1
|
Gordon WC, Kautzmann MAI, Jun B, Cothern ML, Fang Z, Bazan NG. Rod-specific downregulation of omega-3 very-long-chain polyunsaturated fatty acid pathway in age-related macular degeneration. Exp Eye Res 2023; 235:109639. [PMID: 37659709 PMCID: PMC11371070 DOI: 10.1016/j.exer.2023.109639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Docosahexaenoic acid (DHA; 22:6) plays a key role in vision and is the precursor for very-long-chain polyunsaturated fatty acids (VLC-PUFAs). The release of 32- and 34-carbon VLC-PUFAs and DHA from sn-1 and sn-2 of phosphatidylcholine (PC) leads to the synthesis of cell-survival mediators, the elovanoids (ELVs) and neuroprotectin D1 (NPD1), respectively. Macula and periphery from age-related macular degeneration (AMD) donor retinas were assessed for the availability of DHA-related lipids by LC-MS/MS-based lipidomic analysis and MALDI-molecular imaging. We found reduced retina DHA and VLC-PUFA pathways to synthesize omega-3 ELVs from precursors that likely resulted in altered disks and photoreceptor loss. Additionally, we compared omega-3 (n-3) fatty acid with DHA (22:6) and omega-6 (n-6) fatty acid with arachidonic acid (AA; 20:4) pathways. n-3 PC(22:6/22:6, 44:12) and n-6 PC(20:4/20:4, 40:8) showed differences among male/female, macula/periphery, and normal/AMD retinas. Periphery of AMD retina males increased 44:12 abundance, while normal females increased 40:8 (all macula had an upward 40:8 tendency). We also showed that female AMD switched from n-3 to n-6 fatty acids; most changes in AMD occurred in the periphery of female AMD retinas. DHA and VLC-PUFA release from PCs leads to conversion in pro-survival NPD1 and ELVs. The loss of the neuroprotective precursors of ELVs in the retina periphery from AMD facilitates uncompensated stress and cell loss. In AMD, the female retina loses peripheral rods VLC-PUFAs to about 33% less than in males limiting ELV formation and its protective bioactivity.
Collapse
Affiliation(s)
- William C Gordon
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, New Orleans, LA, 70112, USA
| | - Marie-Audrey I Kautzmann
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, New Orleans, LA, 70112, USA
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, New Orleans, LA, 70112, USA
| | - Megan L Cothern
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, New Orleans, LA, 70112, USA
| | - Zhide Fang
- Biostatistics, School of Public Health, Louisiana State University Health New Orleans, 2020 Gravier Street, New Orleans, LA, 70112, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, New Orleans, LA, 70112, USA.
| |
Collapse
|
2
|
Sander CL, Sears AE, Pinto AF, Choi EH, Kahremany S, Gao F, Salom D, Jin H, Pardon E, Suh S, Dong Z, Steyaert J, Saghatelian A, Skowronska-Krawczyk D, Kiser PD, Palczewski K. Nano-scale resolution of native retinal rod disk membranes reveals differences in lipid composition. J Cell Biol 2021; 220:e202101063. [PMID: 34132745 PMCID: PMC8240855 DOI: 10.1083/jcb.202101063] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/26/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Photoreceptors rely on distinct membrane compartments to support their specialized function. Unlike protein localization, identification of critical differences in membrane content has not yet been expanded to lipids, due to the difficulty of isolating domain-specific samples. We have overcome this by using SMA to coimmunopurify membrane proteins and their native lipids from two regions of photoreceptor ROS disks. Each sample's copurified lipids were subjected to untargeted lipidomic and fatty acid analysis. Extensive differences between center (rhodopsin) and rim (ABCA4 and PRPH2/ROM1) samples included a lower PC to PE ratio and increased LC- and VLC-PUFAs in the center relative to the rim region, which was enriched in shorter, saturated FAs. The comparatively few differences between the two rim samples likely reflect specific protein-lipid interactions. High-resolution profiling of the ROS disk lipid composition gives new insights into how intricate membrane structure and protein activity are balanced within the ROS, and provides a model for future studies of other complex cellular structures.
Collapse
Affiliation(s)
- Christopher L. Sander
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Avery E. Sears
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Antonio F.M. Pinto
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA
| | - Elliot H. Choi
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Shirin Kahremany
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Fangyuan Gao
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Hui Jin
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Els Pardon
- Vlaams Instituut voor Biotechnologie–Vrije Universiteit Brussel Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Susie Suh
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Zhiqian Dong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Jan Steyaert
- Vlaams Instituut voor Biotechnologie–Vrije Universiteit Brussel Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
| | - Philip D. Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
- Research Service, VA Long Beach Healthcare System, Long Beach, CA
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
- Department of Chemistry, University of California, Irvine, Irvine, CA
| |
Collapse
|
3
|
Deposition and metabolism of dietary n-3 very-long-chain PUFA in different organs of rat, mouse and Atlantic salmon. Br J Nutr 2021; 127:35-54. [PMID: 33750483 DOI: 10.1017/s0007114521000817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is limited knowledge about the metabolism and function of n-3 very-long-chain PUFA (n-3 VLC-PUFA) with chain lengths ≥ 24. They are known to be produced endogenously in certain tissues from EPA and DHA and not considered to originate directly from dietary sources. The aim of this study was to investigate whether n-3 VLC-PUFA from dietary sources are bio-available and deposited in tissues of rat, fish and mouse. Rats were fed diets supplemented with a natural fish oil (FO) as a source of low dietary levels of n-3 VLC-PUFA, while Atlantic salmon and mice were fed higher dietary levels of n-3 VLC-PUFA from a FO concentrate. In all experiments, n-3 VLC-PUFA incorporation in organs was investigated. We found that natural FO, due to its high EPA content, to a limited extent increased endogenous production of n-3 VLC-PUFA in brain and eye of mice with neglectable amounts of n-3 VLC-PUFA originating from diet. When higher dietary levels were given in the form of concentrate, these fatty acids were bio-available and deposited in both phospholipids and TAG fractions of all tissues studied, including skin, eye, brain, testis, liver and heart, and their distribution appeared to be tissue-dependent, but not species-specific. When dietary EPA and DHA were balanced and n-3 VLC-PUFA increased, the major n-3 VLC-PUFA from the concentrate increased significantly in the organs studied, showing that these fatty acids can be provided through diet and thereby provide a tool for functional studies of these VLC-PUFA.
Collapse
|
4
|
Current Progress in Deciphering Importance of VLC-PUFA in the Retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 854:145-51. [DOI: 10.1007/978-3-319-17121-0_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
5
|
Role of ELOVL4 and very long-chain polyunsaturated fatty acids in mouse models of Stargardt type 3 retinal degeneration. Proc Natl Acad Sci U S A 2013; 110:5181-6. [PMID: 23479632 DOI: 10.1073/pnas.1214707110] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Stargardt type 3 (STGD3) disease is a juvenile macular dystrophy caused by mutations in the ELOVL4 (Elongation of very long chain fatty acids 4) gene. Its protein product, ELOVL4, is an elongase required for the biosynthesis of very long-chain polyunsaturated fatty acids (VLC-PUFAs). It is unclear whether photoreceptor degeneration in STGD3 is caused by loss of VLC-PUFAs or by mutated ELOVL4 protein trafficking/aggregation. We therefore generated conditional knockout (cKO) mice with Elovl4 ablated in rods or cones and compared their phenotypes to transgenic (TG) animals that express the human STGD3-causing ELOVL4(STGD3) allele. Gas chromatography-mass spectrometry was used to assess C30-C34 VLC-PUFA and N-retinylidene-N-retinylethanolamine content; electroretinography was used to measure phototransduction and outer retinal function; electron microscopy was used for retinal ultrastructure; and the optomotor tracking response was used to test scotopic and photopic visual performance. Elovl4 transcription and biosynthesis of C30-C34 VLC-PUFAs in rod cKO and TG retinas were reduced up to 98%, whereas the content of docosahexaenoic acid was diminished in TG, but not rod cKO, retinas. Despite the near-total loss of the retinal VLC-PUFA content, rod and cone cKO animals exhibited no electrophysiological or behavioral deficits, whereas the typical rod-cone dystrophic pattern was observed in TG animals. Our data suggest that photoreceptor-specific VLC-PUFA depletion is not sufficient to induce the STGD3 phenotype, because depletion alone had little effect on photoreceptor survival, phototransduction, synaptic transmission, and visual behavior.
Collapse
|
6
|
Berdeaux O, Juaneda P, Martine L, Cabaret S, Bretillon L, Acar N. Identification and quantification of phosphatidylcholines containing very-long-chain polyunsaturated fatty acid in bovine and human retina using liquid chromatography/tandem mass spectrometry. J Chromatogr A 2010; 1217:7738-48. [PMID: 21035124 DOI: 10.1016/j.chroma.2010.10.039] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/09/2010] [Accepted: 10/07/2010] [Indexed: 11/30/2022]
Abstract
The retina is one of the vertebrate tissues with the highest content in polyunsaturated fatty acids (PUFA). A large proportion of retinal phospholipids, especially those found in photoreceptor membranes, are dipolyunsaturated molecular species. Among them, dipolyunsaturated phosphatidylcholine (PC) molecular species are known to contain very-long-chain polyunsaturated fatty acids (VLC-PUFA) from the n-3 and n-6 series having 24-36 carbon atoms (C24-C36) and four to six double bonds. Recent interest in the role played by VLC-PUFA arose from the findings that a protein called elongation of very-long-chain fatty acids 4 (ELOVL4) is involved in their biosynthesis and that mutations in the ELOVL4 gene are associated with Stargardt-like macular dystrophy (STD3), a dominantly inherited juvenile macular degeneration leading to vision loss. The aim of the present study was to develop an HPLC-ESI-MS/MS method for the structural characterisation and the quantification of dipolyunsaturated PC molecular species containing VLC-PUFA and validate this methodology on retinas from bovines and human donors. Successful separation of phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), PC, lyso-phosphatidylcholine (LPC) and sphingomyelin (SM) was achieved using a silica gel column and a gradient of hexane/isopropanol/water containing ammonium formate as a mobile phase. A complete structural characterisation of intact phosphatidylcholine species was obtained by collision-induced dissociation (CID) in the negative mode. Fatty acid composition and distribution can be clearly assigned based on the intensity of sn-2/sn-1 fragment ions. The PC species were characterised on bovine retina, 28 of which were dipolyunsaturated PC species containing one VLC-PUFA (C24-C36) with three to six double bonds. VLC-PUFA was always in the sn-1 position while PUFA at the sn-2 position was exclusively docosahexaenoic acid (DHA, C22:6n-3). Most of these VLC-PUFA-containing dipolyunsaturated PCs were detected and quantified in human retinas. The quantitative analysis of the different PC molecular species was performed in the positive mode using precursor ion scanning of m/z 184 and 14:0/14:0-PC and 24:0/24:0-PC as internal standards. The relationship between the MS peak intensities of different PC species and their carbon chain length was included for calibration. The main compounds represented were those having VLC-PUFA with 32 carbon atoms (C32:3, C32:4, C32:5 and C32:6) and 34 carbon atoms (C34:3, C34:4, C34:5 and C34:6). Dipolyunsaturated PCs with 36:5 and 36:6 were detected but in smaller quantities. In conclusion, this new HPLC-ESI-MS/MS method is sensitive and specific enough to structurally characterise and quantify all molecular PC species, including those esterified with VLC-PUFA. This technique is valuable for a precise characterisation of PC molecular species containing VLC-PUFA in retina and may be useful for a better understanding of the pathogenesis of STD3.
Collapse
Affiliation(s)
- Olivier Berdeaux
- Lipid-Aroma Platform, Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne, Agrosup Dijon, F-21000 Dijon, France.
| | | | | | | | | | | |
Collapse
|
7
|
Molday RS, Zhang K. Defective lipid transport and biosynthesis in recessive and dominant Stargardt macular degeneration. Prog Lipid Res 2010; 49:476-92. [PMID: 20633576 DOI: 10.1016/j.plipres.2010.07.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Stargardt disease is a common inherited macular degeneration characterized by a significant loss in central vision in the first or second decade of life, bilateral atrophic changes in the central retina associated with degeneration of photoreceptors and underlying retinal pigment epithelial cells, and the presence of yellow flecks extending from the macula. Autosomal recessive Stargardt disease, the most common macular dystrophy, is caused by mutations in the gene encoding ABCA4, a photoreceptor ATP binding cassette (ABC) transporter. Biochemical studies together with analysis of abca4 knockout mice and Stargardt patients have implicated ABCA4 as a lipid transporter that facilitates the removal of potentially toxic retinal compounds from photoreceptors following photoexcitation. An autosomal dominant form of Stargardt disease also known as Stargardt-like dystrophy is caused by mutations in a gene encoding ELOVL4, an enzyme that catalyzes the elongation of very long-chain fatty acids in photoreceptors and other tissues. This review focuses on the molecular characterization of ABCA4 and ELOVL4 and their role in photoreceptor cell biology and the pathogenesis of Stargardt disease.
Collapse
Affiliation(s)
- Robert S Molday
- Department of Biochemistry and Molecular Biology, Centre of Macular Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada.
| | | |
Collapse
|
8
|
Agbaga MP, Mandal MNA, Anderson RE. Retinal very long-chain PUFAs: new insights from studies on ELOVL4 protein. J Lipid Res 2010; 51:1624-42. [PMID: 20299492 DOI: 10.1194/jlr.r005025] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Compared with other mammalian tissues, retina is highly enriched in PUFA. Long-chain PUFA (LC-PUFA; C18-C24) are essential FAs that are enriched in the retina and are necessary for maintenance of normal retinal development and function. The retina, brain, and sperm also contain very LC-PUFA (VLC-PUFA; >C24). Although VLC-PUFA were discovered more than two decades ago, very little is known about their biosynthesis and functional roles in the retina. This is due mainly to intrinsic difficulties associated with working on these unusually long polyunsaturated hydrocarbon chains and their existence in small amounts. Recent studies on the FA elongase elongation of very long chain fatty acids-4 (ELOVL4) protein, however, suggest that VLC-PUFA probably play some uniquely important roles in the retina as well as the other tissues. Mutations in the ELOVL4 gene are found in patients with autosomal dominant Stargardt disease. Here, we review the recent literature on VLC-PUFA with special emphasis on the elongases responsible for their synthesis. We focus on a novel elongase, ELOVL4, involved in the synthesis of VLC-PUFA, and the importance of these FAs in maintaining the structural and functional integrity of retinal photoreceptors.
Collapse
Affiliation(s)
- Martin-Paul Agbaga
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
9
|
Role of Stargardt-3 macular dystrophy protein (ELOVL4) in the biosynthesis of very long chain fatty acids. Proc Natl Acad Sci U S A 2008; 105:12843-8. [PMID: 18728184 DOI: 10.1073/pnas.0802607105] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stargardt-like macular dystrophy (STGD3) is a dominantly inherited juvenile macular degeneration that eventually leads to loss of vision. Three independent mutations causing STGD3 have been identified in exon six of a gene named Elongation of very long chain fatty acids 4 (ELOVL4). The ELOVL4 protein was predicted to be involved in fatty acid elongation, although evidence for this and the specific step(s) it may catalyze have remained elusive. Here, using a gain-of-function approach, we provide direct and compelling evidence that ELOVL4 is required for the synthesis of C28 and C30 saturated fatty acids (VLC-FA) and of C28-C38 very long chain polyunsaturated fatty acids (VLC-PUFA), the latter being uniquely expressed in retina, sperm, and brain. Rat neonatal cardiomyocytes and a human retinal epithelium cell line (ARPE-19) were transduced with recombinant adenovirus type 5 carrying mouse Elovl4 and supplemented with 24:0, 20:5n3, or 22:5n3. The 24:0 was elongated to 28:0 and 30:0; 20:5n3 and 22:5n3 were elongated to a series of C28-C38 PUFA. Because retinal degeneration is the only known phenotype in STGD3 disease, we propose that reduced VLC-PUFA in the retinas of these patients may be the cause of photoreceptor cell death.
Collapse
|
10
|
Vasireddy V, Uchida Y, Salem N, Kim SY, Mandal MNA, Reddy GB, Bodepudi R, Alderson NL, Brown JC, Hama H, Dlugosz A, Elias PM, Holleran WM, Ayyagari R. Loss of functional ELOVL4 depletes very long-chain fatty acids (> or =C28) and the unique omega-O-acylceramides in skin leading to neonatal death. Hum Mol Genet 2007; 16:471-82. [PMID: 17208947 PMCID: PMC1839956 DOI: 10.1093/hmg/ddl480] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in elongation of very long-chain fatty acid-4 (ELOVL4) are associated with autosomal dominant Stargardt-like macular degeneration (STGD3), with a five base-pair (5 bp) deletion mutation resulting in the loss of 51 carboxy-terminal amino acids and truncation of the protein. In addition to the retina, Elovl4 is expressed in a limited number of mammalian tissues, including skin, with unknown function(s). We generated a knock-in mouse model with the 5-bp deletion in the Elovl4 gene. As anticipated, mice carrying this mutation in the heterozygous state (Elovl4(+/del)) exhibit progressive photoreceptor degeneration. Unexpectedly, homozygous mice (Elovl4(del/del)) display scaly, wrinkled skin, have severely compromised epidermal permeability barrier function, and die within a few hours after birth. Histopathological evaluation of the Elovl4(del/del) pups revealed no apparent abnormality(ies) in vital internal organs. However, skin histology showed an abnormally-compacted outer epidermis [stratum corneum (SC)], while electron microscopy revealed deficient epidermal lamellar body contents, and lack of normal SC lamellar membranes that are essential for permeability barrier function. Lipid analyses of epidermis from Elovl4(del/del) mice revealed a global decrease in very long-chain fatty acids (VLFAs) (i.e., carbon chain > or =C28) in both the ceramide/glucosylceramide and the free fatty-acid fractions. Strikingly, Elovl4(del/del) skin was devoid of the epidermal-unique omega-O-acylceramides, that are key hydrophobic components of the extracellular lamellar membranes in mammalian SC. These findings demonstrate that ELOVL4 is required for generating VLFA critical for epidermal barrier function, and that the lack of epidermal omega-O-acylceramides is incompatible with survival in a desiccating environment.
Collapse
Affiliation(s)
- Vidyullatha Vasireddy
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI- 48105
| | - Yoshikazu Uchida
- Department of Dermatology, School of Medicine, University of California San Francisco, and Veterans Administration Medical Center, San Francisco, CA-94121
| | - Norman Salem
- Laboratory of Membrane Biochemistry and Biophysics, NIAAA, National Institutes of Health, Rockville, MD-20892
| | - Soo Yeon Kim
- Laboratory of Membrane Biochemistry and Biophysics, NIAAA, National Institutes of Health, Rockville, MD-20892
| | - Md Nawajesh Ali Mandal
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI- 48105
| | | | - Ravi Bodepudi
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI- 48105
| | - Nathan L. Alderson
- Department of Medicine Medical University of South Carolina, Charleston, SC-29425
| | | | - Hiroko Hama
- Department of Medicine Medical University of South Carolina, Charleston, SC-29425
| | - Andrzej Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, MI- 48105
| | - Peter M. Elias
- Department of Dermatology, School of Medicine, University of California San Francisco, and Veterans Administration Medical Center, San Francisco, CA-94121
| | - Walter M. Holleran
- Department of Dermatology, School of Medicine, University of California San Francisco, and Veterans Administration Medical Center, San Francisco, CA-94121
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA-94143
| | - Radha Ayyagari
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI- 48105
- Address for correspondence: *Radha Ayyagari, PhD., Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI 48105, Phone: 734-647-6345, Fax: 734-936-7231,
| |
Collapse
|
11
|
Raz-Prag D, Ayyagari R, Fariss RN, Mandal MNA, Vasireddy V, Majchrzak S, Webber AL, Bush RA, Salem N, Petrukhin K, Sieving PA. Haploinsufficiency is not the key mechanism of pathogenesis in a heterozygous Elovl4 knockout mouse model of STGD3 disease. Invest Ophthalmol Vis Sci 2006; 47:3603-11. [PMID: 16877435 PMCID: PMC1761696 DOI: 10.1167/iovs.05-1527] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Autosomal dominant Stargardt-like (STGD3) disease results from mutations in the ELOVL4 gene (elongation of very-long-chain fatty acids). This study was undertaken to characterize a mouse model with a targeted deletion of Elovl4 and to explore the role of this gene in retinal/macular degeneration. METHODS A construct targeted to exon 2 of the Elovl4 gene was used to suppress expression of the gene. Elovl4 homozygous pups were nonviable and were not available for study. Hence, the analysis was performed on heterozygous Elovl4(+/-) mice 16 to 22 month of age and littermate wild-type (WT) control mice of the same age. Characterization included examining gene message and protein levels, electroretinogram (ERG), retinal morphology and ultrastructure, and plasma and retinal fatty acid composition. RESULTS Although the level of Elovl4 mRNA was reduced in Elovl4(+/-) retinas, only minimal morphologic abnormalities were found, and the retinal (ERG) function was essentially normal in Elovl4(+/-) retinas compared with the WT control retinas. Systemic fatty acid profiles of Elovl4(+/-) mice were unremarkable, although the concentration of several fatty acids was significantly lower in Elovl4(+/-) retinas, particularly the monounsaturated fatty acids. CONCLUSIONS The detailed characterization of this animal model provides the first in vivo evidence that Elovl4 haploinsufficiency is not the underlying key disease mechanism in STGD3. The results are consistent with a dominant negative mechanism for the deletion mutation. The Elovl4 knockout mouse is one of three complementary animal models that will help elucidate the disease mechanism.
Collapse
Affiliation(s)
- Dorit Raz-Prag
- From the NIDCD/NEI, National Institutes of Health, Bethesda, Maryland
| | - Radha Ayyagari
- Ophthalmology and Visual Sciences, W. K. Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Robert N. Fariss
- Biological Imaging Core, National Eye Institute, Bethesda, Maryland
| | - Md Nawajes A. Mandal
- Ophthalmology and Visual Sciences, W. K. Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Vidyullatha Vasireddy
- Ophthalmology and Visual Sciences, W. K. Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Sharon Majchrzak
- Laboratory of Membrane Biochemistry and Biophysics, NIAAA, Bethesda, Maryland; and the
| | - Andrea L. Webber
- Department of Ophthalmics Research, Merck Research Laboratories, West Point, Pennsylvania
| | - Ronald A. Bush
- From the NIDCD/NEI, National Institutes of Health, Bethesda, Maryland
| | - Norman Salem
- Laboratory of Membrane Biochemistry and Biophysics, NIAAA, Bethesda, Maryland; and the
| | - Konstantin Petrukhin
- Department of Ophthalmics Research, Merck Research Laboratories, West Point, Pennsylvania
| | - Paul A. Sieving
- From the NIDCD/NEI, National Institutes of Health, Bethesda, Maryland
- Corresponding author: Paul A. Sieving, National Eye Institute, National Institutes of Health, 31 Center Drive, Building 31, Room 6A03, MSC 2510, Bethesda, MD 20892;
| |
Collapse
|
12
|
Suh M, Clandinin MT. 20:5n-3 but not 22:6n-3 is a preferred substrate for synthesis of n-3 very-long- chain fatty acids (C24-C36) in retina. Curr Eye Res 2006; 30:959-68. [PMID: 16282130 DOI: 10.1080/02713680500246957] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The objective of this study was to determine if 20:5n-3 or 22:6n-3 is the primary precursor of very-long-chain fatty acids (VLCFAs; C24-C36) synthesized in retina. Rats were fed semisynthetic, nutritionally complete diet containing 20% (w/w) fat with 3% (w/w) of 22:6n-3. After 6 weeks feeding, the vitreal fluid of each eye was injected with [3H]20:5n-3 or [3H]22:6n-3. Rats were then maintained under constant light (330 lux) or dark conditions for 48 hr. After 48 hr in vivo metabolism, the amount of label present in individual fatty acids was determined in major phospholipids in retina. For [3H]22:6n-3, 90% of total incorporation remained in 22:6n-3, whereas for [3H]20:5n-3 the label was actively incorporated into pentaenoic and hexaenoic VLCFAs up to 34 carbon chain length. 22:5n-3 derived from [3H]20:5n-3 was among the most highly labeled fatty acids. These observations suggest that 22:6n-3 is incorporated directly into retinal phospholipids without further metabolism, whereas 20:5n-3 and 22:5n-3 are metabolically active precursors for synthesis of VLCFAs.
Collapse
Affiliation(s)
- Miyoung Suh
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
13
|
Umeda S, Ayyagari R, Suzuki MT, Ono F, Iwata F, Fujiki K, Kanai A, Takada Y, Yoshikawa Y, Tanaka Y, Iwata T. Molecular cloning of ELOVL4 gene from cynomolgus monkey (Macaca fascicularis). Exp Anim 2003; 52:129-35. [PMID: 12806887 DOI: 10.1538/expanim.52.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
ELOVL4, elongation factor of very long chain fatty acids-4, is known to be responsible for autosomal dominant macular degeneration and Stargardt-like macular degeneration. In this study, we cloned the monkey homologue of ELOVL4 and determined the cellular and tissue distribution of the gene product. Sequence analysis of the monkey ELOVL4 gene revealed a high degree of homology between human and monkey. The cloned full-length cDNA of monkey ELOVL4 encoded 314 amino acids, the same length as human and two amino acids longer than mouse. The monkey ELOVL4 conserved the characteristics typical of the super family of ELO enzymes involved in the metabolism of membrane-bound fatty acid elongation. Real-time quantitative PCR demonstrated that the monkey ELOVL4 gene was highly expressed in restricted tissue-specific fashion, not only in the retina but also in the skin (90% of retina) and thymus (111% of retina). Immunohistochemical analysis detected signals predominantly in the photoreceptor layer of the monkey retina.
Collapse
Affiliation(s)
- Shinsuke Umeda
- National Institute of Sensory Organs, National Tokyo Medical Center, Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Furland NE, Maldonado EN, Aveldaño MI. Very long chain PUFA in murine testicular triglycerides and cholesterol esters. Lipids 2003; 38:73-80. [PMID: 12669822 DOI: 10.1007/s11745-003-1033-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Very long chain (VLC) PUFA of the n-6 and n-3 series are known to occur in mammalian testis. The aim of this work was to characterize further two testicular lipid classes with VLCPUFA, cholesterol esters (CE) and total triglycerides (TG) in rat and mouse testis. The VLCPUFA predominating in these lipids were a series of n-6 pentaenes and tetraenes with 24 to 32 carbons, including small amounts of odd-chain PUFA, 28:5n-6 and 24:5n-6 prevailing in CE and TG, respectively. Most of the VLCPUFA of TG were concentrated in a small fraction of TG, made up by 1-O-alkyl-2,3-DAG. This TG subclass was absent altogether from the TG of sexually immature testis. The TG and the CE with VLCPUFA only occurred in testis of adult fertile animals. The proportion of VLCPUFA in total TG and CE was higher in rodents than in other mammals. In the n-6 PUFA-rich adult mouse testis, the amounts of testicular triacylglycerols decreased significantly after consumption of fish oil for 2 wk. Whereas 18:2n-6 was significantly reduced, the amounts of 22:5n-6 and longer n-6 PUFA were less affected in all major testicular lipids including PC and PE, where they were unchanged. The 1-O-alkyl-2,3-DAG and their n-6 VLCPUFA were virtually unaffected by the diet. The VLCPUFA-containing molecular species of CE and TG may represent a form of storage of cholesterol and polyenoic FA required to sustain spermatogenesis. Via chain-shortening, VLCPUFA stored in the neutral lipids may serve as precursors of the major C22 PUFA typical of cell membrane glycerophospholipids, protecting testicular cells against shifts in FA composition induced by dietary changes.
Collapse
Affiliation(s)
- Natalia E Furland
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas y Universidad Nacional del Sur, 8000-Bahía Blanca, Argentina
| | | | | |
Collapse
|
15
|
Giusto NM, Pasquaré SJ, Salvador GA, Castagnet PI, Roque ME, Ilincheta de Boschero MG. Lipid metabolism in vertebrate retinal rod outer segments. Prog Lipid Res 2000; 39:315-91. [PMID: 10856601 DOI: 10.1016/s0163-7827(00)00009-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- N M Giusto
- Instituto de Investigaciones Bioquímicas, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, CC 857, B 8000 FWB, Bahia Blanca, Argentina.
| | | | | | | | | | | |
Collapse
|
16
|
Rotstein NP, Pennacchiotti GL, Sprecher H, Aveldaño MI. Active synthesis of C24:5, n-3 fatty acid in retina. Biochem J 1996; 316 ( Pt 3):859-64. [PMID: 8670163 PMCID: PMC1217429 DOI: 10.1042/bj3160859] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The formation of 14C-labelled long-chain and very-long-chain (n-3) pentaenoic and hexaenoic fatty acids was studied in bovine retina by following the metabolism of. [14C]-docosapentaenoate [C22:5, n-3 fatty acid (22:5 n-3)], [14C]-docosahexaenoate (22:6 n-3), and [14C]acetate. With similar amounts of 22:5 n-3 and 22:6 n-3 as substrates, the former was actively transformed into 24:5 n-3, whereas the latter was virtually unmodified. Labelled 24:5, 26:5, 24:6 and 22:6 were formed from [1-14C]22:5 n-3, showing that pentaenoic fatty acids including 24:5 n-3 can be elongated and desaturated within the retina. When retinal microsomes were incubated with [1-14C]22:5 n-3, 24:5 n-3 was the only fatty acid formed. In retinas incubated with [14C]acetate, 24:5 n-3 was the most highly labelled fatty acid among the polyenes synthesized, 24:6 n-3 being a minor product. Such selectivity in the elongation of two fatty acids identical in length, 22:5 n-3 and 22:6 n-3, despite the fact that 22:5 is a minor and 22:6 a major fatty acid constituent of retina, suggests that the active formation of 24:5 n-3 plays a key role in n-3 polyunsaturated fatty acid (PUFA) metabolism. This compound might give rise to even longer pentaenes via elongation, and to the major PUFAs of retina, 22:6 n-3, by 6-desaturation and chain shortening. Of all retinal lipids, a minor component, triacylglycerol (TG), incorporated the largest amounts of [14C]22:5 and 22:6. TG also concentrated most of the [14C]24:5 formed in retina, whether from [14C]22:5 n-3 or from [14C]acetate, suggesting an important role for this lipid in supporting PUFA metabolism and the synthesis of 22:6 n-3.
Collapse
Affiliation(s)
- N P Rotstein
- Instituto de investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur and Consejo de investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | | | | | | |
Collapse
|
17
|
Käkelä R, Ackman RG, Hyvärinen H. Very long chain polyunsaturated fatty acids in the blubber of ringed seals (Phoca hispida sp.) from Lake Saimaa, Lake Ladoga, the Baltic Sea, and Spitsbergen. Lipids 1995; 30:725-31. [PMID: 7475988 DOI: 10.1007/bf02537799] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Blubbers of four ringed seal subspecies from Lake Saimaa, Lake Ladoga, the Baltic Sea, and Spitsbergen were analyzed for very long chain polyunsaturated fatty acids (VLCPUFA; > C22) using gas-liquid chromatography and gas chromatography/mass spectrometry. The VLCPUFA of the blubber oils were mainly n-3 polyunsaturated fatty acids--23:5n-3, 24:3n-3, 24:4n-3, 24:5n-3, 24:6n-3, 26:5n-3, 26:6n-3, and 28:7n-3. The largest VLCPUFA components in all populations were 24:5n-3 (0.1-0.2 wt% of total fatty acids) and 24:6n-3 (0.1%), but 24:4n-3 (0.1%) was also prominent in the Baltic specimens. The blubber oils of the freshwater species contained considerably more 24:4n-6 and 24:5n-6 than the blubbers of the marine species. The differences among the VLCPUFA in these subspecies appear to be mainly due to different dietary VLCPUFA.
Collapse
Affiliation(s)
- R Käkelä
- Department of Biology, University of Joensuu, Finland
| | | | | |
Collapse
|
18
|
Abstract
Fatty acids with greater than 22 carbon atoms (very long chain fatty acids, VLCFA) are present in small amounts in most animal tissues. Saturated and monoenoic VLCFA are major components of brain, while the polyenoic VLCFA occur in significant amounts in certain specialized animal tissues such as retina and spermatozoa. Biosynthesis of VLCFA occurs by carbon chain elongation of shorter chain fatty acid precursors while beta-oxidation takes place almost exclusively in peroxisomes. Mitochondria are unable to oxidize VLCFA because they lack a specific VLCFA coenzyme A synthetase, the first enzyme in the beta-oxidation pathway. VLCFA accumulate in the tissues of patients with inherited abnormalities in peroxisomal assembly, and also in individuals with defects in enzymes catalyzing individual reactions along the beta-oxidation pathway. It is believed that the accumulation of VLCFA in patient tissues contributes to the severe pathological changes which are a feature of these conditions. However, little is known of the role of VLCFA in normal cellular processes, and of the molecular basis for their contribution to the disease process. The present review provides an outline of the current knowledge of VLCFA including their biosynthesis, degradation, possible function and involvement in human disease.
Collapse
Affiliation(s)
- A Poulos
- Department of Chemical Pathology, Women's and Children's Hospital, North Adelaide, South Australia
| |
Collapse
|
19
|
Berger A, German JB, Gershwin ME. Biochemistry of cardiolipin: sensitivity to dietary fatty acids. ADVANCES IN FOOD AND NUTRITION RESEARCH 1993; 37:259-338. [PMID: 8398046 DOI: 10.1016/s1043-4526(08)60118-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- A Berger
- Department of Food Science and Technology, University of California, Davis 95616
| | | | | |
Collapse
|
20
|
Aveldaño MI, Rotstein NP, Vermouth NT. Occurrence of long and very long polyenoic fatty acids of the n-9 series in rat spermatozoa. Lipids 1992; 27:676-80. [PMID: 1487965 DOI: 10.1007/bf02536023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dietary deficiency of essential fatty acids of the n-3 and n-6 series is known to promote a compensatory increase in polyenoic fatty acids of the n-9 series in the lipids of mammalian tissues. In the present study long-chain n-9 polyenes were found to be normal components of the epididymis and especially of sperm isolated from that tissue, in healthy, well-fed, fertile rats maintained on essential fatty acid-sufficient diets. The n-9 polyenes occurred in large concentrations in the choline glycerophospholipids (CGP), the major phospholipid class of spermatozoa in epididymal cauda, and were highly concentrated in plasmenylcholine, the major subclass of CGP. The uncommon polyene 22:4n-9 was found in the highest proportion, followed in order of relative abundance by 22:3n-9, 20:3n-9 and 24:4n-9. These polyenes were probably derived from oleate (18:1n-9) in much the same way as long-chain polyenes of the n-6 and n-3 series are derived from linoleate (18:2n-6) and linolenate (18:3n-3), respectively.
Collapse
Affiliation(s)
- M I Aveldaño
- Instituto de Investigaciones Bloquimicas, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | | | | |
Collapse
|
21
|
Menguy L, Christon R, Van Dorsselaer A, Léger CL. Apparent relative retention of the phosphatidylethanolamine molecular species 18:0-20:5(n-3), 16:0-22:6(n-3) and the sum 16:0-20:4(n-6) plus 16:0-20:3(n-9) in the liver microsomes of pig on an essential fatty acid deficient diet. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1123:41-50. [PMID: 1730045 DOI: 10.1016/0005-2760(92)90169-v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Attempts at a better understanding of the cell membrane organization and functioning need to assess the physical properties which partly depend (i) on the positional distribution of the fatty acids in the membrane phospholipids (PLs) and (ii) on the way by which the PL molecular species are affected by exogenous fatty acids. To do that, the effects of essential (polyunsaturated) fatty acid (EFA) deficiency and enrichment were studied in the liver microsomes of piglets feeding on either an EFA-deficient diet or an EFA-enriched diet containing hydrogenated coconut oil or a mixture of soya + corn oils, respectively. After derivatization, the diacylated forms of choline and ethanolamine PLs were analyzed using a combination of chromatographic techniques and fast-atom bombardment-mass spectrometry. The dinitrobenzoyl-diacylglycerol derivatives corresponding to the molecular species of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were identified. It appears that three factors brought about a marked apparent relative retention: the nature of (i) the base of the polar head, (ii) fatty acids at the sn-1 position and (iii) fatty acids at the sn-2 position. The highest apparent relative retentions were displayed by the 18:0-20:5(n-3)-PE and 16:0-22:6(n-3)-PE. It is noteworthy that the behavior of 20:3 n-9--which is synthesized during the EFA-deficient diet by the same bioconversion system as 20:4 n-6--was very similar to that of 20:4 n-6 during the formation of PC and PE molecular species and that the molecular species of PE containing 20:4(n-6) and 20:3(n-9), gathered together as metabolical homologues, were also apparently retained, particularly in association with 16:0. Present observations are consistent with some others showing retention or preferential distribution of EFA in PE and suggest that specific acyltransferase(s), ethanolamine phosphotransferase and methyltransferase would be mainly involved for PE and PC formation in liver endoplasmic reticulum. Fast-atom bombardment-mass spectrometry of intact phospholipids enables us to show that there is no very long chain dipolyunsaturated phospholipid in liver endoplasmic reticulum.
Collapse
Affiliation(s)
- L Menguy
- INRA, Centre de Recherches de Jouy-en-Josas, France
| | | | | | | |
Collapse
|
22
|
Robinson BS, Johnson DW, Poulos A. Novel molecular species of sphingomyelin containing 2-hydroxylated polyenoic very-long-chain fatty acids in mammalian testes and spermatozoa. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)46009-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
23
|
Aveldaño MI. Long and very long polyunsaturated fatty acids of retina and spermatozoa: the whole complement of polyenoic fatty acid series. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1992; 318:231-42. [PMID: 1636492 DOI: 10.1007/978-1-4615-3426-6_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- M I Aveldaño
- Instituto de Investigaciones Bioquímicas, Universidad Nacional del Sur-CONICET, Bahía Blanca, Argentina
| |
Collapse
|
24
|
Cinti DL, Cook L, Nagi MN, Suneja SK. The fatty acid chain elongation system of mammalian endoplasmic reticulum. Prog Lipid Res 1992; 31:1-51. [PMID: 1641395 DOI: 10.1016/0163-7827(92)90014-a] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Much has been learned about FACES of the endoplasmic reticulum since its discovery in the early 1960s. FACES consists of four component reactions, requires the fatty acid to be activated in the form of a CoA derivative, utilizes reducing equivalents in the form of NADH or NADPH, is induced by a fat-free diet, resides on the cytoplasmic surface of the endoplasmic reticulum, appears to function in concert with the desaturase system and appears to exist in multiple forms (either multiple condensing enzymes connected to a single pathway or multiple pathways). FACES has been found in all tissues investigated, namely, liver, brain, kidney, lung, adrenals, retina, testis, small intestine, blood cells (lymphocytes and neutrophils) and fibroblasts, with one exception--the heart has no measurable activity. Yet, much more needs to be learned. The critical, inducible and rate-limiting condensing enzyme has resisted solubilization and purification; the purification of the other components has met with limited success. We know nothing about the site of synthesis of each component of FACES. How is each component enzyme integrated into the endoplasmic reticulum membrane? Is there a single mRNA directing synthesis of all four components or are there four separate mRNAs? How are elongation and desaturation coordinated? What is (are) the physiological regulator(s) of FACES--ADP, AMP, IP3, G-proteins, phosphorylation, CoA, Ca2+, cAMP, none of these? The molecular biology of FACES is only in the fetal stage of development. We are only scratching the surface--it is an undiscovered country.
Collapse
Affiliation(s)
- D L Cinti
- Department of Pharmacology, University of Connecticut Health Center, Farmington 06030
| | | | | | | |
Collapse
|
25
|
Vysotskii MV, Svetashev VI. Identification, isolation and characterization of tetracosapolyenoic acids in lipids of marine coelenterates. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1083:161-5. [PMID: 1674660 DOI: 10.1016/0005-2760(91)90037-i] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several tetracosapolyenoic acids (TPA) were detected in lipids of different marine coelenterates. Two of these acids were isolated and their structures were confirmed by chemical and spectral methods as all-cis-6,9,12,15,18-tetracosapentaenoic and all-cis-6,9,12,15,18,21-tetracosahexaenoic acid. Their distribution among lipids of a number of species of different classes of coelenterates from the northern and tropical seas, among neutral and polar lipids of these organisms was investigated. Significant quantities of TPA were found in all of the Octacorallia species studied. In some cases the sum of TPA reaches the level of 20% of total lipid fatty acids. The fatty acid composition of different coelenterates is also discussed.
Collapse
Affiliation(s)
- M V Vysotskii
- Institute of Marine Biology, U.S.S.R. Academy of Sciences, Vladivostok
| | | |
Collapse
|
26
|
Robinson BS, Johnson DW, Poulos A. Metabolism of hexacosatetraenoic acid (C26:4,n-6) in immature rat brain. Biochem J 1990; 267:561-4. [PMID: 2185745 PMCID: PMC1131329 DOI: 10.1042/bj2670561] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rat brain was recently found to contain polyenoic very-long-chain fatty acids (VLCFA) belonging to the n-3 and n-6 series with four, five and six double bonds and even-carbon chain lengths from 24 to 38 [Robinson, Johnson & Poulos (1990) Biochem. J. 265, 763-767]. In the present paper, the metabolism in vivo of hexacosatetraenoic acid (C26:4,n-6) was studied in neonatal rat brain. Rats were injected intracerebrally with [1-14C]C26:4,n-6 and the labelled metabolites were examined after 4 h. Radioactivity was detected mainly in non-esterified fatty acids, with smaller amounts in other neutral lipids and phospholipids. Radiolabelled fatty acid products included C28-36 tetraenoic and C26-28 pentaenoic VLCFA formed by elongation and desaturation of the substrate, and C14-24 saturated, C16-24 monoenoic, C18-24 dienoic, C18-22 trienoic and C20-24 tetraenoic fatty acids formed from released [1-14C]acetate either by synthesis de novo or by elongation of endogenous fatty acids. The data suggest that polyenoic VLCFA are synthesized in brain from shorter-chain precursor fatty acids and undergo beta-oxidation.
Collapse
Affiliation(s)
- B S Robinson
- Department of Chemical Pathology, Adelaide Medical Centre for Women and Children, South Australia
| | | | | |
Collapse
|
27
|
Robinson BS, Johnson DW, Poulos A. Unique molecular species of phosphatidylcholine containing very-long-chain (C24-C38) polyenoic fatty acids in rat brain. Biochem J 1990; 265:763-7. [PMID: 2306213 PMCID: PMC1133699 DOI: 10.1042/bj2650763] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rat brain has been shown to contain polyenoic very-long-chain fatty acids (VLCFA) belonging to the n-3 and n-6 series with four, five and six double bonds and even-carbon chain lengths from 24 to 38. These fatty acids are almost exclusively located in unusual molecular species of phosphatidylcholine at the sn-1 position of the glycerol backbone, whereas saturated, monoenoic and polyenoic fatty acids with less than 24 carbon atoms are present at the sn-2 position. Polyenoic VLCFA phosphatidylcholine in neonatal rat brain is enriched with n-6 pentaenoic and n-3 hexaenoic VLCFA with up to 36 carbon atoms, whereas the corresponding phospholipid in adult rat brain mainly contains n-6 tetraenoic and n-3 pentaenoic VLCFA with up to 38 carbon atoms. The total amount of polyenoic VLCFA associated with phosphatidylcholine is highest in the brain of immature animals. Polyenoic VLCFA phosphatidylcholine appears to be predominantly confined to nervous tissue in rats, and it is envisaged that this phospholipid is of physiological significance.
Collapse
Affiliation(s)
- B S Robinson
- Department of Chemical Pathology, Adelaide Medical Centre for Women and Children, Australia
| | | | | |
Collapse
|
28
|
Wetzel MG, Fahlman C, Alligood JP, O'Brien PJ, Aguirre GD. Metabolic labeling of normal canine rod outer segment phospholipids in vivo and in vitro. Exp Eye Res 1989; 48:149-60. [PMID: 2522054 DOI: 10.1016/0014-4835(89)90028-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Twenty-four hours after the intravitreal injection of [3H]palmitate and [14C]docosahexaenoate in dogs, the rod outer segment phospholipids are highly labeled. Palmitate is found predominantly in phosphatidylcholine (PC), with lesser amounts in phosphatidylethanolamine (PE) and very little in either phosphatidylserine (PS) or phosphatidylinositol (PI). Docosahexaenoate most heavily labeled PE followed by PC, with lesser amounts in PS and very little in PI. Two-hour incubations of 3 mm trephine buttons removed from dog retinas produced very similar patterns of labeling with palmitate and docosahexaenoate. In vitro incubation of retina buttons with [3H]arachidonate produced heavy labeling of PI, with much less in PC and very little in either PS or PE. [3H]Glycerol labeled in PC, PI and PE in descending order but PS almost not at all. [3H]Serine labeled PS predominantly, but small amounts were found in PC, PE and PI. The trephine retina buttons can be utilized for multiple-precursor incubations and studies of differential metabolism in retinal regions, particularly when studying scarce tissue from mutant animals or humans with inherited retinal degenerations.
Collapse
Affiliation(s)
- M G Wetzel
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- T Rezanka
- Department of Biogenesis, Institute of Microbiology, Czechoslovak Academy of Sciences, Prague
| |
Collapse
|
30
|
Affiliation(s)
- A Poulos
- Department of Chemical Pathology, Adelaide Children's Hospital, South Australia
| |
Collapse
|