1
|
Kempner E, Miller J. Radiation target analyses of free and immobilized glucose 6-phosphate dehydrogenase. Radiat Phys Chem Oxf Engl 1993 2010. [DOI: 10.1016/j.radphyschem.2010.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
Napier S, Bingham M. Pharmacology of Glutamate Transport in the CNS: Substrates and Inhibitors of Excitatory Amino Acid Transporters (EAATs) and the Glutamate/Cystine Exchanger System x c −. TOPICS IN MEDICINAL CHEMISTRY 2008. [PMCID: PMC7123079 DOI: 10.1007/7355_2008_026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As the primary excitatory neurotransmitter in the mammalian CNS, l-glutamateparticipates not only in standard fast synaptic communication, but also contributes to higher order signalprocessing, as well as neuropathology. Given this variety of functional roles, interest has been growingas to how the extracellular concentrations of l-glutamate surroundingneurons are regulated by cellular transporter proteins. This review focuses on two prominent systems, eachof which appears capable of influencing both the signaling and pathological actions of l-glutamatewithin the CNS: the sodium-dependent excitatory amino acid transporters (EAATs) and the glutamate/cystineexchanger, system xc−(Sxc−). Whilethe family of EAAT subtypes limit access to glutamate receptors by rapidly and efficiently sequesteringl-glutamate in neurons and glia, Sxc−provides a route for the export of glutamate from cells into the extracellular environment. The primaryintent of this work is to provide an overview of the inhibitors and substrates that have been developedto delineate the pharmacological specificity of these transport systems, as well as be exploited as probeswith which to selectively investigate function. Particular attention is paid to the development of smallmolecule templates that mimic the structural properties of the endogenous substrates, l-glutamate,l-aspartate and l-cystine andhow strategic control of functional group position and/or the introduction of lipophilic R-groups can impactmultiple aspects of the transport process, including: subtype selectivity, inhibitory potency, and substrateactivity.
Collapse
|
3
|
Shigeri Y, Seal RP, Shimamoto K. Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. ACTA ACUST UNITED AC 2004; 45:250-65. [PMID: 15210307 DOI: 10.1016/j.brainresrev.2004.04.004] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2004] [Indexed: 12/30/2022]
Abstract
L-Glutamate serves as a major excitatory neurotransmitter in the mammalian central nervous system (CNS) and is stored in synaptic vesicles by an uptake system that is dependent on the proton electrochemical gradient (VGLUTs). Following its exocytotic release, glutamate activates fast-acting, excitatory ionotropic receptors and slower-acting metabotropic receptors to mediate neurotransmission. Na+-dependent glutamate transporters (EAATs) located on the plasma membrane of neurons and glial cells rapidly terminate the action of glutamate and maintain its extracellular concentration below excitotoxic levels. Thus far, five Na+-dependent glutamate transporters (EAATs 1-5) and three vesicular glutamate transporters (VGLUTs 1-3) have been identified. Examination of EAATs and VGLUTs in brain preparations and by heterologous expression of the various cloned subtypes shows these two transporter families differ in many of their functional properties including substrate specificity and ion requirements. Alterations in the function and/or expression of these carriers have been implicated in a range of psychiatric and neurological disorders. EAATs have been implicated in cerebral stroke, epilepsy, Alzheimer's disease, HIV-associated dementia, Huntington's disease, amyotrophic lateral sclerosis (ALS) and malignant glioma, while VGLUTs have been implicated in schizophrenia. To examine the physiological role of glutamate transporters in more detail, several classes of transportable and non-transportable inhibitors have been developed, many of which are derivatives of the natural amino acids, aspartate and glutamate. This review summarizes the development of these indispensable pharmacological tools, which have been critical to our understanding of normal and abnormal synaptic transmission.
Collapse
Affiliation(s)
- Yasushi Shigeri
- National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
| | | | | |
Collapse
|
4
|
Abstract
Na+-Cl--dependent neurotransmitter transporters (or neurotransmitter:Na+ symporters, NSS) share many structural and functional features, e.g. a conserved topology of 12 transmembrane spanning alpha-helices, the capacity to operate in two directions and in an electrogenic manner. Biochemical and biophysical experiments indicate that these transporters interact in oligomeric quaternary structures. Fluorescence resonance energy transfer (FRET) microscopy has provided evidence for a constitutive physical interaction of NSS at the cell surface and throughout the biosynthetic pathway. Two interfaces for protein-protein interaction have been shown to be important in NSS; these comprise a glycophorin-like motif and a leucine heptad repeat. Upon mutational modification of the latter, surface targeting is considerably impaired without concomitant loss in uptake activity. This supports a role of oligomer formation in the passage of the quality control mechanisms of the endoplasmic reticulum and/or Golgi. In contrast, oligomerisation is dispensable for substrate binding and translocation.
Collapse
Affiliation(s)
- Harald H Sitte
- Institute of Pharmacology, University of Vienna, Währinger Str 13a, A-1090 Vienna, Austria.
| | | |
Collapse
|
5
|
Eskandari S, Kreman M, Kavanaugh MP, Wright EM, Zampighi GA. Pentameric assembly of a neuronal glutamate transporter. Proc Natl Acad Sci U S A 2000; 97:8641-6. [PMID: 10900021 PMCID: PMC27001 DOI: 10.1073/pnas.97.15.8641] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Freeze-fracture electron microscopy was used to study the structure of a human neuronal glutamate transporter (EAAT3). EAAT3 was expressed in Xenopus laevis oocytes, and its function was correlated with the total number of transporters in the plasma membrane of the same cells. Function was assayed as the maximum charge moved in response to a series of transmembrane voltage pulses. The number of transporters in the plasma membrane was determined from the density of a distinct 10-nm freeze-fracture particle, which appeared in the protoplasmic face only after EAAT3 expression. The linear correlation between EAAT3 maximum carrier-mediated charge and the total number of the 10-nm particles suggested that this particle represented functional EAAT3 in the plasma membrane. The cross-sectional area of EAAT3 in the plasma membrane (48 +/- 5 nm(2)) predicted 35 +/- 3 transmembrane alpha-helices in the transporter complex. This information along with secondary structure models (6-10 transmembrane alpha-helices) suggested an oligomeric state for EAAT3. EAAT3 particles were pentagonal in shape in which five domains could be identified. They exhibited fivefold symmetry because they appeared as equilateral pentagons and the angle at the vertices was 110 degrees. Each domain appeared to contribute to an extracellular mass that projects approximately 3 nm into the extracellular space. Projections from all five domains taper toward an axis passing through the center of the pentagon, giving the transporter complex the appearance of a penton-based pyramid. The pentameric structure of EAAT3 offers new insights into its function as both a glutamate transporter and a glutamate-gated chloride channel.
Collapse
Affiliation(s)
- S Eskandari
- Departments of Physiology and Neurobiology, University of California at Los Angeles School of Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095-1751, USA.
| | | | | | | | | |
Collapse
|
6
|
Jetté M, Vachon V, Potier M, Béliveau R. The renal sodium/phosphate symporters: evidence for different functional oligomeric states. Biochemistry 1996; 35:15209-14. [PMID: 8952468 DOI: 10.1021/bi960940p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The oligomeric size of the rat renal sodium/phosphate symporters was estimated in brush-border membrane vesicles submitted to radiation inactivation. Altering the electrochemical conditions under which phosphate transport was measured resulted in different molecular size determinations. The radiation inactivation size (RIS) obtained from the radiation-induced loss of transport activity measured in the presence of a sodium gradient was 200 kDa. Under sodium equilibrium conditions, in the presence of a phosphate gradient as the only driving force, transport fell to 13% of the activity measured in the presence of a sodium gradient, and the RIS was 62 kDa. Addition of an outwardly-directed proton gradient increased the transport activity to 29% of that measured in the presence of a sodium gradient. The RIS measured under these conditions was 124 kDa. Under all conditions tested, phosphate uptake by irradiated vesicles was significantly reduced but remained linear during the first 5 s of incubation. The radiation-induced loss of transport activity was thus attributable to a direct inactivation of the transporter rather than to a decrease in the physical integrity of the vesicles. These results are consistent with a tetrameric structure composed of subunits of about 62 kDa and suggest that phosphate transport involves both monomers and tetramers.
Collapse
Affiliation(s)
- M Jetté
- Département de chimie-biochimie, Université du Québec à Montréal, Canada
| | | | | | | |
Collapse
|
7
|
Haugeto O, Ullensvang K, Levy LM, Chaudhry FA, Honoré T, Nielsen M, Lehre KP, Danbolt NC. Brain glutamate transporter proteins form homomultimers. J Biol Chem 1996; 271:27715-22. [PMID: 8910364 DOI: 10.1074/jbc.271.44.27715] [Citation(s) in RCA: 383] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Removal of excitatory amino acids from the extracellular fluid is essential for synaptic transmission and for avoiding excitotoxicity. The removal is accomplished by glutamate transporters located in the plasma membranes of both neurons and astroglia. The uptake system consists of several different transporter proteins that are carefully regulated, indicating more refined functions than simple transmitter inactivation. Here we show by chemical cross-linking, followed by electrophoresis and immunoblotting, that three rat brain glutamate transporter proteins (GLAST, GLT and EAAC) form homomultimers. The multimers exist not only in intact brain membranes but also after solubilization and after reconstitution in liposomes. Increasing the cross-linker concentration increased the immunoreactivity of the bands corresponding to trimers at the expense of the dimer and monomer bands. However, the immunoreactivities of the dimer bands did not disappear, indicating a mixture of dimers and trimers. GLT and GLAST do not complex with each other, but as demonstrated by double labeling post-embedding electron microscopic immunocytochemistry, they co-exist side by side in the same astrocytic cell membranes. The oligomers are held together noncovalently in vivo. In vitro, oxidation induces formation of covalent bonds (presumably -S-S-) between the subunits of the oligomers leading to the appearance of oligomer bands on SDS-polyacrylamide gel electrophoresis. Immunoprecipitation experiments suggest that GLT is the quantitatively dominant glutamate transporter in the brain. Radiation inactivation analysis gives a molecular target size of the functional complex corresponding to oligomeric structure. We postulate that the glutamate transporters operate as homomultimeric complexes.
Collapse
Affiliation(s)
- O Haugeto
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P. O. Box 1105 Blindern, N-0317 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Jetté M, Pelletier J, Potier M, Béliveau R. The renal brush border membrane sodium/sulfate cotransporter functions in situ as a homotetramer. Int J Biochem Cell Biol 1996; 28:1151-4. [PMID: 8930139 DOI: 10.1016/1357-2725(96)00053-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The functional molecular size of the renal Na+/SO4(2-) cotransporter was analysed with the radiation inactivation and fragmentation method. Purified brush border membrane vesicles preserved in a cryoprotective medium were exposed to gamma-radiations. Initial rates of SO4(2-) influx into these vesicles were estimated with membranes irradiated with 0, 4 and 8 Mrad. In each case, SO4(2-) uptake by irradiated membranes was significantly reduced but remained linear during the first 5 sec of incubation. To avoid artifacts arising from a decrease in the driving force caused by modifications in membrane permeability, this incubation period was chosen to measure the effect of irradiation on the SO4(2-) transport activity. Increasing irradiation doses resulted in a monoexponential decrease in transport activity allowing the molecular size to be estimated at 238 +/- 6 kDa (SD, n = 3). Recently, a cDNA for the Na+/SO4(2-) cotransporter was cloned and expressed in Xenopus laevis oocytes (Markovich D. et al. (1993) Proc. Natl Acad. Sci. U.S.A. 90, 8073-8077). The deduced amino acid sequence of this cotransporter predicts a molecular weight of 66 kDa. We suggest that the in situ activity of the renal brush border membrane Na+/SO4(2-) cotransporter requires the presence of four intact and identical subunits arranged as a homotetramer.
Collapse
Affiliation(s)
- M Jetté
- Départment de chimie-biochimie, Université du Québec à Montréal, Canada
| | | | | | | |
Collapse
|
9
|
Fleck C, Bräunlich H. Renal handling of drugs and amino acids after impairment of kidney or liver function--influences of maturity and protective treatment. Pharmacol Ther 1995; 67:53-77. [PMID: 7494861 DOI: 10.1016/0163-7258(95)00010-e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Renal tubular cells are involved both in secretion and in reabsorption processes within the kidney. Normally, most xenobiotics are secreted into the urine at the basolateral membrane of the tubular cell, whereas amino acids are reabsorbed quantitatively at the luminal side. Under different pathological or experimental circumstances, these transport steps may be changed, e.g., they may be reduced by renal impairment (reduction of kidney mass, renal ischemia, administration of nephrotoxins) or they may be enhanced after stimulation of transport carriers. Furthermore, a distinct interrelationship exists between excretory functions of the kidney and the liver. That means liver injury can influence renal transport systems also (hepato-renal syndrome). In this review, the following aspects were included: based upon general information concerning different transport pathways for xenobiotics and amino acids within kidney cells and upon a brief characterization of methods for testing impairment of kidney function, the maturation of renal transport and its stimulation are described. Similarities and differences between the postnatal development of kidney function and the increase of renal transport capacity after suitable stimulatory treatment by, for example, various hormones or xenobiotics are reviewed. Especially, renal transport in acute renal failure is described for individuals of different ages. Depending upon the maturity of kidney function, age differences in susceptibility to kidney injury occur: if energy-requiring processes are involved in the transport of the respective substance, then adults, in general, are more susceptible to renal failure than young individuals, because in immature organisms, anaerobic energy production predominates within the kidney. On the other hand, adult animals can better compensate for the loss of renal tissue (partial nephrectomy). With respect to stimulation of renal transport capacity after repeated pretreatment with suitable substances, age differences also exist: most stimulatory schedules are more effective in young, developing individuals than in mature animals. Therefore, the consequences of the stimulation of renal transport can be different in animals of different ages and are discussed in detail. Furthermore, the extent of stimulation is different for the transporters located at the basolateral and at the luminal membranes: obviously the tubular secretion at the contraluminal membrane can be stimulated more effectively than reabsorption processes at the luminal side.
Collapse
Affiliation(s)
- C Fleck
- Institute of Pharmacology and Toxicology, Freidrich Schiller University of Jena, Germany
| | | |
Collapse
|
10
|
Delisle MC, Giroux S, Vachon V, Boyer C, Potier M, Béliveau R. Molecular size of the functional complex and protein subunits of the renal phosphate symporter. Biochemistry 1994; 33:9105-9. [PMID: 8049213 DOI: 10.1021/bi00197a012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The oligomeric structure of the rabbit renal brush-border membrane sodium/phosphate cotransporter was examined with the radiation inactivation and fragmentation technique. The size of its functional complex (its "radiation inactivation size") was estimated from the rate of decay of its sodium-dependent transport activity as a function of the radiation dose. A radiation inactivation size of 223 +/- 42 kDa was obtained. The polypeptide constituting the monomeric unit of the Na1+/Pi symporter was detected by immunoblotting with polyclonal anti-peptide antibodies directed against the 14 amino acid C-terminal portion of the symporter molecule. Its apparent molecular size estimated by comparison with standards following SDS-polyacrylamide gel electrophoresis was 64,000. This value is in good agreement with its known molecular mass of 51,797 Da calculated from the amino acid sequence deducted from the nucleotide sequence of its gene since this protein is probably glycosylated. The loss of labeling intensity of the polypeptide of M(r) = 64,000 was also measured as a function of radiation dose. The molecular size calculated from these data (its "target size") was 165 +/- 20 kDa. The target size estimated for the rat phosphate cotransporter was 184 +/- 46 kDa, and its previously reported radiation inactivation size was 234 +/- 14 kDa. These results strongly suggest that the renal Na1+/Pi cotransporter exists as an oligomeric protein, probably a homotetramer. The fact that the values obtained for the target size are about 3/4 those obtained for the radiation inactivation size of these cotransport proteins indicates that their subunits are closely associated since most of their subunits appear to be fragmented by a single ionizing radiation hit.
Collapse
Affiliation(s)
- M C Delisle
- Département de chimie-biochimie, Université du Québec à Montréal, Canada
| | | | | | | | | | | |
Collapse
|
11
|
McGivan JD, Pastor-Anglada M. Regulatory and molecular aspects of mammalian amino acid transport. Biochem J 1994; 299 ( Pt 2):321-34. [PMID: 8172590 PMCID: PMC1138275 DOI: 10.1042/bj2990321] [Citation(s) in RCA: 264] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- J D McGivan
- Department of Biochemistry, School of Medical Sciences, Bristol, U.K
| | | |
Collapse
|
12
|
Petzinger E. Transport of organic anions in the liver. An update on bile acid, fatty acid, monocarboxylate, anionic amino acid, cholephilic organic anion, and anionic drug transport. Rev Physiol Biochem Pharmacol 1994; 123:47-211. [PMID: 8209137 DOI: 10.1007/bfb0030903] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- E Petzinger
- Institute of Pharmacology and Toxicology, University Giessen, Germany
| |
Collapse
|
13
|
Heterotropic effects of dipolar amino acids on the activity of the anionic amino acid transport system X-AG in rabbit jejunal brush-border membrane vesicles. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82265-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Debiec H, Ronco P. Identification and epitope analysis of the renal Na+/Pi cotransport protein using monoclonal antibodies. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)38659-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Plakidou-Dymock S, Tanner MJ, McGivan JD. A role for aminopeptidase N in Na(+)-dependent amino acid transport in bovine renal brush-border membranes. Biochem J 1993; 290 ( Pt 1):59-65. [PMID: 8094953 PMCID: PMC1132382 DOI: 10.1042/bj2900059] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A monoclonal antibody FD19 which removes reconstitutable Na(+)-dependent amino acid transport activity from solubilized bovine renal brush-border membrane vesicles was found to react specifically with the enzyme aminopeptidase N. Cleavage of aminopeptidase N from the membranes with papain inhibited Na(+)-dependent amino acid transport activity without affecting that of alpha-methyl D-glucoside. Removal of aminopeptidase substantially increased the Km values for the Na(+)-dependent transport of alanine, glutamine, leucine and phenylalanine without affecting the Vmax. Both Na(+)-dependent amino acid transport and aminopeptidase activity in intact vesicles were competitively inhibited by amino acids with very similar specificity. These results suggest that the amino acid-binding sites of aminopeptidase N and the transporter interact in some way to increase the Km of the transport process for its substrates. However, independent direct inactivation of the transport system by papain cannot be ruled out.
Collapse
Affiliation(s)
- S Plakidou-Dymock
- Department of Biochemistry, School of Medical Sciences, University Walk, Bristol, U.K
| | | | | |
Collapse
|
16
|
Burckhardt G, Greger R. Principles of Electrolyte Transport Across Plasma Membranes of Renal Tubular Cells. Compr Physiol 1992. [DOI: 10.1002/cphy.cp080114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Debiec H, Lorenc R, Ronco PM. Reconstitution and characterization of a Na+/Pi co-transporter protein from rabbit kidney brush-border membranes. Biochem J 1992; 286 ( Pt 1):97-102. [PMID: 1520289 PMCID: PMC1133023 DOI: 10.1042/bj2860097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A protein with Na+/Pi co-transporter activity has been extracted from rabbit brush-border membranes with chloroform/methanol and purified by hydroxyapatite chromatography. The protein has been incorporated by the dilution method into liposomes formed from different types and ratios of lipids. The greatest reconstitution has been achieved into liposomes prepared from cholesterol (20%), phosphatidylcholine (20%), phosphatidylethanolamine (30%) and phosphatidylserine (30%) (CH/PC/PE/PS). Pi uptake by these proteoliposomes had the following characteristics: (i) the initial rate was markedly greater in the presence of an inwardly directed Na+ gradient (600 pmol/10 s per mg) than with a K+ gradient (65 pmol/10 s per mg); (ii) maximal uptake was increased 8-fold above the equilibrium value ('overshoot') when a Na+ gradient was applied; (iii) Pi was not merely bound to proteoliposomes but was transported intravesicularly; and (iv) Na(+)-dependent Pi uptake was sensitive to the known phosphate transport inhibitors. This first successful attempt of reconstitution of Na+/Pi transport activity into proteoliposomes led us to isolate and characterize physico-chemically the protein responsible. Its isoelectric point was about 5.8, and urea/SDS gel electrophoresis revealed a broad band of molecular mass ranging from 63 to 66 kDa under both reducing and non-reducing conditions. In the native form, the molecular mass analysed by gel filtration was estimated to be 170 +/- 10 kDa, suggesting that the protein is a polymer, probably stabilized by hydrophobic bonds. Endoglycosidase F treatment decreased the molecular mass to approx. 50 kDa. It is postulated that this acidic glycoprotein might represent a subunit of the intact Na+/Pi co-transporter from rabbit kidney brush-border membranes.
Collapse
Affiliation(s)
- H Debiec
- INSERM U.64, Hôpital Tenon, Paris, France
| | | | | |
Collapse
|
18
|
Delisle MC, Vachon V, Giroux S, Potier M, Laprade R, Béliveau R. Molecular size of the renal sodium/phosphate symporter in native and reconstituted systems. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1104:132-6. [PMID: 1550840 DOI: 10.1016/0005-2736(92)90141-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The size of the renal sodium/phosphate symporter was estimated with the radiation inactivation technique in isolated bovine brush border membrane vesicles and after reconstitution in proteoliposomes. The functional unit of the native phosphate carrier had a radiation inactivation size of 172 +/- 17 kDa. Identical values were obtained for the reconstituted carrier whether it was irradiated before or after the formation of the proteoliposomes (161 +/- 9 and 159 +/- 11 kDa, respectively). The sodium-independent uptake of phosphate was not affected significantly by radiation doses up to 10 Mrad. This activity is therefore not due to the reconstitution of a large phosphate-binding protein such as alkaline phosphatase. Furthermore, bromotetramisole, a specific inhibitor of phosphate binding to this enzyme, had no significant effect on the uptake of phosphate by the proteoliposomes.
Collapse
Affiliation(s)
- M C Delisle
- Département de chimie-biochemie, Université du Québec à Montréal, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Bertran J, Werner A, Stange G, Markovich D, Biber J, Testar X, Zorzano A, Palacin M, Murer H. Expression of Na(+)-independent amino acid transport in Xenopus laevis oocytes by injection of rabbit kidney cortex mRNA. Biochem J 1992; 281 ( Pt 3):717-23. [PMID: 1536650 PMCID: PMC1130750 DOI: 10.1042/bj2810717] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Poly(A)+ mRNA was isolated from rabbit kidney cortex and injected into Xenopus laevis oocytes. Injection of mRNA resulted in a time- and dose-dependent increase in Na(+)-independent uptake of L-[3H]alanine and L-[3H]arginine. L-Alanine uptake was stimulated about 3-fold and L-arginine uptake was stimulated about 8-fold after injection of mRNA (25-50 ng, after 3-6 days) as compared with water-injected oocytes. T.I.C. of oocyte extracts suggested that the increased uptake actually represented an increase in the oocyte content of labelled L-alanine and L-arginine. The expressed L-alanine uptake, obtained by subtracting the uptake in water-injected oocytes from that in mRNA-injected oocytes, showed saturability and was inhibited completely by 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) and L-arginine. The expressed L-arginine uptake in mRNA-injected oocytes also showed saturability, being completely inhibited by L-dibasic amino acids) and partially inhibited by BCH. Expression of both L-alanine and L-arginine uptake showed clear cis-inhibition by cationic (e.g. L-arginine) and neutral (e.g. L-leucine) amino acids. In all, this points to the expression of a Na(+)-independent transport system with broad specificity (i.e. b degree, (+)-like). In addition, part of the expressed uptake of L-arginine could be due to a system y(+)-like transporter. After size fractionation through a sucrose density gradient, the mRNA species encoding these increased transport activities (Na(+)-independent transport of L-alanine and of L-arginine) were found in fractions of an average mRNA chain-length of 1.8-2.4 kb. On the basis of these results, we conclude that Na(+)-independent transport system(s) for L-alanine and L-arginine from rabbit renal cortical tissues, most likely proximal tubules, are expressed in Xenopus laevis oocytes. These observations may represent the first steps towards expression and cloning of these transport pathways.
Collapse
Affiliation(s)
- J Bertran
- Institute of Physiology, University of Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Doyle FA, McGivan JD. Reconstitution and identification of the major Na(+)-dependent neutral amino acid-transport protein from bovine renal brush-border membrane vesicles. Biochem J 1992; 281 ( Pt 1):95-102. [PMID: 1731772 PMCID: PMC1130645 DOI: 10.1042/bj2810095] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Amino acid transport activity from bovine renal brush-border membrane vesicles (BBMV) was reconstituted into phospholipid vesicles composed of phosphatidylcholine/5% stearylamine. Reconstitutable transport activity was enhanced in protein fractions binding to various lectins. When solubilized BBMV were fractionated on peanut lectin, a single protein band of average molecular mass 132 kDa was obtained. When this protein fraction was reconstituted into phospholipid membrane vesicles, amino acid transport activity was obtained with properties similar to those in native BBMV with regard to amino acid specificity, although the cation specificity was different. A monoclonal antibody which reacted with the same protein removed reconstitutable amino acid transport activity from solubilized BBMV. These findings may provide the first identification of a renal amino acid-transporting protein, although confirmation of this identification by other approaches will be required.
Collapse
Affiliation(s)
- F A Doyle
- Department of Biochemistry, School of Medical Sciences, University Walk, Bristol, U.K
| | | |
Collapse
|
21
|
Béliveau R, Jetté M, Demeule M, Potier M, Lee J, Tenenhouse HS. Different molecular sizes for Na(+)-dependent phosphonoformic acid binding and phosphate transport in renal brush border membrane vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1028:110-6. [PMID: 2145976 DOI: 10.1016/0005-2736(90)90146-f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We compared several features of Na(+)-dependent phosphono[14C]formic acid (PFA) binding and Na(+)-dependent phosphate transport in rat renal brush border membrane vesicles. From kinetic analyses, we estimated an apparent Km for PFA binding of 0.86 mM, an order of magnitude greater than that for phosphate and the high-affinity phosphate transport system. A hyperbolic Na(+)-saturation curve for PFA binding and a sigmoidal Na(+)-saturation curve for phosphate transport were demonstrated; based on these data, we estimated stoichiometries of 1:1 for Na+/PFA and 2:1 for Na+/phosphate. By radiation inactivation analysis, target sizes for brush border membrane protein(s) mediating Na(+)-dependent PFA binding and Na(+)-dependent phosphate transport corresponded to molecular masses of 555 +/- 32 kDa and 205 +/- 36 kDa, respectively. Similar analysis of the phosphate-inhibitable component of Na(+)-dependent PFA binding gave a target size of 130 +/- 28 kDa. We also demonstrated that phosphate deprivation, which elicits a 2.6-fold increase in brush border membrane Na(+)-dependent phosphate transport, had no effect on either Na(+)-dependent PFA binding or on the target size for PFA binding. However, phosphate deprivation appeared to increase the target size for phosphate transport (from 255 +/- 32 to 335 +/- 75 kDa (P less than 0.01]. In summary, we present evidence for several differences between Na(+)-dependent PFA binding and Na(+)-dependent phosphate transport in rat renal brush border membrane vesicles and suggest that PFA may not interact exclusively with the proteins mediating Na(+)-phosphate co-transport.
Collapse
Affiliation(s)
- R Béliveau
- Département de chimie, Université du Québec à Montréal, Montréal, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Tenenhouse HS, Lee J, Harvey N, Potier M, Jette M, Beliveau R. Normal molecular size of the Na(+)-phosphate cotransporter and normal Na(+)-dependent binding of phosphonoformic acid in renal brush border membranes of X-linked Hyp mice. Biochem Biophys Res Commun 1990; 170:1288-93. [PMID: 2143899 DOI: 10.1016/0006-291x(90)90533-s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
X-linked Hyp mice have a specific defect in Na(+)-dependent phosphate (Pi) transport at the renal brush border membrane (BBM). In the present study we examined the effect of the Hyp mutation on the molecular size of the Pi transporting unit and on Na(+)-dependent 14C-phosphonoformic (PFA) binding in renal BBM vesicles. By radiation inactivation analysis, we demonstrated that the molecular size of the Na(+)-Pi cotransporter is similar in normal (242 +/- 16 kDa) and Hyp mice (227 +/- 39 kDa). Moreover, while BBM Na(+)-dependent Pi transport is significantly reduced in Hyp mice (249 +/- 54 vs 465 +/- 82 pmol/mg protein/6s), genotype differences in (1) Na(+)-dependent PFA binding (1020 +/- 115 vs 1009 +/- 97 pmol/mg protein/30 min), (2) Pi-displaceable Na(+)-dependent PFA binding (605 +/- 82 vs 624 +/- 65 pmol/mg protein/6s), and (3) phosphate uptake at Na(+)-equilibrium (67 +/- 10 vs 54 +/- 7 pmol/mg protein/6s) are not apparent. The present data demonstrate that the molecular size of the renal BBM Na(+)-Pi cotransporter is normal in Hyp mice and suggest that the number of Na(+)-Pi cotransporters may not be reduced in the mutant strain.
Collapse
Affiliation(s)
- H S Tenenhouse
- Dept. of Pediatrics, McGill University-Montreal Children's Hospital Research Institute, Quebec, Canada
| | | | | | | | | | | |
Collapse
|