1
|
Sadovnikova A, Garcia SC, Hovey RC. A Comparative Review of the Extrinsic and Intrinsic Factors Regulating Lactose Synthesis. J Mammary Gland Biol Neoplasia 2021; 26:197-215. [PMID: 34125363 PMCID: PMC8236052 DOI: 10.1007/s10911-021-09491-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/20/2021] [Indexed: 12/31/2022] Open
Abstract
Milk is critical for the survival of all mammalian offspring, where its production by a mammary gland is also positively associated with its lactose concentration. A clearer understanding of the factors that regulate lactose synthesis stands to direct strategies for improving neonatal health while also highlighting opportunities to manipulate and improve milk production and composition. In this review we draw a cross-species comparison of the extra- and intramammary factors that regulate lactose synthesis, with a special focus on humans, dairy animals, and rodents. We outline the various factors known to influence lactose synthesis including diet, hormones, and substrate supply, as well as the intracellular molecular and genetic mechanisms. We also discuss the strengths and limitations of various in vivo and in vitro systems for the study of lactose synthesis, which remains an important research gap.
Collapse
Affiliation(s)
- Anna Sadovnikova
- Graduate Group in Nutritional Biology, Physician Scientist Training Program, University of California, Davis, CA, United States.
- Department of Animal Science, University of California, Davis, CA, United States.
| | - Sergio C Garcia
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, CA, United States
| |
Collapse
|
2
|
Participation of mammary gland in long-chain polyunsaturated fatty acid synthesis during pregnancy and lactation in rats. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:284-93. [PMID: 21292028 DOI: 10.1016/j.bbalip.2011.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 01/21/2011] [Accepted: 01/22/2011] [Indexed: 11/23/2022]
Abstract
Metabolic adaptations are triggered in the maternal organism to synthesize milk with an adequate concentration of long-chain polyunsaturated fatty acids (LC-PUFAs) required to the newborn. They may be a high uptake of dietary linoleic acid and its conversion to LC-PUFAs by desaturases of fatty acids (FADS) 1 and 2 in the mammary gland (MG). It is unknown if they also occur from onset of pregnancy. The aim of this study was to explore the participation of the MG as a mechanism involved in LC-PUFAs synthesis to support their demand during pregnancy and lactation in rats. The expression of desaturases in MG was significantly (P<0.05) higher (12.3-fold for FADS1 and 41.2-fold for FADS2) during the late pregnancy and throughout lactation (31.7-fold for FADS1 and 67.1-fold higher for FADS2) than in nonpregnant rats. SREBF-1c showed a similar pattern of increase during pregnancy but remained higher only during the early lactation (11.7-fold, P<0.005). Transcript of ELOVL6 and FASN increased throughout pregnancy and lactation, respectively. ELOVL5 mRNA increased in MG only during lactation (2.8 to 5.3-fold, P<0.005). Accordingly, a higher content of LC-PUFAs was found in lactating MG than in nonpregnant rats. Results suggest that MG participates from late pregnancy and throughout lactation by expressing desaturases and elongases as a mechanism involved in LC-PUFAs synthesis, probably by SREBF-1c. Because desaturases and ELOVL5 were expressed in cultured lactocytes and such expression was downregulated by linoleic and arachidonic acid, these cells may be a useful model for understanding the regulatory mechanisms for LC-PUFAs synthesis in MG.
Collapse
|
3
|
Stewart K, Cooper G, Davis S. Coordination of mammary metabolism and blood flow after refeeding in rats. J Dairy Sci 2009; 92:1543-53. [DOI: 10.3168/jds.2008-1617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
4
|
Wu P, Blair PV, Sato J, Jaskiewicz J, Popov KM, Harris RA. Starvation increases the amount of pyruvate dehydrogenase kinase in several mammalian tissues. Arch Biochem Biophys 2000; 381:1-7. [PMID: 11019813 DOI: 10.1006/abbi.2000.1946] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covalent modification of the pyruvate dehydrogenase complex provides an important regulatory mechanism for controlling the disposal of glucose and other compounds metabolized to pyruvate. Regulation of the complex by this mechanism is achieved in part by tissue-specific expression of the genes encoding isoenzymes of pyruvate dehydrogenase kinase (PDK). Starvation is known from our previous work to increase PDK activity of heart and skeletal muscle by increasing the amount of PDK isoenzyme 4 (PDK4) present in these tissues. This study demonstrates that increased expression of both PDK4 and PDK2 occurs in rat liver, kidney, and lactating mammary gland in response to starvation. PDK4 and PDK2 message levels were also increased by starvation in the two tissues examined (liver and kidney), suggesting enhancement of gene transcription. Changes in PDK2 message and protein were of similar magnitude, but changes in PDK4 message were greater than those in PDK4 protein, suggesting regulation at the level of translation. In contrast to these tissues, starvation had little or no effect on PDK2 and PDK4 protein in brain, white adipose tissue, and brown adipose tissue. Nevertheless, PDK4 message levels were significantly increased in brain and white adipose tissue by starvation. The findings of this study indicate that increased expression of PDK isoenzymes is an important mechanism for bringing about inactivation of the pyruvate dehydrogenase complex during starvation in many but not all tissues of the body. The absence of this mechanism preserves the capacity of neuronal tissue to utilize glucose for energy during starvation.
Collapse
Affiliation(s)
- P Wu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202-5122, USA
| | | | | | | | | | | |
Collapse
|
5
|
Hagopian K, Munday MR. The role of pyruvate dehydrogenase, phosphofructo-1-kinase and acetyl-CoA carboxylase in the regulation of fatty acid synthesis in the lactating rat mammary gland during the starved to re-fed transition. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1336:474-84. [PMID: 9367175 DOI: 10.1016/s0304-4165(97)00061-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Re-feeding 24-h-starved lactating rats resulted in a rapid (within 0.5 h) restoration of glucose uptake by the mammary gland and a slower (within 3 h) restoration of fatty acid synthesis. The rapid reactivation of glucose uptake (82% of fed value within 0.5 h of re-feeding) correlated with a rapid reactivation of 6-phosphofructo-1-kinase (6-PF-1-K) and glycolysis (as determined by a 97% decrease in the [fructose-6-phosphate]/[fructose-1,6-bisphosphate] ratio). This could not be fully explained by a fall (29%) in the tissue concentration of its allosteric inhibitor, citrate. The delayed reactivation of pyruvate dehydrogenase (PDH) correlated very closely with the delayed reactivation of fatty acid synthesis and explained the continued output of pyruvate and lactate within the first 0.5 h of re-feeding. PDH reactivation preceded the reactivation of acetyl-CoA carboxylase (ACC), which did not occur significantly until 1.5 h of re-feeding. ACC reactivation correlated with a decrease in the tissue concentration of citrate and a second late phase of 6-PF-1-K activation. It is clear that the important regulatory steps 6-PF-1-K, PDH and ACC, are reactivated asynchronously in the lactating mammary gland in response to re-feeding starved rats and that PDH is more important than ACC in the regulation of fatty acid synthesis.
Collapse
Affiliation(s)
- K Hagopian
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University of London, UK
| | | |
Collapse
|
6
|
Hulstijn M, López-Soriano J, López-Soriano FJ, Argilés JM. Lipogenesis in rat tissues following carbohydrate refeeding: spleen lipogenesis is modulated by insulin. Mol Cell Biochem 1997; 175:149-52. [PMID: 9350046 DOI: 10.1023/a:1006848015161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Intraperitoneal administration of [1,2-14C]-acetate to Wistar rats was used to assess tissue lipogenic rates after estimating the incorporation of the label into the tissular lipid fractions. Refeeding the animals with glucose (after an overnight fast) induced an increase in white adipose tissue (4.5 fold), liver (4.1 fold), small intestine (1.9 fold), carcass (2.9 fold) and spleen (3.7 fold) lipogenesis (expressed as the radioactivity present in the lipid fraction corrected by the plasma circulating radioactivity). No changes were found following refeeding in either brain or brown adipose tissue. Administration of mannoheptulose (an inhibitor of insulin secretion) to refed rats completely abolished the increased lipogenesis in white adipose tissue, liver, carcass, spleen and small intestine, thus suggesting that insulin secretion is involved in this phenomenon. This is the first report showing that spleen lipogenesis may be modulated by refeeding via insulin secretion and suggests an important role of this organ on the in vivo lipogenic response of the organism after carbohydrate refeeding.
Collapse
Affiliation(s)
- M Hulstijn
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
7
|
López-Soriano FJ, Williamson DH. Acute effects of endotoxin (lipopolysaccharide) on tissue lipid metabolism in the lactating rat. The role of delivery of intestinal glucose. Mol Cell Biochem 1994; 141:113-20. [PMID: 7891668 DOI: 10.1007/bf00926174] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The aim of this study was to compare the effects of endotoxin on lipid metabolism and, in particular, lipogenesis in virgin and lactating rats. Intraperitoneal administration of bacterial endotoxin (lipopolysaccharide, LPS; 3 mg/kg body wt.) to fed virgin rats caused a 4-fold increase in lipogenic rate in liver in vivo. The stimulatory effect was not seen when glucose (6 mmol) was administered either orally or intraperitoneally to increase the basal rate. In contrast, the rate of lipogenesis in interscapular brown adipose tissue was inhibited, after LPS, and this was relieved by intraperitoneal glucose. In the lactating rat there were no significant changes in hepatic lipogenesis after the administration of endotoxin. However, LPS decreased the lipogenic rate in mammary gland of lactating rats and intraperitoneal glucose administration, but not oral, was able to restore the rate. In both virgin and lactating rats, LPS decreased glucose removal from the intestinal tract. In lactating rats, LPS induced a rise in blood concentrations of lactate, and plasma triacylglycerols and non-esterified fatty acids, similar to those in endotoxin-treated virgin rats. The administration of LPS did not decrease the accumulation of radioactivity in lipid in either liver or in mammary gland after injection of 3H-oleate. In contrast, LPS decreased the accumulation of radioactivity in mammary gland after injection of 3H-chylomicrons and increased it in liver and plasma. These changes were accompanied by a decrease in mammary gland activity of lipoprotein lipase. Intraperitoneal glucose partially reversed these changes in chylomicron disposition.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- F J López-Soriano
- Departament de Bioquímica i Fisiologia, Facultat de Biologia, Universitat de Barcelona, Spain
| | | |
Collapse
|
8
|
Leonhardt W, Hanefeld M, Fischer S, Schulze J. Efficacy of alpha-glucosidase inhibitors on lipids in NIDDM subjects with moderate hyperlipidaemia. Eur J Clin Invest 1994; 24 Suppl 3:45-9. [PMID: 8001628 DOI: 10.1111/j.1365-2362.1994.tb02256.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This paper summarizes literature data concerning the action of acarbose, an alpha-glucosidase inhibitor, on the concentrations of plasma lipids. Clinical trials in which acarbose has been used in the treatment of non-insulin-dependent diabetics have sometimes shown that it reduces serum triglycerides while it has little or no effect on serum cholesterol levels. The results of a randomized double-blind placebo-controlled study lasting 24 weeks are discussed in more detail. Under the controlled conditions, the effects of acarbose treatment on fasting concentrations of cholesterol, HDL-cholesterol, and triglycerides did not reach statistical significance for the entire patient group. However, in the highest tertile of initial cholesterol concentrations acarbose treatment led to significant lowering of the cholesterol concentration and of the total-to-HDL-cholesterol ratio. The most important benefits of acarbose were observed after a test meal given on day 0 and on week 24 of treatment. The triglyceride increment 1 h postprandial was significantly lowered. This was associated by a significant decrease of the insulin increment. Reduction of hyperinsulinaemia appears to be the mechanism by which acarbose treatment can improve plasma lipid concentrations.
Collapse
Affiliation(s)
- W Leonhardt
- Department of Metabolic Diseases, Clinic of Internal Medicine, Medical Faculty of the Technical University, Dresden, Germany
| | | | | | | |
Collapse
|
9
|
Souza PF, Williamson DH. Effects of feeding medium-chain triacylglycerols on maternal lipid metabolism and pup growth in lactating rats. Br J Nutr 1993; 69:779-87. [PMID: 8329353 DOI: 10.1079/bjn19930078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To study the effects of medium-chain triacylglycerols (MCT) on maternal lipid metabolism and pup growth, MCT (200 g/kg) were incorporated into a commercial chow diet and fed to lactating rats for 8-10 d. The results were compared with similar diets containing sunflower oil (polyunsaturated fatty acids; PUFA), tristearin (saturated fatty acid) or triolein (monounsaturated fatty acid). There was decreased food and energy intake with the MCT diet and this was accompanied by decreased (35%) pup growth. All the high-fat diets inhibited lipogenesis in vivo in the lactating mammary gland, the order of effectiveness being PUFA > triolein > tristearin > MCT. Only the MCT diet increased the rate of hepatic lipogenesis (180%). Experiments feeding an MCT meal containing [1-14C]octanoate indicated that very little (3-4%) of the C was present in mammary gland lipid, unlike the findings with [1-14C]triolein meal (40%). The major portion (65%) of the absorbed [1-14C]octanoate was oxidized to 14CO2. There was no evidence for adaptation of the mammary gland to increased dietary lipid uptake on the triolein or MCT diets. It is concluded that the decreased pup growth on the MCT diet is due in part to the decreased energy intake and to the inability of dietary medium-chain fatty acids to provide substrates for milk lipid synthesis.
Collapse
Affiliation(s)
- P F Souza
- Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford
| | | |
Collapse
|
10
|
Heesom KJ, Souza PF, Ilic V, Williamson DH. Chain-length dependency of interactions of medium-chain fatty acids with glucose metabolism in acini isolated from lactating rat mammary glands. A putative feed-back to control milk lipid synthesis from glucose. Biochem J 1992; 281 ( Pt 1):273-8. [PMID: 1731763 PMCID: PMC1130673 DOI: 10.1042/bj2810273] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of a series of medium-chain fatty acids (C6-C12) on glucose metabolism in isolated acini from lactating rat mammary glands have been studied. Hexanoate (C6) octanoate (C8) and decanoate (C10), but not laurate (C12), decreased [1-14C]glucose conversion into [14C]lipid and the production of 14CO2 (an index of the pentose phosphate pathway). With hexanoate and octanoate, glucose utilization was decreased, whereas decanoate had a slight stimulatory effect on glucose utilization, but there was a large accumulation of lactate. Addition of dichloroacetate (an inhibitor of pyruvate dehydrogenase kinase) decreased this accumulation of lactate and stimulated the conversion of [1-14C]glucose into [14C]lipid and 14CO2. Insulin had no effect on the rate of glucose utilization in the presence of hexanoate. It stimulated the rate in the presence of octanoate and laurate and increased the conversion of [1-14C]glucose into [14C]lipid in the presence of octanoate, decanoate or laurate. The major fate of 1-14C-labelled medium-chain fatty acids (C6, C8 and C12) was conversion into [14C]lipid. The proportion converted into 14CO2 decreased with increasing chain length, whereas the rate of [14C]lipid formation increased. It is concluded that the interactions between medium-chain fatty acids and glucose metabolism represent a feed-back mechanism to control milk lipid synthesis, and this may be important when milk accumulates in the gland.
Collapse
Affiliation(s)
- K J Heesom
- Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford, U.K
| | | | | | | |
Collapse
|
11
|
Evans RD, Ilic V, Williamson DH. Metabolic effects of platelet-activating factor in rats in vivo. Stimulation of hepatic glycogenolysis and lipogenesis. Biochem J 1990; 269:269-72. [PMID: 2165397 PMCID: PMC1131564 DOI: 10.1042/bj2690269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1. The effects of platelet-activating factor (1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphocholine; PAF) on hepatic metabolism in vivo in rats were studied. 2. PAF stimulated synthesis of hepatic lipid (saponified and non-saponified) in a dose-dependent fashion and caused hypertriglyceridaemia. There was no effect of PAF on lipogenesis in isolated hepatocytes. 3. High doses of PAF also decreased hepatic glycogen. 4. All doses of PAF decreased plasma insulin, and this was accompanied by hyperglycaemia, except at the lowest dose. 5. The selective PAF-receptor antagonist L659.989 prevented the stimulation of lipogenesis, but indomethacin did not.
Collapse
Affiliation(s)
- R D Evans
- Nuffield Department of Anaesthetics, Radcliffe Infirmary, Oxford, U.K
| | | | | |
Collapse
|
12
|
Sugden MC, Holness MJ. The role of regulation of tissue pyruvate dehydrogenase complex activity during the starved-to-fed transition. Ann N Y Acad Sci 1989; 573:314-36. [PMID: 2699403 DOI: 10.1111/j.1749-6632.1989.tb15008.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- M C Sugden
- Department of Biochemistry, London Hospital Medical College, United Kingdom
| | | |
Collapse
|
13
|
Tedstone AE, Tedoldi B, Ilic V, Williamson DH. Polymyxin B diminishes blood flow to brown adipose tissue and lactating mammary gland in the rat. Possible mechanism of its action to decrease the stimulation of lipogenesis on refeeding. Biochem J 1989; 261:445-50. [PMID: 2549972 PMCID: PMC1138846 DOI: 10.1042/bj2610445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polymyxin B, a cyclic decapeptide antibiotic, increased blood glucose and lactate, and inhibited the stimulation of lipogenesis in interscapular brown adipose tissue and lactating mammary gland of starved-refed virgin and lactating rats respectively. Lipogenesis was not inhibited in white adipose tissue or liver. The antibiotic increased the haematocrit. The relative blood flow to brown adipose tissue and lactating mammary gland was decreased by polymyxin B, and this was accompanied by a decrease in tissue ATP content. In vitro polymyxin B did not affect glucose utilization or conversion into lipid, nor the stimulation by insulin of these processes in brown-adipose-tissue slices. Treatment of rats in vivo with polymyxin B resulted in decreased utilization of glucose in vitro in brown-adipose-tissue slices. Similarly, acini from mammary glands of polymyxin B-treated lactating rats had decreased rates of conversion of [1-14C]glucose to lipid. It is concluded that the effects of polymyxin B may be brought about by decreases in tissue blood flow. The possibility that these effects are secondary to inhibition of glucose utilization cannot be ruled out.
Collapse
Affiliation(s)
- A E Tedstone
- Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford, U.K
| | | | | | | |
Collapse
|
14
|
Argilés JM, Lopez-Soriano FJ, Evans RD, Williamson DH. Interleukin-1 and lipid metabolism in the rat. Biochem J 1989; 259:673-8. [PMID: 2658976 PMCID: PMC1138571 DOI: 10.1042/bj2590673] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Intravenous administration of a single dose (20 micrograms) of recombinant interleukin-1-beta to virgin, lactating and litter-removed rats rapidly decreased intestinal lipid absorption in all groups. In vivo, oxidation of [14C]triolein to 14CO2 was also significantly decreased by interleukin-1. In addition, the cytokine decreased [14C]lipid accumulation in the mammary gland of lactating rats and in the adipose tissue of virgin and litter-removed rats. The decrease in lipid uptake in the interleukin-treated rats was accompanied by hypertriglyceridaemia; however, there was no significant decrease in tissue lipoprotein lipase activity, except in heart from lactating rats. In contrast, interleukin-1 administration had no effect on lipogenesis in liver, white or brown adipose tissue of virgin rats fed on glucose. These results suggest that interleukin-1 profoundly affects lipid metabolism by delaying intestinal absorption and decreasing tissue uptake.
Collapse
Affiliation(s)
- J M Argilés
- Metabolic Research Laboratory, Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford, U.K
| | | | | | | |
Collapse
|
15
|
|
16
|
Burnol AF, Ebner S, Ferré P, Girard J. Regulation by insulin of glucose metabolism in mammary gland of anaesthetized lactating rats. Stimulation of phosphofructokinase-1 by fructose 2,6-bisphosphate and activation of acetyl-CoA carboxylase. Biochem J 1988; 254:11-4. [PMID: 2902845 PMCID: PMC1135031 DOI: 10.1042/bj2540011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effect of insulin on glucose metabolism in mammary gland was studied by the euglycaemic/hyperinsulinaemic-clamp technique. Measurement of metabolite concentrations and enzyme activities in the mammary gland suggests two sites of action of insulin: phosphofructokinase-1 and acetyl-coA carboxylase. The increase in phosphofructokinase-1 activity could be linked to the 2-fold increase in fructose 2,6-bisphosphate concentration, since no change in maximal activity and in sensitivity of the enzyme toward fructose 6-phosphate was detected in vitro.
Collapse
Affiliation(s)
- A F Burnol
- Centre de recherches sur la Nutrition du CNRS, Meudon-Bellevue, France
| | | | | | | |
Collapse
|
17
|
Mercer SW, Williamson DH. Rapid inhibition by intragastric triolein of the re-activation of glucose utilization and lipogenesis in the mammary gland during the starved-refed transition in lactating rats. Evidence for a direct effect of oral lipid on mammary tissue. Biochem J 1988; 250:269-76. [PMID: 3281661 PMCID: PMC1148843 DOI: 10.1042/bj2500269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
1. Oral administration of triacylglycerol (triolein) to starved/chow-refed lactating rats suppressed the lipogenic switch-on in the mammary gland in vivo. 2. A time-course study revealed that triolein, administered at 30 min after the onset of refeeding, had no influence on lipogenic rate in the mammary gland between 30 and 60 min, but markedly decreased it between 60 and 90 min. Glucose uptake by the mammary gland (arteriovenous difference) increased by 30 min of refeeding, as did lactate production. Between 30 and 90 min glucose uptake remained high in the control animals, but glucose uptake and net C3-unit uptake were decreased in the triolein-loaded animals by 90 min. 3. Triolein increased [glucose 6-phosphate] in the gland and simultaneously decreased [fructose 1,6-bisphosphate], indicative of a decrease in phosphofructokinase activity. This cross-over occurred at 60 min, i.e. immediately before the inhibition of lipogenesis, and by 90 min had reached 'starved' values. 4. Triolein had no effect on plasma [insulin] nor on whole-blood [glucose], [lactate] or [3-hydroxybutyrate]; a small increase in [acetoacetate] was observed. 5. Infusion of the lipoprotein lipase inhibitor, Triton WR1339, abolished the suppression of mammary-gland lipogenesis by triolein and the increase in the [glucose 6-phosphate]/[fructose 1,6-bisphosphate] ratio, suggesting a direct influence of dietary lipid on mammary-gland glucose utilization and phosphofructokinase activity.
Collapse
Affiliation(s)
- S W Mercer
- Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford, U.K
| | | |
Collapse
|