1
|
Schroeder F, Petrescu AD, Huang H, Atshaves BP, McIntosh AL, Martin GG, Hostetler HA, Vespa A, Landrock D, Landrock KK, Payne HR, Kier AB. Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. Lipids 2007; 43:1-17. [PMID: 17882463 DOI: 10.1007/s11745-007-3111-z] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 07/26/2007] [Indexed: 12/16/2022]
Abstract
Abnormal energy regulation may significantly contribute to the pathogenesis of obesity, diabetes mellitus, cardiovascular disease, and cancer. For rapid control of energy homeostasis, allosteric and posttranslational events activate or alter activity of key metabolic enzymes. For longer impact, transcriptional regulation is more effective, especially in response to nutrients such as long chain fatty acids (LCFA). Recent advances provide insights into how poorly water-soluble lipid nutrients [LCFA; retinoic acid (RA)] and their metabolites (long chain fatty acyl Coenzyme A, LCFA-CoA) reach nuclei, bind their cognate ligand-activated receptors, and regulate transcription for signaling lipid and glucose catabolism or storage: (i) while serum and cytoplasmic LCFA levels are in the 200 mircroM-mM range, real-time imaging recently revealed that LCFA and LCFA-CoA are also located within nuclei (nM range); (ii) sensitive fluorescence binding assays show that LCFA-activated nuclear receptors [peroxisome proliferator-activated receptor-alpha (PPARalpha) and hepatocyte nuclear factor 4alpha (HNF4alpha)] exhibit high affinity (low nM KdS) for LCFA (PPARalpha) and/or LCFA-CoA (PPARalpha, HNF4alpha)-in the same range as nuclear levels of these ligands; (iii) live and fixed cell immunolabeling and imaging revealed that some cytoplasmic lipid binding proteins [liver fatty acid binding protein (L-FABP), acyl CoA binding protein (ACBP), cellular retinoic acid binding protein-2 (CRABP-2)] enter nuclei, bind nuclear receptors (PPARalpha, HNF4alpha, CRABP-2), and activate transcription of genes in fatty acid and glucose metabolism; and (iv) studies with gene ablated mice provided physiological relevance of LCFA and LCFA-CoA binding proteins in nuclear signaling. This led to the hypothesis that cytoplasmic lipid binding proteins transfer and channel lipidic ligands into nuclei for initiating nuclear receptor transcriptional activity to provide new lipid nutrient signaling pathways that affect lipid and glucose catabolism and storage.
Collapse
Affiliation(s)
- Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Atshaves BP, McIntosh AL, Payne HR, Mackie J, Kier AB, Schroeder F. Effect of branched-chain fatty acid on lipid dynamics in mice lacking liver fatty acid binding protein gene. Am J Physiol Cell Physiol 2005; 288:C543-58. [PMID: 15692150 DOI: 10.1152/ajpcell.00359.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although a role for liver fatty acid protein (L-FABP) in the metabolism of branched-chain fatty acids has been suggested based on data obtained with cultured cells, the physiological significance of this observation remains to be demonstrated. To address this issue, the lipid phenotype and metabolism of phytanic acid, a branched-chain fatty acid, were determined in L-FABP gene-ablated mice fed a diet with and without 1% phytol (a metabolic precursor to phytanic acid). In response to dietary phytol, L-FABP gene ablation exhibited a gender-dependent lipid phenotype. Livers of phytol-fed female L-FABP-/- mice had significantly more fatty lipid droplets than male L-FABP-/- mice, whereas in phytol-fed wild-type L-FABP+/+ mice differences between males and females were not significant. Thus L-FABP gene ablation exacerbated the accumulation of lipid droplets in phytol-fed female, but not male, mice. These results were reflected in the lipid profile, where hepatic levels of triacylglycerides in phytol-fed female L-FABP-/- mice were significantly higher than in male L-FABP-/- mice. Furthermore, livers of phytol-fed female L-FABP-/- mice exhibited more necrosis than their male counterparts, consistent with the accumulation of higher levels of phytol metabolites (phytanic acid, pristanic acid) in liver and serum, in addition to increased hepatic levels of sterol carrier protein (SCP)-x, the only known peroxisomal enzyme specifically required for branched-chain fatty acid oxidation. In summary, L-FABP gene ablation exerted a significant role, especially in female mice, in branched-chain fatty acid metabolism. These effects were only partially compensated by concomitant upregulation of SCP-x in response to L-FABP gene ablation and dietary phytol.
Collapse
Affiliation(s)
- Barbara P Atshaves
- Department of Physiology, Texas A&M University, Texas Veterinary Medical Center, College Station, TX 77843-4466, USA
| | | | | | | | | | | |
Collapse
|
3
|
Veerkamp JH, Van Moerkerk And HT, Zimmerman AW. Effect of fatty acid-binding proteins on intermembrane fatty acid transport studies on different types and mutant proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5959-66. [PMID: 10998056 DOI: 10.1046/j.1432-1327.2000.01665.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Liposomes of different charge fixed to nitrocellulose filters were used to study the transfer of fatty acids to rat heart or liver mitochondria in the presence of fatty acid-binding protein (FABP) or albumin. [14C]Palmitate oxidation was used as a parameter. Different FABP types and heart FABP mutants were tested. The charge of the liposomes did not influence the solubilization and mitochondrial oxidation of palmitate without FABP and the amount of solubilized palmitate in the presence of FABP. Mitochondria did not show a preference for oxidation of FABP-bound palmitate over their tissue-specific FABP type. All FABP types increased palmitate oxidation by heart and liver mitochondria with neutral, positive and negative liposomes by 2.5-fold, 3.2-fold and twofold, respectively. Ileal lipid-binding protein and H-FABP mutants that do not bind fatty acid had no effect. Other H-FABP mutants had different effects, dependent on the site of mutation. The effect of albumin was similar to, but not dependent on, liposome charge. The ionic strength had only a slight effect. In conclusion, the transfer of palmitate from liposomal membranes to mitochondria was increased by all FABP types to a similar extent. The membrane charge had a large effect in contrast to the origin of the mitochondria.
Collapse
Affiliation(s)
- J H Veerkamp
- Department of Biochemistry, University of Nijmegen, The Netherlands.
| | | | | |
Collapse
|
4
|
Storch J, Thumser AE. The fatty acid transport function of fatty acid-binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1486:28-44. [PMID: 10856711 DOI: 10.1016/s1388-1981(00)00046-9] [Citation(s) in RCA: 341] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The intracellular fatty acid-binding proteins (FABPs) comprise a family of 14-15 kDa proteins which bind long-chain fatty acids. A role for FABPs in fatty acid transport has been hypothesized for several decades, and the accumulated indirect and correlative evidence is largely supportive of this proposed function. In recent years, a number of experimental approaches which more directly examine the transport function of FABPs have been taken. These include molecular level in vitro modeling of fatty acid transfer mechanisms, whole cell studies of fatty acid uptake and intracellular transfer following genetic manipulation of FABP type and amount, and an examination of cells and tissues from animals engineered to lack expression of specific FABPs. Collectively, data from these studies have provided strong support for defining the FABPs as fatty acid transport proteins. Further studies are necessary to elucidate the fundamental mechanisms by which cellular fatty acid trafficking is modulated by the FABPs.
Collapse
Affiliation(s)
- J Storch
- Department of Nutritional Sciences, Cook College, Rutgers University, New Brunswick, NJ 08901-8525,USA.
| | | |
Collapse
|
5
|
Coe NR, Bernlohr DA. Physiological properties and functions of intracellular fatty acid-binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1391:287-306. [PMID: 9555061 DOI: 10.1016/s0005-2760(97)00205-1] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- N R Coe
- Department of Biochemistry, University of Minnesota, 1479 Gorter Ave, St. Paul, MN 55108, USA
| | | |
Collapse
|
6
|
Atshaves BP, Foxworth WB, Frolov A, Roths JB, Kier AB, Oetama BK, Piedrahita JA, Schroeder F. Cellular differentiation and I-FABP protein expression modulate fatty acid uptake and diffusion. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C633-44. [PMID: 9530094 DOI: 10.1152/ajpcell.1998.274.3.c633] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effect of cellular differentiation on fatty acid uptake and intracellular diffusion was examined in transfected pluripotent mouse embryonic stem (ES) cells stably expressing intestinal fatty acid binding protein (I-FABP). Control ES cells, whether differentiated or undifferentiated, did not express I-FABP. The initial rate and maximal uptake of the fluorescent fatty acid, 12-(N-methyl)-N-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-octadec anoic acid (NBD-stearic acid), was measured in single cells by kinetic digital fluorescence imaging. I-FABP expression in undifferentiated ES cells increased the initial rate and maximal uptake of NBD-stearic acid 1.7- and 1.6-fold, respectively, as well as increased its effective intracellular diffusion constant (Deff) 1.8-fold as measured by the fluorescence recovery after photobleaching technique. In contrast, ES cell differentiation decreased I-FABP expression up to 3-fold and decreased the NBD-stearic acid initial rate of uptake, maximal uptake, and Deff by 10-, 4.7-, and 2-fold, respectively. There were no significant differences in these parameters between the differentiated control and differentiated I-FABP-expressing ES cell lines. In summary, differentiation and expression of I-FABP oppositely modulated NBD-stearic acid uptake parameters and intracellular diffusion in ES cells.
Collapse
Affiliation(s)
- B P Atshaves
- Department of Physiology and Pharmacology, Texas Veterinary Medical Center, Texas A&M University, College Station 77843-4466, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Although structural aspects of cytosolic fatty acid binding proteins (FABPs) in mammalian tissues are now well understood, significant advances regarding the physiological function(s) of these proteins have been slow in forthcoming. Part of the difficulty lies in the complexity of the multigene FABP family with nearly twenty identified members. Furthermore, isoelectric focusing and ion exchange chromatography operationally resolve many of the mammalian native FABPs into putative isoforms. However, a more classical biochemical definition of an isoform, i.e. proteins differing by a single amino acid, suggests that the operational definition is too broad. Because at least one putative heart H-FABP isoform, the mammary derived growth inhibitor, was an artifact (Specht et al. (1996) J. Biol. Chem. 271: 1943-49), the ensuing skepticism and confusion cast doubt on the existence of FABP isoforms in general. Yet, increasing data suggest that several FABPs, e.g. human intestinal I-FABP, bovine and mouse heart H-FABP, rabbit myelin P2 protein and bovine liver L-FABP may exist as true isoforms. In contrast, the rat liver L-FABP putative isoforms may actually be due either to bound ligand, post-translational S-thiolation and/or structural conformers. In any case, almost nothing is known regarding possible functions of either the true or putative isoforms in vitro or in vivo. The objective of this article is to critically evaluate which FABPs form biochemically defined or true isoforms versus FABPs that form additional forms, operationally defined as isoforms. In addition, recent developments in the molecular basis for FABP true isoform formation, the processes leading to additional operationally defined putative isoforms and insights into potential function(s) of this unusual aspect of FABP heterogeneity will be examined.
Collapse
Affiliation(s)
- F Schroeder
- Department of Physiology and Pharmacology, Texas A & M University, TVMC, College Station 77843-4466, USA.
| | | | | | | |
Collapse
|
8
|
Nikolova-Karakashian M, Morgan ET, Alexander C, Liotta DC, Merrill AH. Bimodal regulation of ceramidase by interleukin-1beta. Implications for the regulation of cytochrome p450 2C11. J Biol Chem 1997; 272:18718-24. [PMID: 9228043 DOI: 10.1074/jbc.272.30.18718] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Interleukin 1beta (IL-1beta) induces the hydrolysis of sphingomyelin (SM) to ceramide (Cer) in primary cultures of rat hepatocytes, and Cer has been proposed to play a role in the down-regulation of cytochrome P450 2C11 (CYP2C11) and induction of alpha1-acid glycoprotein (AGP) by this cytokine (Chen, J., Nikolova-Karakashian, M., Merrill, A. H. & Morgan, E. T. (1995) J. Biol. Chem. 270, 25233-25238). Nonetheless, some of the features of the down-regulation of CYP2C11 do not fit a simple model of Cer as a second messenger as follows: N-acetylsphinganine (C2-DHCer) is as potent as N-acetylsphingosine (C2-Cer) in suppression of CYP2C11; the IL-1beta concentration dependence for SM turnover is different from that for the increase in Cer; and the increase in Cer mass is not equivalent to the amount of SM hydrolyzed nor the time course of SM hydrolysis. In this article, we report that these discrepancies are due to activation of ceramidase by the low concentrations of IL-1beta ( approximately 2.5 ng/ml) that maximally down-regulate CYP2C11 expression, whereas higher IL-1beta concentrations (that induce AGP) do not activate ceramidase and allow Cer accumulation. This bimodal concentration dependence is demonstrated both by in vitro ceramidase assays and in intact hepatocytes using a fluorescence Cer analog, 6-((N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino)-Cer (NBD-Cer), and following release of the NBD-fatty acid. IL-1beta increases both acid and neutral ceramidase activities, which appear to be regulated by tyrosine phosphorylation because pretreatment of hepatocytes with sodium vanadate increases (and 25 microM genistein reduces) the basal and IL-1beta-stimulated ceramidase activities. Since these findings suggested that sphingosine (and, possibly, subsequent metabolites) is the primary mediator of the down-regulation of CYP2C11 by IL-1beta, the effects of exogenous sphingosine and C2-Cer on expression of this gene were compared. Sphingosine was more potent than C2-Cer in down-regulation of CYP2C11 when added alone or with fumonisin B1 to block acylation of the exogenous sphingosine. Furthermore, the suppression of CYP2C11 by C2-Cer (and C2-DHCer) is probably mediated by free sphingoid bases, rather than the short chain Cer directly, because both are hydrolyzed by hepatocytes and increase cellular levels of sphingosine and sphinganine. From these observations we conclude that sphingosine, possibly via sphingosine 1-phosphate, is a mediator of the regulation of CYP2C11 by IL-1beta in rat hepatocytes and that ceramidase activation provides a "switch" that determines which sphingolipids are elevated by this cytokine to produce multiple intracellular responses.
Collapse
|
9
|
Frolov A, Cho TH, Murphy EJ, Schroeder F. Isoforms of rat liver fatty acid binding protein differ in structure and affinity for fatty acids and fatty acyl CoAs. Biochemistry 1997; 36:6545-55. [PMID: 9174372 DOI: 10.1021/bi970205t] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although native rat liver fatty acid binding protein (L-FABP) is composed of isoforms differing in isoelectric point, their comparative structure and function are unknown. These properties of apo- and holo-L-FABP isoforms were resolved by circular dichroism, time-resolved fluorescence spectroscopy, and binding/displacement of fluorescent ligands. Both apo-isoforms had similar hydrodynamic radii of 18.5 A, but apo-isoform I had a greater alpha-helical content and exhibited a longer Tyr lifetime, indicative of secondary and tertiary structural differences from isoform II. Isoforms I and II both had two fatty acid or fatty acyl CoA binding sites. Ligand binding decreased the isoform hydrodynamic radii by 3-4 A and increased Tyr rotational motions in a more restricted range. Fatty acyl CoAs were more effective than fatty acids in altering the isoform structures. Scatchard analysis showed that both isoforms bound cis- parinaric acid with high affinity (Kd values 41 and 60 nM, respectively) and bound trans-parinaric acid with 2- and 7-fold, respectively, higher affinity than for cis-parinaric acid. In contrast, isoform I had higher affinity for cis- and trans-parinaroyl CoAs (Kd values of 33 and 14 nM) than did isoform II (Kd values of 110 and 97 nM), thereby resulting in biphasic plots of parinaroyl-CoA binding to native L-FABP. Finally, displacement studies indicated that each isoform displayed distinct specificities for fatty acid/fatty acyl CoA chain length and unsaturation. Thus, rat L-FABP isoforms differ markedly in both structure and ligand binding function.
Collapse
Affiliation(s)
- A Frolov
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station 77843-4466, USA
| | | | | | | |
Collapse
|
10
|
Jolly CA, Hubbell T, Behnke WD, Schroeder F. Fatty acid binding protein: stimulation of microsomal phosphatidic acid formation. Arch Biochem Biophys 1997; 341:112-21. [PMID: 9143360 DOI: 10.1006/abbi.1997.9957] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effect of fatty acid binding proteins (FABPs) on two key steps of microsomal phosphatidic acid formation was examined. Rat liver microsomes were purified by size-exclusion chromatography to remove endogenous cytosolic fatty acid and fatty acyl-CoA binding proteins while recombinant FABPs were used to avoid cross-contamination with such proteins from native tissue. Neither rat liver (L-FABP) nor rat intestinal fatty acid binding protein (I-FABP) stimulated liver microsomal fatty acyl-CoA synthase. In contrast, L-FABP and I-FABP enhanced microsomal conversion of [14C]oleoyl-CoA and glycerol 3-phosphate to [14C]phosphatidic acid by 18- and 7-fold, respectively. The mechanism for this stimulation, especially by I-FABP, is not known. However, several observations presented here suggest that, like L-FABP, I-FABP may interact with fatty acyl-CoA and thereby stimulate enzyme activity. First, I-FABP decreased microsomal membrane-bound oleoyl-CoA. Second, oleoyl-CoA displaced I-FABP bound fluorescent fatty acid, cis-parinaric acid, with Ki of 5.3 microM and 1.1 sites. Third, oleoyl-CoA decreased I-FABP tryptophan fluorescence with a Kd of 4.2 microM. Fourth, oleoyl-CoA red shifted emission spectra of acrylodated I-FABP, a sensitive marker of I-FABP interactions with ligands. In summary, the results demonstrate for the first time that both L-FABP and I-FABP stimulate liver microsomal phosphatidic acid formation by enhancing synthesis of phosphatidate from fatty acyl-CoA and glycerol 3-phosphate.
Collapse
Affiliation(s)
- C A Jolly
- Department of Physiology and Pharmacology, Texas A & M University 77843-4466, USA
| | | | | | | |
Collapse
|
11
|
Glatz JF, van der Vusse GJ. Cellular fatty acid-binding proteins: their function and physiological significance. Prog Lipid Res 1996; 35:243-82. [PMID: 9082452 DOI: 10.1016/s0163-7827(96)00006-9] [Citation(s) in RCA: 366] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- J F Glatz
- Department of Physiology, Maastricht University, The Netherlands.
| | | |
Collapse
|
12
|
Gossett RE, Frolov AA, Roths JB, Behnke WD, Kier AB, Schroeder F. Acyl-CoA binding proteins: multiplicity and function. Lipids 1996; 31:895-918. [PMID: 8882970 DOI: 10.1007/bf02522684] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The physiological role of long-chain fatty acyl-CoA is thought to be primarily in intermediary metabolism of fatty acids. However, recent data show that nM to microM levels of these lipophilic molecules are potent regulators of cell functions in vitro. Although long-chain fatty acyl-CoA are present at several hundred microM concentration in the cell, very little long-chain fatty acyl-CoA actually exists as free or unbound molecules, but rather is bound with high affinity to membrane lipids and/or proteins. Recently, there is growing awareness that cytosol contains nonenzymatic proteins also capable of binding long-chain fatty acyl-CoA with high affinity. Although the identity of the cytosolic long-chain fatty acyl-CoA binding protein(s) has been the subject of some controversy, there is growing evidence that several diverse nonenzymatic cytosolic proteins will bind long-chain fatty acyl-CoA. Not only does acyl-CoA binding protein specifically bind medium and long-chain fatty acyl-CoA (LCFA-CoA), but ubiquitous proteins with multiple ligand specificities such as the fatty acid binding proteins and sterol carrier protein-2 also bind LCFA-CoA with high affinity. The potential of these acyl-CoA binding proteins to influence the level of free LCFA-CoA and thereby the amount of LCFA-CoA bound to regulatory sites in proteins and enzymes is only now being examined in detail. The purpose of this article is to explore the identity, nature, function, and pathobiology of these fascinating newly discovered long-chain fatty acyl-CoA binding proteins. The relative contributions of these three different protein families to LCFA-CoA utilization and/or regulation of cellular activities are the focus of new directions in this field.
Collapse
Affiliation(s)
- R E Gossett
- Department of Pathobiology, Texas A&M University, TVMC, College Station 77843-4466, USA
| | | | | | | | | | | |
Collapse
|
13
|
Zucker SD, Goessling W, Ransil BJ, Gollan JL. Influence of glutathione S-transferase B (ligandin) on the intermembrane transfer of bilirubin. Implications for the intracellular transport of nonsubstrate ligands in hepatocytes. J Clin Invest 1995; 96:1927-35. [PMID: 7560084 PMCID: PMC185829 DOI: 10.1172/jci118238] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To examine the hypothesis that glutathione S-transferases (GST) play an important role in the hepatocellular transport of hydrophobic organic anions, the kinetics of the spontaneous transfer of unconjugated bilirubin between membrane vesicles and rat liver glutathione S-transferase B (ligandin) was studied, using stopped-flow fluorometry. Bilirubin transfer from glutathione S-transferase B to phosphatidylcholine vesicles was best described by a single exponential function, with a rate constant of 8.0 +/- 0.7 s-1 (+/- SD) at 25 degrees C. The variations in transfer rate with respect to acceptor phospholipid concentration provide strong evidence for aqueous diffusion of free bilirubin. This finding was verified using rhodamine-labeled microsomal membranes as acceptors. Bilirubin transfer from phospholipid vesicles to GST also exhibited diffusional kinetics. Thermodynamic parameters for bilirubin dissociation from GST were similar to those for human serum albumin. The rate of bilirubin transfer from rat liver basolateral plasma membranes to acceptor vesicles in the presence of glutathione S-transferase B declined asymptotically with increasing GST concentration. These data suggest that glutathione S-transferase B does not function as an intracellular bilirubin transporter, although expression of this protein may serve to regulate the delivery of bilirubin, and other nonsubstrate ligands, to sites of metabolism within the cell.
Collapse
Affiliation(s)
- S D Zucker
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
14
|
Relationship between glycerol-3-phosphate dehydrogenase, fatty acid synthase and fatty acid binding proteins in developing human placenta. J Biosci 1995. [DOI: 10.1007/bf02703263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Affiliation(s)
- J H Veerkamp
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | |
Collapse
|
16
|
Trotter PJ, Voelker DR. Lipid transport processes in eukaryotic cells. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1213:241-62. [PMID: 8049239 DOI: 10.1016/0005-2760(94)00073-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- P J Trotter
- Lord and Taylor Laboratory for Lung Biochemistry, National Jewish Center for Immunology and Respiratory Medicine, Denver, CO 80206
| | | |
Collapse
|
17
|
Veerkamp JH, van Kuppevelt TH, Maatman RG, Prinsen CF. Structural and functional aspects of cytosolic fatty acid-binding proteins. Prostaglandins Leukot Essent Fatty Acids 1993; 49:887-906. [PMID: 8140117 DOI: 10.1016/0952-3278(93)90174-u] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- J H Veerkamp
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
18
|
Bass NM. Cellular binding proteins for fatty acids and retinoids: similar or specialized functions? Mol Cell Biochem 1993; 123:191-202. [PMID: 8232263 DOI: 10.1007/bf01076492] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cellular fatty acid-binding proteins (FABP) and cellular retinoid (retinol, retinoic acid)-binding proteins (CRtBP) are structurally and functionally-defined groups within an evolutionarily conserved gene family. CRtBP are expressed in both fully differentiated and developing tissues in a manner that supports a relationship to the action of retinoic acid in morphogenesis and cellular differentiation. The FABP are, by contrast, expressed only in fully differentiated tissues in a manner compatible with a major function in the metabolism of long-chain fatty acids (LCFA) for energy production or storage. The precise function(s) of FABP and CRtBP remain imperfectly understood, while subspecialization of function(s) within the two groups is suggested by the complex diversity in both of structurally distinct members that display striking tissue and temporal specificity of expression in addition to ligand specificity. Notwithstanding this considerable apparent functional diversity among the FABP and CRtBP, available evidence supports a dual set of generic functions for both protein groups in a) promoting cellular flux of poorly water-soluble ligands and their subsequent metabolic utilization or transformation, and b) sequestration of ligands in a manner that limits their association with alternative binding sites within the cell, of which members of the steroid hormone nuclear receptor superfamily (HNR) are a potentially important category. Theoretical as well as experimental models probing diffusional fluxes of LCFA in vitro and in living cells have provided support for a function for FABP in intracellular LCFA transport. Protein-bound ligand also appears to provide the substrate for metabolic transformation of retinoids bound to CRtBP, but convincing evidence is lacking for an analogous mechanism in the direct facilitation of fatty acid utilization by FABP. An emerging relationship between FABP and CRtBP function centers on their binding of, and induction by, ligands which activate or transform specific HNR-the retinoic acid receptors and the peroxisome proliferator activated receptor in the case of CRtBP and FABP, respectively. Evidence consistent with both a 'promotive' role (provision of ligands for HNR) and a 'protective' role (limiting availability of free ligand for HNR association) has been advanced for CRtBP. Available data supports a 'protective' function for cellular retinoic acid-binding proteins (CRABP) and liver FABP (L-FABP) and points to the existence of ligand-defined, lipid-binding-protein-HNR relationships in which CRABP serve to attenuate the induction of gene expression by retinoic acid, and in which L-FABP may modulate a cellular adaptive multigene response to increased LCFA flux or compromised LCFA utilization.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- N M Bass
- Department of Medicine, University of California, San Francisco 94143-0538
| |
Collapse
|
19
|
Catalá A. Interaction of fatty acids, acyl-CoA derivatives and retinoids with microsomal membranes: effect of cytosolic proteins. Mol Cell Biochem 1993; 120:89-94. [PMID: 8387630 DOI: 10.1007/bf00926080] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This paper reviews characteristics of microsomal membrane structure; long chain fatty acids, acyl CoA derivatives, retinoids and the microsomal formation of acyl CoA derivatives and retinyl esters. It is analyzed how the movement of these molecules at the intracellular level is affected by their respective binding proteins (Fatty acid binding protein, acyl CoA binding protein and cellular retinol binding protein). Studies with model systems using these hydrophobic ligands and the lipid-binding or transfer proteins are also described. This topic is of interest especially because in the esterification of retinol the three substrates and the three binding proteins may interact.
Collapse
Affiliation(s)
- A Catalá
- Cátedra de Bioquímica, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Argentina
| |
Collapse
|
20
|
Atlasovich F, Santomé JA, Fernández HN. Photoreactive fatty acid analogues that bind to the rat liver fatty-acid binding protein: 11-(5'-azido-salicylamido)-undecanoic acid derivatives. Mol Cell Biochem 1993; 120:15-23. [PMID: 8459800 DOI: 10.1007/bf00925980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Photoreactive probes for the hydrophobic pocket of the liver fatty acid-binding protein, 11-(5'-azido-salicylamido)-undecanoic acid (5' ASU) and its acetyl ester (Ac5' ASU), were synthesized and their interaction with the protein was assessed. Fatty acid-binding proteins are closely related proteins which are abundantly expressed in tissues with active lipid metabolism. A simple model that assumes that the protein possesses a single kind of sites fitted the binding of radioiodinated 5' ASU to L-FABP satisfactorily. The apparent dissociation constant, 1.34 x 10(-7) M, evidenced a slightly higher affinity than that reported for C16-C20 fatty acids. Consistent with the binding curve, 5' ASU effectively competed with palmitic acid for the hydrophobic sites and the effect was nearly complete for concentrations of 1 microM; oleic acid, in turn, displaced the radiolabelled probe. Irradiation at 366 nm of 125I-5' ASU bound to L-FABP caused the covalent cross-linking of the reagent. The amount of radioactivity covalently bound reached a maximum after 2 min thus agreeing with the photo-activation kinetics of the unlabelled compound that evidenced a t1/2 of 31.1 sec. The yield with which probes bound to L-FABP became covalently linked to the protein, appraised after SDS-PAGE of irradiated samples, was estimated as 23 and 26 per cent for 5' ASU and Ac5' ASU respectively. In turn, irradiation of L-FABP incubated with 5' ASU or Ac5' ASU resulted in the irreversible loss of about one fourth its ability to bind palmitic acid.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- F Atlasovich
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | | | | |
Collapse
|
21
|
Das T, Sa G, Mukherjea M. Characterization of cardiac fatty-acid-binding protein from human placenta. Comparison with placenta hepatic types. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 211:725-30. [PMID: 8436130 DOI: 10.1111/j.1432-1033.1993.tb17602.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
When a 105,000 x g supernatant of human placenta was incubated with [1-14C]oleate and subjected to Sephadex G-75 gel filtration and HPLC, two fatty-acid-binding protein (FABP) peaks were obtained. One of these, when further purified by carboxymethyl-cellulose, gave one 15.3-kDa FABP with pI5.3. The other, when chromatographed on DEAE cellulose, separated into two 14.2-kDa FABP with pI6.9 and 5.4. Purity of the proteins was checked by SDS/PAGE. Molecular mass, pI, immunochemical properties and amino acid compositions all indicated that 15.3-kDa FABP was of the cardiac type, whereas both 14.2-kDa FABP were of the hepatic type. Cardiac FABP did not cross-react with hepatic proteins. When tested for the acceptor/donor properties of these FABP, hepatic types were found to be better candidates than cardiac in uptaking fatty acids from liposomes. Cardiac FABP, on the other hand, acted in a more efficient way as a donor, indicating a distinct role of these proteins in human placenta, which furnishes a multiorgan system for the developing fetus.
Collapse
Affiliation(s)
- T Das
- Department of Biochemistry, University of Calcutta, India
| | | | | |
Collapse
|
22
|
|
23
|
Dell'Angelica EC, Stella CA, Ermácora MR, Ramos EH, Santome JA. Study on fatty acid binding by proteins in yeast. Dissimilar results in Saccharomyces cerevisiae and Yarrowia lipolytica. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1992; 102:261-5. [PMID: 1617937 DOI: 10.1016/0305-0491(92)90120-g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. The presence of soluble proteins with fatty acid binding activity was investigated in cell-free extracts from Saccharomyces cerevisiae and Yarrowia lipolytica cultures. 2. No significant fatty acid binding by proteins was detected in S. cerevisiae, even when grown on a fatty acid-rich medium, thus indicating that such proteins are not essential to fatty acid metabolism. 3. An inducible fatty acid binding protein (K0.5 = 3-4 microM) was found in Y. lipolytica which had grown on a minimal medium with palmitate as the sole source of carbon and energy. 4. The relative molecular mass of this protein was 100,000 as inferred from Sephacryl S-200 gel filtration.
Collapse
Affiliation(s)
- E C Dell'Angelica
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
24
|
Peeters RA, Veerkamp JH, Geurts van Kessel A, Kanda T, Ono T. Cloning of the cDNA encoding human skeletal-muscle fatty-acid-binding protein, its peptide sequence and chromosomal localization. Biochem J 1991; 276 ( Pt 1):203-7. [PMID: 1710107 PMCID: PMC1151165 DOI: 10.1042/bj2760203] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A cDNA clone for the human skeletal-muscle fatty-acid-binding protein (FABP) was isolated by screening of a human adult muscle lambda gt11 expression library with an anti-(muscle FABP) serum. The identify of the clone was confirmed by transcription/translation in vitro in plasmid pSP6.5, followed by immunoprecipitation. The nucleotide sequence of the 551 bp cDNA insert showed an open reading frame of 399 nucleotides, coding for a protein of 133 amino acid residues with a calculated molecular mass of 14858 Da and a pI of 4.94. Only one cysteine residue was found, at position 125. Peptide sequence analyses of human skeletal-muscle and heart FABP, after carbamoylmethylation and lysyl endopeptidase digestion followed by automatic Edman degradation, showed that both proteins are identical. No evidence was found for the existence of isoproteins in muscle. The chromosomal localization of the human muscle FABP gene was determined by analysing 31 human x rodent somatic-cell hybrid lines. The human muscle FABP gene could be assigned to chromosome 1pter-q31.
Collapse
Affiliation(s)
- R A Peeters
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Veerkamp JH, Peeters RA, Maatman RG. Structural and functional features of different types of cytoplasmic fatty acid-binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1081:1-24. [PMID: 1991151 DOI: 10.1016/0005-2760(91)90244-c] [Citation(s) in RCA: 299] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- J H Veerkamp
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
26
|
Storch J. A comparison of heart and liver fatty acid-binding proteins: interactions with fatty acids and possible functional differences studied with fluorescent fatty acid analogues. Mol Cell Biochem 1990; 98:141-7. [PMID: 2266956 DOI: 10.1007/bf00231378] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fatty acid-binding proteins (FABP) are distinct but related gene products which are found in many mammalian cell types. They are generally present in high abundance, and are found in those tissues where free fatty acid (ffa) flux is high. The function(s) of FABP is unknown. Also not known is whether all FABP function similarly in their respective cell types, or whether different FABP have unique functions. The purpose of these studies was to assess whether different members of the FABP family exhibit different structural and functional properties. Two fluorescent analogues of ffa were used to compare the liver (L-FABP) and heart (H-FABP) binding proteins. The propionic acid derivative of diphenylhexatriene (PADPH) was used to examine the physical properties of the ffa binding site on L- and H-FABP, as well as the relative distribution of ffa between FABP and membranes. An anthroyloxy-derivative of palmitic acid, 2AP, was used to monitor the transfer kinetics of ffa from liver or heart FABP to acceptor membranes, using a resonance energy transfer assay. The results demonstrate that the ffa binding sites of both FABP are hydrophobic in nature, although the L-FABP site is more nonpolar than the H-FABP site. Equilibration of PADPH between L-FABP and phosphatidylcholine (PC) bilayers resulted in a molar partition preference of greater than 20: 1, L-FABP PC. Similar studies with H-FABP resulted in a PADPH partition preference of only 3:1, H-FABP: PC. Finally, the transfer of 2AP from H-FABP to acceptor membranes was found to be 50-fold faster than transfer from L-FABP.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Storch
- Harvard School of Public Health, Department of Nutrition, Boston, MA 02115
| |
Collapse
|
27
|
Abstract
Cytosolic fatty acid binding proteins (FABP) belong to a gene family of which eight members have been conclusively identified. These 14-15 kDa proteins are abundantly expressed in a highly tissue-specific manner. Although the functions of the cytosolic FABP are not clearly established, they appear to enhance the transfer of long-chain fatty acids between artificial and native lipid membranes, and also to have a stimulatory effect on a number of enzymes of fatty acid metabolism in vitro. These findings, as well as the tissue expression, ligand binding properties, ontogeny and regulation of these proteins provide a considerable body of indirect evidence supporting a broad role for the FABP in the intracellular transport and metabolism of long-chain fatty acids. The available data also support the existence of structure- and tissue-specific specialization of function among different members of the FABP gene family. Moreover, FABP may also have a possible role in the modulation of cell growth and proliferation, possibly by virtue of their affinity for ligands such as prostaglandins, leukotrienes and fatty acids, which are known to influence cell growth activity. FABP structurally unrelated to the cytosolic gene family have also been identified in the plasma membranes of several tissues (FABPpm). These proteins have not been fully characterized to date, but strong evidence suggest that they function in the transport of long-chain fatty acids across the plasma membrane.
Collapse
Affiliation(s)
- R M Kaikaus
- Department of Medicine, University of California, San Francisco 94143
| | | | | |
Collapse
|
28
|
Storch J, Bass NM. Transfer of fluorescent fatty acids from liver and heart fatty acid-binding proteins to model membranes. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39004-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
29
|
Paulussen RJ, Veerkamp JH. Intracellular fatty-acid-binding proteins. Characteristics and function. Subcell Biochem 1990; 16:175-226. [PMID: 2238003 DOI: 10.1007/978-1-4899-1621-1_7] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- R J Paulussen
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | |
Collapse
|
30
|
Abstract
The intracellular events associated with the vectorial transport of bile acids by the hepatocytes from the sinusoidal pole to the canalicular pole are reviewed. Binding to cytosolic proteins occurs. The role of this binding is to prevent efflux from the cytosol back into the blood. There is evidence from electron microscopy, from autoradiography and from immunoperoxidase observations that bile acids interact with the endoplasmic reticulum and the Golgi apparatus. There is also evidence that a carrier system or taurocholate exists on the Golgi membrane. We propose that a vesicular pathway involving the Golgi apparatus and dependent on the integrity of microtubules may play a role in bile acid transport in the cell. Inhibition of bile acid transport by microtubule poisons is consistent with this hypothesis. Finally, monohydroxylated, cholestatic bile acids such as lithocholate and taurolithocholate interact with the endoplasmic reticulum. This interaction results in a depletion of the endoplasmic reticulum calcium stores and an increase in intracellular ionized calcium. The relationship of this novel effect of bile acids to their cholestatic properties remains to be elucidated.
Collapse
Affiliation(s)
- S Erlinger
- Service d'Hépatologie, INSERM U-24, Hôpital Beaujon, Clichy, France
| |
Collapse
|
31
|
Peeters RA, in't Groen MA, Veerkamp JH. The fatty acid-binding protein from human skeletal muscle. Arch Biochem Biophys 1989; 274:556-63. [PMID: 2802628 DOI: 10.1016/0003-9861(89)90470-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fatty acid-binding protein (FABP) was isolated from human skeletal muscle by gel filtration and anion- and cation-exchange chromatography. The isolation procedure, however, with rat and pig skeletal muscle gave mostly inactive preparations. Rat muscle FABP preparations contained parvalbumin as a contaminant. FABP from human muscle had a Mr of about 15 kDa, a pI value of 5.2, and a Kd value with oleic acid of 0.50 microM. Skeletal muscle and heart FABPs and their antisera showed a strong cross-reactivity on Western blots and in enzyme-linked immunosorbent assays (ELISA). No cross-reactivity was observed with liver FABP and its antiserum. On the basis of amino acid composition, electrophoretic behavior, fatty acid binding, and immunochemical properties, human skeletal muscle FABP must be similar or closely related to human heart FABP. The FABP content determined by ELISA was comparable in various human muscles and cultured muscle cells, but lower than that in rat muscles.
Collapse
Affiliation(s)
- R A Peeters
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
32
|
Peeters RA, Veerkamp JH. Does fatty acid-binding protein play a role in fatty acid transport? Mol Cell Biochem 1989; 88:45-9. [PMID: 2779543 DOI: 10.1007/bf00223422] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The possible property of fatty acid-binding proteins (FABPs) to transport fatty acid was investigated in various model systems with FABP preparations from liver and heart. An effect of FABP, however, was not detectable with a combination of oleic acid-loaded mitochondria and vesicles or liposomes due to the rapid spontaneous transfer. Therefore, the mitochondria were separated from the vesicles in an equilibrium dialysis cell. The spontaneous fatty acid transfer was much lower and addition of FABP resulted in an increase of fatty acid transport. Oleic acid was withdrawn from different types of monolayers by FABP with rates up to 10%/min. When two separate monolayers were used, FABP increased fatty acid transfer between these monolayers and an equilibrium was reached.
Collapse
Affiliation(s)
- R A Peeters
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | |
Collapse
|
33
|
Abstract
Translocation of lipids inside mammalian cells is considered to be facilitated by a number of low-molecular weight lipid binding proteins. An overview of these proteins is given, with particular reference to the heart. Three distinct phospholipid transfer proteins specifically stimulate the net transfer of individual phospholipid classes between membrane structures. In rat cardiac muscle their content is 15-140 pmol/g ww. Fatty acid-binding proteins (FABP) are abundantly present in tissues actively involved in the uptake or utilization of long-chain fatty acids, such as intestine, liver and heart. The four distinct FABP types now identified show a complex tissue distribution with some tissues containing more than one type. Heart (H-) FABP comprises about 5% of the cytosolic protein mass; its content in rat heart is 100 nmol/g ww. Immunochemical evidence has been obtained for the presence of H-FABP in several other tissues, including red skeletal muscle, mammary gland and kidney. Beside long-chain fatty acids FABP binds with similar affinity also fatty acyl-CoA and acyl-L-carnitines. In heart the latter compound may be the primary ligand, since normoxic acyl-L-carnitine levels are several fold higher than those of fatty acids. In addition, H-FABP was found to modulate cardiac energy production by controlling the transfer of acyl-L-carnitine to the mitochondrial beta-oxidative system. H-FABP may also protect the heart against the toxic effects of high intracellular levels of fatty acid intermediates that arise during ischemia.
Collapse
Affiliation(s)
- J F Glatz
- Department of Physiology, University of Limburg, Maastricht, The Netherlands
| | | |
Collapse
|
34
|
Peeters RA, Veerkamp JH, Demel RA. Are fatty acid-binding proteins involved in fatty acid transfer? BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1002:8-13. [PMID: 2923867 DOI: 10.1016/0005-2760(89)90057-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The possible function of fatty acid-binding protein (FABP) to act as a fatty acid carrier protein was investigated in model systems with regard to three aspects. (1) does FABP release fatty acids from membranes? (2) does it facilitate fatty acid transport in an aqueous environment? (3) are FABP-bound fatty acids released for use by mitochondria? FABPs could bind oleic acid from liposomes and mitochondrial membranes with a ratio of 1 mol per mol protein. Oleic acid was withdrawn from negative, neutral or cholesterol-containing monolayers by FABP with rates up to 10%/min. Only about 5% of FABP penetrated into the monolayer. Spontaneous transfer of oleic acid between mitochondria and vesicles or liposomes occurred so rapidly that an effect of FABP was not detectable. When the mitochondria were separated from the vesicles in an equilibrium dialysis cell, a stimulating effect of FABP on fatty acid transfer could be demonstrated. Injected FABP increased also transfer of oleic acid between two separate monolayers. FABP-bound fatty acid was well oxidized by rat liver mitochondria. The results indicate that the FABP-fatty acid complex may function as an intermediate in the transfer of fatty acids between membranes. No functional differences were detected between heart and liver FABPs in this respect.
Collapse
Affiliation(s)
- R A Peeters
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
35
|
Spener F, Börchers T, Mukherjea M. On the role of fatty acid binding proteins in fatty acid transport and metabolism. FEBS Lett 1989; 244:1-5. [PMID: 2647515 DOI: 10.1016/0014-5793(89)81149-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- F Spener
- Institut für Biochemie, Universität Münster, FRG
| | | | | |
Collapse
|
36
|
Bassingthwaighte JB, Noodleman L, van der Vusse G, Glatz JF. Modeling of palmitate transport in the heart. Mol Cell Biochem 1989; 88:51-8. [PMID: 2674667 PMCID: PMC3521048 DOI: 10.1007/bf00223423] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transport of palmitate from the albumin-palmitate complex in the plasma to inside mitochondria where it undergoes beta-oxidation is a multistep process. Albumin's large size prevents permeation via interendothelial clefts. Palmitate dissociation from albumin in solution is too slow to provide an adequate supply of the unbound palmitate. The discovery that the dissociation occurs upon albumin binding to an endothelial surface receptor resolves the conundrum. Palmitate transport across the luminal surface membrane may be either carrier-mediated or passive. Fatty-acid binding protein inside endothelial and cardiac muscle cells facilitates diffusion through cytosol while maintaining the unbound palmitate concentration at a very low level. Within the interstitium, albumin is again the palmitate carrier. Still controversial is whether or not there is a saturable sarcolemmal transporter or simply passive exchange. Inside the myocyte palmitate is again bound to the fatty acid binding protein which buffers the free palmitate concentration, facilitates diffusion, and may facilitate further intracellular reactions.
Collapse
|
37
|
Bass NM. The cellular fatty acid binding proteins: aspects of structure, regulation, and function. INTERNATIONAL REVIEW OF CYTOLOGY 1988; 111:143-84. [PMID: 3074959 DOI: 10.1016/s0074-7696(08)61733-7] [Citation(s) in RCA: 246] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- N M Bass
- Department of Medicine and Liver Center, University of California, San Francisco 94143
| |
Collapse
|