1
|
Hua E, Xu D, Chen H, Zhang S, Feng J, Xu L. Development of the dipeptidyl peptidase 4 family and its association with lung diseases: a narrative review. J Thorac Dis 2023; 15:7024-7034. [PMID: 38249892 PMCID: PMC10797411 DOI: 10.21037/jtd-23-1158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/10/2023] [Indexed: 01/23/2024]
Abstract
Background and Objective Dipeptidyl peptidase (DPP)4 is a member of a subfamily of serine peptidase S9. DPP4, expressed as a type II transmembrane protein, has a wide tissue distribution and is most active in the lung and small intestine. Many substrates of DPP4 have been identified, including neuropeptides, chemokines, and glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptides (GIPs). DPP4 inhibitors are clinically useful in the treatment of type 2 diabetes mellitus. DPP9, an N-terminal dipeptide targeting enzyme with proline or alanine, may have DPP4-like activity. DPP9 is ubiquitously expressed at human and rodent messenger RNA (mRNA) levels and therefore may play a role in the immune system and epithelial cells. It has been shown that DPP9 plays an important signaling role in the regulation of survival and proliferation pathways and is also involved in cell migration, apoptosis, and cell adhesion. In recent years, there has been further progress in DPP9 inhibition through activation of apoptosis by the inflammasome sensor protein Nlrp1b. This study aims to investigate the association of DPP4 family members and DPP9 with lung disease. Methods The literature search was initiated using the PubMed database. We searched for the content (DPP4) AND (Lung Diseases), (DPP9) AND (Lung Diseases), from which we filtered the literature we needed. Key Content and Findings Given the high biological activity of the DPP4 family, their involvement in various lung diseases is highly relevant. There is growing evidence for the importance of DPP4 and DPP9 of the DPP4 family in lung diseases, which are closely associated with diseases such as asthma, lung infections, pulmonary fibrosis (PF), and lung cancer. Conclusions This review summarizes most of the current evidence that DPP4/9 is associated with lung disease. Within the DPP4 family, the role of DPP4 in particular in respiratory disease is important.
Collapse
Affiliation(s)
- Ershi Hua
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Six People’s Hospital of Nantong), Nantong, China
| | - Dongmei Xu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Huamao Chen
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Shuwen Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Jian Feng
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Liqin Xu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
2
|
Abstract
Dipeptidyl peptidase 4 (DPP4), a serine protease expressed on luminal and apical cell membrane, is identical to the lymphocyte cell surface protein CD26. DPP4 rapidly deactivates hormones and cytokines by cleaving their NH2-terminal dipeptides. Its functions are based on membrane digestion and/or binding of bioactive peptides, signal molecules, and extracellular matrix components. The soluble form is also present in body fluids such as serum, urine, semen, and synovial fluid. The extremely broad distribution of CD26/DPP4 indicates its divergent roles depending on cell type and activated conditions. The cellular localization was earlier examined by enzyme histochemistry and subsequently by immunohistochemistry. Although immunohistochemical analyses are higher in specificity and easier to use at electron microscopic levels than enzyme histochemistry, the immunoreaction is considerably affected by the animal species, types of tissue sections, and specificity of antibodies. Understanding of the functional significance and advancement of its clinical use (diagnosis and treatment of diseases) require precise information on the cellular distribution including subcellular localization and pathological changes. This short review summarizes in particular immunohistochemical findings on CD26/DPP4.
Collapse
Affiliation(s)
- Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Department of Anatomy, Hokkaido University Graduate School of Medicine
| | - Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Department of Anatomy, Hokkaido University Graduate School of Medicine
| |
Collapse
|
3
|
Romacho T, Sell H, Indrakusuma I, Roehrborn D, Castañeda TR, Jelenik T, Markgraf D, Hartwig S, Weiss J, Al-Hasani H, Roden M, Eckel J. DPP4 deletion in adipose tissue improves hepatic insulin sensitivity in diet-induced obesity. Am J Physiol Endocrinol Metab 2020; 318:E590-E599. [PMID: 31891536 DOI: 10.1152/ajpendo.00323.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Besides a therapeutic target for type 2 diabetes, dipeptidyl peptidase 4 (DPP4) is an adipokine potentially upregulated in human obesity. We aimed to explore the role of adipocyte-derived DPP4 in diet-induced obesity and insulin resistance with an adipose tissue-specific knockout (AT-DPP4-KO) mouse. Wild-type and AT-DPP4-KO mice were fed for 24 wk with a high fat diet (HFD) and characterized for body weight, glucose tolerance, insulin sensitivity by hyperinsulinemic-euglycemic clamp, and body composition and hepatic fat content. Image and molecular biology analysis of inflammation, as well as adipokine secretion, was performed in AT by immunohistochemistry, Western blot, real-time-PCR, and ELISA. Incretin levels were determined by Luminex kits. Under HFD, AT-DPP4-KO displayed markedly reduced circulating DPP4 concentrations, proving AT as a relevant source. Independently of glucose-stimulated incretin hormones, AT-DPP4-KO had improved glucose tolerance and hepatic insulin sensitivity. AT-DPP4-KO displayed smaller adipocytes and increased anti-inflammatory markers. IGF binding protein 3 (IGFBP3) levels were lower in AT and serum, whereas free IGF1 was increased. The absence of adipose DPP4 triggers beneficial AT remodeling with decreased production of IGFBP3 during HFD, likely contributing to the observed, improved hepatic insulin sensitivity.
Collapse
Affiliation(s)
- Tania Romacho
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- komIT Center of Competence for Innovative Diabetes Therapy, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Henrike Sell
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ira Indrakusuma
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Diana Roehrborn
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Tamara R Castañeda
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tomas Jelenik
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Markgraf
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sonja Hartwig
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Weiss
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Eckel
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- komIT Center of Competence for Innovative Diabetes Therapy, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Trzaskalski NA, Fadzeyeva E, Mulvihill EE. Dipeptidyl Peptidase-4 at the Interface Between Inflammation and Metabolism. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2020; 13:1179551420912972. [PMID: 32231442 PMCID: PMC7088130 DOI: 10.1177/1179551420912972] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 12/25/2022]
Abstract
Dipeptidyl peptidase-4 (DPP4) is a serine protease that rapidly inactivates the incretin peptides, glucagon-like peptide-1, and glucose-dependent insulinotropic polypeptide to modulate postprandial islet hormone secretion and glycemia. Dipeptidyl peptidase-4 also has nonglycemic effects by controlling the progression of inflammation, which may be mediated more through direct protein-protein interactions than catalytic activity in the context of nonalcoholic fatty liver disease (NAFLD), obesity, and type 2 diabetes (T2D). Failure to resolve inflammation resulting in chronic subclinical activation of the immune system may influence the development of metabolic dysregulation. Thus, through both its cleavage and regulation of the bioactivity of peptide hormones and its influence on inflammation, DPP4 exhibits a diverse array of effects that can influence the progression of metabolic disease. Here, we highlight our current understanding of the complex biology of DPP4 at the intersection of inflammation, obesity, T2D, and NAFLD. We compare and review new mechanisms identified in basic laboratory and clinical studies, which may have therapeutic application and relevance to the pathogenesis of obesity and T2D.
Collapse
Affiliation(s)
- Natasha A Trzaskalski
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Evgenia Fadzeyeva
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
5
|
Wagener I, Jungen M, von Hörsten S, Stephan M, Schmiedl A. Postnatal morphological lung development of wild type and CD26/DPP4 deficient rat pups in dependency of LPS exposure. Ann Anat 2019; 229:151423. [PMID: 31654734 DOI: 10.1016/j.aanat.2019.151423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Rodents are born with morphological immature lungs and an intact surfactant system. CD26/DPP4 is a multifactorial transmembrane integral type II protein, which is involved in physiological and pathophysiological processes and is already expressed during development. CD26/DPP4, called CD26 in the following, is able to enhance or dampen differently triggered inflammation. LPS exposure often used to simulate perinatal infection delays lung development. OBJECTIVE A perinatal LPS rat model was used to test the hypothesis that CD26 deficiency modulates LPS-induced retardation in morphological lung development. METHODS New born Fischer CD26 positive (CD26+) and deficient (CD26-) rats were exposed to LPS on postnatal day (day post partum, dpp) 3 and 5. Morphological parameters of lung development were determined stereologically. Lung development was analysed in 7, 10 14 and 21day old rats. RESULTS Compared to controls LPS application resulted (1) in a mild inflammation independent of the strain, (2) in significantly lower total surface and volume of alveolar septa combined with significantly higher total volume of airspaces and alveolar size on dpp 7 in both substrains. However, compared to controls in LPS treated CD26- rats significant lower values of total septal surface and volume combined with higher values of total parenchymal airspaces and alveolar size were found until the end of classical alveolarization (dpp14). In LPS treated CD26+ rat pups the retardation was abolished already on dpp 10. CONCLUSION In absence of CD26, LPS enhances the delay of morphological lung development. Morphological recovery was slower after the end of LPS exposure in CD26 deficient lungs.
Collapse
Affiliation(s)
- Inga Wagener
- Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
| | - Meike Jungen
- Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
| | - Stephan von Hörsten
- Franz-Penzoldt-Centre, Experimental Therapy, Friedrich-Alexander-University of Erlangen, Germany.
| | - Michael Stephan
- Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Clinic for Psychosomatics and Psychotherapy, Hannover Medical School, 30625 Hannover, Germany.
| | - Andreas Schmiedl
- Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
6
|
Klemann C, Wagner L, Stephan M, von Hörsten S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4's (DPP4) entanglement in the immune system. Clin Exp Immunol 2016; 185:1-21. [PMID: 26919392 DOI: 10.1111/cei.12781] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 02/14/2016] [Accepted: 02/21/2016] [Indexed: 12/11/2022] Open
Abstract
CD26/DPP4 (dipeptidyl peptidase 4/DP4/DPPIV) is a surface T cell activation antigen and has been shown to have DPP4 enzymatic activity, cleaving-off amino-terminal dipeptides with either L-proline or L-alanine at the penultimate position. It plays a major role in glucose metabolism by N-terminal truncation and inactivation of the incretins glucagon-like peptide-1 (GLP) and gastric inhibitory protein (GIP). In 2006, DPP4 inhibitors have been introduced to clinics and have been demonstrated to efficiently enhance the endogenous insulin secretion via prolongation of the half-life of GLP-1 and GIP in patients. However, a large number of studies demonstrate clearly that CD26/DPP4 also plays an integral role in the immune system, particularly in T cell activation. Therefore, inhibition of DPP4 might represent a double-edged sword. Apart from the metabolic benefit, the associated immunological effects of long term DPP4 inhibition on regulatory processes such as T cell homeostasis, maturation and activation are not understood fully at this stage. The current data point to an important role for CD26/DPP4 in maintaining lymphocyte composition and function, T cell activation and co-stimulation, memory T cell generation and thymic emigration patterns during immune-senescence. In rodents, critical immune changes occur at baseline levels as well as after in-vitro and in-vivo challenge. In patients receiving DPP4 inhibitors, evidence of immunological side effects also became apparent. The scope of this review is to recapitulate the role of CD26/DPP4 in the immune system regarding its pharmacological inhibition and T cell-dependent immune regulation.
Collapse
Affiliation(s)
- C Klemann
- Center of Pediatric Surgery, Hannover Medical School, Hannover.,Center of Chronic Immunodeficiency, University Medical Center Freiburg, University Medical Center Freiburg
| | - L Wagner
- Deutschsprachige Selbsthilfegruppe für Alkaptonurie (DSAKU) e.V.,Department for Experimental Therapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - M Stephan
- Clinic for Psychosomatics and Psychotherapy, Hannover Medical School, Hannover
| | - S von Hörsten
- Department for Experimental Therapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Wang Z, Grigo C, Steinbeck J, von Hörsten S, Amann K, Daniel C. Soluble DPP4 originates in part from bone marrow cells and not from the kidney. Peptides 2014; 57:109-17. [PMID: 24874705 DOI: 10.1016/j.peptides.2014.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 12/12/2022]
Abstract
Dipeptidyl peptidase 4 (DPP4) is known to inactivate incretins as well as important chemokines and neuropeptides. DPP4 is expressed as a transmembrane protein but also occurs as a soluble enzyme circulating in the blood. However, the origin of the soluble DPP4 (sDPP4) is still unknown. In this study, DPP4 activity was quantified in plasma and extracted from different rat organs. Then, in order to see if the kidney or the bone marrow was the source of sDPP4, kidney or bone marrow transplantation was performed between wildtype (wt) Dark Agouti (DA) and DPP4 deficient congenic rats (n=6-9). Kidney was verified to have the highest DPP4 activity, followed by spleen and lung. In the following three weeks after successful kidney transplantation only transient trace plasma DPP4 activity was detected in DPP4 deficient rats receiving wt kidneys. In addition, DPP4 activity was not diminished in DA wt rats receiving DPP4 deficient kidneys. Both findings indicated that sDPP4 did not originate from the kidney. In contrast, 43±14% (compared to wt) sDPP4 activity was detected in the plasma of DPP4 deficient DA rats that were reconstituted with wt bone marrow cells. Not only leukocyte but also macrophage subpopulations express DPP4 in bone marrow as well as in blood as assessed by flow cytometry. Thus, bone marrow derived cells but not the kidney represent at least one source of sDPP4. And leukocyte or macrophage subpopulations could be potential candidates.
Collapse
Affiliation(s)
- Zhendi Wang
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Loschgestr. 8, 91054 Erlangen, Germany; Department of Urologic Surgery, Union Hospital, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, PR China.
| | - Christina Grigo
- Division of Nephropathology, University of Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany.
| | - Julia Steinbeck
- Division of Nephropathology, University of Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany.
| | - Stephan von Hörsten
- Department for Experimental Therapy, Friedrich-Alexander Universität Erlangen-Nürnberg, Palmsanlage 5, 91054 Erlangen, Germany.
| | - Kerstin Amann
- Division of Nephropathology, University of Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany.
| | - Christoph Daniel
- Division of Nephropathology, University of Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany.
| |
Collapse
|
8
|
Hupa KL, Schmiedl A, Pabst R, Von Hörsten S, Stephan M. Maternal Deprivation Decelerates Postnatal Morphological Lung Development of F344 Rats. Anat Rec (Hoboken) 2013; 297:317-26. [DOI: 10.1002/ar.22848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 11/07/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Katharina Luise Hupa
- Institute of Functional and Applied Anatomy; Hannover Medical School; Hannover Germany
| | - Andreas Schmiedl
- Institute of Functional and Applied Anatomy; Hannover Medical School; Hannover Germany
| | - Reinhard Pabst
- Institute of Immunomorphology; Hannover Medical School; Hannover Germany
| | - Stephan Von Hörsten
- Department for Experimental Therapy; Franz-Penzoldt-Center, Friedrich-Alexander-University Erlangen-Nürnberg; Erlangen Germany
| | - Michael Stephan
- Clinic for Psychosomatics and Psychotherapy; Hannover Medical School; Hannover Germany
| |
Collapse
|
9
|
Fröhlich E, Maier E, Wahl R. Interspecies differences in membrane-associated protease activities of thyrocytes and their relevance for thyroid cancer studies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:45. [PMID: 22591973 PMCID: PMC3423041 DOI: 10.1186/1756-9966-31-45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/16/2012] [Indexed: 11/27/2022]
Abstract
Background To understand the role of proteases involved in human thyroid cancer progression and tissue invasion, thyrocytes from other species could potentially be used provided their characteristics are similar. It is not known whether dipeptidyl peptidase IV and aminopeptidase N activities, which are overexpressed in human thyroid cancer, are, as in human, also absent in normal thyrocytes of other species, making them suitable models for studies on the regulation of these proteases. Methods To assess the role of these proteases, activity was measured in thyroid tissue of human, mouse, rat, porcine, bovine and ovine origin. The lysosomal protease, dipeptidyl peptidase II, was used for comparison. Results Murine, rat, ovine, bovine and human thyrocytes all lacked dipeptidyl peptidase IV and aminopeptidase N activity, but porcine thyrocytes were found to possess both. In contrast, lysosomal dipeptidyl peptidase II was strongly expressed in all species. These activity patterns were maintained in cultured cells. Cultured porcine thyrocytes formed follicles with typical morphology upon stimulation with TSH but differed from human thyrocytes in their response to thiamazole. Conclusions These species differences in the expression of dipeptidyl peptidase IV and aminopeptidase N, indicate that porcine thyrocytes cannot be considered appropriate for the study of proteases in human cancer development.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Department of Endocrinology, University of Tuebingen, Tuebingen, Germany
| | | | | |
Collapse
|
10
|
Wang P, Chintagari NR, Narayanaperumal J, Ayalew S, Hartson S, Liu L. Proteomic analysis of lamellar bodies isolated from rat lungs. BMC Cell Biol 2008; 9:34. [PMID: 18577212 PMCID: PMC2459160 DOI: 10.1186/1471-2121-9-34] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Accepted: 06/24/2008] [Indexed: 12/18/2022] Open
Abstract
Background Lamellar bodies are lysosome-related secretory granules and store lung surfactant in alveolar type II cells. To better understand the mechanisms of surfactant secretion, we carried out proteomic analyses of lamellar bodies isolated from rat lungs. Results With peptide mass fingerprinting by Matrix Assisted Laser Desorption/Ionization – Time of Flight mass spectrometry, 44 proteins were identified with high confidence. These proteins fell into diverse functional categories: surfactant-related, membrane trafficking, calcium binding, signal transduction, cell structure, ion channels, protein processing and miscellaneous. Selected proteins were verified by Western blot and immunohistochemistry. Conclusion This proteomic profiling of lamellar bodies provides a basis for further investigations of functional roles of the identified proteins in lamellar body biogenesis and surfactant secretion.
Collapse
Affiliation(s)
- Pengcheng Wang
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Zhang Y, Rath N, Hannenhalli S, Wang Z, Cappola T, Kimura S, Atochina-Vasserman E, Lu MM, Beers MF, Morrisey EE. GATA and Nkx factors synergistically regulate tissue-specific gene expression and development in vivo. Development 2007; 134:189-98. [PMID: 17164424 DOI: 10.1242/dev.02720] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vitro studies have suggested that members of the GATA and Nkx transcription factor families physically interact, and synergistically activate pulmonary epithelial- and cardiac-gene promoters. However, the relevance of this synergy has not been demonstrated in vivo. We show that Gata6-Titf1 (Gata6-Nkx2.1) double heterozygous (G6-Nkx DH) embryos and mice have severe defects in pulmonary epithelial differentiation and distal airway development, as well as reduced phospholipid production. The defects in G6-Nkx DH embryos and mice are similar to those observed in human neonates with respiratory distress syndromes, including bronchopulmonary dysplasia, and differential gene expression analysis reveals essential developmental pathways requiring synergistic regulation by both Gata6 and Titf1 (Nkx2.1). These studies indicate that Gata6 and Nkx2.1 act in a synergistic manner to direct pulmonary epithelial differentiation and development in vivo, providing direct evidence that interactions between these two transcription factor families are crucial for the development of the tissues in which they are co-expressed.
Collapse
Affiliation(s)
- Yuzhen Zhang
- Department of Medicine and University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wagner L, Hoffmann T, Rahfeld JU, Demuth HU. Distribution of dipeptidyl peptidase IV-like activity enzymes in canine and porcine tissue sections by RT-PCR. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 575:109-16. [PMID: 16700514 DOI: 10.1007/0-387-32824-6_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- Leona Wagner
- Department of Molecular Biology, Probiodrug AG, Weinbergweg 22, 06120 Halle (Saale), Germany
| | | | | | | |
Collapse
|
13
|
Hildebrandt M, Rose M, Mönnikes H, Reutter W, Keller W, Klapp BF. Eating disorders: a role for dipeptidyl peptidase IV in nutritional control. Nutrition 2001; 17:451-4. [PMID: 11399402 DOI: 10.1016/s0899-9007(01)00547-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dipeptidyl peptidase IV (DPP IV), a serine protease with broad tissue distribution and known activity in serum, has been postulated to modulate nutrition control by modification or inactivation of peptide hormones operating in the enteroinsular axis. We hypothesized that changes of DPP IV activity in serum are related to the nutrition status of patients with eating disorders. Serum DPP IV activity was measured in 52 patients (28 with anorexia nervosa and 24 with bulimia nervosa) in four consecutive weekly analyses. Simultaneously, the number of CD26 (DPP IV)-positive peripheral blood lymphocytes was counted. The same analyses were carried out in 28 healthy female volunteers. In week 1 and throughout the observation period, DPP IV activity in the sera of patients with anorexia nervosa and, to a lesser extent, those with bulimia nervosa was elevated in comparison to that of healthy controls (week 1: means = 92.8 U/L for anorexia-nervosa patients and 89.3 U/L for bulimia-nervosa patients versus 74.7 U/L for healthy control subjects, P = 0.014; weeks 1-4: 91.8 U/L for anorexia-nervosa patients and 86.2 U/L for bulimia-nervosa patients versus 77.6 U/L for healthy controls, P < 0.001). We assume that the increase in DPP IV serum activity will increase the turnover of distinct peptide hormones with known effects on nutrition control and susceptibility to degradation by DPP IV. The potential impact of an increase in DPP IV activity in serum on satiety and nutrition control contributes to previously reported implications for immune function.
Collapse
Affiliation(s)
- M Hildebrandt
- Department of Internal Medicine, Charité Campus Virchow-Klinikum, Humboldt-Universität zu Berlin, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Chapter 19. DPP-IV inhibition and therapeutic potential. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2001. [DOI: 10.1016/s0065-7743(01)36059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
15
|
Abstract
The C6 rat glioma cell line is broadly used as a model in studies of glial cell differentiation. In the present study we demonstrated a significantly higher total cellular, but especially membrane-associated, activity of dipeptidyl peptidase IV in differentiated C6 cells in comparison with their proliferating counterparts. The majority, but not all, of enzyme isoelectric focusing isoforms from differentiated C6 cells displayed a substantially higher activity compared to the proliferating cells, with G-P-NHMec as the substrate. Non-denaturing polyacrylamide gradient gel electrophoresis showed the presence of one major peak of activity, dipeptidyl peptidase IV (Mr of about 220000), in both proliferating and differentiated C6 cells. The results indicate that dipeptidyl peptidase IV regulation is associated with C6 rat glioma cell differentiation.
Collapse
Affiliation(s)
- A Sedo
- 1st Institute of Medical Chemistry and Biochemistry, 1st Medical Faculty, Charles University, Prague, Czech Republic
| | | | | |
Collapse
|
16
|
Drucker DJ, Shi Q, Crivici A, Sumner-Smith M, Tavares W, Hill M, DeForest L, Cooper S, Brubaker PL. Regulation of the biological activity of glucagon-like peptide 2 in vivo by dipeptidyl peptidase IV. Nat Biotechnol 1997; 15:673-7. [PMID: 9219272 DOI: 10.1038/nbt0797-673] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Species-specific differences in the enzymatic inactivation of peptides is an important consideration in the evaluation of therapeutic efficacy. We demonstrate that glucagon-like peptide 2 (GLP-2), shown to be highly intestinotrophic in mice, promotes an increase in intestinal villus height but has no trophic effect on small bowel weight in rats. The reduced intestinotrophic activity of GLP-2 in rats is attributable to inactivation by the enzyme dipeptidyl peptidase IV (DPP-IV). GLP-2(1-33) was degraded to GLP-2(3-33) following incubation with human placental DPP-IV or rat serum but not by serum from DPP-IV-deficient rats. Administration of rat GLP-2 to DPP-IV-deficient rats was associated with markedly increased bioactivity of rat GLP-2 resulting in a significant increase in small bowel weight. A synthetic GLP-2 analog, r[Gly2]GLP-2, with an alanine to glycine substitution at position 2, was resistant to cleavage by both DPP-IV and rat serum in vitro. Treatment of wild-type rats with r[Gly2]GLP-2 produced a statistically significant increase in small bowel mass. DPP-IV-mediated inactivation of GLP-2 is a critical determinant of the growth factor-like properties of GLP-2.
Collapse
Affiliation(s)
- D J Drucker
- Department of Medicine, Toronto Hospital, University of Toronto, Ontario.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Appasamy PM, Kenniston TW, Amoscato AA. Requirement for surface aminopeptidase activities during development of CD8+ fetal thymocytes. Cell Immunol 1997; 177:1-8. [PMID: 9140090 DOI: 10.1006/cimm.1997.1099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The role of surface aminopeptidases (APs), enzymes that cleave amino-terminal residues from polypeptide chains, in the development of fetal thymocytes was studied using a murine fetal thymic organ culture (FTOC) model. FTOC AP activity was demonstrable for various amino acid-p-nitroanilide substrates, and specific inhibitors of AP (amastatin and bestatin) inhibited enzymatic activity. AP activity decreased from Day 4 to Day 7 in FTOC. Inhibition of AP activity during thymic development by FTOC in the presence of bestatin caused a significant selective decrease in the percentage of CD8+ cells (both CD4+CD8+ and CD4-CD8+). Bestatin did not downregulate expression of CD8 by a mature CD8+ T cell clone. These data suggest that APs are involved in the development of thymocytes expressing CD8.
Collapse
Affiliation(s)
- P M Appasamy
- University of Pittsburgh Cancer Institute and Department of Pathology, University of Pittsburgh, School of Medicine, Pennsylvania 15213, USA.
| | | | | |
Collapse
|
18
|
Bernard AM, Mattei MG, Pierres M, Marguet D. Structure of the mouse dipeptidyl peptidase IV (CD26) gene. Biochemistry 1994; 33:15204-14. [PMID: 7999781 DOI: 10.1021/bi00254a032] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dipeptidyl peptidase IV (DPP IV, EC 3.4.14.5) is an ectopeptidase whose expression is modulated during thymocyte differentiation and T cell activation. We describe here the organization of the mouse DPP IV gene. This gene, which encompasses more than 90 kb, is composed of 26 exons separated by introns, the lengths of which vary from 100 bp to more than 20 kb. Reverse PCR performed on RNA from different tissues indicated that DPP IV transcripts do not contain alternatively spliced CDS sequences and, therefore, are supposed to yield a single polypeptide. However, two types of specific mRNA have been detected that differ in their 3'UTR sequences. They derive from alternative polyadenylation of the DPP IV primary transcript, since the different 3'UTR sequences are contiguous in the mouse DPP IV gene. Sequence analysis of the gene 5'-flanking region revealed several structural features found in the TATAA-box-less promoters, including a G+C-rich segment, a high frequency of dinucleotide CpG, and an imperfect symmetrical dyad. The DPP IV gene was assigned by in situ hybridization to the mouse [2C2-2D] region, which is syntenic with human chromosome 2. These data indicate that the human Dpp4 locus is located within this synteny region (i.e., 2q14-q37). The genomic organization of the mouse DPP IV gene is compared to that of classical serine proteases and serine hydrolases. As structural and mechanistic conservation in the absence of sequence similarity is the most remarkable feature among alpha/beta hydrolases [Ollis, D. L., et al. (1992) Protein Eng. 5, 197-211], we report the possible evolutionary link between the DPP IV related family and alpha/beta hydrolases.
Collapse
Affiliation(s)
- A M Bernard
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, France
| | | | | | | |
Collapse
|
19
|
de Lecea L, Soriano E, Criado JR, Steffensen SC, Henriksen SJ, Sutcliffe JG. Transcripts encoding a neural membrane CD26 peptidase-like protein are stimulated by synaptic activity. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1994; 25:286-96. [PMID: 7808228 DOI: 10.1016/0169-328x(94)90164-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We isolated a cDNA clone, named BSPL, that encodes a brain-specific dipeptidyl peptidase-like protein with 30% identity and 50% similarity to CD26, a lymphocyte membrane antigen involved in T-cell activation. BSPL lacks, however, the catalytic residue responsible for peptidase activity. The expression of BSPL is widespread throughout the CNS but restricted to neurons under normal conditions. Twenty-four hours after injection of kainic acid into the hippocampus, a dramatic increase in the concentration of BSPL mRNA was detected by in situ hybridization in the CA3 region of the injected hemisphere as compared with the contralateral hemisphere or sham-injected animals. An increase in the steady-state level of BSPL mRNA concentration was also found following tetanic stimulation of the perforant path to produce LTP in granule cells of the dentate gyrus. Hybridization signals could be detected in dendritic processes of pyramidal neurons and in some glial cells upon either type of stimulation. These data suggest that BSPL may be involved in synaptic plasticity.
Collapse
Affiliation(s)
- L de Lecea
- Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037
| | | | | | | | | | | |
Collapse
|
20
|
Marguet D, David F, Vivier I, Bernard AM, Naquet P, Pierres M. Dipeptidyl peptidase IV (CD26) : expression, structure and functions in lymphocytes. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0960-5428(05)80022-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|