1
|
The role of protein crystallography in defining the mechanisms of biogenesis and catalysis in copper amine oxidase. Int J Mol Sci 2012; 13:5375-5405. [PMID: 22754303 PMCID: PMC3382800 DOI: 10.3390/ijms13055375] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 04/22/2012] [Accepted: 04/26/2012] [Indexed: 12/22/2022] Open
Abstract
Copper amine oxidases (CAOs) are a ubiquitous group of enzymes that catalyze the conversion of primary amines to aldehydes coupled to the reduction of O2 to H2O2. These enzymes utilize a wide range of substrates from methylamine to polypeptides. Changes in CAO activity are correlated with a variety of human diseases, including diabetes mellitus, Alzheimer’s disease, and inflammatory disorders. CAOs contain a cofactor, 2,4,5-trihydroxyphenylalanine quinone (TPQ), that is required for catalytic activity and synthesized through the post-translational modification of a tyrosine residue within the CAO polypeptide. TPQ generation is a self-processing event only requiring the addition of oxygen and Cu(II) to the apoCAO. Thus, the CAO active site supports two very different reactions: TPQ synthesis, and the two electron oxidation of primary amines. Crystal structures are available from bacterial through to human sources, and have given insight into substrate preference, stereospecificity, and structural changes during biogenesis and catalysis. In particular both these processes have been studied in crystallo through the addition of native substrates. These latter studies enable intermediates during physiological turnover to be directly visualized, and demonstrate the power of this relatively recent development in protein crystallography.
Collapse
|
2
|
Pietrangeli P, Nocera S, Mondovi B, Morpurgo L. Is the catalytic mechanism of bacteria, plant, and mammal copper-TPQ amine oxidases identical? BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1647:152-6. [PMID: 12686125 DOI: 10.1016/s1570-9639(03)00083-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This short review is mostly concerned with the work carried out in Rome on the copper amine oxidase from bovine serum (BSAO). The first target was the copper oxidation state and its relationship with the organic cofactor. It was found that copper is not reduced on reaction with amines under anaerobic conditions or along the catalytic cycle and that it is not within bonding distance of the quinone cofactor. The copper stability in the oxidised state was supported by BSAO ability to oxidise benzylhydrazine, a slow substrate, in the presence of N,N-diethyldithiocarbamate (DDC) and by the substantial catalytic activity of Co(2+)-substituted BSAO. Parallel work established that only one subunit of the dimeric enzyme readily binds reagents of the carbonyl group. Flexible hydrazides with a long aromatic tail were found to be highly specific inhibitors, suggesting the presence of an extended hydrophobic region at the catalytic site. A study by stopped-flow transient spectroscopy and steady state kinetics led to the formulation of a simplified, yet complete and consistent, catalytic mechanism for BSAO that was compared with that available for lentil seedling amine oxidase (LSAO). As in other copper amine oxidases, BSAO is inactivated by H(2)O(2) produced in the catalytic reaction, while the cofactor is stabilised in its reduced state. A conserved tyrosine hydrogen-bonded to the cofactor might be oxidised.
Collapse
Affiliation(s)
- P Pietrangeli
- Department of Biochemical Sciences A. Rossi Fanelli and C.N.R. Centre of Molecular Biology, La Sapienza, University, P.le A. Moro 5, 00185 Rome, Italy
| | | | | | | |
Collapse
|
3
|
Lee Y, Jeon HB, Huang H, Sayre LM. Temporary inactivation of plasma amine oxidase by alkylhydrazines. A combined enzyme/model study implicates cofactor reduction/reoxidation but cofactor deoxygenation and subsequent reoxygenation in the case of hydrazine itself. J Org Chem 2001; 66:1925-37. [PMID: 11300883 DOI: 10.1021/jo001115o] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been known for some time that hydrazine and its methyl and 1,1-dimethyl analogues induce inactivation of the copper-containing quinone-dependent plasma amine oxidase but that the activity recovers over time, suggesting metabolism of all three inhibitors. However, the mechanism responsible for loss and regain of activity has not been investigated. In this study a combination of enzyme studies under a controlled atmosphere along with model studies using 5-tert-butyl-2-hydroxy-1,4-benzoquinone to mimic the 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor of the enzyme suggest that regain of enzyme activity represents two different O(2)-dependent processes. In the case of methylhydrazine and 1,1-dimethylhydrazine, we propose that the inactive methylhydrazone/azo form of the enzyme slowly rehydrates and eliminates MeN=NH to give the triol cofactor form, which instantly reoxidizes to the catalytically active quinone form in the presence of O(2). Metabolism of methylhydrazine represents its conversion to CH(4) and N(2), and of 1,1-dimethylhydrazine to CH(2)=O, CH(4), and N(2). In the case of hydrazine itself, however, we propose that the inactive hydrazone/azo form of the enzyme instead undergoes a slow decomposition, probably facilitated by the active-site copper, to give N(2) and a novel 5-desoxy resorcinol form of the cofactor. The latter undergoes a rapid, but noninstantaneous reoxygenation at C5 to restore the active cofactor form, also probably mediated by the active-site copper.
Collapse
Affiliation(s)
- Y Lee
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
4
|
Padiglia A, Medda R, Bellelli A, Agostinelli E, Morpurgo L, Mondovi’ B, Agrò A, Floris G. The Reductive and Oxidative Half‐Reactions and the Role of Copper Ions in Plant and Mammalian Copper−Amine Oxidases. Eur J Inorg Chem 2000. [DOI: 10.1002/1099-0682(20011)2001:1<35::aid-ejic35>3.0.co;2-#] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Alessandra Padiglia
- Department of Sciences Applied to Biosystems, University of Cagliari, 09100 Cagliari, Italy
| | - Rosaria Medda
- Department of Sciences Applied to Biosystems, University of Cagliari, 09100 Cagliari, Italy
| | - Andrea Bellelli
- CNR Center of Molecular Biology University of Rome “La Sapienza”, 00100 Rome, Italy
| | - Enzo Agostinelli
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, 00100 Rome, Italy
| | - Laura Morpurgo
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, 00100 Rome, Italy
| | - Bruno Mondovi’
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, 00100 Rome, Italy
| | | | - Giovanni Floris
- Correspondence address: Dipartimento di Scienze Applicate ai Biosistemi Università di Cagliari, Città Universitaria, 09042 Monserrato (CA), Italy Fax: (internat.) + 39‐070/675‐4523
| |
Collapse
|
5
|
Bellelli A, Morpurgo L, Mondovì B, Agostinelli E. The oxidation and reduction reactions of bovine serum amine oxidase. A kinetic study. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3264-9. [PMID: 10824112 DOI: 10.1046/j.1432-1327.2000.01351.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The presteady-state and steady-state kinetics of bovine serum amine oxidase (BSAO) were analyzed by stopped-flow transient spectroscopy. A simplified model of the catalytic cycle was found to describe the experimental data and the rate constants of the individual steps were used to calculate Michaelis parameters that agree with the direct determinations. In spite of many studies on selected reactions from the catalytic cycle, this is amongst the first efforts to provide a comprehensive kinetic description of the reactions of BSAO, whose results can be compared with the steady-state parameters. The reoxidation reaction by dioxygen is more complex than previously thought, in agreement with a recent report [Su, Q. & Klinman, J.P. (1998) Biochemistry 37, 12513-12525], and occurs in at least two steps whose rate constants, previously undetermined, have been measured. The reaction of the oxidized enzyme with the amine substrate is poorly determined in this type of experiment, thus irreversible combination with aromatic hydrazine inhibitors was used as a model system, demonstrating that the mechanism and rate constants of their reaction is fully compatible with an accurate description of the catalytic cycle with the physiological substrate. These results constitute a simplified, yet complete and consistent, description of the catalytic cycle and offer an interesting comparison with those obtained on plant amine oxidases; two steps of the catalytic cycle are significantly slower in BSAO than in pea seedling or lentil seedling amine oxidases, namely the reoxidation and the trans-iminative proton abstraction occurring in the enzyme-substrate complex. The former difference is rationalized as being due to the low to zero concentration of the semiquinolamine-radical intermediate, while the latter is less easily interpreted.
Collapse
Affiliation(s)
- A Bellelli
- Centro di Biologia Molecolare del C.N.R. e Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Universitá di Roma 'La Sapienza', Italy.
| | | | | | | |
Collapse
|
6
|
Pietrangeli P, Nocera S, Fattibene P, Wang X, Mondovì B, Morpurgo L. Modulation of bovine serum amine oxidase activity by hydrogen peroxide. Biochem Biophys Res Commun 2000; 267:174-8. [PMID: 10623594 DOI: 10.1006/bbrc.1999.1925] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bovine serum amine oxidase (BSAO), reduced by excess amine under limited turnover conditions, was over 80% inactivated by H(2)O(2) upon oxygen exhaustion. The UV-Vis spectrum and the reduced reactivity with carbonyl reagents showed that the cofactor topaquinone (TPQ) was stabilized in reduced form. The protein large M(r) (170 kDa) prevented the identification of modified residues by amino acid analyses. Minor changes of the Cu(2+) EPR signal and the formation of a radical at g = 2.001, with intensity a few percent of that of the Cu(2+) signal, unaffected by a temperature increase, suggest that Cu(2+)-bound histidines were not oxidized and the radical was not the Cu(+)-semiquinolamine in equilibrium with Cu(2+)-aminoquinol. It may derive from the modification of a conserved residue in proximity of the active site, possibly the tyrosine at hydrogen-bonding distance of TPQ C-4 ionized hydroxyl. The inactivation reaction appears to be a general feature of copper-containing amine oxidases. It may be part of an autoregulatory process in vivo, possibly relevant to cell adhesion and redox signaling.
Collapse
Affiliation(s)
- P Pietrangeli
- Centro di Biologia Molecolare del CNR, Università "La Sapienza,", P. le A. Moro 5, Rome, 00185, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Agostinelli E, De Matteis G, Mondovì B, Morpurgo L. Reconstitution of Cu2+-depleted bovine serum amine oxidase with Co2+. Biochem J 1998; 330 ( Pt 1):383-7. [PMID: 9461534 PMCID: PMC1219151 DOI: 10.1042/bj3300383] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two different Cu2+-depleted derivatives of bovine serum amine oxidase (BSAO) have recently been prepared, which contain about 0.5 mol/dimer of phenylhydrazine-reactive topa quinone (TPQ) cofactor and, depending on the reagents used, about 0.2 or 0.7 residual Cu2+/dimer [Agostinelli, De Matteis, Sinibaldi, Mondovi and Morpurgo (1997) Biochem. J. 324, 497-501]. The benzylamine oxidase activity of both derivatives was <5% and increased up to approximately 20% on incorporation of Co2+, irrespective of the residual Cu2+ content, which was unaffected by the treatment according to atomic absorption and ESR spectroscopy. The residual Cu2+ ions appeared to be distributed one per dimer and to be bound to inactive subunits, whereas Co2+ was bound to active subunits. The change in the active site had an appreciable influence on the kinetic behaviour. With several amines, the kinetic parameters, Km and kc, measured for Co2+-BSAO were different from those for native BSAO. This excludes the possibility that the catalytic activity was due to residual Cu2+. Furthermore, Co2+ restored to nearly native level the intensity of the TPQ 480 nm band and the reactions with phenylhydrazine or benzylhydrazine, which had been slowed down or abolished, respectively, in Cu2+-depleted samples. The CD spectrum, measured for the derivative with low Cu2+ content, was compatible with Co2+ binding to the copper site. The amine oxidase activity of the Co2+ derivative, which cannot form a semiquinone radical as an intermediate of the catalytic reaction, strongly suggests that the Cu+-semiquinone is not an obligatory intermediate of BSAO catalytic pathway.
Collapse
Affiliation(s)
- E Agostinelli
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli' and Centro di Biologia Molecolare del Consiglio Nazionale delle Ricerche, Università di Roma 'La Sapienza', P.le A. Moro, 5, 00185 Roma, Italy
| | | | | | | |
Collapse
|
8
|
Zhou M, Panchuk-Voloshina N. A one-step fluorometric method for the continuous measurement of monoamine oxidase activity. Anal Biochem 1997; 253:169-74. [PMID: 9367499 DOI: 10.1006/abio.1997.2392] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have developed a one-step fluorometric method for the measurement of monoamine oxidase (MAO) activity in 96-well microplates with sensitivity 10-fold higher than the conventional spectrophotometric assay method. This assay is based on the detection of H2O2 in a horseradish peroxidase-coupled reaction using N-acetyl-3, 7-dihydroxyphenoxazine (Amplex Red), a highly sensitive and stable probe for H2O2. With a single sampling, this assay is useful for performing both end-point and continuous measurements of MAO activity. Using a commercially available enzyme, our assay allows the detection of MAO B activity as low as 1.2 x 10(-5) U/ml. When applied to crude tissue homogenates, we have been able to selectively detect both MAO A and MAO B from cow brain tissue with protein content as low as 200 microgram per sample. The potential applications of this assay include the measurement of MAO activity in normal and diseased tissues, blood samples, and other biological fluids and the screening of drugs for the treatment of MAO-mediated diseases.
Collapse
Affiliation(s)
- M Zhou
- Molecular Probes, Inc., 4849 Pitchford Avenue, Eugene, Oregon, 97402, USA
| | | |
Collapse
|
9
|
Agostinelli E, De Matteis G, Sinibaldi A, Mondovì B, Morpurgo L. Reactions of the oxidized organic cofactor in copper-depleted bovine serum amine oxidase. Biochem J 1997; 324 ( Pt 2):497-501. [PMID: 9182709 PMCID: PMC1218457 DOI: 10.1042/bj3240497] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel copper-depleted bovine serum amine oxidase (BSAO), in which about half the molecules contained the organic cofactor in the oxidized form, was prepared by adding a reductant in anaerobic conditions to the cyanide-reacted protein. The CuI-semiquinone formed in these conditions reoxidizes after the removal of copper. The inactive derivative was reduced by benzylamine at approx. 1/1000 the rate of BSAO. The pseudo-first-order reaction was preceded by the formation of a protein-benzylamine complex with dissociation constant, Kd, of 4.9+/-0.5 mM, similar to the Km of BSAO (2.2 mM). Also the reactions with phenylhydrazine and benzohydrazide were considerably slower than in holo-BSAO, whereas the reactions with p-pyridine-2-ylphenylacetohydrazide, containing a longer aromatic tail, and semicarbazide, lacking an aromatic moiety, were less severely affected. Removal of copper had no effect on the optical spectra of BSAO and of most adducts, containing the cofactor in quinol form, showing that copper is bound to neither the oxidized nor the reduced cofactor. Benzylhydrazine did not produce optical effects but was tightly bound, as inferred from its inhibitory effect on reaction with other molecules. Substrate and inhibitors might bind a hydrophobic pocket at some distance from the quinone, probably near the protein surface, with their affinity depending on the hydrophobic character and pKa. The binding, which is not greatly influenced by copper removal, probably induces a copper-dependent change of conformation, 'opening' a pathway to the active site buried in the protein interior.
Collapse
Affiliation(s)
- E Agostinelli
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Università di Roma 'La Sapienza', P.le Aldo Moro, 5, 00185 Roma, Italia
| | | | | | | | | |
Collapse
|
10
|
De Biase D, Agostinelli E, De Matteis G, Mondovì B, Morpurgo L. Half-of-the-sites reactivity of bovine serum amine oxidase. Reactivity and chemical identity of the second site. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:93-9. [PMID: 8620899 DOI: 10.1111/j.1432-1033.1996.0093n.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The organic cofactor of bovine serum amine oxidase was identified as 2,4,5-trihydroxyphenylalanine quinone by means of the phenylhydrazine adduct [Janes, S. M., Mu, D., Wemmer, D., Smith, A. J., Kaur, S., Maltby, D., Burligame, A.L. & Klinman, J.P. (1990) Science 248, 981-987]. A still debated question is, however, whether the dimeric protein binds two mol phenylhydrazine/mole or only one, that is whether it actually contains two identical independent carbonyl cofactors. This matter is addressed in the present study by means of the protein reactions with phenylhydrazine and other inhibitors such as semicarbazide and p-pyridine-2-yl-phenylacetohydrazide. The two latter reagents were found to bind in two steps, one mole/mole dimer in the first step with loss of catalytic activity but only about (0.10-0.35 mol/mol) in the second one. Similar results were obtained by either optical spectroscopy or by reverse-phase HPLC of the labelled peptides produced on proteolysis. Irrespective of the inhibitor nature and reacted amount, all adducts formed on proteolysis a single labelled peptide, of same 25-amino-acid composition, showing that the same cofactor is present in both subunits, in the same stretch of the polypeptide chain. The slow reaction of the second cofactor may be related to slow conformational equilibria, which are established after the first cofactor has reacted and are probably mediated by a change of the hydrogen bond pattern. The conformers spectroscopic properties suggest that they differ in whether the cofactor does or does not directly interact with copper.
Collapse
Affiliation(s)
- D De Biase
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Università La Sapienza, Roma, Italy
| | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- C Hartmann
- Khepri Pharmaceuticals, Inc., South San Francisco, California 94080, USA
| | | |
Collapse
|
12
|
McGuirl MA, McCahon CD, McKeown KA, Dooley DM. Purification and characterization of pea seedling amine oxidase for crystallization studies. PLANT PHYSIOLOGY 1994; 106:1205-1211. [PMID: 7824646 PMCID: PMC159650 DOI: 10.1104/pp.106.3.1205] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pea (Pisum sativum L.) seedling amine oxidase (EC 1.4.3.6) is the first amine oxidase to be crystallized that diffracts to atomic resolution (2.5 A). Extensive modifications of a published purification procedure were necessary to obtain protein that would give diffraction-quality crystals. Here we report the improved purification and also use this high-purity protein to reexamine some fundamental characteristics of pea seedling amine oxidase. The extinction coefficient at 280 nm (epsilon 1%(280)) and the molecular mass of the protein are investigated by a variety of techniques, yielding epsilon 1%(280) = 20 cm-1 and a mass 150 +/- 6 kD. In addition, the stoichiometry of the metal and organic cofactors, Cu(II) and 6-hydroxy dopa (Topa) quinone, respectively, is examined. The ratio of Cu(II):Topa:protein monomer is found to be 1:1:1.
Collapse
Affiliation(s)
- M A McGuirl
- Department of Chemistry and Biochemistry, Montana State University, Bozeman 59717
| | | | | | | |
Collapse
|
13
|
Agostinelli E, Morpurgo L, Wang C, Giartosio A, Mondovì B. Properties of cobalt-substituted bovine serum amine oxidase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 222:727-32. [PMID: 8026486 DOI: 10.1111/j.1432-1033.1994.tb18918.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Half-copper-depleted and fully copper-depleted amine oxidase from bovine serum were reconstituted with either copper or cobalt. All samples were studied by high-sensitivity scanning calorimetry, by enzyme activity analysis, and by reactivity with phenylhydrazine. The calorimetric profile of the protein was strongly modified by the removal of a single Cu ion approximately to the same extent as by complete copper removal, in agreement with the loss of over 80% enzymic activity. The thermograms of metal-reconstituted species showed a marked similarity with that of the native enzyme, irrespective of whether copper or cobalt was present. Reactivity with phenylhydrazine and enzymic activity measurements showed that in cobalt-substituted amine oxidase the organic cofactor was reactive and the enzyme was catalytically competent, although kinetically less efficient. These observations agree both with previous findings on the protein half-site reactivity and with previous suggestions for a copper conformational role in bovine serum amine oxidase, namely of maintaining a functional conformation at the active site.
Collapse
Affiliation(s)
- E Agostinelli
- Department of Biochemical Sciences A. Rossi Fanelli, University of Rome La Sapienza, Italy
| | | | | | | | | |
Collapse
|
14
|
Bossa M, Morpurgo GO, Morpurgo L. Models and molecular orbital semiempirical calculations in the study of the spectroscopic properties of bovine serum amine oxidase quinone cofactor. Biochemistry 1994; 33:4425-31. [PMID: 8155661 DOI: 10.1021/bi00180a041] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The electronic properties of 2,4,5-trihydroxyphenylalanine quinone (TPQ), the cofactor of bovine serum amine oxidase [Janes, S. M., Mu, D., Wemmer, D., Smith, A. J., Kaur, S., Maltby, D., Burlingame, A. L., & Klinman, J. P. (1990) Science 248, 981-987], and some adducts with hydrazines were investigated by means of low-molecular-weight models and semiempirical molecular orbital calculation methods. The enzyme visible band was assigned to the first pi-->pi* transition of the cofactor in p-quinonic form, with the C-4 hydroxyl ionized and hydrogen bonded either to a water molecule or to a basic protein residue. The spectra of the protein adducts with some substituted hydrazines were well accounted for by assuming the inhibitor bound to the C-5 carbonyl, usually in azo form. The adduct with the unsubstituted hydrazine was instead assigned an o-quinone hydrazone form, stabilized by an internal hydrogen bond between the amino group and the ortho carbonyl oxygen, a larger electron delocalization, and formation of a hydrogen bond at the C-6 ionized hydroxyl. On the basis of these assignments, the reaction of the protein with benzylhydrazine [Morpurgo, L., Agostinelli, E., Muccigrosso, J., Martini, F., Mondovi, B., & Avigliano, L. (1989) Biochem. J. 260, 19-25] was rewritten. All examined electronic transitions, though highly sensitive to cofactor ionization and hydrogen bonding, could be accounted for without introducing perturbations due to copper. This confirms that copper is not within bonding distance of the oxidized cofactor.
Collapse
Affiliation(s)
- M Bossa
- Department of Chemistry, University of Rome La Sapienza, Italy
| | | | | |
Collapse
|
15
|
Castellano FN, He Z, Greenaway FT. Hydroxyl radical production in the reactions of copper-containing amine oxidases with substrates. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1157:162-6. [PMID: 8389591 DOI: 10.1016/0304-4165(93)90060-l] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Solutions of porcine kidney diamine oxidase, PKDAO, and bovine plasma amine oxidase, BPAO, were saturated with the spin-trapping agent alpha-phenyl-N-t-butylnitrone, PBN, and incubated with cadaverine or benzylamine substrate, respectively, under aerobic conditions. EPR spectra due to trapped hydroxyl radicals were obtained for both enzymes with no evidence of superoxide formation. Under anaerobic conditions, hydroxyl radicals were formed only when H2O2 was present as well as substrate. Catalase prevented hydroxyl radical formation by PKDAO but not BPAO. The results indicate that hydroxyl radical is produced in the reaction of the product H2O2 with the reduced enzymes and therefore may be important in turnover-related enzyme degradation, but is not a true reaction intermediate.
Collapse
Affiliation(s)
- F N Castellano
- Gustaf H. Carlson School of Chemistry, Clark University, Worcester, MA 0610-1477
| | | | | |
Collapse
|
16
|
Beinert H. Copper in biological systems. A report from the 6th Manziana Conference, September 23-27, 1990. J Inorg Biochem 1991; 44:173-218. [PMID: 1757786 DOI: 10.1016/0162-0134(91)80054-l] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Enzymes and proteins: AO, amine oxidase; and as proposed in reference 3, BSAO, bovine serum AO; SSAO, swine serum AO; SKDAO, swine kidney AO; PSAO, pea seedling AO; APAO, arthrobacter P1AO; MADH, methylamine dehydrogenase; AAO, ascorbic acid oxidase; alpha-AE, alpha-amidating enzyme; Az, azurin; COX, cytochrome c oxidase; CP, ceruloplasmin; DBH, dopamine beta-hydroxylase; GO, galactose oxidase; Hc, hemocyanin; MT, metallotheonein; NIR, nitrite reductase; SOD, superoxide dismutase. Cofactors: Dopa, 3,4 dihydroxyphenylalanine; Topa, 3,4,6 trihydroxyphenyl-alanine; PLP, pyridoxal-phosphate; PQQ, pyrroloquinolinequinone. Reagents: DDC, diethyldithiocarbamate; DMG, diaminoguanidine; DMSA, dimercaptosuccinic acid; NTA, nitrilotriacetic acid. Technique-related: XANES, x-ray absorption near edge spectroscopy; EXAFS, extended x-ray absorption fine structure; ENDOR, electron-nuclear double resonance; ESEEM, electron spin echo envelope modulation; CD, circular dichroism; MCD, magnetic circular dichroism; NMRD, nuclear magnetic resonance dispersion; nqi, nuclear quadrupole interaction; DSC, differential scanning calorimetry.
Collapse
Affiliation(s)
- H Beinert
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226
| |
Collapse
|
17
|
Duine JA. Quinoproteins: enzymes containing the quinonoid cofactor pyrroloquinoline quinone, topaquinone or tryptophan-tryptophan quinone. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 200:271-84. [PMID: 1653700 DOI: 10.1111/j.1432-1033.1991.tb16183.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The presently best known and largest group of quinoproteins consists of enzymes using the cofactor 2,7,9-tricarboxy-1H-pyrrolo[2,3-f]quinoline- 4,5-dione (PQQ), a compound having a pyrrole ring fused to a quinoline ring with an o-quinone group in it. Representatives of this group are found among the bacterial, NAD(P)-independent, periplasmic dehydrogenases. Despite their high midpoint redox potential, the overall behaviour of quinoprotein dehydrogenases is similar to that of their counterparts, those using a flavin cofactor or a nicotinamide coenzyme. Apart from an exceptional Gram-positive one, the sole organisms where the presence of PQQ has really been established are Gram-negative bacteria. Evidence for the occurrence of covalently bound PQQ is lacking since it has now been shown that several enzymes previously considered to contain this prosthetic group do not in fact do so. Another group of quinoproteins, consisting of amine oxidoreductases, has a protein chain containing one of the following quinonoid aromatic amino acids: 6-hydroxy-phenylalanine-3,4-dione (TPQ) or 4-(2'-tryptophyl)-tryptophan-6,7-dione (TTQ). There is no doubt that these o-quinones play a role as cofactor, in the case of TPQ in prokaryotic as well as eukaryotic amine oxidases. It appears, therefore, that a novel class of amino-acid-derived cofactors is emerging, ranging from the free radical form of tyrosine and tryptophan to those containing a dicarbonyl group (like the already known pyryvoyl group and the o-quinones here described.
Collapse
Affiliation(s)
- J A Duine
- Department of Microbiology and Enzymology, Delft University of Technology, The Netherlands
| |
Collapse
|
18
|
Greenaway FT, O'Gara CY, Marchena JM, Poku JW, Urtiaga JG, Zou Y. EPR studies of spin-labeled bovine plasma amine oxidase: the nature of the substrate-binding site. Arch Biochem Biophys 1991; 285:291-6. [PMID: 1654770 DOI: 10.1016/0003-9861(91)90362-m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The carbonyl cofactor of bovine plasma amine oxidase (EC 1.4.3.6), recently shown to be 6-hydroxydopa (also known as topa), has been spin labeled to the extent of one label per enzyme dimer molecule, using 4-amino-2,2,6,6-tetramethylpiperidine-N-oxyl (4-amino-TEMPO) and 4-hydrazino-TEMPO followed by reduction with borohydride. By studying the EPR spectra of the labeled enzyme, it has been deduced that there is no magnetic interaction between the copper and the spin label, and that the spin label is at least 1.3 nm distant from the copper(II) ion in the resting enzyme. The bound label is strongly immobilized, is in a sterically constricted environment, and is not accessible to small anions. Removal of the copper does not alter the EPR spectrum of the label. The results are similar to results for porcine plasma amine oxidase, and show that the copper is not close to, and does not directly interact with, the topa-bound substrate.
Collapse
Affiliation(s)
- F T Greenaway
- Department of Chemistry, Clark University, Worcester, Massachusetts 01610
| | | | | | | | | | | |
Collapse
|
19
|
Dooley DM, McGuirl MA, Brown DE, Turowski PN, McIntire WS, Knowles PF. A Cu(I)-semiquinone state in substrate-reduced amine oxidases. Nature 1991; 349:262-4. [PMID: 1846226 DOI: 10.1038/349262a0] [Citation(s) in RCA: 192] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The role of copper in copper-containing amine oxidases has long been a source of debate and uncertainty. Numerous electron paramagnetic resonance (EPR) experiments, including rapid freeze-quench studies, have failed to detect changes in the copper oxidation state in the presence of substrate amines. One suggestion that copper reduction might occur, has never been confirmed. Copper amine oxidases contain another cofactor, recently identified as 6-hydroxydopa quinone (topa quinone), which is reduced by substrates. Copper has been implicated in the reoxidation of the substrate-reduced enzyme, but the failure to detect any copper redox change has led to proposals that Cu(II) acts as a Lewis acid, that it has an indirect role in catalysis, or that it serves a structural role. We present evidence for the generation of a Cu(I)-semiquinone state by substrate reduction of several amine oxidases under anaerobic conditions, and suggest that the Cu(I)-semiquinone may be the catalytic intermediate that reacts directly with oxygen.
Collapse
Affiliation(s)
- D M Dooley
- Department of Chemistry, Amherst College, Massachusetts 01002
| | | | | | | | | | | |
Collapse
|
20
|
Morpurgo L, Agostinelli E, Mondovì B, Avigliano L. The role of copper in bovine serum amine oxidase. BIOLOGY OF METALS 1990; 3:114-7. [PMID: 2129009 DOI: 10.1007/bf01179516] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The role of copper in bovine serum amine oxidase was investigated by studying the effect of copper-binding inhibitors on the reactions of the pyrroloquinoline quinone carbonyl and on the reaction with oxygen. Hydrazines and hydrazides were used as carbonyl reagents and one of the hydrazines, benzylhydrazine, which was found to behave as a pseudo-substrate, was used to probe the reaction with oxygen. The presence of N,N-diethyldithiocarbamate, a chelator that binds copper irreversibly, did not prevent the reactions at the carbonyl, but slowed down their rate and modified the conformation of the adducts. The same happened to the reaction with oxygen, which was slowed down but not abolished. Copper, which was never seen in the reduced state, thus appears to control all reactions without being directly involved in the binding of either hydrazines or oxygen. The enzyme functionality was in fact preserved upon substitution of copper with cobalt. The specific activity of the cobalt-substituted enzyme was only reduced to about 40% the native amine oxidase value. This is the first case so far in which the role of copper can be performed by a different metal ion.
Collapse
Affiliation(s)
- L Morpurgo
- CNR Centre of Molecular Biology, University La Sapienza, Rome, Italy
| | | | | | | |
Collapse
|