gebhardt R, Wegner H, Alber J. Perifusion of co-cultured hepatocytes: optimization of studies on drug metabolism and cytotoxicity in vitro. Cell Biol Toxicol 1996; 12:57-68. [PMID: 8738475 DOI: 10.1007/bf00143356] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The combination of co-cultivation of hepatocytes and epithelial cell lines with a newly developed perifusion system was used for in vitro studies on drug metabolism and cytotoxicity. This approach improved the viability and enhanced the induction of the biotransforming capacity of the hepatocytes. As demonstrated for the induction of 7-ethoxyresorufin O-deethylase activity by 3-methylcholanthrene or benzanthracene, co-cultured hepatocytes in the perifusion system responded more sensitively to these inducers than without perifusion, most likely owing to stable (steady-state) concentrations of the inducers under the former conditions and rapidly declining concentrations under the latter conditions. The perifusion approach rendered it possible to determine the kinetics of drug metabolism during single or sequential incubations. After induction with 3-methylcholanthrene and phenobarbital, phase I metabolism of lonazolac to the monohydroxylated product in perifused co-cultures closely (87%) approached the values reported for the in vivo production, whereas in stationary co-cultures only 52% could be reached. Likewise, cytotoxic effects could be detected more precisely in the perifused co-cultures. If cells were pretreated with 0.2 mmol/L galactosamine for 3 h, perifusion with increasing concentrations of menadione differentially killed epithelial RL-ET-14 cells and hepatocytes at low and high concentrations, respectively, while in stationary co-cultures no differential effect was observed and only the higher concentrations were cytotoxic for both cells. Prevention by incubation with S-adenosylmethionine of menadione cytotoxicity up to a menadione concentration of 250 micromol/L was seen only in the perifused co-cultures, whereas in stationary cultures only a slight shift of the cytotoxic concentration exerting 50% cell damage to higher values was noted. These results demonstrate the versatile application of perifused co-cultures for studies on drug metabolism including induction of cytochrome P450-dependent enzymes and steady-state kinetics of biotransformation, as well as cytotoxic and protective effects of different drugs.
Collapse
Affiliation(s)
- R Gebhardt
- Physiologisch-chemisches Institut der Universität Tübingen, Germany
| | | | | |
Collapse
|
7
|
Hiron M, Daveau M, Arnaud P, Bauer J, Lebreton JP. The human hepatoma Hep3B cell line as an experimental model in the study of the long-term regulation of acute-phase proteins by cytokines. Biochem J 1992; 287 ( Pt 1):255-9. [PMID: 1384466 PMCID: PMC1133152 DOI: 10.1042/bj2870255] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The regulation of the synthesis by the cytokines interleukin-1 (IL-1) and IL-6 of the positive acute-phase protein alpha 1-acid glycoprotein (AGP) and of the negative acute-phase protein alpha 2-HS glycoprotein (AHSG) has been studied in a long-term culture system of the human hepatoma cell line Hep3B. The culture system contained 30 nM-sodium selenite as the only supplement. This allowed maintenance of the synthesis of the proteins under study at a near steady state for over 3 months. An increase in AGP mRNA and a decrease in AHSG mRNA were observed when cells were treated for two successive 48 h-periods with monocyte-conditioned medium. A return to basal levels was obtained after cessation of the cytokine addition. Two further additions of cytokines led to alterations in mRNA levels similar to those observed following the first cytokine treatment. The amounts of AGP and AHSG secreted were altered in accordance with the mRNA modifications. These results suggest that new cytokine receptors were being constantly synthesized during cell culture. When cytokines were present in the culture medium for 10 days, maximum alterations in AGP and AHSG synthesis were obtained following 2 and 4 days of treatment respectively, but further alterations in protein levels could not be observed afterwards. Expression of IL-6 receptor mRNA was not up-regulated by cytokines, but only by 1 microM-dexamethasone. Our results show that, in this long-term culture system, cytokines induce a response in hepatoma cells similar to that observed in vivo during human inflammatory states. This model could be used to evaluate the effects of agonists or antagonists of cytokines responsible for the hepatic acute-phase protein response.
Collapse
Affiliation(s)
- M Hiron
- Institut National de la Santé et de la Recherche, Médicale Unité 78, Bois-Guillaume, France
| | | | | | | | | |
Collapse
|
8
|
Tong JZ, De Lagausie P, Furlan V, Cresteil T, Bernard O, Alvarez F. Long-term culture of adult rat hepatocyte spheroids. Exp Cell Res 1992; 200:326-32. [PMID: 1572400 DOI: 10.1016/0014-4827(92)90179-c] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hepatocytes from adult rats were cultured on poly-HEMA-coated surface to form spheroids in hormonally defined media as previously shown with newborn rat hepatocytes. Spheroidal aggregates of adult rat hepatocytes were morphologically similar to those of newborn rat hepatocytes and could also form a monolayer of uniform liver parenchyma-like cells when transferred on collagen-coated surfaces even after 2 months of culture. Under these culture conditions, albumin and transferrin secreted in vitro by adult rat hepatocyte spheroids were detectable by immunoprecipitation method at least until 2 months of culture. The production of proteins by hepatocyte spheroids could be regulated in vitro by IL-6: the secretion of alpha 2-macroglobulin was increased and the secretion of albumin was decreased in the presence of this cytokine. In addition, cytochrome P450 IA1 was strongly induced by methylcholanthrene in adult rat hepatocyte spheroids, and the induction remained relatively constant up to 22 days of culture. These cells were also able to metabolize lidocaine to monoethylglycinexylidine when measured up to 14 days of culture, showing the presence of a relatively high level of P450 IIIA2. The UDP-glucuronyltransferase activity, specific for bilirubin conjugation, decreased to 18% of the initial value after 2 weeks of culture. This work showed that adult rat hepatocytes in long-term spheroid culture kept differentiated functions, providing a new model for the in vitro study of hepatocyte functions and complementing that of newborn rat hepatocytes using the same system.
Collapse
Affiliation(s)
- J Z Tong
- INSERM U347, Unité de Génétique et Mécanismes des Maladies du Foie de l'Enfant, Le Kremlin-Bicêtre, France
| | | | | | | | | | | |
Collapse
|
9
|
Tong JZ, Bernard O, Alvarez F. Long-term culture of rat liver cell spheroids in hormonally defined media. Exp Cell Res 1990; 189:87-92. [PMID: 2189740 DOI: 10.1016/0014-4827(90)90260-h] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Liver cells of new-born rats, which were found to be able to form spheroidal aggregates when cultured on a nonadherent plastic substratum, were studied under various conditions of culture, mainly by adding different nutrients and growth factors to the culture medium. Analysis of hepatocyte-specific functions was carried out by immunoprecipitation to detect specific proteins newly secreted by liver cell spheroids on different days of culture. When no supplement was added to culture medium, the secretion of albumin and transferrin by liver cell spheroids was no longer detectable after 2 weeks of culture. When dexamethasone, glucagon, insulin, and EGF were added to culture medium, the secretion of albumin and transferrin remained detectable at least until 60 days of culture. This was even more striking when trace elements were added in addition to the three hormones and EGF. The effects of addition of these various factors to culture medium were also detectable with respect to alpha-FP secretion. Even after 54 days of culture in total supplemented medium, these liver cell spheroids could be transferred on a collagen-coated plastic substratum to form a monolayer of uniform liver parenchyma-like cells. The presence of extracellular matrix-like material was observed on the surface of cell spheroids. This could be responsible for attachment and fusion between cell spheroids. Thus, liver cell spheroids cultured in total supplemented medium ensured cell attachment to a biological matrix and cell-cell contact, which is thought to help maintain cell differentiation. Liver cell spheroids offer the possibility of toxicological and pharmacological studies as well as cultures in biomatrix and coculture systems. In addition these liver cells can be used for experiments in liver cell transplantation.
Collapse
Affiliation(s)
- J Z Tong
- INSERM U56, Unité d'Hépatologie Pédiatrique, Hôpital de Bicêtre, France
| | | | | |
Collapse
|
10
|
Conner J, Vallet-Collom I, Daveau M, Delers F, Hiron M, Lebreton JP, Guillouzo A. Acute-phase-response induction in rat hepatocytes co-cultured with rat liver epithelial cells. Biochem J 1990; 266:683-8. [PMID: 1691630 PMCID: PMC1131193 DOI: 10.1042/bj2660683] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The response of rat hepatocytes co-cultured with rat liver epithelial cells to conditioned medium (CM) from lipopolysaccharide (LPS)-activated monocytes was investigated by measuring the concentration of alpha 2-macroglobulin (alpha 2M), alpha 1-acid glycoprotein (AGP), albumin and transferrin, as well as the changes in glycosylation of alpha 1-acid glycoprotein. During an initial 8-day treatment with CM, concentrations of alpha 2M and AGP increased markedly over those of control culture, whereas concentrations of albumin and transferrin decreased. The glycosylation pattern of AGP indicated an important relative increase of the concanavalin A-strongly-reactive (SR) variant upon treatment. When CM addition to hepatocyte culture medium was stopped, the concentrations of the four proteins and the glycosylation pattern of AGP reverted to those of control cultures. Further addition (on day 15) to cultures of CM increased the concentration of alpha 2M and decreased albumin and transferrin concentrations. Although AGP concentrations did not increase above those of controls, the appearance of the SR variant was again stimulated by CM. These results show that, in co-culture, rat hepatocytes remain able to respond to repeated inflammatory stimuli.
Collapse
Affiliation(s)
- J Conner
- INSERM U49, Hôpital de Pontchaillou, Rennes, France
| | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Seddon T, Lockwood GF, Chenery RJ. In vitro drug metabolism and pharmacokinetics of diazepam in cynomolgus monkey hepatocytes during culture for six days. Biochem Pharmacol 1989; 38:2621-30. [PMID: 2504170 DOI: 10.1016/0006-2952(89)90547-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diazepam (DZ), N-desmethyl diazepam (NOR) and temazepam (TEM) were used as substrates in drug metabolism studies to characterize the changes in cytochrome P-450 mono-oxygenase pathways in hepatocytes isolated from cynomolgus monkeys, during culture for 6 days. Hepatocytes were incubated with DZ (20 microM), NOR (6 microM) or TEM (20 microM) for 3 hr at 3, 24, 48, 96 and 144 hr post-isolation in culture, and the profiles of disappearance of DZ, as substrate, and appearance of its metabolites determined. Major metabolites were NOR, TEM and oxazepam (OX). The kinetic profiles for the disappearance of DZ and the accumulation of metabolite were analysed using a four-compartment model and constants for the rates of formation of the metabolites were derived. There were significant changes during the period in culture for the rate constants of DZ demethylation, but no alteration in the 3-hydroxylation activities. Rates of DZ metabolism were unchanged during the initial 2 days in culture and well maintained for the subsequent 4 days, despite a fall in total cytochrome P-450 to 23% of initial values after 6 days. Cynomolgus monkey hepatocytes produce similar metabolite profiles for DZ to those found in man, both in vitro and in vivo, indicating that cynomolgus monkey hepatocytes may represent a relatively stable and valuable model of human drug metabolism.
Collapse
Affiliation(s)
- T Seddon
- Smith, Kline & French Ltd, The Frythe, Welwyn, Hertfordshire, U.K
| | | | | |
Collapse
|
13
|
Agius L. Metabolic interactions of parenchymal hepatocytes and dividing epithelial cells in co-culture. Biochem J 1988; 252:23-8. [PMID: 3421903 PMCID: PMC1149101 DOI: 10.1042/bj2520023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
When parenchymal hepatocytes isolated from adult liver are co-cultured with other epithelial cells, the production of various plasma proteins by the hepatocytes is preserved for much longer than in conventional culture. This study examines some of the metabolic interactions between parenchymal hepatocytes and epithelial cells maintained in co-culture. The leakage of lactate dehydrogenase by hepatocytes co-cultured with epithelial cells was lower than in conventional hepatocyte culture. The epithelial cells have a high glycolytic rate and provide the hepatocytes with a continual supply of lactate. The [lactate] was lower in co-cultures of hepatocytes and epithelial cells than in pure epithelial cultures of similar density, suggesting lactate clearance by the hepatocytes. Alanine uptake was higher in conventional hepatocyte cultures, which lack an exogenous supply of lactate, than in parenchymal hepatocytes in co-culture. Studies with pure parenchymal hepatocytes incubated with increasing [lactate] suggest that lactate is utilized in preference to alanine as a gluconeogenic substrate by hepatocytes co-cultured with epithelial cells. Ketogenesis and carnitine palmitoyltransferase activity declined more slowly in hepatocytes co-cultured with epithelial cells than in conventional culture. It is concluded that the co-culture model has potential for long-term studies of carbohydrate and lipid metabolism.
Collapse
Affiliation(s)
- L Agius
- Department of Medicine, University of Newcastle upon Tyne, U.K
| |
Collapse
|
14
|
Agius L. Human liver in vitro techniques for metabolic studies. BAILLIERE'S CLINICAL ENDOCRINOLOGY AND METABOLISM 1987; 1:999-1021. [PMID: 3330438 DOI: 10.1016/s0950-351x(87)80014-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|