1
|
Kaylor JJ, Frederiksen R, Bedrosian CK, Huang M, Stennis-Weatherspoon D, Huynh T, Ngan T, Mulamreddy V, Sampath AP, Fain GL, Travis GH. RDH12 allows cone photoreceptors to regenerate opsin visual pigments from a chromophore precursor to escape competition with rods. Curr Biol 2024; 34:3342-3353.e6. [PMID: 38981477 PMCID: PMC11303097 DOI: 10.1016/j.cub.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/11/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Capture of a photon by an opsin visual pigment isomerizes its 11-cis-retinaldehyde (11cRAL) chromophore to all-trans-retinaldehyde (atRAL), which subsequently dissociates. To restore light sensitivity, the unliganded apo-opsin combines with another 11cRAL to make a new visual pigment. Two enzyme pathways supply chromophore to photoreceptors. The canonical visual cycle in retinal pigment epithelial cells supplies 11cRAL at low rates. The photic visual cycle in Müller cells supplies cones with 11-cis-retinol (11cROL) chromophore precursor at high rates. Although rods can only use 11cRAL to regenerate rhodopsin, cones can use 11cRAL or 11cROL to regenerate cone visual pigments. We performed a screen in zebrafish retinas and identified ZCRDH as a candidate for the enzyme that converts 11cROL to 11cRAL in cone inner segments. Retinoid analysis of eyes from Zcrdh-mutant zebrafish showed reduced 11cRAL and increased 11cROL levels, suggesting impaired conversion of 11cROL to 11cRAL. By microspectrophotometry, isolated Zcrdh-mutant cones lost the capacity to regenerate visual pigments from 11cROL. ZCRDH therefore possesses all predicted properties of the cone 11cROL dehydrogenase. The human protein most similar to ZCRDH is RDH12. By immunocytochemistry, ZCRDH was abundantly present in cone inner segments, similar to the reported distribution of RDH12. Finally, RDH12 was the only mammalian candidate protein to exhibit 11cROL-oxidase catalytic activity. These observations suggest that RDH12 in mammals is the functional ortholog of ZCRDH, which allows cones, but not rods, to regenerate visual pigments from 11cROL provided by Müller cells. This capacity permits cones to escape competition from rods for visual chromophore in daylight-exposed retinas.
Collapse
Affiliation(s)
- Joanna J Kaylor
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Rikard Frederiksen
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Christina K Bedrosian
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Melody Huang
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - David Stennis-Weatherspoon
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Theodore Huynh
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Tiffany Ngan
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Varsha Mulamreddy
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Alapakkam P Sampath
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Gordon L Fain
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Gabriel H Travis
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA; University of California Los Angeles, Department of Biological Chemistry, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Chen C, Adler L, Milliken C, Rahman B, Kono M, Perry LP, Gonzalez-Fernandez F, Koutalos Y. The First Steps of the Visual Cycle in Human Rod and Cone Photoreceptors. Invest Ophthalmol Vis Sci 2024; 65:9. [PMID: 38958967 PMCID: PMC11223620 DOI: 10.1167/iovs.65.8.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024] Open
Abstract
Purpose Light detection destroys the visual pigment. Its regeneration, necessary for the recovery of light sensitivity, is accomplished through the visual cycle. Release of all-trans retinal by the light-activated visual pigment and its reduction to all-trans retinol comprise the first steps of the visual cycle. In this study, we determined the kinetics of all-trans retinol formation in human rod and cone photoreceptors. Methods Single living rod and cone photoreceptors were isolated from the retinas of human cadaver eyes (ages 21 to 90 years). Formation of all-trans retinol was measured by imaging its outer segment fluorescence (excitation, 360 nm; emission, >420 nm). The extent of conversion of released all-trans retinal to all-trans retinol was determined by measuring the fluorescence excited by 340 and 380 nm. Measurements were repeated with photoreceptors isolated from Macaca fascicularis retinas. Experiments were carried out at 37°C. Results We found that ∼80% to 90% of all-trans retinal released by the light-activated pigment is converted to all-trans retinol, with a rate constant of 0.24 to 0.55 min-1 in human rods and ∼1.8 min-1 in human cones. In M. fascicularis rods and cones, the rate constants were 0.38 ± 0.08 min-1 and 4.0 ± 1.1 min-1, respectively. These kinetics are several times faster than those measured in other vertebrates. Interphotoreceptor retinoid-binding protein facilitated the removal of all-trans retinol from human rods. Conclusions The first steps of the visual cycle in human photoreceptors are several times faster than in other vertebrates and in line with the rapid recovery of light sensitivity exhibited by the human visual system.
Collapse
Affiliation(s)
- Chunhe Chen
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Leopold Adler
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Cole Milliken
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Bushra Rahman
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Masahiro Kono
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Lynn Poole Perry
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Federico Gonzalez-Fernandez
- Departments of Ophthalmology and Pathology, University of Mississippi Medical Center, Jackson, Mississippi, United States
- G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi, United States
| | - Yiannis Koutalos
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
3
|
Anderson G, Borooah S, Megaw R, Bagnaninchi P, Weller R, McLeod A, Dhillon B. UVR and RPE - The Good, the Bad and the degenerate Macula. Prog Retin Eye Res 2024; 100:101233. [PMID: 38135244 DOI: 10.1016/j.preteyeres.2023.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Ultraviolet Radiation (UVR) has a well-established causative influence within the aetiology of conditions of the skin and the anterior segment of the eye. However, a grounded assessment of the role of UVR within conditions of the retina has been hampered by a historical lack of quantitative, and spectrally resolved, assessment of how UVR impacts upon the retina in terms congruent with contemporary theories of ageing. In this review, we sought to summarise the key findings of research investigating the connection between UVR exposure in retinal cytopathology while identifying necessary avenues for future research which can deliver a deeper understanding of UVR's place within the retinal risk landscape.
Collapse
Affiliation(s)
- Graham Anderson
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, EH16 4UU, UK
| | - Shyamanga Borooah
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, UC San Diego, CA, 92093-0946, USA
| | - Roly Megaw
- Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, EH4 2XU, UK; Department of Clinical Ophthalmology, National Health Service Scotland, Edinburgh, EH3 9HA, UK
| | - Pierre Bagnaninchi
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, EH16 4UU, UK; Robert O Curle Eyelab, Instute for Regeneration and Repair, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Richard Weller
- Centre for Inflammation Research, University of Edinburgh, Edinburgh BioQuarter, EH16 4TJ, UK
| | - Andrew McLeod
- School of GeoSciences, University of Edinburgh, Crew Building, King's Buildings, EH9 3FF, UK
| | - Baljean Dhillon
- Department of Clinical Ophthalmology, National Health Service Scotland, Edinburgh, EH3 9HA, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, EH16 4SB, UK; Robert O Curle Eyelab, Instute for Regeneration and Repair, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
4
|
DeRamus ML, Jasien JV, Eppstein JM, Koala P, Kraft TW. Retinal Responses to Visual Stimuli in Interphotoreceptor Retinoid Binding-Protein Knock-Out Mice. Int J Mol Sci 2023; 24:10655. [PMID: 37445836 PMCID: PMC10341985 DOI: 10.3390/ijms241310655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Interphotoreceptor retinoid-binding protein (IRBP) is an abundant glycoprotein in the subretinal space bound by the photoreceptor (PR) outer segments and the processes of the retinal pigmented epithelium (RPE). IRBP binds retinoids, including 11-cis-retinal and all-trans-retinol. In this study, visual function for demanding visual tasks was assessed in IRBP knock-out (KO) mice. Surprisingly, IRBP KO mice showed no differences in scotopic critical flicker frequency (CFF) compared to wildtype (WT). However, they did have lower photopic CFF than WT. IRBP KO mice had reduced scotopic and photopic acuity and contrast sensitivity compared to WT. IRBP KO mice had a significant reduction in outer nuclear layer (ONL) thickness, PR outer and inner segment, and full retinal thickness (FRT) compared to WT. There were fewer cones in IRBP KO mice. Overall, these results confirm substantial loss of rods and significant loss of cones within 30 days. Absence of IRBP resulted in cone circuit damage, reducing photopic flicker, contrast sensitivity, and spatial frequency sensitivity. The c-wave was reduced and accelerated in response to bright steps of light. This result also suggests altered retinal pigment epithelium activity. There appears to be a compensatory mechanism such as higher synaptic gain between PRs and bipolar cells since the loss of the b-wave did not linearly follow the loss of rods, or the a-wave. Scotopic CFF is normal despite thinning of ONL and reduced scotopic electroretinogram (ERG) in IRBP KO mice, suggesting either a redundancy or plasticity in circuits detecting (encoding) scotopic flicker at threshold even with substantial rod loss.
Collapse
Affiliation(s)
| | | | | | | | - Timothy W. Kraft
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.V.J.); (J.M.E.); (P.K.)
| |
Collapse
|
5
|
Marchese NA, Ríos MN, Guido ME. Müller glial cell photosensitivity: a novel function bringing higher complexity to vertebrate retinal physiology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
6
|
Gallo RA, Qureshi F, Strong TA, Lang SH, Pino KA, Dvoriantchikova G, Pelaez D. Derivation and Characterization of Murine and Amphibian Müller Glia Cell Lines. Transl Vis Sci Technol 2022; 11:4. [PMID: 35377941 PMCID: PMC8994200 DOI: 10.1167/tvst.11.4.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Müller glia (MG) in the retina of Xenopus laevis (African clawed frog) reprogram to a transiently amplifying retinal progenitor state after an injury. These progenitors then give rise to new retinal neurons. In contrast, mammalian MG have a restricted neurogenic capacity and undergo reactive gliosis after injury. This study sought to establish MG cell lines from the regeneration-competent frog and the regeneration-deficient mouse. Methods MG were isolated from postnatal day 5 GLAST-CreERT; Rbfl/fl mice and from adult (3–5 years post-metamorphic) Xlaevis. Serial adherent subculture resulted in spontaneously immortalized cells and the establishment of two MG cell lines: murine retinal glia 17 (RG17) and Xenopus glia 69 (XG69). They were characterized for MG gene and protein expression by qPCR, immunostaining, and Western blot. Purinergic signaling was assessed with calcium imaging. Pharmacological perturbations with 2’-3’-O-(4-benzoylbenzoyl) adenosine 5’-triphosphate (BzATP) and KN-62 were performed on RG17 cells. Results RG17 and XG69 cells express several MG markers and retain purinergic signaling. Pharmacological perturbations of intracellular calcium responses with BzATP and KN-62 suggest that the ionotropic purinergic receptor P2X7 is present and functional in RG17 cells. Stimulation of XG69 cells with adenosine triphosphate–induced calcium responses in a dose-dependent manner. Conclusions We report the characterization of RG17 and XG69, two novel MG cell lines from species with significantly disparate retinal regenerative capabilities. Translational Relevance RG17 and XG69 cell line models will aid comparative studies between species endowed with varied regenerative capacity and will facilitate the development of new cell-based strategies for treating retinal degenerative diseases.
Collapse
Affiliation(s)
- Ryan A Gallo
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA.,Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Farhan Qureshi
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Thomas A Strong
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Steven H Lang
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kevin A Pino
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Galina Dvoriantchikova
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel Pelaez
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
7
|
Kawamura S, Tachibanaki S. Molecular basis of rod and cone differences. Prog Retin Eye Res 2021; 90:101040. [PMID: 34974196 DOI: 10.1016/j.preteyeres.2021.101040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022]
Abstract
In the vertebrate retina, rods and cones both detect light, but they are different in functional aspects such as light sensitivity and time resolution, for example, and in some of cell biological aspects. For functional aspects, both photoreceptors are known to share a common mechanism, phototransduction cascade, consisting of a series of enzyme reactions to convert a photon-capture signal to an electrical signal. To understand the mechanisms of the functional differences between rods and cones at the molecular level, we compared biochemically each of the reactions in the phototransduction cascade between rods and cones using the cells isolated and purified from carp retina. Although proteins in the cascade are functionally similar between rods and cones, their activities together with their expression levels are mostly different between these photoreceptors. In general, reactions to generate a response are slightly less effective, as a total, in cones than in rods, but each of the reactions for termination and recovery of a response are much more effective in cones. These findings explain lower light sensitivity and briefer light responses in cones than in rods. In addition, our considerations suggest that a Ca2+-binding protein, S-modulin or recoverin, has a currently unnoticed role in shaping light responses. With comparison of the expression levels of proteins and/or mRNAs using purified cells, several proteins were found to be specifically or predominantly expressed in cones. These proteins would be of interest for future studies on the difference between rods and cones.
Collapse
Affiliation(s)
- Satoru Kawamura
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan.
| | - Shuji Tachibanaki
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
8
|
Müller glial responses compensate for degenerating photoreceptors in retinitis pigmentosa. Exp Mol Med 2021; 53:1748-1758. [PMID: 34799683 PMCID: PMC8639781 DOI: 10.1038/s12276-021-00693-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/20/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Photoreceptor degeneration caused by genetic defects leads to retinitis pigmentosa, a rare disease typically diagnosed in adolescents and young adults. In most cases, rod loss occurs first, followed by cone loss as well as altered function in cells connected to photoreceptors directly or indirectly. There remains a gap in our understanding of retinal cellular responses to photoreceptor abnormalities. Here, we utilized single-cell transcriptomics to investigate cellular responses in each major retinal cell type in retinitis pigmentosa model (P23H) mice vs. wild-type littermate mice. We found a significant decrease in the expression of genes associated with phototransduction, the inner/outer segment, photoreceptor cell cilium, and photoreceptor development in both rod and cone clusters, in line with the structural changes seen with immunohistochemistry. Accompanying this loss was a significant decrease in the expression of genes involved in metabolic pathways and energy production in both rods and cones. We found that in the Müller glia/astrocyte cluster, there was a significant increase in gene expression in pathways involving photoreceptor maintenance, while concomitant decreases were observed in rods and cones. Additionally, the expression of genes involved in mitochondrial localization and transport was increased in the Müller glia/astrocyte cluster. The Müller glial compensatory increase in the expression of genes downregulated in photoreceptors suggests that Müller glia adapt their transcriptome to support photoreceptors and could be thought of as general therapeutic targets to protect against retinal degeneration.
Collapse
|
9
|
Murray IJ, Rodrigo-Diaz E, Kelly JMF, Tahir HJ, Carden D, Patryas L, Parry NR. The role of dark adaptation in understanding early AMD. Prog Retin Eye Res 2021; 88:101015. [PMID: 34626782 DOI: 10.1016/j.preteyeres.2021.101015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 11/27/2022]
Abstract
The main aim of the paper is to discuss current knowledge on how Age Related Macular Degeneration (AMD) affects Dark Adaptation (DA). The paper is divided into three parts. Firstly, we outline some of the molecular mechanisms that control DA. Secondly, we review the psychophysical issues and the corresponding analytical techniques. Finally, we characterise the link between slowed DA and the morphological abnormalities in early AMD. Historically, DA has been regarded as too cumbersome for widespread clinical application. Yet the technique is extremely useful; it is widely accepted that the psychophysically obtained slope of the second rod-mediated phase of the dark adaptation function is an accurate assay of photoreceptor pigment regeneration kinetics. Technological developments have prompted new ways of generating the DA curve, but analytical problems remain. A simple potential solution to these, based on the application of a novel fast mathematical algorithm, is presented. This allows the calculation of the parameters of the DA curve in real time. Improving current management of AMD will depend on identifying a satisfactory endpoint for evaluating future therapeutic strategies. This must be implemented before the onset of severe disease. Morphological changes progress too slowly to act as a satisfactory endpoint for new therapies whereas functional changes, such as those seen in DA, may have more potential in this regard. It is important to recognise, however, that the functional changes are not confined to rods and that building a mathematical model of the DA curve enables the separation of rod and cone dysfunction and allows more versatility in terms of the range of disease severity that can be monitored. Examples are presented that show how analysing the DA curve into its constituent components can improve our understanding of the morphological changes in early AMD.
Collapse
Affiliation(s)
- Ian J Murray
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK.
| | - Elena Rodrigo-Diaz
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Jeremiah M F Kelly
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Humza J Tahir
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - David Carden
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Laura Patryas
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Neil Ra Parry
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK; Vision Science Centre, Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
10
|
Abbas F, Vinberg F. Transduction and Adaptation Mechanisms in the Cilium or Microvilli of Photoreceptors and Olfactory Receptors From Insects to Humans. Front Cell Neurosci 2021; 15:662453. [PMID: 33867944 PMCID: PMC8046925 DOI: 10.3389/fncel.2021.662453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Sensing changes in the environment is crucial for survival. Animals from invertebrates to vertebrates use both visual and olfactory stimuli to direct survival behaviors including identification of food sources, finding mates, and predator avoidance. In primary sensory neurons there are signal transduction mechanisms that convert chemical or light signals into an electrical response through ligand binding or photoactivation of a receptor, that can be propagated to the olfactory and visual centers of the brain to create a perception of the odor and visual landscapes surrounding us. The fundamental principles of olfactory and phototransduction pathways within vertebrates are somewhat analogous. Signal transduction in both systems takes place in the ciliary sub-compartments of the sensory cells and relies upon the activation of G protein-coupled receptors (GPCRs) to close cyclic nucleotide-gated (CNG) cation channels in photoreceptors to produce a hyperpolarization of the cell, or in olfactory sensory neurons open CNG channels to produce a depolarization. However, while invertebrate phototransduction also involves GPCRs, invertebrate photoreceptors can be either ciliary and/or microvillar with hyperpolarizing and depolarizing responses to light, respectively. Moreover, olfactory transduction in invertebrates may be a mixture of metabotropic G protein and ionotropic signaling pathways. This review will highlight differences of the visual and olfactory transduction mechanisms between vertebrates and invertebrates, focusing on the implications to the gain of the transduction processes, and how they are modulated to allow detection of small changes in odor concentration and light intensity over a wide range of background stimulus levels.
Collapse
Affiliation(s)
- Fatima Abbas
- Vinberg Lab, Department of Ophthalmology and Visual Science, John A. Moran Center, University of Utah, Salt Lake City, UT, United States
| | - Frans Vinberg
- Vinberg Lab, Department of Ophthalmology and Visual Science, John A. Moran Center, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
11
|
Gao H, A L, Huang X, Chen X, Xu H. Müller Glia-Mediated Retinal Regeneration. Mol Neurobiol 2021; 58:2342-2361. [PMID: 33417229 DOI: 10.1007/s12035-020-02274-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
Abstract
Müller glia originate from neuroepithelium and are the principal glial cells in the retina. During retinal development, Müller glia are one of the last cell types to be born. In lower vertebrates, such as zebrafish, Müller glia possess a remarkable capacity for retinal regeneration following various forms of injury through a reprogramming process in which endogenous Müller glia proliferate and differentiate into all types of retinal cells. In mammals, Müller glia become reactive in response to damage to protect or to further impair retinal function. Although mammalian Müller glia have regenerative potential, it is limited as far as repairing damaged retina. Lessons learned from zebrafish will help reveal the critical mechanisms involved in Müller glia reprogramming. Progress has been made in triggering Müller glia to reprogram and generate functional neurons to restore vision in mammals indicating that Müller glia reprogramming may be a promising therapeutic strategy for human retinal diseases. This review comprehensively summarizes the mechanisms related to retinal regeneration in model animals and the critical advanced progress made in Müller glia reprogramming in mammals.
Collapse
Affiliation(s)
- Hui Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Luodan A
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xiaona Huang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xi Chen
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
12
|
Zeng S, Zhang T, Madigan MC, Fernando N, Aggio-Bruce R, Zhou F, Pierce M, Chen Y, Huang L, Natoli R, Gillies MC, Zhu L. Interphotoreceptor Retinoid-Binding Protein (IRBP) in Retinal Health and Disease. Front Cell Neurosci 2020; 14:577935. [PMID: 33328889 PMCID: PMC7710524 DOI: 10.3389/fncel.2020.577935] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 02/05/2023] Open
Abstract
Interphotoreceptor retinoid-binding protein (IRBP), also known as retinol binding protein 3 (RBP3), is a lipophilic glycoprotein specifically secreted by photoreceptors. Enriched in the interphotoreceptor matrix (IPM) and recycled by the retinal pigment epithelium (RPE), IRBP is essential for the vision of all vertebrates as it facilitates the transfer of retinoids in the visual cycle. It also helps to transport lipids between the RPE and photoreceptors. The thiol-dependent antioxidant activity of IRBP maintains the delicate redox balance in the normal retina. Thus, its dysfunction is suspected to play a role in many retinal diseases. We have reviewed here the latest research on IRBP in both retinal health and disease, including the function and regulation of IRBP under retinal stress in both animal models and the human retina. We have also explored the therapeutic potential of targeting IRBP in retinal diseases. Although some technical barriers remain, it is possible that manipulating the expression of IRBP in the retina will rescue or prevent photoreceptor degeneration in many retinal diseases.
Collapse
Affiliation(s)
- Shaoxue Zeng
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Zhang
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Michele C Madigan
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia.,The Australian National University Medical School, The Australian National University, Acton, ACT, Australia
| | - Fanfan Zhou
- Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
| | - Matthew Pierce
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Yingying Chen
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Lianlin Huang
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia.,The Australian National University Medical School, The Australian National University, Acton, ACT, Australia
| | - Mark C Gillies
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Abstract
The visual phototransduction cascade begins with a cis-trans photoisomerization of a retinylidene chromophore associated with the visual pigments of rod and cone photoreceptors. Visual opsins release their all-trans-retinal chromophore following photoactivation, which necessitates the existence of pathways that produce 11-cis-retinal for continued formation of visual pigments and sustained vision. Proteins in the retinal pigment epithelium (RPE), a cell layer adjacent to the photoreceptor outer segments, form the well-established "dark" regeneration pathway known as the classical visual cycle. This pathway is sufficient to maintain continuous rod function and support cone photoreceptors as well although its throughput has to be augmented by additional mechanism(s) to maintain pigment levels in the face of high rates of photon capture. Recent studies indicate that the classical visual cycle works together with light-dependent processes in both the RPE and neural retina to ensure adequate 11-cis-retinal production under natural illuminances that can span ten orders of magnitude. Further elucidation of the interplay between these complementary systems is fundamental to understanding how cone-mediated vision is sustained in vivo. Here, we describe recent advances in understanding how 11-cis-retinal is synthesized via light-dependent mechanisms.
Collapse
|
14
|
Katagiri S, Hayashi T, Nakamura M, Mizobuchi K, Gekka T, Komori S, Ueno S, Terasaki H, Sakuramoto H, Kuniyoshi K, Kusaka S, Nagashima R, Kondo M, Fujinami K, Tsunoda K, Matsuura T, Kondo H, Yoshitake K, Iwata T, Nakano T. RDH5-Related Fundus Albipunctatus in a Large Japanese Cohort. Invest Ophthalmol Vis Sci 2020; 61:53. [PMID: 32232344 PMCID: PMC7401827 DOI: 10.1167/iovs.61.3.53] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose To investigate clinical characteristics of RDH5-related fundus albipunctatus (FAP) in a Japanese cohort. Methods Twenty-five patients from 22 pedigrees with RDH5-related FAP were studied. Ophthalmic medical records were reviewed. For genetic analysis, either Sanger sequencing of the RDH5 gene or whole-exome sequencing was performed. Results Genetic analysis identified eight different RDH5 variants, including seven known RDH5 variants (p.G35S, p.G107R, p.R167H, p.A240GfsX19, p.R278X, p.R280H, and p.L310delinsEV) and a novel variant: c.259C>T (p.Q87X). The most frequently observed variant was p.L310delinsEV (65.2%, 30/46 alleles). Of 50 eyes examined, 44 eyes (88.0%) showed logMAR best-corrected visual acuity (BCVA) of 0.10 or better. In optical coherence tomography, macular involvement was observed in 12 patients (24 eyes). Ten patients (83.3%) who had good BCVA (0.10 or better) exhibited diffuse disruption of the outer retina with foveal sparing, and two patients (16.7%) exhibited diffuse disruption throughout the macula and decreased BCVA. Among the 24 eyes, ring-or crescent-shaped hyperautofluorescence or irregular autofluorescence around the fovea was observed in 15 eyes (83.3%) of 18 eyes examined by fundus autofluorescence imaging. Full-field electroretinography showed extinguished or severely decreased rod responses in all 23 examined patients, whereas decreased cone responses were seen in 17 patients (73.9%). Conclusions Multimodal imaging and electroretinography of RDH5-related FAP revealed high frequencies of macular involvement in older patients and decreased cone responses. Our findings suggest that progressive macular/cone dysfunction, as well as delayed rod function, may be key phenotypic features of RDH5-related FAP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Takeshi Iwata
- , National Hospital Organization Tokyo Medical Center,
| | | |
Collapse
|
15
|
Edwards MM, Bonilha VL, Bhutto IA, Bell BA, McLeod DS, Hollyfield JG, Lutty GA. Retinal Glial and Choroidal Vascular Pathology in Donors Clinically Diagnosed With Stargardt Disease. Invest Ophthalmol Vis Sci 2020; 61:27. [PMID: 32692840 PMCID: PMC7425722 DOI: 10.1167/iovs.61.8.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/14/2020] [Indexed: 01/25/2023] Open
Abstract
Purpose The present study investigated retinal glia and choroidal vessels in flatmounts and sections from individuals with clinically diagnosed Stargardt disease (STGD). Methods Eyes from three donors clinically diagnosed with STGD were obtained through the Foundation Fighting Blindness (FFB). Genetic testing was performed to determine the disease-causing mutations. Eyes were enucleated and fixed in 4% paraformaldehyde and 0.5% glutaraldehyde. After imaging, retinas were dissected and immunostained for glial fibrillary acidic protein, vimentin, and peanut agglutin. Following RPE removal, the choroid was immunostained with Ulex europaeus agglutinin lectin. For each choroid, the area of affected vasculature, percent vascular area, and choriocapillaris luminal diameters were measured. The retina from one donor was hemisected and cryopreserved or embedded in JB-4 for cross-section analysis. Results Genetic testing confirmed the STGD diagnosis in donor 1, whereas a mutation in peripherin 2 was identified in donor 3. Genetic testing was not successful on donor 2. Therefore, only donor 1 can definitively be classified as having STGD. All donors had areas of RPE atrophy within the macular region, which correlated with underlying choriocapillaris loss. In addition, Müller cells formed pre- and subretinal membranes. Subretinal gliotic membranes correlated almost identically with RPE and choriocapillaris loss. Conclusions Despite bearing different genetic mutations, all donors demonstrated choriocapillaris loss and Müller cell membranes correlating with RPE loss. Müller cell remodeling was most extensive in the donor with the peripherin mutation, whereas choriocapillaris loss was greatest in the confirmed STGD donor. This study emphasizes the importance of genetic testing when diagnosing macular disease.
Collapse
Affiliation(s)
- Malia M. Edwards
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Vera L. Bonilha
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States
| | - Imran A. Bhutto
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Brent A. Bell
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - D. Scott McLeod
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Joe G. Hollyfield
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States
| | - Gerard A. Lutty
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
16
|
Abstract
Light drives vision by directly activating opsin-based visual pigments in rod and cone photoreceptors. In this issue of Neuron, Morshedian et al. (2019) show that light also drives regeneration of the cone visual pigments via an elegant biochemical mechanism in Müller glial cells of the neural retina that can contribute to sustained cone function under daytime conditions.
Collapse
Affiliation(s)
- Gabriel Peinado Allina
- Center for Neuroscience and Depts of Ophthalmology & Vision Science and Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95618, USA
| | - Marie E Burns
- Center for Neuroscience and Depts of Ophthalmology & Vision Science and Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95618, USA.
| |
Collapse
|
17
|
Morshedian A, Kaylor JJ, Ng SY, Tsan A, Frederiksen R, Xu T, Yuan L, Sampath AP, Radu RA, Fain GL, Travis GH. Light-Driven Regeneration of Cone Visual Pigments through a Mechanism Involving RGR Opsin in Müller Glial Cells. Neuron 2019; 102:1172-1183.e5. [PMID: 31056353 PMCID: PMC6586478 DOI: 10.1016/j.neuron.2019.04.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/20/2019] [Accepted: 03/29/2019] [Indexed: 11/18/2022]
Abstract
While rods in the mammalian retina regenerate rhodopsin through a well-characterized pathway in cells of the retinal pigment epithelium (RPE), cone visual pigments are thought to regenerate in part through an additional pathway in Müller cells of the neural retina. The proteins comprising this intrinsic retinal visual cycle are unknown. Here, we show that RGR opsin and retinol dehydrogenase-10 (Rdh10) convert all-trans-retinol to 11-cis-retinol during exposure to visible light. Isolated retinas from Rgr+/+ and Rgr-/- mice were exposed to continuous light, and cone photoresponses were recorded. Cones in Rgr-/- retinas lost sensitivity at a faster rate than cones in Rgr+/+ retinas. A similar effect was seen in Rgr+/+ retinas following treatment with the glial cell toxin, α-aminoadipic acid. These results show that RGR opsin is a critical component of the Müller cell visual cycle and that regeneration of cone visual pigment can be driven by light.
Collapse
Affiliation(s)
- Ala Morshedian
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joanna J Kaylor
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sze Yin Ng
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Avian Tsan
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rikard Frederiksen
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tongzhou Xu
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lily Yuan
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alapakkam P Sampath
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Roxana A Radu
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gordon L Fain
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gabriel H Travis
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Kittipassorn T, Haydinger CD, Wood JPM, Mammone T, Casson RJ, Peet DJ. Characterization of the novel spontaneously immortalized rat Müller cell line SIRMu-1. Exp Eye Res 2019; 181:127-135. [PMID: 30677389 DOI: 10.1016/j.exer.2019.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 10/27/2022]
Abstract
Müller cells (MCs) play a crucial role in the retina, and cultured MC lines are an important tool with which to study MC function. Transformed MC lines have been widely used; however, the transformation process can also lead to unwanted changes compared to the primary cells from which they were derived. To provide an alternative experimental tool, a novel monoclonal spontaneously immortalized rat Müller cell line, SIRMu-1, was derived from primary rat MCs and characterized. Immunofluorescence, western blotting and RNA sequencing demonstrate that the SIRMu-1 cell line retains similar characteristics to cultured primary MCs in terms of expression of the MC markers cellular retinaldehyde-binding protein, glutamine synthetase, S100, vimentin and glial fibrillary acidic protein at both the mRNA and protein levels. Both the cellular morphology and overall transcriptome of the SIRMu-1 cells are more similar to primary rat MCs than the commonly used rMC-1 cells, a well-described, transformed rat MC line. Furthermore, SIRMu-1 cells proliferate rapidly, have an effectively indefinite life span and a high transfection efficiency. The expression of Y chromosome specific genes confirmed that the SIRMu-1 cells are derived from male MCs. Thus, the SIRMu-1 cell line represents a valuable experimental tool to study roles of MCs in both physiological and pathological states.
Collapse
Affiliation(s)
- Thaksaon Kittipassorn
- School of Biological Sciences, Molecular Life Sciences Building, University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Cameron D Haydinger
- School of Biological Sciences, Molecular Life Sciences Building, University of Adelaide, Adelaide, SA, 5005, Australia.
| | - John P M Wood
- Department of Ophthalmology and Visual Sciences, Adelaide Health and Medical Sciences Building, University of Adelaide, Adelaide, SA, 5000, Australia.
| | - Teresa Mammone
- Department of Ophthalmology and Visual Sciences, Adelaide Health and Medical Sciences Building, University of Adelaide, Adelaide, SA, 5000, Australia.
| | - Robert J Casson
- Department of Ophthalmology and Visual Sciences, Adelaide Health and Medical Sciences Building, University of Adelaide, Adelaide, SA, 5000, Australia.
| | - Daniel J Peet
- School of Biological Sciences, Molecular Life Sciences Building, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
19
|
Kiser PD, Zhang J, Sharma A, Angueyra JM, Kolesnikov AV, Badiee M, Tochtrop GP, Kinoshita J, Peachey NS, Li W, Kefalov VJ, Palczewski K. Retinoid isomerase inhibitors impair but do not block mammalian cone photoreceptor function. J Gen Physiol 2018; 150:571-590. [PMID: 29500274 PMCID: PMC5881442 DOI: 10.1085/jgp.201711815] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 12/18/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
RPE65 is a retinoid isomerase essential for rod function, but its contribution to cone vision is enigmatic. Using selective RPE65 inhibitors, Kiser et al. demonstrate that cone function depends only partially on continuous RPE65 activity, providing support for cone-specific regeneration mechanisms. Visual function in vertebrates critically depends on the continuous regeneration of visual pigments in rod and cone photoreceptors. RPE65 is a well-established retinoid isomerase in the pigment epithelium that regenerates rhodopsin during the rod visual cycle; however, its contribution to the regeneration of cone pigments remains obscure. In this study, we use potent and selective RPE65 inhibitors in rod- and cone-dominant animal models to discern the role of this enzyme in cone-mediated vision. We confirm that retinylamine and emixustat-family compounds selectively inhibit RPE65 over DES1, the putative retinoid isomerase of the intraretinal visual cycle. In vivo and ex vivo electroretinography experiments in Gnat1−/− mice demonstrate that acute administration of RPE65 inhibitors after a bleach suppresses the late, slow phase of cone dark adaptation without affecting the initial rapid portion, which reflects intraretinal visual cycle function. Acute administration of these compounds does not affect the light sensitivity of cone photoreceptors in mice during extended exposure to background light, but does slow all phases of subsequent dark recovery. We also show that cone function is only partially suppressed in cone-dominant ground squirrels and wild-type mice by multiday administration of an RPE65 inhibitor despite profound blockade of RPE65 activity. Complementary experiments in these animal models using the DES1 inhibitor fenretinide show more modest effects on cone recovery. Collectively, these studies demonstrate a role for continuous RPE65 activity in mammalian cone pigment regeneration and provide further evidence for RPE65-independent regeneration mechanisms.
Collapse
Affiliation(s)
- Philip D Kiser
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH .,Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Jianye Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Aditya Sharma
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO
| | - Juan M Angueyra
- Retinal Neurophysiology Section, National Eye Institute, Bethesda, MD
| | - Alexander V Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO
| | - Mohsen Badiee
- Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH
| | - Gregory P Tochtrop
- Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH
| | | | - Neal S Peachey
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH.,Cole Eye Institute, Cleveland Clinic, Cleveland, OH.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, Bethesda, MD
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
20
|
Ward R, Sundaramurthi H, Di Giacomo V, Kennedy BN. Enhancing Understanding of the Visual Cycle by Applying CRISPR/Cas9 Gene Editing in Zebrafish. Front Cell Dev Biol 2018; 6:37. [PMID: 29696141 PMCID: PMC5904205 DOI: 10.3389/fcell.2018.00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/19/2018] [Indexed: 01/23/2023] Open
Abstract
During the vertebrate visual cycle, all-trans-retinal is exported from photoreceptors to the adjacent RPE or Müller glia wherein 11-cis-retinal is regenerated. The 11-cis chromophore is returned to photoreceptors, forming light-sensitive visual pigments with opsin GPCRs. Dysfunction of this process perturbs phototransduction because functional visual pigment cannot be generated. Mutations in visual cycle genes can result in monogenic inherited forms of blindness. Though key enzymatic processes are well characterized, questions remain as to the physiological role of visual cycle proteins in different retinal cell types, functional domains of these proteins in retinoid biochemistry and in vivo pathogenesis of disease mutations. Significant progress is needed to develop effective and accessible treatments for inherited blindness arising from mutations in visual cycle genes. Here, we review opportunities to apply gene editing technology to two crucial visual cycle components, RPE65 and CRALBP. Expressed exclusively in the human RPE, RPE65 enzymatically converts retinyl esters into 11-cis retinal. CRALBP is an 11-cis-retinal binding protein expressed in human RPE and Muller glia. Loss-of-function mutations in either protein results in autosomal recessive forms of blindness. Modeling these human conditions using RPE65 or CRALBP murine knockout models have enhanced our understanding of their biochemical function, associated disease pathogenesis and development of therapeutics. However, rod-dominated murine retinae provide a challenge to assess cone function. The cone-rich zebrafish model is amenable to cost-effective maintenance of a variety of strains. Interestingly, gene duplication in zebrafish resulted in three Rpe65 and two Cralbp isoforms with differential temporal and spatial expression patterns. Functional investigations of zebrafish Rpe65 and Cralbp were restricted to gene knockdown with morpholino oligonucleotides. However, transient silencing, off-target effects and discrepancies between knockdown and knockout models, highlight a need for more comprehensive alternatives for functional genomics. CRISPR/Cas9 in zebrafish has emerged as a formidable technology enabling targeted gene knockout, knock-in, activation, or silencing to single base-pair resolution. Effective, targeted gene editing by CRISPR/Cas9 in zebrafish enables unprecedented opportunities to create genetic research models. This review will discuss existing knowledge gaps regarding RPE65 and CRALBP. We explore the benefits of CRISPR/Cas9 to establish innovative zebrafish models to enhance knowledge of the visual cycle.
Collapse
Affiliation(s)
- Rebecca Ward
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Husvinee Sundaramurthi
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Medicine, University College Dublin, Dublin, Ireland
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | - Breandán N. Kennedy
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
- *Correspondence: Breandán N. Kennedy
| |
Collapse
|
21
|
Cook JD, Ng SY, Lloyd M, Eddington S, Sun H, Nathans J, Bok D, Radu RA, Travis GH. Peropsin modulates transit of vitamin A from retina to retinal pigment epithelium. J Biol Chem 2017; 292:21407-21416. [PMID: 29109151 DOI: 10.1074/jbc.m117.812701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/31/2017] [Indexed: 11/06/2022] Open
Abstract
Peropsin is a non-visual opsin in both vertebrate and invertebrate species. In mammals, peropsin is present in the apical microvilli of retinal pigment epithelial (RPE) cells. These structures interdigitate with the outer segments of rod and cone photoreceptor cells. RPE cells play critical roles in the maintenance of photoreceptors, including the recycling of visual chromophore for the opsin visual pigments. Here, we sought to identify the function of peropsin in the mouse eye. To this end, we generated mice with a null mutation in the peropsin gene (Rrh). These mice exhibited normal retinal histology, normal morphology of outer segments and RPE cells, and no evidence of photoreceptor degeneration. Biochemically, Rrh-/- mice had ∼2-fold higher vitamin A (all-trans-retinol (all-trans-ROL)) in the neural retina following a photobleach and 5-fold lower retinyl esters in the RPE. This phenotype was similar to those reported in mice that lack interphotoreceptor retinoid-binding protein (IRBP) or cellular retinol-binding protein, suggesting that peropsin plays a role in the movement of all-trans-ROL from photoreceptors to the RPE. We compared the phenotypes in mice lacking both peropsin and IRBP with those of mice lacking peropsin or IRBP alone and found that the retinoid phenotype was similarly severe in each of these knock-out mice. We conclude that peropsin controls all-trans-ROL movement from the retina to the RPE or may regulate all-trans-ROL storage within the RPE. We propose that peropsin affects light-dependent regulation of all-trans-ROL uptake from photoreceptors into RPE cells through an as yet undefined mechanism.
Collapse
Affiliation(s)
- Jeremy D Cook
- From the Department of Ophthalmology, Stein Eye Institute
| | - Sze Yin Ng
- From the Department of Ophthalmology, Stein Eye Institute
| | - Marcia Lloyd
- From the Department of Ophthalmology, Stein Eye Institute
| | | | - Hui Sun
- From the Department of Ophthalmology, Stein Eye Institute.,Department of Physiology, and
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Neuroscience, and Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and.,Howard Hughes Medical Institute, Baltimore, Maryland 21205
| | - Dean Bok
- From the Department of Ophthalmology, Stein Eye Institute
| | - Roxana A Radu
- From the Department of Ophthalmology, Stein Eye Institute
| | - Gabriel H Travis
- From the Department of Ophthalmology, Stein Eye Institute, .,Department of Biological Chemistry, School of Medicine, UCLA, Los Angeles, California 90095
| |
Collapse
|
22
|
Xue Y, Sato S, Razafsky D, Sahu B, Shen SQ, Potter C, Sandell LL, Corbo JC, Palczewski K, Maeda A, Hodzic D, Kefalov VJ. The role of retinol dehydrogenase 10 in the cone visual cycle. Sci Rep 2017; 7:2390. [PMID: 28539612 PMCID: PMC5443843 DOI: 10.1038/s41598-017-02549-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/12/2017] [Indexed: 11/18/2022] Open
Abstract
Pigment regeneration is critical for the function of cone photoreceptors in bright and rapidly-changing light conditions. This process is facilitated by the recently-characterized retina visual cycle, in which Müller cells recycle spent all-trans-retinol visual chromophore back to 11-cis-retinol. This 11-cis-retinol is oxidized selectively in cones to the 11-cis-retinal used for pigment regeneration. However, the enzyme responsible for the oxidation of 11-cis-retinol remains unknown. Here, we sought to determine whether retinol dehydrogenase 10 (RDH10), upregulated in rod/cone hybrid retinas and expressed abundantly in Müller cells, is the enzyme that drives this reaction. We created mice lacking RDH10 either in cone photoreceptors, Müller cells, or the entire retina. In vivo electroretinography and transretinal recordings revealed normal cone photoresponses in all RDH10-deficient mouse lines. Notably, their cone-driven dark adaptation both in vivo and in isolated retina was unaffected, indicating that RDH10 is not required for the function of the retina visual cycle. We also generated transgenic mice expressing RDH10 ectopically in rod cells. However, rod dark adaptation was unaffected by the expression of RDH10 and transgenic rods were unable to use cis-retinol for pigment regeneration. We conclude that RDH10 is not the dominant retina 11-cis-RDH, leaving its primary function in the retina unknown.
Collapse
Affiliation(s)
- Yunlu Xue
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Shinya Sato
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - David Razafsky
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- MilliporeSigma, St. Louis, MO, 63103, USA
| | - Bhubanananda Sahu
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Susan Q Shen
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Chloe Potter
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, 40202, USA
| | - Joseph C Corbo
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Akiko Maeda
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, 44106, USA
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Didier Hodzic
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.
| |
Collapse
|
23
|
Salesse C. Physiologie du signal visuel rétinien : de la phototransduction jusqu’au cycle visuel. J Fr Ophtalmol 2017; 40:239-250. [DOI: 10.1016/j.jfo.2016.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/16/2016] [Indexed: 11/28/2022]
|
24
|
Bhattacharyya N, Darren B, Schott RK, Tropepe V, Chang BSW. Cone-like rhodopsin expressed in the all cone retina of the colubrid pine snake as a potential adaptation to diurnality. J Exp Biol 2017; 220:2418-2425. [DOI: 10.1242/jeb.156430] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/13/2017] [Indexed: 12/12/2022]
Abstract
Colubridae is the largest and most diverse family of snakes, with visual systems that reflect this diversity, encompassing a variety of retinal photoreceptor organizations. The transmutation theory proposed by Walls postulates that photoreceptors could evolutionarily transition between cell types in squamates, but few studies have tested this theory. Recently, evidence for transmutation and rod-like machinery in an all cone retina has been identified in a diurnal garter snake (Thamnophis), and it appears that the rhodopsin gene at least may be widespread among colubrid snakes. However, functional evidence supporting transmutation beyond the existence of the rhodopsin gene remains rare. We examined the all cone retina of another colubrid, Pituophis melanoleucus, thought to be more secretive/burrowing than Thamnophis. We found that P. melanoleucus expresses two cone opsins (SWS1, LWS) and rhodopsin (RH1) within the eye. Immunohistochemistry localized rhodopsin to the outer segment of photoreceptors in the all-cone retina of the snake and all opsin genes produced functional visual pigments when expressed in vitro. Consistent with other studies, we found that P. melanoleucus rhodopsin is extremely blue-shifted. Surprisingly, P. melanoleucus rhodopsin reacted with hydroxylamine, a typical cone opsin characteristic. These results support the idea that the rhodopsin-containing photoreceptors of P. melanoleucus are the products of evolutionary transmutation from rod ancestors, and suggests that this phenomenon may be widespread in colubrid snakes. We hypothesize that transmutation may be an adaptation for diurnal, brighter-light vision, which could result in increased spectral sensitivity and chromatic discrimination with the potential for colour vision.
Collapse
Affiliation(s)
- Nihar Bhattacharyya
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Benedict Darren
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Ryan K. Schott
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Tropepe
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto ON, M5T 3A9, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Belinda S. W. Chang
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Sahu B, Maeda A. Retinol Dehydrogenases Regulate Vitamin A Metabolism for Visual Function. Nutrients 2016; 8:E746. [PMID: 27879662 PMCID: PMC5133129 DOI: 10.3390/nu8110746] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/13/2016] [Accepted: 11/16/2016] [Indexed: 02/07/2023] Open
Abstract
The visual system produces visual chromophore, 11-cis-retinal from dietary vitamin A, all-trans-retinol making this vitamin essential for retinal health and function. These metabolic events are mediated by a sequential biochemical process called the visual cycle. Retinol dehydrogenases (RDHs) are responsible for two reactions in the visual cycle performed in retinal pigmented epithelial (RPE) cells, photoreceptor cells and Müller cells in the retina. RDHs in the RPE function as 11-cis-RDHs, which oxidize 11-cis-retinol to 11-cis-retinal in vivo. RDHs in rod photoreceptor cells in the retina work as all-trans-RDHs, which reduce all-trans-retinal to all-trans-retinol. Dysfunction of RDHs can cause inherited retinal diseases in humans. To facilitate further understanding of human diseases, mouse models of RDHs-related diseases have been carefully examined and have revealed the physiological contribution of specific RDHs to visual cycle function and overall retinal health. Herein we describe the function of RDHs in the RPE and the retina, particularly in rod photoreceptor cells, their regulatory properties for retinoid homeostasis and future therapeutic strategy for treatment of retinal diseases.
Collapse
Affiliation(s)
- Bhubanananda Sahu
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA.
| | - Akiko Maeda
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA.
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106-4965, USA.
| |
Collapse
|
26
|
Bachleda AR, Pevny LH, Weiss ER. Sox2-Deficient Müller Glia Disrupt the Structural and Functional Maturation of the Mammalian Retina. Invest Ophthalmol Vis Sci 2016; 57:1488-99. [PMID: 27031842 PMCID: PMC4819558 DOI: 10.1167/iovs.15-17994] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Müller glia (MG), the principal glial cells of the vertebrate retina, display quiescent progenitor cell characteristics. They express key progenitor markers, including the high mobility group box transcription factor SOX2 and maintain a progenitor-like morphology. In the embryonic and mature central nervous system, SOX2 maintains neural stem cell identity. However, its function in committed Müller glia has yet to be determined. METHODS We use inducible, MG-specific genetic ablation of Sox2 in vivo at the peak of MG genesis to analyze its function in the maturation of murine MG and effects on other cells in the retina. Histologic and functional analysis of the Sox2-deficient retinas is conducted at key points in postnatal development. RESULTS Ablation of Sox2 in the postnatal retina results in disorganization of MG processes in the inner plexiform layer and mislocalized cell bodies in the nuclear layers. This disorganization is concurrent with a thinning of the neural retina and disruption of neuronal processes in the inner and outer plexiform layers. Functional analysis by electroretinography reveals a decrease in the b-wave amplitude. Disruption of MG maturation due to Sox2 ablation therefore negatively affected the function of the retina. CONCLUSIONS These results demonstrate a novel role for SOX2 in glial process outgrowth and adhesion, and provide new insights into the essential role Müller glia play in the development of retinal cytoarchitecture. Prior to this work, SOX2 was known to have a primary role in determining cell fate. Our experiments bypass cell fate conversion to establish a new role for SOX2 in a committed cell lineage.
Collapse
Affiliation(s)
- Amelia R Bachleda
- Neuroscience Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States 2Curriculum in Neurobiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| | - Larysa H Pevny
- Neuroscience Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States 3Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| | - Ellen R Weiss
- Neuroscience Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States 4Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States 5Lineberger Comprehe
| |
Collapse
|
27
|
Sharma R, Schwarz C, Williams DR, Palczewska G, Palczewski K, Hunter JJ. In Vivo Two-Photon Fluorescence Kinetics of Primate Rods and Cones. Invest Ophthalmol Vis Sci 2016; 57:647-57. [PMID: 26903225 PMCID: PMC4771186 DOI: 10.1167/iovs.15-17946] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Purpose The retinoid cycle maintains vision by regenerating bleached visual pigment through metabolic events, the kinetics of which have been difficult to characterize in vivo. Two-photon fluorescence excitation has been used previously to track autofluorescence directly from retinoids and pyridines in the visual cycle in mouse and frog retinas, but the mechanisms of the retinoid cycle are not well understood in primates. Methods We developed a two-photon fluorescence adaptive optics scanning light ophthalmoscope dedicated to in vivo imaging in anesthetized macaques. Using pulsed light at 730 nm, two-photon fluorescence was captured from rods and cones during light and dark adaptation through the eye's pupil. Results The fluorescence from rods and cones increased with light exposure but at different rates. During dark adaptation, autofluorescence declined, with cone autofluorescence decreasing approximately 4 times faster than from rods. Rates of autofluorescence decrease in rods and cones were approximately 4 times faster than their respective rates of photopigment regeneration. Also, subsets of sparsely distributed cones were less fluorescent than their neighbors immediately following bleach at 565 nm and they were comparable with the S cone mosaic in density and distribution. Conclusions Although other molecules could be contributing, we posit that these fluorescence changes are mediated by products of the retinoid cycle. In vivo two-photon ophthalmoscopy provides a way to monitor noninvasively stages of the retinoid cycle that were previously inaccessible in the living primate eye. This can be used to assess objectively photoreceptor function in normal and diseased retinas.
Collapse
Affiliation(s)
- Robin Sharma
- The Institute of Optics, University of Rochester, Rochester, New York, United States 2Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Christina Schwarz
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - David R Williams
- The Institute of Optics, University of Rochester, Rochester, New York, United States 2Center for Visual Science, University of Rochester, Rochester, New York, United States 3Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| | | | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Jennifer J Hunter
- Center for Visual Science, University of Rochester, Rochester, New York, United States 3Flaum Eye Institute, University of Rochester, Rochester, New York, United States
| |
Collapse
|
28
|
Krishnamoorthy V, Cherukuri P, Poria D, Goel M, Dagar S, Dhingra NK. Retinal Remodeling: Concerns, Emerging Remedies and Future Prospects. Front Cell Neurosci 2016; 10:38. [PMID: 26924962 PMCID: PMC4756099 DOI: 10.3389/fncel.2016.00038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022] Open
Abstract
Deafferentation results not only in sensory loss, but also in a variety of alterations in the postsynaptic circuitry. These alterations may have detrimental impact on potential treatment strategies. Progressive loss of photoreceptors in retinal degenerative diseases, such as retinitis pigmentosa and age-related macular degeneration, leads to several changes in the remnant retinal circuitry. Müller glial cells undergo hypertrophy and form a glial seal. The second- and third-order retinal neurons undergo morphological, biochemical and physiological alterations. A result of these alterations is that retinal ganglion cells (RGCs), the output neurons of the retina, become hyperactive and exhibit spontaneous, oscillatory bursts of spikes. This aberrant electrical activity degrades the signal-to-noise ratio in RGC responses, and thus the quality of information they transmit to the brain. These changes in the remnant retina, collectively termed “retinal remodeling”, pose challenges for genetic, cellular and bionic approaches to restore vision. It is therefore crucial to understand the nature of retinal remodeling, how it affects the ability of remnant retina to respond to novel therapeutic strategies, and how to ameliorate its effects. In this article, we discuss these topics, and suggest that the pathological state of the retinal output following photoreceptor loss is reversible, and therefore, amenable to restorative strategies.
Collapse
Affiliation(s)
| | - Pitchaiah Cherukuri
- Developmental Neurobiology Laboratory, European Neuroscience Institute Göttingen Göttingen, Germany
| | - Deepak Poria
- National Brain Research Centre Manesar, Haryana, India
| | - Manvi Goel
- National Brain Research Centre Manesar, Haryana, India
| | - Sushma Dagar
- Institute of Neuro- and Sensory Physiology, Heinrich-Heine University Düsseldorf, Germany
| | | |
Collapse
|
29
|
Abstract
Visual systems detect light by monitoring the effect of photoisomerization of a chromophore on the release of a neurotransmitter from sensory neurons, known as rod and cone photoreceptor cells in vertebrate retina. In all known visual systems, the chromophore is 11-cis-retinal complexed with a protein, called opsin, and photoisomerization produces all-trans-retinal. In mammals, regeneration of 11-cis-retinal following photoisomerization occurs by a thermally driven isomerization reaction. Additional reactions are required during regeneration to protect cells from the toxicity of aldehyde forms of vitamin A that are essential to the visual process. Photochemical and phototransduction reactions in rods and cones are identical; however, reactions of the rod and cone visual pigment regeneration cycles differ, and perplexingly, rod and cone regeneration cycles appear to use different mechanisms to overcome the energy barrier involved in converting all-trans- to 11-cis-retinoid. Abnormal processing of all-trans-retinal in the rod regeneration cycle leads to retinal degeneration, suggesting that excessive amounts of the retinoid itself or its derivatives are toxic. This line of reasoning led to the development of various approaches to modifying the activity of the rod visual cycle as a possible therapeutic approach to delay or prevent retinal degeneration in inherited retinal diseases and perhaps in the dry form of macular degeneration (geographic atrophy). In spite of great progress in understanding the functioning of rod and cone regeneration cycles at a molecular level, resolution of a number of remaining puzzling issues will offer insight into the amelioration of several blinding retinal diseases.
Collapse
|
30
|
Abstract
Cones are photoreceptor cells used for bright light and color vision. Retinoids are vitamin A derivatives, one of which is the 11-cis aldehyde form that serves as the chromophore for both cone and rod visual pigments. In the visual disease, Type 2 Leber congenital amaurosis (LCA2), 11-cis-retinal generation is inhibited or abolished. Work by others has shown that patients with LCA2 have symptoms consistent with degenerating cones. In mouse models for LCA2, early cone degeneration is readily apparent: cone opsins and other proteins associated with the outer segment are delocalized and cell numbers decline rapidly within the first month. Rods would appear normal morphologically and functionally, if not for the absence of chromophore. Supplementation of mouse models of LCA2 with cis-retinoids has been shown to slow loss of cone photoreceptor cells if mice were maintained in darkness. Thus, 11-cis-retinal appears not only to have a role in the light response reaction but also to promote proper trafficking of the cone opsins and maintain viable cones.
Collapse
Affiliation(s)
- Masahiro Kono
- Department of Ophthalmology, Albert Florens Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
31
|
Hirota M, Miyagawa S, Kanda H, Endo T, Lohmann TK, Miyoshi T, Morimoto T, Fujikado T. Slow Cone Reflectance Changes during Bleaching Determined by Adaptive Optics Scanning Laser Ophthalmoscope in Living Human Eyes. PLoS One 2015; 10:e0131485. [PMID: 26121666 PMCID: PMC4488269 DOI: 10.1371/journal.pone.0131485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/02/2015] [Indexed: 12/22/2022] Open
Abstract
To investigate the changes in the reflectance of human cone photoreceptors by an adaptive optics scanning laser ophthalmoscope (AO-SLO) during photobleaching. A custom-built AO-SLO with an observation light of 840-nm was used to measure the cone densities and the reflectance changes during bleaching by 630 nm red light emitting diodes. Measurements were made at 1° and 3° temporal to the fovea within an area of 1° × 1° in 8 eyes of 8 normal subjects. After dark-adaptation, images of the cone mosaics were recorded continuously for 5-min before, 5-min during, and after 5-min of light stimulation with a sampling rate of 5-Hz. The first positive peak (P1) was observed at 72.2 ± 15.0-s and a second positive peak (P2) at 257.5 ± 34.5-s at 1°. The increase of the reflectance of P1 was significantly larger at 1° (34.4 ± 13.9%) than at 3° (26.0 ± 10.5%; P = 0.03, Wilcoxon’s signed rank test). The average cone density at 1° (51123.13 ± 1401.23 cells/mm2) was significantly larger than that at 3° (30876.13 ± 1459.28 cells/mm2; P <0.001, Wilcoxon’s signed rank test). The changes in the reflectance of the cones during bleaching by red light had two peaks. The two peaks may be caused by regeneration of cone photopigment during bleaching.
Collapse
Affiliation(s)
- Masakazu Hirota
- Department of Applied Visual Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Suguru Miyagawa
- Department of Applied Visual Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Fundamental Technology Sec, R&D Department, Topcon Corporation, Itabashi, Tokyo, Japan
| | - Hiroyuki Kanda
- Department of Applied Visual Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takao Endo
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tibor Karl Lohmann
- Department of Applied Visual Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Ophthalmology, University Hospital Aachen RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany
| | - Tomomitsu Miyoshi
- Department of Integrative Physiology, Graduate School of Medicine& Frontier Biosciences Osaka University, Suita, Osaka, Japan
| | - Takeshi Morimoto
- Department of Applied Visual Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takashi Fujikado
- Department of Applied Visual Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
32
|
Kaylor JJ, Radu RA, Bischoff N, Makshanoff J, Hu J, Lloyd M, Eddington S, Bianconi T, Bok D, Travis GH. Diacylglycerol O-acyltransferase type-1 synthesizes retinyl esters in the retina and retinal pigment epithelium. PLoS One 2015; 10:e0125921. [PMID: 25974161 PMCID: PMC4431840 DOI: 10.1371/journal.pone.0125921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/13/2015] [Indexed: 11/19/2022] Open
Abstract
Retinyl esters represent an insoluble storage form of vitamin A and are substrates for the retinoid isomerase (Rpe65) in cells of the retinal pigment epithelium (RPE). The major retinyl-ester synthase in RPE cells is lecithin:retinol acyl-transferase (LRAT). A second palmitoyl coenzyme A-dependent retinyl-ester synthase activity has been observed in RPE homogenates but the protein responsible has not been identified. Here we show that diacylglycerol O-acyltransferase-1 (DGAT1) is expressed in multiple cells of the retina including RPE and Müller glial cells. DGAT1 catalyzes the synthesis of retinyl esters from multiple retinol isomers with similar catalytic efficiencies. Loss of DGAT1 in dgat1 -/- mice has no effect on retinal anatomy or the ultrastructure of photoreceptor outer-segments (OS) and RPE cells. Levels of visual chromophore in dgat1 -/- mice were also normal. However, the normal build-up of all-trans-retinyl esters (all-trans-RE’s) in the RPE during the first hour after a deep photobleach of visual pigments in the retina was not seen in dgat1 -/- mice. Further, total retinyl-ester synthase activity was reduced in both dgat1 -/- retina and RPE.
Collapse
Affiliation(s)
- Joanna J. Kaylor
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| | - Roxana A. Radu
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Nicholas Bischoff
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jacob Makshanoff
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jane Hu
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Marcia Lloyd
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shannan Eddington
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tran Bianconi
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Dean Bok
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Gabriel H. Travis
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
33
|
|
34
|
Jindal A, Choudhury H, Pathengay A, Flynn HW. A novel clinical sign in macular telangiectasia type 2. Ophthalmic Surg Lasers Imaging Retina 2015; 46:134-6. [PMID: 25559527 DOI: 10.3928/23258160-20150101-26] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/10/2014] [Indexed: 11/20/2022]
Abstract
The objective of the study is to report, and propose a hypothesis for, a novel clinical sign in patients with macular telangiectasia type 2. Nine consecutive patients with macular telangiectasia and visible parafoveal graying were examined. The parafoveal graying decreased in intensity with continuous light exposure from an indirect ophthalmoscope. After dark adaptation for 15 minutes, the intensity of parafoveal graying increased again. This phenomenon appears to be a novel and global sign in patients with macular telangiectasia type 2. It could be a possible photochemical reaction occurring due to the release of chromophores from the abnormal Müller cells.
Collapse
|
35
|
Sato S, Miyazono S, Tachibanaki S, Kawamura S. RDH13L, an enzyme responsible for the aldehyde-alcohol redox coupling reaction (AL-OL coupling reaction) to supply 11-cis retinal in the carp cone retinoid cycle. J Biol Chem 2014; 290:2983-92. [PMID: 25533474 DOI: 10.1074/jbc.m114.629162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cone photoreceptors require effective pigment regeneration mechanisms to maintain their sensitivity in the light. Our previous studies in carp cones suggested the presence of an unconventional and very effective mechanism to produce 11-cis retinal, the necessary component in pigment regeneration. In this reaction (aldehyde-alcohol redox coupling reaction, AL-OL coupling reaction), formation of 11-cis retinal, i.e. oxidation of 11-cis retinol is coupled to reduction of an aldehyde at a 1:1 molar ratio without exogenous NADP(H) which is usually required in this kind of reaction. Here, we identified carp retinol dehydrogenase 13-like (RDH13L) as an enzyme catalyzing the AL-OL coupling reaction. RDH13L was partially purified from purified carp cones, identified as a candidate protein, and its AL-OL coupling activity was confirmed using recombinant RDH13L. We further examined the substrate specificity, subcellular localization, and expression level of RDH13L. Based on these results, we concluded that RDH13L contributes to a significant part, but not all, of the AL-OL coupling activity in carp cones. RDH13L contained tightly bound NADP(+) which presumably functions as a cofactor in the reaction. Mouse RDH14, a mouse homolog of carp RDH13L, also showed the AL-OL coupling activity. Interestingly, although carp cone membranes, carp RDH13L and mouse RDH14 all showed the coupling activity at 15-37 °C, they also showed a conventional NADP(+)-dependent 11-cis retinol oxidation activity above 25 °C without addition of aldehydes. This dual mechanism of 11-cis retinal synthesis attained by carp RDH13L and mouse RDH14 probably contribute to effective pigment regeneration in cones that function in the light.
Collapse
Affiliation(s)
- Shinya Sato
- From the Graduate School of Frontier Biosciences and
| | | | - Shuji Tachibanaki
- From the Graduate School of Frontier Biosciences and Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka 565-0871, Japan
| | - Satoru Kawamura
- From the Graduate School of Frontier Biosciences and Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka 565-0871, Japan
| |
Collapse
|
36
|
Lee W, Nõupuu K, Oll M, Duncker T, Burke T, Zernant J, Bearelly S, Tsang SH, Sparrow JR, Allikmets R. The external limiting membrane in early-onset Stargardt disease. Invest Ophthalmol Vis Sci 2014; 55:6139-49. [PMID: 25139735 DOI: 10.1167/iovs.14-15126] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To describe pathologic changes of the external limiting membrane (ELM) in young patients with early-onset Stargardt (STGD1) disease. METHODS Twenty-six STGD1 patients aged younger than 20 years with confirmed disease-causing adenosine triphosphate-binding cassette, subfamily A, member 4 (ABCA4) alleles and 30 age-matched unaffected individuals were studied. Spectral-domain optical coherence tomography (SD-OCT), fundus autofluorescence (AF), and color fundus photography (CFP) images, as well as full-field electroretinograms were obtained and analyzed for one to four visits in each patient. RESULTS The ELM in all patients exhibited a distinct thickening that was not observed in unaffected individuals. In addition, accumulations of reflective deposits were noted in the outer nuclear layer in every patient. Four patients exhibited a concave protuberance or bulging of a thickened and hyperreflective ELM band within the fovea containing preserved photoreceptors. Longitudinal SD-OCT data in several patients revealed the persistence of this ELM abnormality over a period of time (1-4 years). Furthermore, the edges of the inner segment ellipsoid band appeared to recede earlier than the ELM band in active lesions. CONCLUSIONS Structural changes seen in the ELM of this cohort may reflect a gliotic response to cellular stress at the photoreceptor level in early-onset STGD1.
Collapse
Affiliation(s)
- Winston Lee
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - Kalev Nõupuu
- Department of Ophthalmology, Columbia University, New York, New York, United States Eye Clinic, Tartu University Hospital, Tartu, Estonia
| | - Maris Oll
- Department of Ophthalmology, Columbia University, New York, New York, United States Eye Clinic, Tartu University Hospital, Tartu, Estonia
| | - Tobias Duncker
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - Tomas Burke
- Department of Ophthalmology, Royal United Hospital, Bath, United Kingdom
| | - Jana Zernant
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - Srilaxmi Bearelly
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University, New York, New York, United States Department of Pathology & Cell Biology, Columbia University, New York, New York, United States
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University, New York, New York, United States Department of Pathology & Cell Biology, Columbia University, New York, New York, United States
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, New York, United States Department of Pathology & Cell Biology, Columbia University, New York, New York, United States
| |
Collapse
|
37
|
Palczewska G, Golczak M, Williams DR, Hunter JJ, Palczewski K. Endogenous fluorophores enable two-photon imaging of the primate eye. Invest Ophthalmol Vis Sci 2014; 55:4438-47. [PMID: 24970255 DOI: 10.1167/iovs.14-14395] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Noninvasive two-photon imaging of a living mammalian eye can reveal details of molecular processes in the retina and RPE. Retinyl esters and all-trans-retinal condensation products are two types of retinoid fluorophores present in these tissues. We measured the content of these two types of retinoids in monkey and human eyes to validate the potential of two-photon imaging for monitoring retinoid changes in human eyes. METHODS Two-photon microscopy (TPM) was used to visualize excised retina from monkey eyes. Retinoid composition and content in human and monkey eyes were quantified by HPLC and mass spectrometry (MS). RESULTS Clear images of inner and outer segments of rods and cones were obtained in primate eyes at different eccentricities. Fluorescence spectra from outer segments revealed a maximum emission at 480 nm indicative of retinols and their esters. In cynomolgus monkey and human retinal extracts, retinyl esters existed predominantly in the 11-cis configuration along with notable levels of 11-cis-retinol, a characteristic of cone-enriched retinas. Average amounts of di-retinoid-pyridinium-ethanolamine (A2E) in primate and human eyes were 160 and 225 pmol/eye, respectively. CONCLUSIONS These data show that human retina contains sufficient amounts of retinoids for two-photon excitation imaging. Greater amounts of 11-cis-retinyl esters relative to rodent retinas contribute to the fluorescence signal from both monkey and human eyes. These observations indicate that TPM imaging found effective in mice could detect early age- and disease-related changes in human retina.
Collapse
Affiliation(s)
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - David R Williams
- Center for Visual Science, University of Rochester, Rochester, New York, United States The Institute of Optics, University of Rochester, Rochester, New York, United States
| | - Jennifer J Hunter
- Center for Visual Science, University of Rochester, Rochester, New York, United States Flaum Eye Institute, University of Rochester, Rochester, New York, United States Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
| | - Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
38
|
Identification of the 11-cis-specific retinyl-ester synthase in retinal Müller cells as multifunctional O-acyltransferase (MFAT). Proc Natl Acad Sci U S A 2014; 111:7302-7. [PMID: 24799687 DOI: 10.1073/pnas.1319142111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Absorption of a photon by a rhodopsin or cone-opsin pigment isomerizes its 11-cis-retinaldehyde (11-cis-RAL) chromophore to all-trans-retinaldehyde (all-trans-RAL), which dissociates after a brief period of activation. Light sensitivity is restored to the resulting apo-opsin when it recombines with another 11-cis-RAL. Conversion of all-trans-RAL to 11-cis-RAL is carried out by an enzyme pathway called the visual cycle in cells of the retinal pigment epithelium. A second visual cycle is present in Müller cells of the retina. The retinol isomerase for this noncanonical pathway is dihydroceramide desaturase (DES1), which catalyzes equilibrium isomerization of retinol. Because 11-cis-retinol (11-cis-ROL) constitutes only a small fraction of total retinols in an equilibrium mixture, a subsequent step involving selective removal of 11-cis-ROL is required to drive synthesis of 11-cis-retinoids for production of visual chromophore. Selective esterification of 11-cis-ROL is one possibility. Crude homogenates of chicken retinas rapidly convert all-trans-ROL to 11-cis-retinyl esters (11-cis-REs) with minimal formation of other retinyl-ester isomers. This enzymatic activity implies the existence of an 11-cis-specific retinyl-ester synthase in Müller cells. Here, we evaluated multifunctional O-acyltransferase (MFAT) as a candidate for this 11-cis-RE-synthase. MFAT exhibited much higher catalytic efficiency as a synthase of 11-cis-REs versus other retinyl-ester isomers. Further, we show that MFAT is expressed in Müller cells. Finally, homogenates of cells coexpressing DES1 and MFAT catalyzed the conversion of all-trans-ROL to 11-cis-RP, similar to what we observed with chicken-retina homogenates. MFAT is therefore an excellent candidate for the retinyl-ester synthase that cooperates with DES1 to drive synthesis of 11-cis-retinoids by mass action.
Collapse
|
39
|
Affiliation(s)
| | | | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case
Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106-4965,
United States
| |
Collapse
|
40
|
Sato S, Fukagawa T, Tachibanaki S, Yamano Y, Wada A, Kawamura S. Substrate specificity and subcellular localization of the aldehyde-alcohol redox-coupling reaction in carp cones. J Biol Chem 2013; 288:36589-97. [PMID: 24217249 DOI: 10.1074/jbc.m113.521153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Our previous study suggested the presence of a novel cone-specific redox reaction that generates 11-cis-retinal from 11-cis-retinol in the carp retina. This reaction is unique in that 1) both 11-cis-retinol and all-trans-retinal were required to produce 11-cis-retinal; 2) together with 11-cis-retinal, all-trans-retinol was produced at a 1:1 ratio; and 3) the addition of enzyme cofactors such as NADP(H) was not necessary. This reaction is probably part of the reactions in a cone-specific retinoid cycle required for cone visual pigment regeneration with the use of 11-cis-retinol supplied from Müller cells. In this study, using purified carp cone membrane preparations, we first confirmed that the reaction is a redox-coupling reaction between retinals and retinols. We further examined the substrate specificity, reaction mechanism, and subcellular localization of this reaction. Oxidation was specific for 11-cis-retinol and 9-cis-retinol. In contrast, reduction showed low specificity: many aldehydes, including all-trans-, 9-cis-, 11-cis-, and 13-cis-retinals and even benzaldehyde, supported the reaction. On the basis of kinetic studies of this reaction (aldehyde-alcohol redox-coupling reaction), we found that formation of a ternary complex of a retinol, an aldehyde, and a postulated enzyme seemed to be necessary, which suggested the presence of both the retinol- and aldehyde-binding sites in this enzyme. A subcellular fractionation study showed that the activity is present almost exclusively in the cone inner segment. These results suggest the presence of an effective production mechanism of 11-cis-retinal in the cone inner segment to regenerate visual pigment.
Collapse
Affiliation(s)
- Shinya Sato
- From the Department of Biological Sciences, Graduate School of Science, and
| | | | | | | | | | | |
Collapse
|
41
|
Cascella M, Bärfuss S, Stocker A. Cis-retinoids and the chemistry of vision. Arch Biochem Biophys 2013; 539:187-95. [PMID: 23791723 DOI: 10.1016/j.abb.2013.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/04/2013] [Accepted: 06/10/2013] [Indexed: 11/17/2022]
Abstract
We discuss here principal biochemical transformations of retinoid molecules in the visual cycle. We focus our analysis on the accumulating evidence of alternate pathways and functional redundancies in the cycle. The efficiency of the visual cycle depends, on one hand, on fast regeneration of the photo-bleached chromophores. On the other hand, it is crucial that the cyclic process should be highly selective to avoid accumulation of byproducts. The state-of-the-art knowledge indicates that single enzymatically active components of the cycle are not strictly selective and may require chaperones to enhance their rates. It appears that protein-protein interactions significantly improve the biological stability of the visual cycle. In particular, synthesis of thermodynamically less stable 11-cis-retinoid conformers is favored by physical interactions of the isomerases present in the retina with cellular retinaldehyde binding protein.
Collapse
Affiliation(s)
- Michele Cascella
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | | | | |
Collapse
|
42
|
Abstract
The chromophore of all known visual pigments consists of 11-cis-retinal (derived from either vitamin A1 or A2) or a hydroxylated derivative, bound to a protein (opsin) via a Schiff base. Absorption of a photon results in photoisomerization of the chromophore to all-trans-retinal and conversion of the visual pigment to the signaling form. Regeneration of the 11-cis-retinal occurs in an adjacent tissue and involves several enzymes, several water-soluble retinoid-binding proteins, and intra- and intercellular diffusional processes. Rod photoreceptor cells depend completely on the output of 11-cis-retinal from adjacent retinal pigment epithelial (RPE) cells. Cone photoreceptors cells can use 11-cis-retinal from the RPE and from a second more poorly characterized cycle, which appears to involve adjacent Müller (glial) cells. Recent progress in the characterization of rod and cone visual cycle components and reactions will result in the development of approaches to the amelioration of blinding eye diseases associated with visual cycle defects.
Collapse
Affiliation(s)
- John C Saari
- Department of Ophthalmology and Biochemistry, University of Washington, Seattle, WA 91895, USA.
| |
Collapse
|
43
|
Müller glia express rhodopsin in a mouse model of inherited retinal degeneration. Neuroscience 2012; 225:152-61. [DOI: 10.1016/j.neuroscience.2012.08.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/20/2012] [Accepted: 08/30/2012] [Indexed: 11/22/2022]
|
44
|
Kaylor JJ, Yuan Q, Cook J, Sarfare S, Makshanoff J, Miu A, Kim A, Kim P, Habib S, Roybal CN, Xu T, Nusinowitz S, Travis GH. Identification of DES1 as a vitamin A isomerase in Müller glial cells of the retina. Nat Chem Biol 2012; 9:30-6. [PMID: 23143414 PMCID: PMC3522777 DOI: 10.1038/nchembio.1114] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/05/2012] [Indexed: 11/21/2022]
Abstract
Absorption of a light particle by an opsin-pigment causes photoisomerization of its retinaldehyde chromophore. Restoration of light sensitivity to the resulting apo-opsin requires chemical re-isomerization of the photobleached chromophore. This is carried out by a multistep enzyme pathway called the visual cycle. Accumulating evidence suggests the existence of an alternate visual cycle for regenerating opsins in daylight. Here, we identified dihydroceramide desaturase-1 (DES1) as a retinol isomerase and an excellent candidate for isomerase-2 in this alternate pathway. DES1 is expressed in retinal Müller cells where it co-immunoprecipitates with cellular retinaldehyde binding protein (CRALBP). Adenoviral gene therapy with DES1 partially rescued the biochemical and physiological phenotypes in rpe65 −/− mice lacking isomerohydrolase (isomerase-1). Knockdown of DES1 expression by RNA-interference concordantly reduced isomerase-2 activity in cultured Müller cells. Purified DES1 possessed very high isomerase-2 activity in the presence of appropriate cofactors, suggesting that DES1 by itself is sufficient for isomerase activity.
Collapse
Affiliation(s)
- Joanna J Kaylor
- Jules Stein Eye Institute, University of California, Los Angeles School of Medicine, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tang PH, Kono M, Koutalos Y, Ablonczy Z, Crouch RK. New insights into retinoid metabolism and cycling within the retina. Prog Retin Eye Res 2012; 32:48-63. [PMID: 23063666 DOI: 10.1016/j.preteyeres.2012.09.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 09/28/2012] [Accepted: 09/30/2012] [Indexed: 01/05/2023]
Abstract
The retinoid cycle is a series of biochemical reactions within the eye that is responsible for synthesizing the chromophore, 11-cis retinal, for visual function. The chromophore is bound to G-protein coupled receptors, opsins, within rod and cone photoreceptor cells forming the photosensitive visual pigments. Integral to the sustained function of photoreceptors is the continuous generation of chromophore by the retinoid cycle through two separate processes, one that supplies both rods and cones and another that exclusively supplies cones. Recent findings such as RPE65 localization within cones and the pattern of distribution of retinoid metabolites within mouse and human retinas have challenged previous proposed schemes. This review will focus on recent findings regarding the transport of retinoids, the mechanisms by which chromophore is supplied to both rods and cones, and the metabolism of retinoids within the posterior segment of the eye.
Collapse
Affiliation(s)
- Peter H Tang
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
46
|
An S-opsin knock-in mouse (F81Y) reveals a role for the native ligand 11-cis-retinal in cone opsin biosynthesis. J Neurosci 2012; 32:8094-104. [PMID: 22674284 DOI: 10.1523/jneurosci.0131-12.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In absence of their natural ligand, 11-cis-retinal, cone opsin G-protein-coupled receptors fail to traffic normally, a condition associated with photoreceptor degeneration and blindness. We created a mouse with a point mutation (F81Y) in cone S-opsin. As expected, cones with this knock-in mutation respond to light with maximal sensitivity red-shifted from 360 to 420 nm, consistent with an altered interaction between the apoprotein and ligand, 11-cis-retinal. However, cones expressing F81Y S-opsin showed an ∼3-fold reduced absolute sensitivity that was associated with a corresponding reduction in S-opsin protein expression. The reduced S-opsin expression did not arise from decreased S-opsin mRNA or cone degeneration, but rather from enhanced endoplasmic reticulum (ER)-associated degradation of the nascent protein. Exogenously increased 11-cis-retinal restored F81Y S-opsin protein expression to normal levels, suggesting that ligand binding in the ER facilitates proper folding. Immunohistochemistry and electron microscopy of normal retinas showed that Mueller cells, which synthesize a precursor of 11-cis-retinal, are closely adjoined to the cone ER, so they could deliver the ligand to the site of opsin synthesis. Together, these results suggest that the binding of 11-cis-retinal in the ER is important for normal folding during cone opsin biosynthesis.
Collapse
|
47
|
Betts BS, Obregon I, Tsin ATC. Cultured Müller cells from mammals can synthesize and accumulate retinyl esters. Exp Eye Res 2012; 101:56-9. [PMID: 22634428 DOI: 10.1016/j.exer.2012.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/09/2012] [Accepted: 05/16/2012] [Indexed: 01/21/2023]
|
48
|
RPE65 is present in human green/red cones and promotes photopigment regeneration in an in vitro cone cell model. J Neurosci 2012; 31:18618-26. [PMID: 22171060 DOI: 10.1523/jneurosci.4265-11.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RPE65 is an abundantly expressed protein within the retinal pigment epithelium (RPE) of the eye that is required for retinoid metabolism to support vision. Its genetic mutations are linked to the congenital disease Leber congenital amaurosis Type 2 (LCA2) characterized by the early onset of central vision loss. Current gene therapy trials have targeted restoration of functional RPE65 within the RPE of these patients with some success. Recent data show that RPE65 is also present within mouse cones to promote function. In this study, we evaluated the presence of RPE65 in human cones and investigated its potential mechanism for supporting cone function in the 661W cone cell line. We found that RPE65 was selectively expressed in human green/red cones but absent from blue cones and mediated ester hydrolysis for photopigment synthesis in vitro. These data suggest that cone RPE65 supports human diurnal vision, potentially enhancing our strategies for treating LCA2.
Collapse
|
49
|
Kefalov VJ. Rod and cone visual pigments and phototransduction through pharmacological, genetic, and physiological approaches. J Biol Chem 2011; 287:1635-41. [PMID: 22074928 DOI: 10.1074/jbc.r111.303008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of the visual pigment by light in rod and cone photoreceptors initiates our visual perception. As a result, the signaling properties of visual pigments, consisting of a protein, opsin, and a chromophore, 11-cis-retinal, play a key role in shaping the light responses of photoreceptors. The combination of pharmacological, physiological, and genetic tools has been a powerful approach advancing our understanding of the interactions between opsin and chromophore and how they affect the function of visual pigments. The signaling properties of the visual pigments modulate many aspects of the function of rods and cones, producing their unique physiological properties.
Collapse
Affiliation(s)
- Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
50
|
Reuter T. Fifty years of dark adaptation 1961–2011. Vision Res 2011; 51:2243-62. [DOI: 10.1016/j.visres.2011.08.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 08/24/2011] [Accepted: 08/24/2011] [Indexed: 02/07/2023]
|