1
|
Nayak AK, Das SL, Misbah C. Endothelial calcium dynamics elicited by ATP release from red blood cells. Sci Rep 2024; 14:13550. [PMID: 38866785 DOI: 10.1038/s41598-024-63306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Red blood cells (RBCs) exhibit an interesting response to hydrodynamic flow, releasing adenosine triphosphate (ATP). Subsequently, these liberated ATP molecules initiate a crucial interaction with endothelial cells (ECs), thereby setting off a cascade involving the release of calcium ions (Ca2 + ). Ca2 + exerts control over a plethora of cellular functions, and acts as a mediator for dilation and contraction of blood vessel walls. This study focuses on the relationship between RBC dynamics and Ca2 + dynamics, based on numerical simulations under Poiseuille flow within a linear two-dimensional channel. It is found that the concentration of ATP depends upon a variety of factors, including RBC density, channel width, and the vigor of the flow. The results of our investigation reveals several features. Firstly, the peak amplitude of Ca2 + per EC escalates in direct proportion to the augmentation of RBC concentration. Secondly, increasing the flow strength induces a reduction in the time taken to reach the peak of Ca2 + concentration, under the condition of a constant channel width. Additionally, when flow strength remains constant, an increase in channel width corresponds to an elevation in calcium peak amplitude, coupled with a decrease in peak time. This implies that Ca2 + signals should transition from relatively unconstrained channels to more confined pathways within real vascular networks. This notion gains support from our examination of calcium propagation in a linear channel. In this scenario, the localized Ca2 + release initiates a propagating wave that gradually encompasses the entire channel. Notably, our computed propagation speed agrees with observations.
Collapse
Affiliation(s)
| | - Sovan Lal Das
- Physical and Chemical Biology Laboratory, and Department of Mechanical Engineering, Indian Institute of Technology Palakkad, Palakkad, 678623, India
| | - Chaouqi Misbah
- CNRS, LIPhy, Université Grenoble Alpes, 38000, Grenoble, France.
| |
Collapse
|
2
|
Mathematical modeling of intracellular calcium in presence of receptor: a homeostatic model for endothelial cell. Biomech Model Mechanobiol 2023; 22:217-232. [PMID: 36219362 DOI: 10.1007/s10237-022-01643-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2022]
Abstract
Calcium is a ubiquitous molecule and second messenger that regulates many cellular functions ranging from exocytosis to cell proliferation at different time scales. In the vasculature, a constant adenosine triphosphate (ATP) concentration is maintained because of ATP released by red blood cells (RBCs). These ATP molecules continuously react with purinergic receptors on the surface of endothelial cells (ECs). Consequently, a cascade of chemical reactions are triggered that result in a transient cytoplasmic calcium (Ca[Formula: see text]), followed by return to its basal concentration. The mathematical models proposed in the literature are able to reproduce the transient peak. However, the trailing concentration is always higher than the basal cytoplasmic Ca[Formula: see text] concentrations, and the Ca[Formula: see text] concentration in endoplasmic reticulum (ER) remains lower than its initial concentration. This means that the intracellular homeostasis is not recovered. We propose, herein, a minimal model of calcium kinetics. We find that the desensitization of EC surface receptors due to phosphorylation and recycling plays a vital role in maintaining calcium homeostasis in the presence of a constant stimulus (ATP). The model is able to capture several experimental observations such as refilling of Ca[Formula: see text] in the ER, variation of cytoplasmic Ca[Formula: see text] transient peak in ECs, the resting cytoplasmic Ca[Formula: see text] concentration, the effect of removing ATP from the plasma on Ca[Formula: see text] homeostasis, and the saturation of cytoplasmic Ca[Formula: see text] transient peak with increase in ATP concentration. Direct confrontation with several experimental results is conducted. This work paves the way for systematic studies on coupling between blood flow and chemical signaling, and should contribute to a better understanding of the relation between (patho)physiological conditions and Ca[Formula: see text] kinetics.
Collapse
|
3
|
Burnstock G, Ralevic V. Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 2013; 66:102-92. [PMID: 24335194 DOI: 10.1124/pr.113.008029] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; and Department of Pharmacology, The University of Melbourne, Australia.
| | | |
Collapse
|
4
|
Rodríguez-Rodríguez R, Yarova P, Winter P, Dora KA. Desensitization of endothelial P2Y1 receptors by PKC-dependent mechanisms in pressurized rat small mesenteric arteries. Br J Pharmacol 2009; 158:1609-20. [PMID: 19845669 DOI: 10.1111/j.1476-5381.2009.00456.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Extracellular nucleotides play a crucial role in the regulation of vascular tone and blood flow. Stimulation of endothelial cell P2Y1 receptors evokes concentration-dependent full dilatation of resistance arteries. However, this GPCR can desensitize upon prolonged exposure to the agonist. Our aim was to determine the extent and nature of P2Y1 desensitization in isolated and pressurized rat small mesenteric arteries. EXPERIMENTAL APPROACH The non-hydrolyzable selective P2Y1 agonist ADPbetaS (3 microM) was perfused through the lumen of arteries pressurized to 70 mmHg. Changes in arterial diameter and endothelial cell [Ca(2+)](i) were obtained in the presence and absence of inhibitors of protein kinase C (PKC). KEY RESULTS ADPbetaS evoked rapid dilatation to the maximum arterial diameter but faded over time to a much-reduced plateau closer to 35% dilatation. This appeared to be due to desensitization of the P2Y1 receptor, as subsequent endothelium-dependent dilatation to acetylcholine (1 microM) remained unaffected. Luminal treatment with the PKC inhibitors BIS-I (1 microM) or BIS-VIII (1 microM) tended to augment concentration-dependent dilatation to ADPbetaS (0.1-3 microM) and prevented desensitization. Another PKC inhibitor, Gö 6976 (1 microM), was less effective in preventing desensitization. Measurements of endothelial cell [Ca(2+)](i) in pressurized arteries confirmed the P2Y1 receptor but not M(3) muscarinic receptor desensitization. CONCLUSIONS AND IMPLICATIONS These data demonstrate for the first time the involvement of PKC in the desensitization of endothelial P2Y1 receptors in pressurized rat mesenteric arteries, which may have important implications in the control of blood flow by circulating nucleotides.
Collapse
|
5
|
Sanabria P, Ross E, Ramirez E, Colon K, Hernandez M, Maldonado HM, Silva WI, Jimenez-Rivera CA, Gonzalez FA. P2Y2 receptor desensitization on single endothelial cells. ACTA ACUST UNITED AC 2008; 15:43-51. [PMID: 18568944 DOI: 10.1080/10623320802092294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Receptor desensitization, or decreased responsiveness of a receptor to agonist stimulation, represents a regulatory process with the potential to have a significant impact on cell behavior. P2Y(2), a G-protein-coupled receptor activated by extracellular nucleotides, undergoes desensitization at many tissues, including the vascular endothelium. Endothelial cells from a variety of vascular beds are normally exposed to extracellular nucleotides released from damaged cells and activated platelets. The purpose of the present study was to compare P2Y(2) receptor desensitization observed in endothelial cells derived from bovine retina, a model of microvascular endothelium, and human umbilical vein endothelial cells (HUVECs), a model of a large blood vessel endothelium. P2Y(2) receptor desensitization was monitored by following changes in UTP-stimulated intracellular free Ca(2 +) in single cells using fura-2 microfluorometry. Both endothelial cell models exhibited desensitization of the P2Y(2) receptor after stimulation with UTP. However, the cells differed in the rate, dependence on agonist concentration, and percentage of maximal desensitization. These results suggest differential mechanisms of P2Y(2) receptor desensitization and favors heterogeneity in extracellular nucleotide activity in endothelial cells according to its vascular bed origin.
Collapse
Affiliation(s)
- Priscila Sanabria
- Department of Physiology, Universidad Central del Caribe, Bayamon, Puerto Rico
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
González FA, Weisman GA, Erb L, Seye CI, Sun GY, Velázquez B, Hernández-Pérez M, Chorna NE. Mechanisms for inhibition of P2 receptors signaling in neural cells. Mol Neurobiol 2006; 31:65-79. [PMID: 15953812 DOI: 10.1385/mn:31:1-3:065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 11/15/2004] [Indexed: 12/24/2022]
Abstract
Trophic factors are required to ensure neuronal viability and regeneration after neural injury. Although abundant information is available on the factors that cause the activation of astrocytes, little is known about the molecular mechanisms underlying the regulation of this process. Nucleotides released into the extracellular space from injured or dying neural cells can activate astrocytes via P2 nucleotide receptors. After a brief historical review and update of novel P2 receptor antagonists, this article focuses on recent advancements toward understanding molecular mechanisms that regulate G protein-coupled P2Y receptor signaling. Among P2Y receptor subtypes, the heptahelical P2Y2 nucleotide receptor interacts with vitronectin receptors via an RGD sequence in the first extracellular loop, and this interaction is required for effective signal transduction to activate mitogen-activated protein kinases ERK1/2, to mobilize intracellular calcium stores via activation of phospholipase C, protein kinase C isoforms, and to activate focal adhesion kinase and other signaling events. Ligation of vitronectin receptors with specific antibodies caused an inhibition of P2Y2 receptor-induced ERK1/2 and p38 phosphorylation and P2Y2 receptor-induced cytoskeleton rearrangement and DNA synthesis. Structure-function studies have identified agonist-induced phosphorylation of the C-terminus of the P2Y2 receptor, an important mechanism for receptor desensitization. Understanding selective mechanisms for regulating P2Y2 receptor signaling could provide novel targets for therapeutic strategies in the management of brain injury, synaptogenesis, and neurological disorders.
Collapse
Affiliation(s)
- Fernando A González
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Puerto Rico.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Isales CM, Sumpio B, Bollag RJ, Zhong Q, Ding KH, Du W, Rodriguez-Commes J, Lopez R, Rosales OR, Gasalla-Herraiz J, McCarthy R, Barrett PQ. Functional parathyroid hormone receptors are present in an umbilical vein endothelial cell line. Am J Physiol Endocrinol Metab 2000; 279:E654-62. [PMID: 10950835 DOI: 10.1152/ajpendo.2000.279.3.e654] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Acute parathyroid hormone exposure induces vascular smooth muscle relaxation. In contrast, continuous infusion of parathyroid hormone leads to vasoconstriction and an elevation of blood pressure. Despite the known effects of parathyroid hormone on vascular smooth muscle, possible direct effects on the vascular endothelium have not previously been investigated. Using a human umbilical vein endothelial cell line, we found that parathyroid hormone increased both intracellular calcium and cellular cAMP content in these endothelial cells. Furthermore, exposure of these cells to increasing concentrations of parathyroid hormone stimulated both [(3)H]thymidine incorporation and endothelin-1 secretion. Parathyroid hormone/parathyroid hormone-related peptide receptor mRNA could be detected at low levels in these cells. In summary, these data demonstrate that endothelium-derived cells contain functional parathyroid hormone receptors. The potential physiological role of these receptors remains to be determined.
Collapse
Affiliation(s)
- C M Isales
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta 30912, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bo X, Sexton A, Xiang Z, Nori SL, Burnstock G. Pharmacological and histochemical evidence for P2X receptors in human umbilical vessels. Eur J Pharmacol 1998; 353:59-65. [PMID: 9721040 DOI: 10.1016/s0014-2999(98)00383-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The presence of P2X purinoceptors in human umbilical vessels were studied with organ bath recording, radioligand binding assays, autoradiography, and immunohistochemistry. In isolated umbilical arteries and veins from normal term pregnancy, both ATP and alpha,beta-methylene ATP caused concentration-dependent contractions. ATP-induced responses were blocked by desensitisation with alpha,betamethylene ATP. However, both the ATP- and alpha,beta-methylene ATP-induced responses were not antagonised by suramin. No significant difference in responses was observed in the vessels with or without endothelial cells. Radioligand binding assays using [3H]alpha,beta-methylene ATP showed the presence of a population of high-affinity binding sites in both the arteries and veins. The Kd values of the binding sites were 2.77 + 1.10 nM for the arteries, and 3.23+/-1.22 nM for the veins. The maximum binding site densities were 634+/-237 and 947+/-308 fmol/mg protein for the arteries and the veins, respectively. Autoradiographic localisation with [3H]alpha,beta-methylene ATP demonstrated that the specific binding sites were only distributed over the smooth muscle cells of the vessels. Immunohistochemical studies with specific polyclonal antibodies against P2X1-6 receptors showed that positive immunostaining was also restricted to smooth muscle cells. Antibodies against P2X1 receptors produced the strongest signals, while antibodies against the other five P2X subtypes produced much weaker signals. The results in the present study indicate the existence of P2X purinoceptors in the smooth muscle of human umbilical vessels. Their physiological functions remain to be studied.
Collapse
Affiliation(s)
- X Bo
- Autonomic Neuroscience Institute, Royal Free Hospital School of Medicine, London, UK
| | | | | | | | | |
Collapse
|
9
|
Wheeler-Jones C, Abu-Ghazaleh R, Cospedal R, Houliston RA, Martin J, Zachary I. Vascular endothelial growth factor stimulates prostacyclin production and activation of cytosolic phospholipase A2 in endothelial cells via p42/p44 mitogen-activated protein kinase. FEBS Lett 1997; 420:28-32. [PMID: 9450544 DOI: 10.1016/s0014-5793(97)01481-6] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Vascular endothelial growth factor (VEGF) stimulated a time- and concentration-dependent increase in PGI2 synthesis in human umbilical vein endothelial cells with a mean maximum increase of 2-fold above basal levels at 25 ng/ml after 60 min. VEGF also rapidly stimulated the release of arachidonic acid and phosphorylation and activation of cytosolic phospholipase A2 (cPLA2). The VEGF-related factor, placenta growth factor (PIGF), had little effect on PGI2 synthesis, arachidonic acid release or cPLA2 activation. PD98059, a selective inhibitor of MAP kinase kinase, caused complete inhibition of VEGF-stimulated MAP kinase activity, PGI2 synthesis and cPLA2 gel retardation, but had no effect on VEGF-induced vWF secretion. These findings provide the first evidence that VEGF can stimulate PGI2 synthesis via cPLA2-mediated arachidonic acid release and indicate that VEGF stimulation of this biosynthetic pathway may occur, at least in part, via activation of p42/p44 MAP kinases.
Collapse
|
10
|
Huang NN, Wang DJ, Heller E, Heppel LA. Homologous desensitization of ATP-stimulated mitogenesis: mechanism involves desensitization of arachidonic acid release and cAMP elevation but not the activation of protein kinase A. J Cell Physiol 1995; 165:667-75. [PMID: 7593247 DOI: 10.1002/jcp.1041650326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prolonged incubation of quiescent 3T3, 3T6, and A431 cells with the P2Y purinoceptor agonists ATP, ADP, or AMPPNP reduced the mitogenic responses of target cells to a further challenge by these agonists, as measured by [3H]thymidine incorporation. The mitogenic desensitization was agonist-specific, for no effect was seen on DNA synthesis stimulated by epidermal growth factor, insulin, bombesin, 12-O-tetradecanoyl-phorbol-12 acetate (TPA), or adenosine. The desensitization was completely reversible, since after a 24 hr incubation in the absence of ATP, the cells responded fully to the mitogenic action of ATP. The presence of a low level of cycloheximide blocked recovery, suggesting that down-regulation of the P2Y receptor may have occurred during desensitization. In Swiss 3T3 cells, stimulation of DNA synthesis occurs predominantly by activation of arachidonic acid release, followed by its oxidation to prostaglandin E2 and stimulation of adenylyl cyclase. Interestingly, prolonged preincubation with ATP produced a similar degree of desensitization of DNA synthesis and of ATP-dependent arachidonic acid release and cAMP accumulation. Furthermore, this was true for both wild type cells and mutants with a defective cAMP-dependent protein kinase (PKA). We conclude that homologous desensitization is likely due to uncoupling of the P2Y purinoceptor from phospholipase A2, and this process does not require activation of protein kinase A.
Collapse
Affiliation(s)
- N N Huang
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
11
|
Gallinaro BJ, Reimer WJ, Dixon SJ. Activation of protein kinase C inhibits ATP-induced [Ca2+]i elevation in rat osteoblastic cells: selective effects on P2Y and P2U signaling pathways. J Cell Physiol 1995; 162:305-14. [PMID: 7860638 DOI: 10.1002/jcp.1041620302] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Extracellular ATP elicits transient elevation of cytosolic free Ca2+ concentration ([Ca2+]i) in osteoblasts through interaction with more than one subtype of cell surface P2-purinoceptor. Elevation of [Ca2+]i arises, at least in part, by release of Ca2+ from intracellular stores. In the present study, we investigated the possible roles of protein kinase C (PKC) in regulating these signaling pathways. [Ca2+]i of indo-1-loaded UMR-106 osteoblastic cells was monitored by spectrofluorimetry. In the absence of extracellular Ca2+, ATP (100 microM) induced transient elevation of [Ca2+]i to a peak 57 +/- 7 nM above basal levels (31 +/- 2 nM, means +/- S.E.M., n = 25). Exposure of cells to the PKC activator 12-O-tetradecanoyl-beta-phorbol 13-acetate (TPA, 100 nM) for 2 min significantly reduced the amplitude of the ATP response to 13 +/- 4 nM (n = 11), without altering basal [Ca2+]i. Inhibition was half-maximal at approximately 1 nM TPA. The Ca2+ response to ATP was also inhibited by the PKC activators 1,2-dioctanoyl-sn-glycerol or 4 beta-phorbol 12,13-dibutyrate, but not by the control compounds 4 alpha-phorbol or 4 alpha-phorbol 12,13-didecanoate. Furthermore, exposure of cells to the protein kinase inhibitors H-7 or staurosporine for 10 min significantly attenuated the inhibitory effect of TPA. However, these protein kinase inhibitors did not prolong the [Ca2+]i response to ATP alone, indicating that activation of PKC does not account for the transient nature of this response. When the effects of other nucleotides were examined, TPA was found to cause significantly greater inhibition of the response to the P2Y-receptor agonists, ADP and 2-methylthioATP, than the response to the P2U-receptor agonist, UTP. These data indicate that activation of PKC selectively inhibits the P2Y signaling pathway in osteoblastic cells. In vivo, endocrine or paracrine factors, acting through PKC, may regulate the responsiveness of osteoblasts to extracellular nucleotides.
Collapse
Affiliation(s)
- B J Gallinaro
- Department of Physiology, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
12
|
Hosoki E, Iijima T. Chloride-sensitive Ca2+ entry by histamine and ATP in human aortic endothelial cells. Eur J Pharmacol 1994; 266:213-8. [PMID: 8174604 DOI: 10.1016/0922-4106(94)90129-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The regulation of intracellular free Ca2+ concentration ([Ca2+]i) was studied in cultured human aortic endothelial cells loaded with the fluorescent Ca2+ indicator fura-2. Histamine and ATP at concentrations of 10 microM and higher produced a biphasic change in [Ca2+]i, which consisted of an initial transient elevation followed by a sustained elevation. Reduction of the extracellular Cl- concentration to 40 mM, or exposure to the Cl- channel antagonist N-phenylanthranilic acid selectively prevented the sustained response to histamine or ATP, but they did not affect the sustained response to the Ca2+ ionophore ionomycin. Elevation of extracellular K+ concentration to 90 mM had no influence on the sustained response to histamine or ATP. These results suggest that the sustained elevation of [Ca2+]i in response to histamine and ATP is due to the Cl(-)-sensitive entry of extracellular Ca2+ in cultured human aortic endothelial cells.
Collapse
Affiliation(s)
- E Hosoki
- Department of Pharmacology, Akita University School of Medicine, Japan
| | | |
Collapse
|
13
|
Dubyak GR, el-Moatassim C. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 265:C577-606. [PMID: 8214015 DOI: 10.1152/ajpcell.1993.265.3.c577] [Citation(s) in RCA: 1051] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Extracellular ATP, at micromolar concentrations, induces significant functional changes in a wide variety of cells and tissues. ATP can be released from the cytosol of damaged cells or from exocytotic vesicles and/or granules contained in many types of secretory cells. There are also efficient extracellular mechanisms for the rapid metabolism of released nucleotides by ecto-ATPases and 5'-nucleotidases. The diverse biological responses to ATP are mediated by a variety of cell surface receptors that are activated when ATP or other nucleotides are bound. The functionally identified nucleotide or P2-purinergic receptors include 1) ATP receptors that stimulate G protein-coupled effector enzymes and signaling cascades, including inositol phospholipid hydrolysis and the mobilization of intracellular Ca2+ stores; 2) ATP receptors that directly activate ligand-gated cation channels in the plasma membranes of many excitable cell types; 3) ATP receptors that, via the rapid induction of surface membrane channels and/or pores permeable to ions and endogenous metabolites, produce cytotoxic or activation responses in macrophages and other immune effector cells; and 4) ADP receptors that trigger rapid ion fluxes and aggregation responses in platelets. Current research in this area is directed toward the identification and structural characterization of these receptors by biochemical and molecular biological approaches.
Collapse
Affiliation(s)
- G R Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | | |
Collapse
|
14
|
Pearson JD. The control of production and release of haemostatic factors in the endothelial cell. BAILLIERE'S CLINICAL HAEMATOLOGY 1993; 6:629-51. [PMID: 8025346 DOI: 10.1016/s0950-3536(05)80192-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Endothelial cell products contribute to many aspects of the regulation of haemostasis. They include potent inhibitors of platelet aggregation (prostacyclin and nitric oxide) rapidly released in response to agonists such as thrombin. Similar agonists also induce the formation of platelet-activating factor by endothelium. Endothelial cell surface ectonucleotidase enzymes control the catabolism of platelet-active adenine nucleotides. The main source of the circulating coagulant cofactor von Willebrand factor is the endothelium, where it is stored in granules for agonist-triggered exocytosis and also secreted constitutively. Surface anticoagulant activities are due to the presence of antithrombin and thrombomodulin. Endothelial cells also secrete plasminogen activator and its inhibitor. Many of these reactions are significantly modulated by exposure of endothelium to cytokines or bacterial endotoxin, the most striking example being the new synthesis and surface expression of the procoagulant tissue factor (thromboplastin).
Collapse
Affiliation(s)
- J D Pearson
- Vascular Biology Research Centre, King's College, London, UK
| |
Collapse
|
15
|
Carter TD, Ogden D. Kinetics of intracellular calcium release by inositol 1,4,5-trisphosphate and extracellular ATP in porcine cultured aortic endothelial cells. Proc Biol Sci 1993; 250:235-41. [PMID: 1362991 DOI: 10.1098/rspb.1992.0154] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Quantitative, time-resolved measurements have been made of intracellular Ca ion release by inositol 1,4,5-trisphosphate (InsP3) and extracellular ATP in porcine aortic endothelial cells in tissue culture. Intracellular free [Ca] was detected with the calcium dye fluo-3 and InsP3 released intracellularly by photolysis of 'caged' InsP3 in whole-cell voltage-clamped aortic endothelial cells. A rise of [Ca] was recorded at InsP3 concentrations greater than 0.2 microM. The timecourse at low InsP3 concentrations comprised a delay of mean 300 ms (range 266-330 ms), a peak in 2-3 s before declining with a half-time of 5-10 s. The delay and time-to-peak decreased with increasing concentrations of InsP3 over the range 0.2-5 microM. At very high concentrations of InsP3 (> 5 microM), the delay in the Ca response was short, always less than 20 ms. The results are consistent with a direct binding and gating action of InsP3 on the Ca channel of the cellular store. Following InsP3 action there is a refractoriness of the InsP3 Ca release process which recovers with a timecourse of half-time about 30 s. A comparison can be made between the timecourse of InsP3 and extracellular ATP actions. High concentrations of ATP (500 microM) acted with a delay of mean 1.8 s (range 1.2-2.5 s), whereas even moderate concentrations of InsP3 acted much more quickly, suggesting that there are slow coupling steps before or during the production of InsP3 in response to extracellular ATP. Both ATP and InsP3 evoked an increase in membrane conductance to K+, probably via Ca.
Collapse
Affiliation(s)
- T D Carter
- Division of Neurophysiology and Neuropharmacology, National Institute for Medical Research, Mill Hill, London, U.K
| | | |
Collapse
|
16
|
Motte S, Pirotton S, Boeynaems JM. Heterogeneity of ATP receptors in aortic endothelial cells. Involvement of P2y and P2u receptors in inositol phosphate response. Circ Res 1993; 72:504-10. [PMID: 8431980 DOI: 10.1161/01.res.72.3.504] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Extracellular ATP plays an important role in the regulation of prostacyclin and nitric oxide release from vascular endothelial cells. These cellular responses to ATP are generally attributed to the stimulation of the P2y subtype of P2 purinergic receptors. However, it has recently been suggested that two types of ATP receptors might coexist on endothelial cells. To evaluate this hypothesis, we examined the effects of P2y receptor agonists 2-methylthioadenosine 5'-triphosphate (2MeSATP) and 2'- and 3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP) and of UTP on the accumulation of inositol phosphates in bovine aortic endothelial cells. BzATP, 2MeSATP, and UTP produced a smaller maximal effect than ATP. The effects of 2MeSATP and UTP were additive, whereas the effects of ATP and either UTP or 2MeSATP were not. Prior exposure to UTP reduced the subsequent response to UTP to 12% of the control response, whereas the response to 2MeSATP was decreased to 61%. Reciprocally, preincubation with 2MeSATP reduced the subsequent response to 2MeSATP to 23% of the control response, whereas the response to UTP was reduced to 73%. Pertussis toxin pretreatment decreased the response to both ATP and UTP (65% and 70% inhibition, respectively), whereas the response to 2MeSATP was not modified. Our data support the hypothesis that two classes of receptors recognizing ATP are expressed on bovine aortic endothelial cells.
Collapse
Affiliation(s)
- S Motte
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Belgium
| | | | | |
Collapse
|
17
|
Pirotton S, Motte S, Côte S, Boeynaems JM. Control of endothelial function by nucleotides: multiple receptors and transduction mechanisms. Cell Signal 1993; 5:1-8. [PMID: 8383991 DOI: 10.1016/0898-6568(93)90002-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- S Pirotton
- Institute of Interdisciplinary Research, Free University of Brussels, Belgium
| | | | | | | |
Collapse
|
18
|
Reimer WJ, Dixon SJ. Extracellular nucleotides elevate [Ca2+]i in rat osteoblastic cells by interaction with two receptor subtypes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1992; 263:C1040-8. [PMID: 1332491 DOI: 10.1152/ajpcell.1992.263.5.c1040] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Extracellular nucleotides, through interaction with specific cell-surface receptors, mediate a variety of biological responses, including elevation of cytosolic free Ca2+ concentration ([Ca2+]i) in a number of cell types. The effects of nucleotides on [Ca2+]i in the rat osteoblastic cell line UMR-106 were studied by fluorescence spectrophotometry of indo-1-loaded cells. In response to ATP (100 microM), [Ca2+]i rose to peaks 228 +/- 16 nM (n = 59) above baseline (85 +/- 3 nM) before returning to near basal levels. Half-maximal elevation of [Ca2+]i was observed at an ATP concentration of 3 +/- 1 microM, consistent with a high-affinity interaction. The response arose primarily by release of Ca2+ from internal stores. UTP, ADP, and 2-methylthioadenosine 5'-triphosphate also induced Ca2+ transients, whereas adenosine, AMP, CTP, and TTP did not, demonstrating specificity. Responsiveness to adenosine 5'-O-(3-thiotriphosphate) and inhibition by Mg2+ of the response to ATP indicated that signaling was not dependent on nucleotide hydrolysis. Ca2+ responses to ADP, ATP, and UTP, added sequentially or simultaneously, were consistent with the presence of two distinct P2-purinoceptor subtypes, both linked to Ca2+ mobilization. ADP appeared to interact selectively with one receptor, whereas ATP and UTP interacted selectively with the other. After maximal stimulation with ATP, subsequent responses to ATP were abolished. However, removal of ATP from the extracellular medium rapidly restored responsiveness, suggesting that, with continued receptor occupation, there is time-dependent inactivation of the Ca2+ signaling pathway. Our findings indicate that extracellular nucleotides elevate [Ca2+]i in osteoblastic cells through interaction with two receptor subtypes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W J Reimer
- Department of Physiology, Faculty of Dentistry, University of Western Ontario, London, Canada
| | | |
Collapse
|
19
|
Pirotton S, Boutherin-Falson O, Robaye B, Boeynaems JM. Ecto-phosphorylation on aortic endothelial cells. Exquisite sensitivity to staurosporine. Biochem J 1992; 285 ( Pt 2):585-91. [PMID: 1637349 PMCID: PMC1132828 DOI: 10.1042/bj2850585] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
One- and two-dimensional gel electrophoresis of proteins from bovine aortic endothelial cells (BAEC) incubated with [gamma-32P]ATP revealed the preferential labelling of a cell-associated 21 kDa substrate. The labelling of this band was detectable within 30 s, increased up to 30 min and was stable for at least 3 h following the wash-out of the ATP. This protein was also labelled after incubation of the cells with [gamma-35S]ATP. Incorporation of radioactivity into the 21 kDa band did not occur if the endothelial cells were treated with low concentrations of trypsin (0.01%) before or after the labelling period. The pattern of BAEC protein phosphorylation by [gamma-32P]ATP was completely different from that of the fetal calf serum used for the cell culture. The presence of serum during the incubation of BAEC with [gamma-32P]ATP did not modify qualitatively the labelling pattern and, in particular, did not enhance the phosphorylation of the 21 kDa substrate; this suggests that neither the kinase nor the 21 kDa substrate are adsorbed serum proteins. Staurosporine, a protein kinase inhibitor with low specificity, decreased the labelling of the 21 kDa protein with an IC50 of 2 nM. In contrast, at 100 nM, staurosporine did not decrease the accumulation of inositol phosphates induced by ATP via the activation of P2y receptors. These data indicate the presence of aortic endothelial cells of an ecto-kinase which uses extracellular ATP to produce the selective and long-lived phosphorylation of a 21 kDa endothelial substrate. Ecto-phosphorylation of this protein might play a role in the modulation of endothelial cell functions by ATP, in addition to the P2y receptors [Boeynaems & Pearson (1990) Trends Pharmacol. Sci. 11, 34-37]. The exquisite sensitivity of ecto-phosphorylation to inhibition by staurosporine and its specific inhibition by some isoquinolinesulphonamide compounds provide potential pharmacological tools to investigate this hypothesis.
Collapse
Affiliation(s)
- S Pirotton
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Belgium
| | | | | | | |
Collapse
|
20
|
Turk J, Mueller M, Bohrer A, Ramanadham S. Arachidonic acid metabolism in isolated pancreatic islets. VI. Carbohydrate insulin secretagogues must be metabolized to induce eicosanoid release. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1125:280-91. [PMID: 1596516 DOI: 10.1016/0005-2760(92)90057-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pancreatic islets stimulated with D-glucose are known to liberate arachidonic acid from membrane phospholipids and release prostaglandin E2 (PGE2). A component of the eicosanoid release induced by D-glucose has been demonstrated to occur without calcium influx and must be triggered by other coupling mechanisms. In this study, we have attempted to identify mechanisms other than calcium influx which might couple D-glucose stimulation to hydrolysis of arachidonate from membrane phospholipids in islet cells. We have found that occupancy of the beta cell plasma membrane D-glucose transporter is insufficient and that D-glucose metabolism is required to induce islet PGE2 release because 3-O-methylglucose fails to induce and mannoheptulose prevents PGE2 release otherwise induced by 17 mM D-glucose. The carbohydrate insulin secretagogues mannose and D-glyceraldehyde have also been found to induce islet PGE2 release, but the non-secretagogue carbohydrates L-glucose and lactate do not. Carbohydrate secretagogues are known to be metabolized to yield ATP and induce depolarization of the beta cell plasma membrane. We have found that depolarization by 40 mM KCl induces PGE2 release only in the presence and not in the absence of extracellular calcium, but exogenous ATP induces islet PGE2 release with or without extracellular calcium. Carbachol is demonstrated here to interact synergistically with increasing concentrations of glucose to amplify PGE2 release and insulin secretion. Pertussis toxin treatment is shown here not to prevent PGE2 release induced by glucose or carbachol but to increase the basal rate of PGE2 release and the islet cyclic AMP content. Theophylline (10 mM) exerts similar effects. Eicosanoid release in pancreatic islets can thus be activated by multiple pathways including muscarinic receptor occupancy, calcium influx, increasing cAMP content, and a metabolic signal derived from nutrient secretagogues, such as ATP.
Collapse
Affiliation(s)
- J Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | |
Collapse
|
21
|
Buckley BJ, Barchowsky A, Dolor RJ, Whorton AR. Regulation of arachidonic acid release in vascular endothelium. Ca(2+)-dependent and -independent pathways. Biochem J 1991; 280 ( Pt 2):281-7. [PMID: 1747101 PMCID: PMC1130543 DOI: 10.1042/bj2800281] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ca2+ metabolism and its relationship to arachidonic acid release were studied in cultured pig aortic endothelial cells. When cells were treated with bradykinin, a rapid rise in intracellular Ca2+ concentration ([Ca2+]i) occurred. Arachidonic acid release from cells prelabelled with [3H]arachidonic acid and subjected to flow-through conditions closely followed the changes in [Ca2+]i. Attenuation of the Ca2+ response by chelating extracellular and intracellular Ca2+ or by desensitization of receptors led to comparable attenuation of arachidonate release. Activation of protein kinase C inhibited Ca2+ mobilization in response to bradykinin and stimulated arachidonic acid release. Inhibition of protein kinase C had no effect on bradykinin-stimulated arachidonic acid release, suggesting that protein kinase C does not mediate the bradykinin response. The role of GTP-binding regulatory proteins (G-proteins) in mediating the bradykinin response was also investigated. Bradykinin-stimulated arachidonic acid release was not diminished by preincubation with pertussis toxin. Treatment with the G-protein activator AlF4- resulted in the release of a large pool of arachidonic acid and the formation of lysophospholipids. Combined treatment with AlF4- and bradykinin resulted in a greater than additive effect on arachidonic acid release. In contrast with bradykinin, AlF(4-)-stimulated arachidonic acid release was not dependent on the presence of extracellular Ca2+ or the mobilization of intracellular Ca2+. These results demonstrate Ca(2+)-dependent (bradykinin) and Ca(2+)-independent (AlF4-) pathways of phospholipase A2 activation.
Collapse
Affiliation(s)
- B J Buckley
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | | | | | | |
Collapse
|
22
|
Carter TD, Bogle RG, Bjaaland T. Spiking of intracellular calcium ion concentration in single cultured pig aortic endothelial cells stimulated with ATP or bradykinin. Biochem J 1991; 278 ( Pt 3):697-704. [PMID: 1898358 PMCID: PMC1151402 DOI: 10.1042/bj2780697] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Single pig aortic endothelial cells in culture loaded with the Ca(2+)-sensitive fluorescent dye Indo-1 were stimulated with ATP (0.1-100 microM) or bradykinin (0.1-5.0 nM). Spiking or oscillations of [Ca2+]i were seen in approx. 50% of cells stimulated with either agonist. Non-spiking or transient responses in which [Ca2+]i returned to pre-stimulation levels rapidly 9120-250 s), or sustained responses in which [Ca2+]i remained elevated for many minutes, were seen in a further 20% of cells in each case, stimulated with either agonist. There was a marked variation between individual cells in the latency, magnitude, frequency and overall pattern of oscillations induced by ATP and bradykinin, although the patterns of response to bradykinin were less variable. In cells where repetitive spikes were seen, a relation between concentration of ATP and the latency of the response and the frequency of spiking was evident. Effects of removal of extracellular Ca2+, elevation of extracellular K+ concentration (35 or 70 mM) or exposure to phorbol 12,13-dibutyrate or 1,2-dioctanoyl-sn-glycerol were tested on the spiking Ca2+ responses. Each of these procedures reversibly slowed or prevented Ca2+ spiking evoked by ATP or bradykinin. In contrast, the inactive phorbol ester 4 alpha-phorbol didecanoate had no effect on Ca2+ spiking evoked by these hormones. Our results thus indicate that the responses of single cells to ATP or bradykinin exhibit marked heterogeneity, and suggest that secretory events driven by extracellular Ca2+ may be regulated by repetitive spikes or oscillations of Ca2+.
Collapse
Affiliation(s)
- T D Carter
- Division of Neurophysiology and Neuropharmacology, N.I.M.R., Mill Hill, London, U.K
| | | | | |
Collapse
|
23
|
Abstract
Several different types of endothelial cells are now known to respond to agonist stimulation with oscillations of cytosolic free [Ca2+] ([Ca2+]i). The oscillations can be repetitive [Ca2+]i spikes or sinusoidal-like oscillations according to the type of endothelial cell. Several properties of these oscillations are described including the effect of removal of extracellular Ca2+ and of changes in membrane potential, and the spatial heterogeneity of the oscillations. Results obtained with human umbilical vein endothelial cells are assessed in relation to a model for [Ca2+]i oscillations that involves Ca(2+)-induced Ca2+ release. In some preparations the oscillations are synchronized in neighbouring cells, whereas in other preparations they are not. The degree of synchrony may have functional implications and this is discussed with respect to control of blood flow and transmural permeability. A third functional implication of oscillations, their possible effect on desensitization, is also discussed.
Collapse
Affiliation(s)
- R Jacob
- Division of Biomedical Sciences, King's College, London, UK
| |
Collapse
|