1
|
Merida-de-Barros DA, Chaves SP, Belmiro CLR, Wanderley JLM. Leishmaniasis and glycosaminoglycans: a future therapeutic strategy? Parasit Vectors 2018; 11:536. [PMID: 30285837 PMCID: PMC6171297 DOI: 10.1186/s13071-018-2953-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/13/2018] [Indexed: 01/08/2023] Open
Abstract
Leishmania spp. depend on effective macrophage infection to establish and develop in mammalian hosts. Both metacyclic promastigotes and amastigotes are able to infect host cells, and thus they rely on several ligands that, when recognized by macrophage receptors, mediate parasite uptake. During macrophage primary infection with metacyclic forms from the insect vector and during amastigote dissemination via macrophage rupture, both infective stages have to cope with the host extracellular microenvironment, including extracellular matrix molecules. Glycosaminoglycans are abundant in the extracellular matrix and many of these molecules are able to interact with the parasite and the host cell, mediating positive and negative effects for the infection, depending on their structure and/or location. In addition, glycosaminoglycans are present at the surface of macrophages as proteoglycans, playing important roles for parasite recognition and uptake. In this review, we discuss glycosaminoglycans in the context of Leishmania infection as well as the possible applications of the current knowledge regarding these molecules for the development of new therapeutic strategies to control parasite dissemination.
Collapse
Affiliation(s)
- Débora Almeida Merida-de-Barros
- Laboratório de Imunoparasitologia, Unidade Integrada de Pesquisa em Produtos Bioativos e Biociências, Campus UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós Graduação em Produtos Bioativos e Biociências, Campus UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suzana Passos Chaves
- Laboratório de Imunoparasitologia, Unidade Integrada de Pesquisa em Produtos Bioativos e Biociências, Campus UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celso Luis Ribeiro Belmiro
- Laboratório de Imunoparasitologia, Unidade Integrada de Pesquisa em Produtos Bioativos e Biociências, Campus UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Luiz Mendes Wanderley
- Laboratório de Imunoparasitologia, Unidade Integrada de Pesquisa em Produtos Bioativos e Biociências, Campus UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. .,Programa de Pós Graduação em Produtos Bioativos e Biociências, Campus UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Marine glycosaminoglycan-like carbohydrates as potential drug candidates for infectious disease. Biochem Soc Trans 2018; 46:919-929. [PMID: 30026370 DOI: 10.1042/bst20170404] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/27/2018] [Accepted: 05/21/2018] [Indexed: 12/15/2022]
Abstract
Glycosaminoglycans (GAGs), present in the extracellular matrix, are exploited by numerous, distinct microbes for cellular attachment, adhesion, invasion and evasion of the host immune system. Glycosaminoglycans, including the widely used, clinical anticoagulant heparin and semi-synthetic analogues thereof, have been reported to inhibit and disrupt interactions between microbial proteins and carbohydrates present on the surface of host cells. However, the anticoagulant properties of unmodified, pharmaceutical heparin preparations preclude their capabilities as therapeutics for infectious disease states. Here, unique Glycosaminoglycan-like saccharides from various, distinct marine species are reported for their potential use as therapeutics against infectious diseases; many of which possess highly attenuated anticoagulant activities, while retaining significant antimicrobial properties.
Collapse
|
3
|
The role of heparan sulfate in host macrophage infection by Leishmania species. Biochem Soc Trans 2018; 46:789-796. [PMID: 29934302 DOI: 10.1042/bst20170398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/15/2022]
Abstract
The leishmaniases are a group of neglected tropical diseases caused by parasites from the Leishmania genus. More than 20 Leishmania species are responsible for human disease, causing a broad spectrum of symptoms ranging from cutaneous lesions to a fatal visceral infection. There is no single safe and effective approach to treat these diseases and resistance to current anti-leishmanial drugs is emerging. New drug targets need to be identified and validated to generate novel treatments. Host heparan sulfates (HSs) are abundant, heterogeneous polysaccharides displayed on proteoglycans that bind various ligands, including cell surface proteins expressed on Leishmania promastigote and amastigote parasites. The fine chemical structure of HS is formed by a plethora of specific enzymes during biosynthesis, with various positions (N-, 2-O-, 6-O- and 3-O-) on the carbon sugar backbone modified with sulfate groups. Post-biosynthesis mechanisms can further modify the sulfation pattern or size of the polysaccharide, altering ligand affinity to moderate biological functions. Chemically modified heparins used to mimic the heterogeneous nature of HS influence the affinity of different Leishmania species, demonstrating the importance of specific HS chemical sequences in parasite interaction. However, the endogenous structures of host HSs that might interact with Leishmania parasites during host invasion have not been elucidated, nor has the role of HSs in host-parasite biology. Decoding the structure of HSs on target host cells will increase understanding of HS/parasite interactions in leishmaniasis, potentiating identification of new opportunities for the development of novel treatments.
Collapse
|
4
|
Martins TVF, Zeraik AE, Alves NO, de Oliveira LL, de Oliveira Mendes TA, DeMarco R, de Almeida Marques-da-Silva E. Lipophosphoglycan 3 From Leishmania infantum chagasi Binds Heparin With Micromolar Affinity. Bioinform Biol Insights 2018; 12:1177932218763363. [PMID: 29568220 PMCID: PMC5858678 DOI: 10.1177/1177932218763363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/14/2018] [Indexed: 11/29/2022] Open
Abstract
Leishmania infantum chagasi is an intracellular protozoan parasite responsible for visceral leishmaniasis, a fatal disease in humans. Heparin-binding proteins (HBPs) are proteins that bind to carbohydrates present in glycoproteins or glycolipids. Evidence suggests that HBPs present on Leishmania surface participate in the adhesion and invasion of parasites to tissues of both invertebrate and vertebrate hosts. In this study, we identified the product with an HSP90 (heat shock protein 90) domain encoded by lipophosphoglycan (LPG3) gene as a L infantum chagasi HBP (HBPLc). Structural analysis using the LPG3 recombinant protein suggests that it is organized as a tetramer. Binding analysis confirms that it is capable of binding heparin with micromolar affinity. Inhibition of adenosine triphosphatase activity in the presence of heparin, molecular modeling, and in silico docking analysis suggests that heparin-binding site superimposes with the adenosine triphosphate–binding site. Together, these results show new properties of LPG3 and suggest an important role in leishmaniasis.
Collapse
Affiliation(s)
| | - Ana Eliza Zeraik
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | | | | | | | - Ricardo DeMarco
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | | |
Collapse
|
5
|
Myšková J, Dostálová A, Pěničková L, Halada P, Bates PA, Volf P. Characterization of a midgut mucin-like glycoconjugate of Lutzomyia longipalpis with a potential role in Leishmania attachment. Parasit Vectors 2016; 9:413. [PMID: 27457627 PMCID: PMC4960694 DOI: 10.1186/s13071-016-1695-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/12/2016] [Indexed: 11/10/2022] Open
Abstract
Background Leishmania parasites are transmitted by phlebotomine sand flies and a crucial step in their life-cycle is the binding to the sand fly midgut. Laboratory studies on sand fly competence to Leishmania parasites suggest that the sand flies fall into two groups: several species are termed “specific/restricted” vectors that support the development of one Leishmania species only, while the others belong to so-called “permissive” vectors susceptible to a wide range of Leishmania species. In a previous study we revealed a correlation between specificity vs permissivity of the vector and glycosylation of its midgut proteins. Lutzomyia longipalpis and other four permissive species tested possessed O-linked glycoproteins whereas none were detected in three specific vectors examined. Results We used a combination of biochemical, molecular and parasitological approaches to characterize biochemical and biological properties of O-linked glycoprotein of Lu. longipalpis. Lectin blotting and mass spectrometry revealed that this molecule with an apparent molecular weight about 45–50 kDa corresponds to a putative 19 kDa protein with unknown function detected in a midgut cDNA library of Lu. longipalpis. We produced a recombinant glycoprotein rLuloG with molecular weight around 45 kDa. Anti-rLuloG antibodies localize the native glycoprotein on epithelial midgut surface of Lu. longipalpis. Although we could not prove involvement of LuloG in Leishmania attachment by blocking the native protein with anti-rLuloG during sand fly infections, we demonstrated strong binding of rLuloG to whole surface of Leishmania promastigotes. Conclusions We characterized a novel O-glycoprotein from sand fly Lutzomyia longipalpis. It has mucin-like properties and is localized on the luminal side of the midgut epithelium. Recombinant form of the protein binds to Leishmania parasites in vitro. We propose a role of this molecule in Leishmania attachment to sand fly midgut.
Collapse
Affiliation(s)
- Jitka Myšková
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic.
| | - Anna Dostálová
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Lucie Pěničková
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Petr Halada
- Institute of Microbiology of the ASCR, v.v.i., Videňská 1083, 142 20, Prague 4, Czech Republic
| | - Paul A Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| |
Collapse
|
6
|
Leishmania chagasi heparin-binding protein: Cell localization and participation in L. chagasi infection. Mol Biochem Parasitol 2015; 204:34-43. [DOI: 10.1016/j.molbiopara.2015.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 11/16/2022]
|
7
|
Large-scale investigation of Leishmania interaction networks with host extracellular matrix by surface plasmon resonance imaging. Infect Immun 2013; 82:594-606. [PMID: 24478075 DOI: 10.1128/iai.01146-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have set up an assay to study the interactions of live pathogens with their hosts by using protein and glycosaminoglycan arrays probed by surface plasmon resonance imaging. We have used this assay to characterize the interactions of Leishmania promastigotes with ~70 mammalian host biomolecules (extracellular proteins, glycosaminoglycans, growth factors, cell surface receptors). We have identified, in total, 27 new partners (23 proteins, 4 glycosaminoglycans) of procyclic promastigotes of six Leishmania species and 18 partners (15 proteins, 3 glycosaminoglycans) of three species of stationary-phase promastigotes for all the strains tested. The diversity of the interaction repertoires of Leishmania parasites reflects their dynamic and complex interplay with their mammalian hosts, which depends mostly on the species and strains of Leishmania. Stationary-phase Leishmania parasites target extracellular matrix proteins and glycosaminoglycans, which are highly connected in the extracellular interaction network. Heparin and heparan sulfate bind to most Leishmania strains tested, and 6-O-sulfate groups play a crucial role in these interactions. Numerous Leishmania strains bind to tropoelastin, and some strains are even able to degrade it. Several strains interact with collagen VI, which is expressed by macrophages. Most Leishmania promastigotes interact with several regulators of angiogenesis, including antiangiogenic factors (endostatin, anastellin) and proangiogenic factors (ECM-1, VEGF, and TEM8 [also known as anthrax toxin receptor 1]), which are regulated by hypoxia. Since hypoxia modulates the infection of macrophages by the parasites, these interactions might influence the infection of host cells by Leishmania.
Collapse
|
8
|
Abstract
Leishmaniases are vector-borne parasitic diseases with 0.9 - 1.4 million new human cases each year worldwide. In the vectorial part of the life-cycle, Leishmania development is confined to the digestive tract. During the first few days after blood feeding, natural barriers to Leishmania development include secreted proteolytic enzymes, the peritrophic matrix surrounding the ingested blood meal and sand fly immune reactions. As the blood digestion proceeds, parasites need to bind to the midgut epithelium to avoid being excreted with the blood remnant. This binding is strictly stage-dependent as it is a property of nectomonad and leptomonad forms only. While the attachment in specific vectors (P. papatasi, P. duboscqi and P. sergenti) involves lipophosphoglycan (LPG), this Leishmania molecule is not required for parasite attachment in other sand fly species experimentally permissive for various Leishmania. During late-stage infections, large numbers of parasites accumulate in the anterior midgut and produce filamentous proteophosphoglycan creating a gel-like plug physically obstructing the gut. The parasites attached to the stomodeal valve cause damage to the chitin lining and epithelial cells of the valve, interfering with its function and facilitating reflux of parasites from the midgut. Transformation to metacyclic stages highly infective for the vertebrate host is the other prerequisite for effective transmission. Here, we review the current state of knowledge of molecular interactions occurring in all these distinct phases of parasite colonization of the sand fly gut, highlighting recent discoveries in the field.
Collapse
Affiliation(s)
- Anna Dostálová
- Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicna 7, 12844 Praha 2, Czech Republic
| | | |
Collapse
|
9
|
de Castro Côrtes LM, de Souza Pereira MC, da Silva FS, Pereira BAS, de Oliveira Junior FO, de Araújo Soares RO, Brazil RP, Toma L, Vicente CM, Nader HB, de Fátima Madeira M, Bello FJ, Alves CR. Participation of heparin binding proteins from the surface of Leishmania (Viannia) braziliensis promastigotes in the adhesion of parasites to Lutzomyia longipalpis cells (Lulo) in vitro. Parasit Vectors 2012; 5:142. [PMID: 22805335 PMCID: PMC3419669 DOI: 10.1186/1756-3305-5-142] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/02/2012] [Indexed: 12/04/2022] Open
Abstract
Background Leishmania (V.) braziliensis is a causative agent of cutaneous leishmaniasis in Brazil. During the parasite life cycle, the promastigotes adhere to the gut of sandflies, to avoid being eliminated with the dejection. The Lulo cell line, derived from Lutzomyia longipalpis (Diptera: Psychodidae), is a suitable in vitro study model to understand the features of parasite adhesion. Here, we analyze the role of glycosaminoglycans (GAGs) from Lulo cells and proteins from the parasites in this event. Methods Flagellar (Ff) and membrane (Mf) fractions from promastigotes were obtained by differential centrifugation and the purity of fractions confirmed by western blot assays, using specific antibodies for cellular compartments. Heparin-binding proteins (HBP) were isolated from both fractions using a HiTrap-Heparin column. In addition, binding of promastigotes to Lulo cells or to a heparin-coated surface was assessed by inhibition assays or surface plasmon resonance (SPR) analysis. Results The success of promastigotes subcellular fractionation led to the obtainment of Ff and Mf proteins, both of which presented two main protein bands (65.0 and 55.0kDa) with affinity to heparin. The contribution of HBPs in the adherence of promastigotes to Lulo cells was assessed through competition assays, using HS or the purified HBPs fractions. All tested samples presented a measurable inhibition rate when compared to control adhesion rate (17 ± 2.0% of culture cells with adhered parasites): 30% (for HS 20μg/ml) and 16% (for HS 10μg/ml); HBP Mf (35.2% for 10μg/ml and 25.4% for 20μg/ml) and HBP Ff (10.0% for 10μg/ml and 31.4% for 20μg/ml). Additionally, to verify the presence of sulfated GAGs in Lulo cells surface and intracellular compartment, metabolic labeling with radioactive sulfate was performed, indicating the presence of an HS and chondroitin sulfate in both cell sections. The SPR analysis performed further confirmed the presence of GAGs ligands on L. (V.) braziliensis promastigote surfaces. Conclusions The data presented here point to evidences that HBPs present on the surface of L. (V.) braziliensis promastigotes participate in adhesion of these parasites to Lulo cells through HS participation.
Collapse
|
10
|
Leishmania (Viannia) braziliensis: insights on subcellular distribution and biochemical properties of heparin-binding proteins. Parasitology 2011; 139:200-7. [PMID: 22053722 DOI: 10.1017/s0031182011001910] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Leishmaniasis is a vector-borne disease and an important public health issue. Glycosaminoglycan ligands in Leishmania parasites are potential targets for new strategies to control this disease. We report the subcellular distribution of heparin-binding proteins (HBPs) in Leishmania (Viannia) braziliensis and specific biochemical characteristics of L. (V.) braziliensis HBPs. Promastigotes were fractionated, and flagella and membrane samples were applied to HiTrap Heparin affinity chromatography columns. Heparin-bound fractions from flagella and membrane samples were designated HBP Ff and HBP Mf, respectively. Fraction HBP Ff presented a higher concentration of HBPs relative to HBP Mf, and SDS-PAGE analyses showed 2 major protein bands in both fractions (65 and 55 kDa). The 65 kDa band showed gelatinolytic activity and was sensitive to inhibition by 1,10-phenanthroline. The localization of HBPs on the promastigote surfaces was confirmed using surface plasmon resonance (SPR) biosensor analysis by binding the parasites to a heparin-coated sensor chip; that was inhibited in a dose-dependent manner by pre-incubating the parasites with variable concentrations of heparin, thus indicating distinct heparin-binding capacities for the two fractions. In conclusion, protein fractions isolated from either the flagella or membranes of L. (V.) braziliensis promastigotes have characteristics of metallo-proteinases and are able to bind to glycosaminoglycans.
Collapse
|
11
|
Myskova J, Svobodova M, Beverley SM, Volf P. A lipophosphoglycan-independent development of Leishmania in permissive sand flies. Microbes Infect 2007; 9:317-24. [PMID: 17307009 PMCID: PMC2839925 DOI: 10.1016/j.micinf.2006.12.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 12/12/2006] [Accepted: 12/13/2006] [Indexed: 11/29/2022]
Abstract
Leishmaniases are serious parasitic diseases the etiological organisms of which are transmitted by insect vectors, phlebotominae sand flies. Two sand fly species, Phlebotomus papatasi and P. sergenti, display remarkable specificity for Leishmania parasites they transmit in nature, but many others are broadly permissive to the development of different Leishmania species. Previous studies have suggested that in 'specific' vectors the successful parasite development is mediated by parasite surface glycoconjugates and sand fly lectins, however we show here that interactions involving 'permissive' sand flies utilize another molecules. We did find that the abundant surface glycoconjugate lipophosphoglycan, essential for attachment of Leishmania major in the specific vector P. papatasi, was not required for parasite adherence or survival in the permissive vectors P. arabicus and Lutzomyia longipalpis. Attachment in several permissive sand fly species instead correlated with the presence of midgut glycoproteins bearing terminal N-acetyl-galactosamine and with the occurrence of a lectin-like activity on Leishmania surface. This new binding modality has important implications for parasite transmission and evolution. It may contribute to the successful spreading of Leishmania due to their adaptation into new vectors, namely transmission of L. infantum by Lutzomyia longipalpis; this event led to the establishment of L. infantum/chagasi in Latin America.
Collapse
Affiliation(s)
- Jitka Myskova
- Dept. Parasitology, Charles University, Vinicna 7, Prague 2, Czech Republic
| | - Milena Svobodova
- Dept. Parasitology, Charles University, Vinicna 7, Prague 2, Czech Republic
| | - Stephen M. Beverley
- Dept. Molecular Microbiology, Washington University, Medical School, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Petr Volf
- Dept. Parasitology, Charles University, Vinicna 7, Prague 2, Czech Republic
- Corresponding author: Petr Volf, Dept. Parasitology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 44 Czech Republic, phone: ++ 4202 2195 1815, fax: ++ 4202 2491 9704,
| |
Collapse
|
12
|
Stephens RS, Fawaz FS, Kennedy KA, Koshiyama K, Nichols B, van Ooij C, Engel JN. Eukaryotic cell uptake of heparin-coated microspheres: a model of host cell invasion by Chlamydia trachomatis. Infect Immun 2000; 68:1080-5. [PMID: 10678910 PMCID: PMC97251 DOI: 10.1128/iai.68.3.1080-1085.2000] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using polystyrene microspheres coated with heparin or heparan sulfate, it was shown that coated microspheres specifically bound eukaryotic cells and were endocytosed by nonprofessional phagocytic cells. Coated microspheres displayed properties of binding to eukaryotic cells that were similar to those of chlamydiae, and the microspheres were competitively inhibited by chlamydial organisms. Endocytosis of heparin-coated beads resulted in the tyrosine phosphorylation of a similar set of host proteins as did endocytosis of chlamydiae; however, unlike viable chlamydial organisms, which prevent phagolysosomal fusion, endocytosed beads were trafficked to a lysosomal compartment. These findings suggest that heparin-coated beads and Chlamydia trachomatis enter eukaryotic cells by similar pathways.
Collapse
Affiliation(s)
- R S Stephens
- Program in Infectious Diseases, School of Public Health, University of California, Berkeley, California 94720, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Sacerdoti-Sierra N, Jaffe CL. Release of ecto-protein kinases by the protozoan parasite Leishmania major. J Biol Chem 1997; 272:30760-5. [PMID: 9388215 DOI: 10.1074/jbc.272.49.30760] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Leishmania major promastigotes have externally oriented ecto-protein kinases (PK) that are capable of phosphorylating both endogenous membrane substrates and foreign proteins. Live parasites phosphorylate protamine sulfate, casein, and phosvitin but not bovine serum albumin. Addition of exogenous PK substrates, such as phosvitin or casein, induced the shedding of ecto-PK that are capable of phosphorylating protamine sulfate. No phosphorylation of protamine sulfate was seen when cell-free supernatants from promastigotes incubated with either buffer alone or bovine serum albumin were used. A second enzyme, a constitutively released PK that phosphorylates casein or phosvitin and not protamine sulfate or mixed histones, was identified and characterized. This PK is inhibited by 5 microM staurosporine, 50 microg/ml heparin, and 75 microM CKI-7, concentrations typical of the IC50 found for other eukaryotic casein kinases (CK). The constitutively shed ecto-PK specifically phosphorylated a peptide substrate for CK1 but not for CK2, suggesting that this shed PK is similar to CK1.
Collapse
Affiliation(s)
- N Sacerdoti-Sierra
- Department of Parasitology, The Kuvin Centre for the Study of Infectious and Tropical Diseases, Hebrew University-Hadassah Medical School, P. O. Box 12272, Jerusalem 91120, Israel
| | | |
Collapse
|
14
|
Abstract
Cell lysates from 16 strains of eight Leishmania species were used to test haemagglutination activity (HA) against a variety of RBC. HA was detected using native or neuraminidase-treated rabbit RBC; it was found in promastigotes of all the Leishmania strains tested and in axenic amastigotes of L. mexicana. The HA was trypsin-sensitive, heat-resistant and partially dependent on divalent cations. The HA was inhibited by amino-sugars, LPS from E. coli K 235, fetuin and heparin. The HA is probably located on the surface of promastigotes, as shown by the same sugar-binding specificity when live cells were used in inhibition tests. Leishmania promastigotes were agglutinated with neoglycoproteins NAc-glc-BSA and NAc-gal-BSA. This agglutination was blocked by galactosamine, glucosamine and sialic acid, but not by glcNAc or galNAc. The level of HA is increased in axenic amastigotes when compared to promastigotes. In general, HA was found at a higher titre in infective compared to uninfective strains of Leishmania. These results suggest that the haemagglutinin could play a role in the vertebrate phase of the parasite life cycle, possibly in macrophage attachment or invasion.
Collapse
Affiliation(s)
- M Svobodová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.
| | | | | |
Collapse
|
15
|
Lira R, Rosales-Encina JL, Argüello C. Leishmania mexicana: binding of promastigotes to type I collagen. Exp Parasitol 1997; 85:149-57. [PMID: 9030665 DOI: 10.1006/expr.1996.4127] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During leishmania infection, parasites are inoculated to the human host through the bite of a sandfly vector into the dermis, where they first interact with tissue components, cells and extracellular matrix molecules. Since collagen is the most abundant component of the skin matrix, we investigated whether there is a specific interaction of Leishmania mexicana promastigotes with this host component. Promastigotes were able to attach to collagen fibrils and move through the matrix of mouse skin sections and to penetrate easily into a type I collagen gel. Denatured type I collagen coated beads (Cytodex 3) readily bound to the parasite surface. The interaction of promastigotes with type I collagen was dose dependent and saturable and was competitively and specifically inhibited with increasing concentrations of gelatin. Biotin-labeled parasite surface molecules were able to associate with both denatured collagen from microcarriers and native type I collagen from bovine kidney. It is suggested that the presence of parasite cell membrane receptors to collagen may confer a specific tropism for the skin, where collagen is the most abundant component of the matrix.
Collapse
Affiliation(s)
- R Lira
- Department of Experimental Pathology, Center for Research and Advanced Studies, National Polytechnical Institute, Mexico, DF
| | | | | |
Collapse
|
16
|
Chen JCR, Zhang JP, Stephens RS. Structural Requirements of Heparin Binding to Chlamydia trachomatis. J Biol Chem 1996. [DOI: 10.1074/jbc.271.19.11134] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
17
|
Abstract
A new experimental model for microbe-host-cell interaction is proposed in which a molecular mimic of heparan sulfate is used by Chlamydia to attach to the mammalian cell surface. A heparan-sulfate-like ligand, bound to the surface of Chlamydia, mediates infectivity by bridging the microorganism and mammalian cell receptors.
Collapse
Affiliation(s)
- R S Stephens
- Program in Infectious Diseases, School of Public Health, University of California, Berkeley 94720
| |
Collapse
|
18
|
Abstract
Borrelia burgdorferi adhere to mammalian cells in vitro but neither the ligand(s) nor the receptor(s) has (have) been clearly established. Using an in vitro attachment-inhibition assay, a B. burgdorferi attachment mechanism has been identified. Heparin, heparan sulfate, and dermatan sulfate reduced the attachment of virulent B. burgdorferi strain 297 to HeLa cells by approximately 60%. In addition, virulent, but not avirulent, B. burgdorferi strains B31, N40, and HB19 demonstrated heparin attachment-inhibition. Attachment to Chinese hamster ovary cells deficient in heparan sulfate proteoglycans was reduced by 68% compared to attachment to wild-type cells and was identical to attachment at maximum heparin inhibition to the wild-type cells. Pretreatment of HeLa cell monolayers with heparitinase, heparinase, and chondroitinase ABC, but not with chondroitinase AC, reduced borrelial attachment by approximately 50%. A moderately high affinity, low copy number, promiscuous B. burgdorferi glycosaminoglycan receptor was demonstrated by equilibrium binding studies. A 39-kD polypeptide, purified by heparin affinity chromatography from Triton X-100 extracts derived from virulent borrelia, was a candidate for this receptor. These studies indicate that one mode of B. burgdorferi attachment to eukaryotic cells is mediated by a borrelial glycosaminoglycan receptor attaching to surface-exposed proteoglycans on mammalian cells.
Collapse
Affiliation(s)
- R D Isaacs
- Department of Medicine, Department of Veterans Affairs Medical Center, Jackson, Mississippi 39216
| |
Collapse
|
19
|
Blum JJ. Effects of hypoxia, acute osmotic stress, and protein kinase inhibitors on the intermediary metabolism of Leishmania. J Eukaryot Microbiol 1994; 41:1-8. [PMID: 8124263 DOI: 10.1111/j.1550-7408.1994.tb05925.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J J Blum
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
20
|
Abstract
L. Donovani promastigotes were grown to late-log and 3-day stationary phase to determine the level of protein tyrosine phosphatase activity in crude extracts and in fractions following gel filtration column chromatography. Over 90% of the activity was soluble in a low salt extraction buffer in both phases of growth. Several peaks of activity were resolved following gel filtration of the crude extracts indicating that multiple tyrosine phosphatases are present in these cells. Tyrosine phosphatase activity was lower in 3-day stationary than in late log-phase cells and a reduction in the major peak of activity, eluting in a gel fraction corresponding to an M(r) of approximately 168 kDa, was observed. In vivo tyrosine phosphorylation was revealed by Western blot analysis. The degree of phosphorylation of at least two proteins differed in cells obtained from late log phase cultures as compared with 3-day stationary phase cultures. These observations indicate that changes in the balance between tyrosine phosphorylation and dephosphorylation occur with increasing culture age.
Collapse
Affiliation(s)
- D E Cool
- Department of Biochemistry, University of Washington, Seattle 98195
| | | |
Collapse
|
21
|
|
22
|
Abstract
A novel trimolecular mechanism of microbial attachment to mammalian host cells was characterized for the obligate intracellular pathogen Chlamydia trachomatis. Using purified glycosaminoglycans (GAGs) and specific GAG lyases, we demonstrated that a heparan sulfate-like GAG present on the surface of chlamydia organisms is required for attachment to host cells. These observations were supported by inhibition of attachment following binding of heparan sulfate receptor analogs to chlamydiae and by demonstrating that chlamydiae synthesize a unique heparan sulfate-like GAG. Furthermore, exogenous heparan sulfate, as an adhesin analog, restored attachment and infectivity to organisms that had lost these attributes following treatment with heparan sulfate lyase. These data suggest that a GAG adhesin ligand mediates attachment by bridging mutual GAG receptors on the host cell surface and on the chlamydial outer membrane surface.
Collapse
Affiliation(s)
- J P Zhang
- Department of Biomedical and Environmental Health Sciences, University of California, Berkeley 94720
| | | |
Collapse
|
23
|
Aboagye-Kwarteng T, ole-MoiYoi OK, Lonsdale-Eccles JD. Phosphorylation differences among proteins of bloodstream developmental stages of Trypanosoma brucei brucei. Biochem J 1991; 275 ( Pt 1):7-14. [PMID: 2018486 PMCID: PMC1150005 DOI: 10.1042/bj2750007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Early in an infection the bloodstream forms of the African trypanosome Trypanosoma brucei brucei are long, slender and rapidly dividing. Later, non-dividing, short, stumpy forms may be found. In this report we described biochemical differences between the two parasite populations in the phosphorylation of their proteins in vitro. Compared with the slender populations, the non-dividing stumpy forms of the parasites exhibit decreased phosphorylation of an 80 kDa protein and enhanced phosphorylation of 37 kDa and 42 kDa proteins (pp37 and pp42). These changes occurred regardless of whether the stumpy trypanosomes were generated naturally during the course of the infection or induced by difluoromethylornithine treatment. The phosphorylation of pp37 and pp42 occurs on serine and threonine residues and is totally dependent upon the presence of Mn2+ or Mg2+. However, excess Mn2+ or Mg2+ inhibits phosphorylation. Maximal phosphorylation of pp42 occurs with 1 mm-Mn2+ or 10 mm-Mg2+, whereas that of pp37 occurs with 50 mM-Mn2+ or greater than 100 mm-Mg2+. The phosphorylation of pp37 is greatly enhanced by KCl, whereas that of pp42 is only slightly increased by this salt. Ca2+, calmodulin, phospholipids and cyclic AMP have no discernible effect upon the phosphorylation of pp42 or pp37 in vitro, whereas heparin, suramin, polylysine, polyarginine and polyamines all inhibit phosphorylation. Thus the enzymes that phosphorylate pp42 and pp37 have properties similar to, but distinct from, those of mammalian casein kinase II. Since the casein-kinase-like activity is higher in the slender than in the stumpy forms, the enhanced phosphorylation of pp42 and pp37 in the non-dividing parasites is probably a result of the enhanced synthesis of these acidic proteins.
Collapse
Affiliation(s)
- T Aboagye-Kwarteng
- International Laboratory for Research on Animal Diseases, Nairobi, Kenya
| | | | | |
Collapse
|
24
|
Butcher BA, Shome K, Estes LW, Choay J, Petitou M, Sie P, Glew RH. Leishmania donovani: cell-surface heparin receptors of promastigotes are recruited from an internal pool after trypsinization. Exp Parasitol 1990; 71:49-59. [PMID: 2162300 DOI: 10.1016/0014-4894(90)90007-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With the use of [3H]heparin, we recently demonstrated that Leishmania donovani promastigotes express a cell-surface receptor that is specific for the glycosaminoglycan heparin (Mukhopadhyay et al. 1989, The Biochemical Journal, 264, 517-525.). Treatment of the parasite with trypsin abolishes 75-90% of this [3H]heparin-binding activity. When trypsinized promastigotes were resuspended in fresh culture medium in the absence and presence of cycloheximide (10 micrograms/ml), approximately 25-30% of the original heparin-binding capacity was restored within 1 hr, indicating that recruitment of receptors from an internal pool occurred without de novo protein synthesis. Scatchard analysis of the regenerated receptor revealed that the number of regenerated binding sites per cell was 2.3 x 10(5); these sites have a binding affinity of 6.7 x 10(-7) M. Like the native heparin receptors on the surface of freshly isolated cells, the receptors recruited after trypsinization are also highly specific for heparin, as a 25-fold excess of four other glycosaminoglycans displaced less than 10% of bound [3H]heparin from the trypsinized cells. The structural requirements of the ligand heparin, namely the number of monosaccharide units and degree of sulfation, were compared for both the native and regenerated receptor: for both receptors, oversulfated polysaccharide heparin fragments of at least six to eight sugar residues were most efficient at displacing [3H]heparin. The concentrations of oligosaccharide fragments required to displace 50% of [3H]heparin were 0.32 and 0.035 microM for the hexa- and octasaccharides, respectively. Colloidal gold-labeled heparin was bound to promastigotes and visualized by electron microscopy. This analysis revealed that the heparin bound almost exclusively to the flagella of control cells (not subjected to trypsin) and those which had regenerated receptor after trypsinization. The physiological significance of this heparin-binding activity on the surface of promastigotes is discussed.
Collapse
Affiliation(s)
- B A Butcher
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania
| | | | | | | | | | | | | |
Collapse
|