1
|
Jiang J, Ravits J. Pathogenic Mechanisms and Therapy Development for C9orf72 Amyotrophic Lateral Sclerosis/Frontotemporal Dementia. Neurotherapeutics 2019; 16:1115-1132. [PMID: 31667754 PMCID: PMC6985338 DOI: 10.1007/s13311-019-00797-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In 2011, a hexanucleotide repeat expansion in the first intron of the C9orf72 gene was identified as the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The proposed disease mechanisms include loss of C9orf72 function and gain of toxicity from the bidirectionally transcribed repeat-containing RNAs. Over the last few years, substantial progress has been made to determine the contribution of loss and gain of function in disease pathogenesis. The extensive body of molecular, cellular, animal, and human neuropathological studies is conflicted, but the predominance of evidence favors gain of toxicity as the main pathogenic mechanism for C9orf72 repeat expansions. Alterations in several downstream cellular functions, such as nucleocytoplasmic transport and autophagy, are implicated. Exciting progress has also been made in therapy development targeting this mutation, such as by antisense oligonucleotide therapies targeting sense transcripts and small molecules targeting nucleocytoplasmic transport, and these are now in phase 1 clinical trials.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA.
| | - John Ravits
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Revuelta-Cervantes J, Mayoral R, Miranda S, González-Rodríguez A, Fernández M, Martín-Sanz P, Valverde AM. Protein Tyrosine Phosphatase 1B (PTP1B) deficiency accelerates hepatic regeneration in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1591-604. [PMID: 21406170 DOI: 10.1016/j.ajpath.2010.12.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 12/09/2010] [Accepted: 12/17/2010] [Indexed: 01/27/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a key regulator of metabolism and cell growth by its ability to dephosphorylate tyrosine kinase receptors and modulate the intensity of their signaling cascades. Because liver regeneration involves tyrosine phosphorylation-mediated signaling, we investigated the role of PTP1B in this process by performing partial hepatectomy in wild-type (PTP1B(+/+)) and PTP1B-deficient (PTP1B(-/-)) mice. The expression of PCNA and cyclins D1 and E (cell proliferation markers) was enhanced in PTP1B(-/-) regenerating livers, in parallel with 5'-bromo-2'-deoxyuridine incorporation. Phosphorylation of JNK1/2 and STAT3, early triggers of hepatic regeneration in response to TNF-α and IL-6, was accelerated in PTP1B(-/-) mice compared with PTP1B(+/+) mice. These phosphorylations were increased in PTP1B(-/-) hepatocytes or by silencing PTP1B in wild-type cells and decreased further after the addition of recombinant PTP1B. Enhanced EGF- and HGF receptor-mediated signaling was observed in regenerating livers lacking PTP1B and in EGF- or HGF-stimulated PTP1B(-/-) hepatocytes. Moreover, PTP1B(-/-) mice displayed a more rapid increase in intrahepatic lipid accumulation than PTP1B(+/+) control mice. Late responses to partial hepatectomy revealed additional divergences because stress-mediated signaling was attenuated at 24 to 96 hours in PTP1B(-/-) mice compared with PTP1B(+/+) mice. Finally, PTP1B deficiency also improves hepatic regeneration in mice fed a high-fat diet. These results suggest that pharmacological inhibition of PTP1B would improve liver regeneration in patients with acute or chronic liver injury.
Collapse
Affiliation(s)
- Jesús Revuelta-Cervantes
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
3
|
Cornally D, Mee B, MacDonaill C, Tipton KF, Kelleher D, Windle HJ, Henehan GTM. Aldo-keto reductase from Helicobacter pylori--role in adaptation to growth at acid pH. FEBS J 2008; 275:3041-50. [PMID: 18445038 DOI: 10.1111/j.1742-4658.2008.06456.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyridine-linked oxidoreductase enzymes of Helicobacter pylori have been implicated in the pathogenesis of gastric disease. Previous studies in this laboratory examined a cinnamyl alcohol dehydrogenase that was capable of detoxifying a range of aromatic aldehydes. In the present work, we have extended these studies to identify and characterize an aldoketo reductase (AKR) enzyme present in H. pylori. The gene encoding this AKR was identified in the sequenced strain of H. pylori, 26695. The gene, referred to as HpAKR, was cloned and expressed in Escherichia coli as a His-tag fusion protein, and purified using nickel chelate chromatography. The gene product (HpAKR) has been assigned to the AKR13C1 family, although it differs in specificity from the two other known members of this family. The enzyme is a monomer with a molecular mass of approximately 39 kDa on SDS/PAGE. It reduces a range of aromatic aldehyde substrates with high catalytic efficiency, and exhibits dual cofactor specificity for both NADPH and NADH. HpAKR can function over a broad pH range (pH 4-9), and has a pH optimum of 5.5. It is inhibited by sodium valproate. Its substrate specificity complements that of the cinnamyl alcohol dehydrogenase activity in H. pylori, giving the organism the capacity to reduce a wide range of aldehydes. Generation of an HpAKR isogenic mutant of H. pylori demonstrated that HpAKR is required for growth under acidic conditions, suggesting an important role for this enzyme in adaptation to growth in the gastric mucosa. This AKR is a member of a hitherto little-studied class.
Collapse
Affiliation(s)
- Denise Cornally
- School of Food Science and Environmental Health, Dublin Institute of Technology, Ireland
| | | | | | | | | | | | | |
Collapse
|
4
|
Arner RJ, Prabhu KS, Thompson JT, Hildenbrandt GR, Liken AD, Reddy CC. myo-Inositol oxygenase: molecular cloning and expression of a unique enzyme that oxidizes myo-inositol and D-chiro-inositol. Biochem J 2001; 360:313-20. [PMID: 11716759 PMCID: PMC1222231 DOI: 10.1042/0264-6021:3600313] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
myo-Inositol oxygenase (MIOX) catalyses the first committed step in the only pathway of myo-inositol catabolism, which occurs predominantly in the kidney. The enzyme is a non-haem-iron enzyme that catalyses the ring cleavage of myo-inositol with the incorporation of a single atom of oxygen. A full-length cDNA was isolated from a pig kidney library with an open reading frame of 849 bp and a corresponding protein subunit molecular mass of 32.7 kDa. The cDNA was expressed in a bacterial pET expression system and an active recombinant MIOX was purified from bacterial lysates to electrophoretic homogeneity. The purified enzyme displayed the same catalytic properties as the native enzyme with K(m) and k(cat) values of 5.9 mM and 11 min(-1) respectively. The pI was estimated to be 4.5. Preincubation with 1 mM Fe(2+) and 2 mM cysteine was essential for the enzyme's activity. D-chiro-Inositol, a myo-inositol isomer, is a substrate for the recombinant MIOX with an estimated K(m) of 33.5 mM. Both myo-inositol and D-chiro-inositol have been implicated in the pathogenesis of diabetes. Thus an understanding of the regulation of MIOX expression clearly represents a potential window on the aetiology of diabetes as well as on the control of various intracellular phosphoinositides and key signalling pathways.
Collapse
Affiliation(s)
- R J Arner
- Department of Veterinary Science and Center for Molecular Toxicology and Carcinogenesis, 115 Henning Building, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
5
|
Ye Q, Hyndman D, Green N, Li X, Korithoski B, Jia Z, Flynn TG. Crystal structure of an aldehyde reductase Y50F mutant-NADP complex and its implications for substrate binding. Proteins 2001; 44:12-9. [PMID: 11354001 DOI: 10.1002/prot.1066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pig aldehyde reductase containing the active site mutation tyrosine(50) to phenylalanine has been crystallized in the presence of the cofactor NADP(H) to a resolution of 2.2 A. This structure clearly shows loss of the tyrosine hydroxyl group and no other significant perturbations compared with previously determined structures. The mutant binds cofactor (both oxidized and reduced) more tightly than the wild-type enzyme but shows a complete lack of binding of the aldehyde reductase inhibitor barbitone, as determined by fluorescence titrations. Numerous attempts at preparing a ternary complex with a range of small aldehyde substrates were unsuccessful. This result, in addition to the inability of the mutant protein to bind the inhibitor, provides strong evidence for the proposal that the tyrosine hydroxyl group is essential for substrate binding in addition to catalysis.
Collapse
Affiliation(s)
- Q Ye
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
6
|
Ye Q, Hyndman D, Green NC, Li L, Jia Z, Flynn TG. The crystal structure of an aldehyde reductase Y50F mutant-NADP complex and its implications for substrate binding. Chem Biol Interact 2001; 130-132:651-8. [PMID: 11306083 DOI: 10.1016/s0009-2797(00)00256-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In order to understand more fully the structural features of aldo-keto reductases (AKRs) that determine their substrate specificities it would be desirable to obtain crystal structures of an AKR with a substrate at the active site. Unfortunately the reaction mechanism does not allow a binary complex between enzyme and substrate and to date ternary complexes of enzyme, NADP(H) and substrate or product have not been achieved. Previous crystal structures, in conjunction with numerous kinetic and theoretical analyses, have led to the general acceptance of the active site tyrosine as the general acid-base catalytic residue in the enzyme. This view is supported by the generation of an enzymatically inactive site-directed mutant (tyrosine-48 to phenylalanine) in human aldose reductase [AKR1B1]. However, crystallization of this mutant was unsuccessful. We have attempted to generate a trapped cofactor/substrate complex in pig aldehyde reductase [AKR1A2] using a tyrosine 50 to phenylalanine site-directed mutant. We have been successful in the generation of the first high resolution binary AKR-Y50F:NADP(H) crystal structure, but we were unable to generate any ternary complexes. The binary complex was refined to 2.2A and shows a clear lack of density due to the missing hydroxyl group. Other residues in the active site are not significantly perturbed when compared to other available reductase structures. The mutant binds cofactor (both oxidized and reduced) more tightly but shows a complete lack of binding of the aldehyde reductase inhibitor barbitone as determined by fluorescence titrations. Attempts at substrate addition to the active site, either by cocrystallization or by soaking, were all unsuccessful using pyridine-3-aldehyde, 4-carboxybenzaldehyde, succinic semialdehyde, methylglyoxal, and other substrates. The lack of ternary complex formation, combined with the significant differences in the binding of barbitone provides some experimental proof of the proposal that the hydroxyl group on the active site tyrosine is essential for substrate binding in addition to its major role in catalysis. We propose that the initial event in catalysis is the binding of the oxygen moiety of the carbonyl-group of the substrate through hydrogen bonding to the tyrosine hydroxyl group.
Collapse
Affiliation(s)
- Q Ye
- Department of Biochemistry, Queen's University, Kingston, K7L 3N6, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
7
|
Haraguchi H, Ohmi I, Masuda H, Tamura Y, Mizutani K, Tanaka O, Chou WH. Inhibition of aldose reductase by dihydroflavonols in Engelhardtia chrysolepis and effects on other enzymes. EXPERIENTIA 1996; 52:564-7. [PMID: 8698090 DOI: 10.1007/bf01969729] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Astilbin and neoastilbin, dihydroflavonol rhamnosides from Engelhardtia chrysolepis, showed potent inhibition of lens aldose reductase. Kinetic analysis showed astilbin exhibited uncompetitive inhibition against both dl-glyceraldehyde and NADPH. These taxifolin glycosides were selective inhibitors of aldose reductase with no inhibition of NADH oxidase.
Collapse
Affiliation(s)
- H Haraguchi
- Faculty of Engineering, Fukuyama University, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Haraguchi H, Ohmi I, Sakai S, Fukuda A, Toihara Y, Fujimoto T, Okamura N, Yagi A. Effect of Polygonum hydropiper sulfated flavonoids on lens aldose reductase and related enzymes. JOURNAL OF NATURAL PRODUCTS 1996; 59:443-445. [PMID: 8699190 DOI: 10.1021/np9601622] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The sulfated flavonoids in Polygonum hydropiper showed potent inhibiton against lens aldose reductase. Among these flavonoids isorhamnetin 3,7-disulfate (5) was most potent. Kinetic analysis showed that 5 exhibited noncompetitive inhibition against both dl-glyceraldehyde and NADPH.
Collapse
Affiliation(s)
- H Haraguchi
- Faculty of Engineering, Fukuyama University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Haraguchi H, Ohmi I, Kubo I. Inhibition of aldose reductase by maesanin and related p-benzoquinone derivatives and effects on other enzymes. Bioorg Med Chem 1996; 4:49-53. [PMID: 8689238 DOI: 10.1016/0968-0896(95)00162-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A naturally occurring p-benzoquinone derivative, maesanin, inhibited porcine lens aldose reductase. Systematic investigation of related p-benzoquinone derivatives revealed that 2,5-dihydroxy-p-benzoquinone was a potent inhibitor of aldose reductase and aldehyde reductase but had no effect on NADH oxidase. Kinetic analysis showed this p-benzoquinone exhibited uncompetitive inhibition against DL-glyceraldehyde and noncompetitive inhibition against NADPH.
Collapse
Affiliation(s)
- H Haraguchi
- Faculty of Engineering, Fukuyama University, Japan
| | | | | |
Collapse
|
10
|
Barski OA, Gabbay KH, Grimshaw CE, Bohren KM. Mechanism of human aldehyde reductase: characterization of the active site pocket. Biochemistry 1995; 34:11264-75. [PMID: 7669785 DOI: 10.1021/bi00035a036] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human aldehyde reductase is a NADPH-dependent aldo-keto reductase that is closely related (65% identity) to aldose reductase, an enzyme involved in the pathogenesis of some diabetic and galactosemic complications. In aldose reductase, the active site residue Tyr48 is the proton donor in a hydrogen-bonding network involving residues Asp43/Lys77, while His110 directs the orientation of substrates in the active site pocket. Mutation of the homologous Tyr49 to phenylalamine or histidine (Y49F or Y49H) and of Lys79 to methionine (K79M) in aldehyde reductase yields inactive enzymes, indicating similar roles for these residues in the catalytic mechanism of aldehyde reductase. A H112Q mutant aldehyde reductase exhibited a substantial decrease in catalytic efficiency (kcat/Km) for hydrophilic (average 150-fold) and aromatic substrates (average 4200-fold) and 50-fold higher IC50 values for a variety of inhibitors than that of the wild-type enzyme. The data suggest that His112 plays a major role in determining the substrate specificity of aldehyde reductase, similar to that shown earlier for the homologous His110 in aldose reductase [Bohren, K. M., et. al. (1994) Biochemistry 33, 2021-2032]. Mutation of Ile298 or Val299 affected the kinetic parameters to a much lesser degree. Unlike native aldose reductase, which contains a thiol-sensitive Cys298, neither the I298C or V299C mutant exhibited any thiol sensitivity, suggesting a geometry of the active site pocket different from that in aldose reductase. Also different from aldose reductase, the detection of a significant primary deuterium isotope effect on kcat (1.48 +/- 0.02) shows that nucleotide exchange is only partially rate-limiting. Primary substrate and solvent deuterium isotope effects on the H112Q mutant suggest that hydride and proton transfers occur in two discrete steps with hydride transfer taking place first. Dissociation constants and spectroscopic and fluorimetric properties of nucleotide complexes with various mutants suggest that, in addition to Tyr49 and His112, Lys79 plays a hitherto unappreciated role in nucleotide binding. The mode of inhibition of aldehyde reductase by aldose reductase inhibitors (ARIs) is generally similar to that of aldose reductase and involves binding to the E:NADP+ complex, as shown by kinetic and direct inhibitor-binding experiments. The order of ARI potency was AL1576 (Ki = 60 nM) > tolrestat > ponalrestat > sorbinil > FK366 > zopolrestat > alrestatin (Ki = 148 microM). Our data on aldehyde reductase suggest that the active site pocket significantly differs from that of aldose reductase, possibly due to the participation of the C-terminal loop in its formation.
Collapse
Affiliation(s)
- O A Barski
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
11
|
Cook PN, Ward WH, Petrash JM, Mirrlees DJ, Sennitt CM, Carey F, Preston J, Brittain DR, Tuffin DP, Howe R. Kinetic characteristics of ZENECA ZD5522, a potent inhibitor of human and bovine lens aldose reductase. Biochem Pharmacol 1995; 49:1043-9. [PMID: 7748183 DOI: 10.1016/0006-2952(95)98499-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Aldose reductase (aldehyde reductase 2) catalyses the conversion of glucose to sorbitol, and methylglyoxal to acetol. Treatment with aldose reductase inhibitors (ARIs) is a potential approach to decrease the development of diabetic complications. The sulphonylnitromethanes are a recently discovered class of aldose reductase inhibitors, first exemplified by ICI215918. We now describe enzyme kinetic characterization of a second sulphonylnitromethane, 3',5'-dimethyl-4'-nitromethylsulphonyl-2-(2-tolyl)acetanilide (ZD5522), which is at least 10-fold more potent against bovine lens aldose reductase in vitro and which also has a greater efficacy for reduction of rat nerve sorbitol levels in vivo (ED95 = 2.8 mg kg-1 for ZD5522 and 20 mg kg-1 for ICI 215918). ZD5522 follows pure noncompetitive kinetics against bovine lens aldose reductase when either glucose or methylglyoxal is varied (K(is) = K(ii) = 7.2 and 4.3 nM, respectively). This contrasts with ICI 215918 which is an uncompetitive inhibitor (K(ii) = 100 nM) of bovine lens aldose reductase when glucose is varied. Against human recombinant aldose reductase, ZD5522 displays mixed noncompetitive kinetics with respect to both substrates (K(is) = 41 nM, K(ii) = 8 nM with glucose and K(is) = 52 nM, K(ii) = 3.8 nM with methylglyoxal). This is the first report of the effects of a sulphonylnitromethane on either human aldose reductase or utilization of methylglyoxal. These results are discussed with reference to a Di Iso Ordered Bi Bi mechanism for aldose reductase, where the inhibitors compete with binding of both the aldehyde substrate and alcohol product. This model may explain why aldose reductase inhibitors follow noncompetitive or uncompetitive kinetics with respect to aldehyde substrates, and X-ray crystallography paradoxically locates an ARI within the substrate binding site. Aldehyde reductase (aldehyde reductase 1) is closely related to aldose reductase. Inhibition of bovine kidney aldehyde reductase by ZD5522 follows uncompetitive kinetics with respect to glucuronate (K(ii) = 39 nM), indicating a selectivity greater than 5-fold for bovine aldose reductase relative to aldehyde reductase.
Collapse
Affiliation(s)
- P N Cook
- ZENECA Pharmaceuticals, Macclesfield, Cheshire, U.K
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Probing the active site of human aldose reductase. Site-directed mutagenesis of Asp-43, Tyr-48, Lys-77, and His-110. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74444-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Ward WH, Cook PN, Mirrlees DJ, Brittain DR, Preston J, Carey F, Tuffin DP, Howe R. Inhibition of aldose reductase by (2,6-dimethylphenylsulphonyl)nitromethane: possible implications for the nature of an inhibitor binding site and a cause of biphasic kinetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 328:301-11. [PMID: 8493907 DOI: 10.1007/978-1-4615-2904-0_32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aldose reductase (aldehyde reductase 2, ALR2) is often isolated as a mixture of two forms which are sensitive (ALR2S), or insensitive (ALR2I), to inhibitors. We show that ICI 215918 ((2-6-dimethylphenylsulphonyl)-nitromethane) follows either noncompetitive, or uncompetitive kinetics with respect to aldehyde for ALR2S, or the closely related enzyme, aldehyde reductase (aldehyde reductase 1, ALR1). Similar behaviour is exhibited by two other structural types of aldose reductase inhibitor (ARI), spirohydantoins and acetic acids, when either aldehyde, or NADPH is varied. For ALR2S, we have demonstrated kinetic competition between a sulphonylnitromethane, an acetic acid and a spirohydantoin. Thus, different ARIs probably have overlapping binding sites. Published studies imply that ALR2 follows an ordered mechanism where coenzyme binds first and induces a reversible conformation change (E.NADPH-->E*.NADPH). Reduction of aldehyde appears rate-limited by the step E*.NADP+-->E.NADP+. Spontaneous activation converts ALR2S into ALR2I and increases kcat. This must be associated with acceleration of the rate-determining step. We now propose the following hypothesis to explain characteristics of ARIs. (1) Inhibitors preferentially bind to the E* conformation. (2) The ARI binding site contains residues in common with that for aldehyde substrates. When aldehyde is varied, uncompetitive inhibition arises from association at the site for alcohol product in the E*.NADP+ complex which has little affinity for the substrate. Any competitive inhibition arises from use of the aldehyde site in the E*.NADPH complex. (3) Acceleration of the E*.NADP+-->E.NADP+ step upon activation of ALR2 reduces steady state levels of E* and so decreases sensitivity to ARIs.
Collapse
Affiliation(s)
- W H Ward
- ICI Pharmaceuticals, Macclesfield, Cheshire, U.K
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sepiapterin Reductase and ALR2 (“Aldose Reductase”) from Bovine Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993. [DOI: 10.1007/978-1-4615-2904-0_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
15
|
Bhatnagar A, Liu SQ, Srivastava SK. Structure-activity correlations in human kidney aldehyde reductase-catalyzed reduction of para-substituted benzaldehyde by 3-acetyl pyridine adenine dinucleotide phosphate. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1077:180-6. [PMID: 2015291 DOI: 10.1016/0167-4838(91)90056-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Steady-state kinetic parameters of the human kidney aldehyde reductase-catalyzed reduction of para-substituted benzaldehydes by 3-acetyl pyridine dinucleotide phosphate (3-APADPH) were determined. The kcat of aldehyde reduction by 3-APADPH was 2- to 4-fold lower than by NADPH. The dissociation constant of 3-APADPH from the enzyme-coenzyme complex was higher (77 microM) than that of NADPH (5.3 microM). Primary deuterium kinetic isotope effects on both kcat and kcat/Km for para-substituted benzaldehyde reduction by 3-APADPH (with the exception of para-carboxybenzaldehyde) were equal and on average 2.82 +/- 0.21, suggesting that these reactions follow a rapid equilibrium-ordered reaction scheme in which the hydride transfer step is rate-limiting. Multiple regression analysis of the data suggests that benzaldehyde reduction depends upon electronic substituent effects, characterized by a rho value of 0.5. These data are consistent with a transition state in which the charge on the aldehyde carbonyl increases relative to the charge on this group in the ground state. A positive deviation of para-carboxybenzaldehyde from the linear correlation between other benzaldehydes and the substituent constant sigma + suggests a specific interaction of the carboxyl substituent of the substrate with the enzyme.
Collapse
Affiliation(s)
- A Bhatnagar
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77550
| | | | | |
Collapse
|
16
|
Abstract
A broad group of structurally diverse aldose reductase inhibitors including flavonoids, carboxylic acids and hydantoins, have been examined for their ability to inhibit rat kidney aldehyde reductase (EC 1.1.1.19, EC 1.1.1.20) versus rat lens aldose reductase (EC 1.1.1.21). All aldose reductase inhibitors examined inhibited aldehyde reductase to some extent both in the reductive reaction as determined with glyceraldehyde as substrate and NADPH as coenzyme, and in the oxidative reaction where L-gulonic acid was oxidized to D-glucuronic acid in the presence of NADP+. Of the inhibitors examined, 2,7-difluorospirofluorene-9,5'-imidazolidine-2',4'-dion e (Al1576) was the most potent inhibitor requiring only concentrations in the 10(-8) M range to inhibit 50% of the in vitro activity of rat kidney aldehyde reductase (IC50 value), whereas 3-dioxo-1-H-benz[de]isoquinoline-2(3H)-acetic acid (alrestatin) was the least potent inhibitor requiring concentrations in the 10(-5) M range. Both the reductive and oxidative steps appeared equally inhibited by these aldose reductases inhibitors. Moreover, all compounds appeared to inhibit either crude or highly purified rat kidney aldehyde reductase to essentially the same extent. Marked differences in the selectivity of these inhibitors, expressed as the ratio of IC50 values for rat kidney aldehyde reductase versus rat lens aldose reductase with glyceraldehyde as substrate, were observed with selectivity for aldose reductase ranging from ca. 2-fold for Al1576 to 119-fold for 3-(4-bromo-2-fluorobenzyl-4-oxo-3-phthalazine-1-ylacetic acid (Ponalrestat). Kinetic and competition studies suggest that these inhibitors interact with aldehyde reductase at a common site that is not identical to either the substrate or nucleotide binding site. These results suggest that the inhibitor binding sites of rat kidney aldehyde reductase and aldose reductase contain several common characteristics.
Collapse
Affiliation(s)
- S Sato
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
17
|
Bhatnagar A, Liu SQ, Das B, Ansari NH, Srivastava SK. Inhibition kinetics of human kidney aldose and aldehyde reductases by aldose reductase inhibitors. Biochem Pharmacol 1990; 39:1115-24. [PMID: 2157439 DOI: 10.1016/0006-2952(90)90292-s] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Kinetic patterns of inhibition of homogenous human kidney aldose reductase (AR, EC 1.1.1.21) and aldehyde reductase II (AR II, EC 1.1.1.19) by statil, ICI 105552 [1-(3,4-dichlorobenzyl)-3-methyl-1,2-dihydro-2-oxoquinol-4-yl acetic acid], tolrestat, alrestatin, chromone carboxylic acid (CCA), quercetin, phenobarbital and sorbinil were studied. On the basis of the kinetic nature of inhibition, the inhibitors were classified into four distinct categories. For aldose reductase, sorbinil and phenobarbital were noncompetitive (NC; category I) and CCA and alrestatin were uncompetitive (UC; category II) to both the aldehyde substrate and NADPH. Quercetin and ICI 105552 were NC to the aldehyde and UC to NADPH (category III) and tolrestat and statil were UC to the aldehyde and NC to NADPH (category IV). For AR II, sorbinil and alrestatin were category I inhibitors, ICI 105552 and statil belong to category II, phenobarbital, tolrestat and CCA to category III, and quercetin to category IV. To determine the specificity of inhibition, the ratios of the inhibition constants (Kii) for AR and AR II were calculated. A lower ratio indicates greater specificity. With aldehyde as the varied substrate the specificity ratios were: statil less than ICI 105552 less than alrestatin less than tolrestat less than quercetin less than CCA less than sorbinil less than phenobarbital, and with NADPH as the varied substrate, ICI 105552 less than statil less than alrestatin less than tolrestat less than quercetin less than CCA less than sorbinil less than phenobarbital. For AR, double-inhibition plots generated for one inhibitor from each kinetic category versus sorbinil showed that AR inhibitors of categories I-III bind to the same site on the protein molecule as sorbinil. However, tolrestat seemed to bind to a site different from the sorbinil binding site. For AR II, inhibitors from all the four categories appeared to bind to the same inhibitor binding site.
Collapse
Affiliation(s)
- A Bhatnagar
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77550
| | | | | | | | | |
Collapse
|
18
|
Wermuth B. Inhibition of aldehyde reductase by carboxylic acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1990; 284:197-204. [PMID: 2053477 DOI: 10.1007/978-1-4684-5901-2_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- B Wermuth
- Chemisches Zentrallabor Inselspital, Bern
| |
Collapse
|
19
|
Bhatnagar A, Das B, Gavva SR, Cook PF, Srivastava SK. The kinetic mechanism of human placental aldose reductase and aldehyde reductase II. Arch Biochem Biophys 1988; 261:264-74. [PMID: 3128169 DOI: 10.1016/0003-9861(88)90341-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The kinetic mechanism of NADPH-dependent aldehyde reductase II and aldose reductase, purified from human placenta, has been studied using L-glucuronate and DL-glyceraldehyde as their respective substrates. For aldehyde reductase II, the initial velocity and product inhibition studies (using NADP and gulonate) indicate that the enzyme reaction sequence is ordered with NADPH binding to the free enzyme and NADP being the last product to be released. Inhibition patterns using menadione (an analog of the aldehydic substrate) and ATP-ribose (an analog of NADPH) are also consistent with a compulsory ordered reaction sequence. Isotope effects of deuterium-substituted NADPH (NADPD) also corroborate the above reaction scheme and indicate that hydride transfer is not the sole rate-limiting step in the reaction sequence. For aldose reductase, initial velocity patterns, product, and dead-end inhibition studies indicate a random binding pattern of the substrates and an ordered release of product; the coenzyme is released last. A steady-state random mechanism is also consistent with deuterium isotope effects of NADPD on the reaction sequence catalyzed by this enzyme. However, the hydride transfer step seems to be more rate determining for aldose reductase than for aldehyde reductase II.
Collapse
Affiliation(s)
- A Bhatnagar
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77550
| | | | | | | | | |
Collapse
|
20
|
Maggs JL, Park BK. Drug-protein conjugates--XVI. Studies of sorbinil metabolism: formation of 2-hydroxysorbinil and unstable protein conjugates. Biochem Pharmacol 1988; 37:743-8. [PMID: 3342105 DOI: 10.1016/0006-2952(88)90149-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The metabolism of sorbinil [+)6-fluoro-spiro (chroman-4, 4'-imidazolidine)-2',5' dione), an aldose reductase inhibitor associated with immunological adverse reactions, was studied in vivo and in vitro with particular reference to the formation of protein conjugates of 2-hydroxysorbinil and their further metabolism. [8-3H]Sorbinil was rapidly and extensively metabolized in the rat. 2-Hydroxysorbinil (2HSB) and a phenolic primary alcohol (2,4-imidazolidinedione 5-(2-hydroxyethyl)-5-(5-fluoro-2-hydroxyphenyl); IHFH) were its principal urinary metabolites; over 0-24 hr, they represented 17.0 +/- 0.7% (mean +/- SD, N = 4) and 7.1 +/- 0.7% of the dose, respectively. [3H]2HSB isolated from urine and re-administered was converted to IHFH. Chronic dosing with sorbinil (150 mg/kg x 5) induced 2-hydroxylation of the drug, the 0-24 hr urinary excretion of 2HSB increasing from 17.0 +/- 0.7% to 24.7 +/- 3.4% of the dose (P less than 0.05 by Students' paired t-test). The biotransformation of 2HSB to IHFH was rationalized in terms of an open-chain aldehyde intermediate. Since aldehydes form both stable and unstable protein adducts, 2HSB was potentially a pro-reactive metabolite and initiator of the hypersensitivity reaction associated with sorbinil. However, [3H]2HSB was neither metabolized by human liver microsomes nor underwent irreversible binding to the microsomal protein. Nevertheless, the mild reductant sodium cyanoborohydride, although without effect on microsomal binding of [3H]2HSB, enhanced binding to human serum albumin. Formation of unstable Schiff base adducts was indicated.
Collapse
Affiliation(s)
- J L Maggs
- Department of Pharmacology and Therapeutics, University of Liverpool, U.K
| | | |
Collapse
|
21
|
Carvajal N, Kessi E. Kinetic mechanism of octopine dehydrogenase from the muscle of the sea mollusc, Concholepas concholepas. ACTA ACUST UNITED AC 1988. [DOI: 10.1016/0167-4838(88)90004-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|