1
|
Sánchez-Alba L, Borràs-Gas H, Huang G, Varejão N, Reverter D. Structural diversity of the CE-clan proteases in bacteria to disarm host ubiquitin defenses. Trends Biochem Sci 2024:S0968-0004(24)00206-8. [PMID: 39343712 DOI: 10.1016/j.tibs.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
Ubiquitin (Ub) and ubiquitin-like (UbL) modifications are critical regulators of multiple cellular processes in eukaryotes. These modifications are dynamically controlled by proteases that balance conjugation and deconjugation. In eukaryotes, these proteases include deubiquitinases (DUBs), mostly belonging to the CA-clan of cysteine proteases, and ubiquitin-like proteases (ULPs), belonging to the CE-clan proteases. Intriguingly, infectious bacteria exploit the CE-clan protease fold to generate deubiquitinating activities to disarm the immune system and degradation defenses of the host during infection. In this review, we explore the substrate preferences encoded within the CE-clan proteases and the structural determinants in the protease fold behind its selectivity, in particular those from infectious bacteria and viruses. Understanding this protease family provides crucial insights into the molecular mechanisms underlying infection and transmission of pathogenic organisms.
Collapse
Affiliation(s)
- Lucía Sánchez-Alba
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| | - Helena Borràs-Gas
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Ge Huang
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Nathalia Varejão
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - David Reverter
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
2
|
Mótyán JA, Tőzsér J. The human retroviral-like aspartic protease 1 (ASPRV1): From in vitro studies to clinical correlations. J Biol Chem 2024; 300:107634. [PMID: 39098535 PMCID: PMC11402058 DOI: 10.1016/j.jbc.2024.107634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024] Open
Abstract
The human retroviral-like aspartic protease 1 (ASPRV1) is a retroviral-like protein that was first identified in the skin due to its expression in the stratum granulosum layer of the epidermis. Accordingly, it is also referred to as skin-specific aspartic protease. Similar to the retroviral polyproteins, the full-length ASPRV1 also undergoes self-proteolysis, the processing of the precursor is necessary for the autoactivation of the protease domain. ASPRV1's functions are well-established at the level of the skin: it is part of the epidermal proteolytic network and has a significant contribution to skin moisturization via the limited proteolysis of filaggrin; it is only natural protein substrate identified so far. Filaggrin and ASPRV1 are also specific for mammalians, these proteins provide unique features for the skins of these species, and the importance of filaggrin processing in hydration is proved by the fact that some ASPRV1 mutations are associated with skin diseases such as ichthyosis. ASPRV1 was also found to be expressed in macrophage-like neutrophil cells, indicating that its functions are not limited to the skin. In addition, differential expression of ASPRV1 was detected in many diseases, with yet unknown significance. The currently known enzymatic characteristics-that had been revealed mainly by in vitro studies-and correlations with pathogenic phenotypes imply potentially important functions in multiple cell types, which makes the protein a promising target of functional studies. In this review we describe the currently available knowledge and future perspective in regard to ASPRV1.
Collapse
Affiliation(s)
- János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Gong X, Xu L, Langwig MV, Chen Z, Huang S, Zhao D, Su L, Zhang Y, Francis CA, Liu J, Li J, Baker BJ. Globally distributed marine Gemmatimonadota have unique genomic potentials. MICROBIOME 2024; 12:149. [PMID: 39123272 PMCID: PMC11316326 DOI: 10.1186/s40168-024-01871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Gemmatimonadota bacteria are widely distributed in nature, but their metabolic potential and ecological roles in marine environments are poorly understood. RESULTS Here, we obtained 495 metagenome-assembled genomes (MAGs), and associated viruses, from coastal to deep-sea sediments around the world. We used this expanded genomic catalog to compare the protein composition and update the phylogeny of these bacteria. The marine Gemmatimonadota are phylogenetically different from those previously reported from terrestrial environments. Functional analyses of these genomes revealed these marine genotypes are capable of degradation of complex organic carbon, denitrification, sulfate reduction, and oxidizing sulfide and sulfite. Interestingly, there is widespread genetic potential for secondary metabolite biosynthesis across Gemmatimonadota, which may represent an unexplored source of novel natural products. Furthermore, viruses associated with Gemmatimonadota have the potential to "hijack" and manipulate host metabolism, including the assembly of the lipopolysaccharide in their hosts. CONCLUSIONS This expanded genomic diversity advances our understanding of these globally distributed bacteria across a variety of ecosystems and reveals genetic distinctions between those in terrestrial and marine communities. Video Abstract.
Collapse
Affiliation(s)
- Xianzhe Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, Guangdong, China.
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA.
| | - Le Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Marguerite V Langwig
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA
| | - Zhiyi Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Shujie Huang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Duo Zhao
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Lei Su
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Yan Zhang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Christopher A Francis
- Departments of Earth System Science & Oceans, Stanford University, Stanford, CA, 94305, USA
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China.
| | - Brett J Baker
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA.
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
4
|
Castañeda-Corral G, Cedillo-Cortezano M, Aviles-Flores M, López-Castillo M, Acevedo-Fernández JJ, Petricevich VL. Antinociceptive and Anti-Inflammatory Activities of Acetonic Extract from Bougainvillea x buttiana (var. Rose). Pharmaceuticals (Basel) 2024; 17:1037. [PMID: 39204142 PMCID: PMC11357402 DOI: 10.3390/ph17081037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Background:Bougainvillea x buttiana is an ornamental plant with antioxidant, anti-inflammatory, and cytotoxic activities, which has been traditionally used to treat respiratory diseases. This study aimed to investigate whether the acetonic extract of Bougainvillea x buttiana var. Rose (BxbRAE-100%) has analgesic and anti-inflammatory properties and its potential action mechanisms. Methods: Analgesic and anti-inflammatory activities were evaluated using three murine pain models and two acute inflammation models. In vitro, the ability of the extract to inhibit proteolytic activity and the activities of the enzymes phospholipase A2 (PLA2) and cyclooxygenase (COX) were evaluated. In silico analysis was performed to predict the physicochemical and Absorption, distribution, metabolism, and excretion (ADME) profiles of the compounds previously identified in BxbRAE-100%. Results: In vivo BxbRAE-100% decreased the nociceptive behaviors in the writhing model, the tail immersion, and the formalin test, suggesting that the extract has the potential to relieve pain at peripheral and central levels. Additionally, topical or oral BxbRAE-100% treatment reduced dose-dependent 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation and carrageenan-induced paw edema, respectively. In vitro, BxbRAE-100% significantly inhibited proteolytic activity and PLA2, COX-1 and COX-2 activities. In silico, the compounds previously identified in BxbRAE-100% met Lipinski's rule of five and showed adequate ADME properties. Conclusions: These results support the use of B. x buttiana in Traditional Mexican Medicine and highlight its potential for the development of new treatments for pain and inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Vera L. Petricevich
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Calle Iztaccihuatl Esq. Leñeros, Col. Volcanes, Cuernavaca 62350, Morelos, Mexico; (G.C.-C.); (M.C.-C.); (M.A.-F.); (M.L.-C.); (J.J.A.-F.)
| |
Collapse
|
5
|
Konečný L, Peterková K. Unveiling the peptidases of parasites from the office chair - The endothelin-converting enzyme case study. ADVANCES IN PARASITOLOGY 2024; 126:1-52. [PMID: 39448189 DOI: 10.1016/bs.apar.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The emergence of high-throughput methodologies such as next-generation sequencing and proteomics has necessitated significant advancements in biological databases and bioinformatic tools, therefore reshaping the landscape of research into parasitic peptidases. In this review we outline the development of these resources along the -omics technologies and their transformative impact on the field. Apart from extensive summary of general and specific databases and tools, we provide a general pipeline on how to use these resources effectively to identify candidate peptidases from these large datasets and how to gain as much information about them as possible without leaving the office chair. This pipeline is then applied in an illustrative case study on the endothelin-converting enzyme 1 homologue from Schistosoma mansoni and attempts to highlight the contemporary capabilities of bioinformatics. The case study demonstrate how such approach can aid to hypothesize enzyme functions and interactions through computational analysis alone effectively and emphasizes how such virtual investigations can guide and optimize subsequent wet lab experiments therefore potentially saving precious time and resources. Finally, by showing what can be achieved without traditional wet laboratory methods, this review provides a compelling narrative on the use of bioinformatics to bridge the gap between big data and practical research applications, highlighting the key role of these technologies in furthering our understanding of parasitic diseases.
Collapse
Affiliation(s)
- Lukáš Konečný
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia; Department of Ecology, Centre of Infectious Animal Diseases, Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czechia.
| | - Kristýna Peterková
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
6
|
Olivares M, Hernández-Calderón P, Cárdenas-Brito S, Liébana-García R, Sanz Y, Benítez-Páez A. Gut microbiota DPP4-like enzymes are increased in type-2 diabetes and contribute to incretin inactivation. Genome Biol 2024; 25:174. [PMID: 38961511 PMCID: PMC11221189 DOI: 10.1186/s13059-024-03325-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The gut microbiota controls broad aspects of human metabolism and feeding behavior, but the basis for this control remains largely unclear. Given the key role of human dipeptidyl peptidase 4 (DPP4) in host metabolism, we investigate whether microbiota DPP4-like counterparts perform the same function. RESULTS We identify novel functional homologs of human DPP4 in several bacterial species inhabiting the human gut, and specific associations between Parabacteroides and Porphyromonas DPP4-like genes and type 2 diabetes (T2D). We also find that the DPP4-like enzyme from the gut symbiont Parabacteroides merdae mimics the proteolytic activity of the human enzyme on peptide YY, neuropeptide Y, gastric inhibitory polypeptide (GIP), and glucagon-like peptide 1 (GLP-1) hormones in vitro. Importantly, administration of E. coli overexpressing the P. merdae DPP4-like enzyme to lipopolysaccharide-treated mice with impaired gut barrier function reduces active GIP and GLP-1 levels, which is attributed to increased DPP4 activity in the portal circulation and the cecal content. Finally, we observe that linagliptin, saxagliptin, sitagliptin, and vildagliptin, antidiabetic drugs with DPP4 inhibitory activity, differentially inhibit the activity of the DPP4-like enzyme from P. merdae. CONCLUSIONS Our findings confirm that proteolytic enzymes produced by the gut microbiota are likely to contribute to the glucose metabolic dysfunction that underlies T2D by inactivating incretins, which might inspire the development of improved antidiabetic therapies.
Collapse
Affiliation(s)
- Marta Olivares
- Institute of Agrochemistry and Food Technology, Microbiome, Nutrition and Health Research Unit, Spanish National Research Council, IATA-CSIC, 46980, Paterna-Valencia, Spain
| | - Paula Hernández-Calderón
- Principe Felipe Research Center (CIPF), Host-Microbe Interactions in Metabolic Health Laboratory, 46012, Valencia, Spain
| | - Sonia Cárdenas-Brito
- Principe Felipe Research Center (CIPF), Host-Microbe Interactions in Metabolic Health Laboratory, 46012, Valencia, Spain
| | - Rebeca Liébana-García
- Institute of Agrochemistry and Food Technology, Microbiome, Nutrition and Health Research Unit, Spanish National Research Council, IATA-CSIC, 46980, Paterna-Valencia, Spain
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Microbiome, Nutrition and Health Research Unit, Spanish National Research Council, IATA-CSIC, 46980, Paterna-Valencia, Spain.
| | - Alfonso Benítez-Páez
- Institute of Agrochemistry and Food Technology, Microbiome, Nutrition and Health Research Unit, Spanish National Research Council, IATA-CSIC, 46980, Paterna-Valencia, Spain.
- Principe Felipe Research Center (CIPF), Host-Microbe Interactions in Metabolic Health Laboratory, 46012, Valencia, Spain.
| |
Collapse
|
7
|
Guicherd M, Ben Khaled M, Guéroult M, Nomme J, Dalibey M, Grimaud F, Alvarez P, Kamionka E, Gavalda S, Noël M, Vuillemin M, Amillastre E, Labourdette D, Cioci G, Tournier V, Kitpreechavanich V, Dubois P, André I, Duquesne S, Marty A. An engineered enzyme embedded into PLA to make self-biodegradable plastic. Nature 2024; 631:884-890. [PMID: 39020178 DOI: 10.1038/s41586-024-07709-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/12/2024] [Indexed: 07/19/2024]
Abstract
Plastic production reached 400 million tons in 2022 (ref. 1), with packaging and single-use plastics accounting for a substantial amount of this2. The resulting waste ends up in landfills, incineration or the environment, contributing to environmental pollution3. Shifting to biodegradable and compostable plastics is increasingly being considered as an efficient waste-management alternative4. Although polylactide (PLA) is the most widely used biosourced polymer5, its biodegradation rate under home-compost and soil conditions remains low6-8. Here we present a PLA-based plastic in which an optimized enzyme is embedded to ensure rapid biodegradation and compostability at room temperature, using a scalable industrial process. First, an 80-fold activity enhancement was achieved through structure-based rational engineering of a new hyperthermostable PLA hydrolase. Second, the enzyme was uniformly dispersed within the PLA matrix by means of a masterbatch-based melt extrusion process. The liquid enzyme formulation was incorporated in polycaprolactone, a low-melting-temperature polymer, through melt extrusion at 70 °C, forming an 'enzymated' polycaprolactone masterbatch. Masterbatch pellets were integrated into PLA by melt extrusion at 160 °C, producing an enzymated PLA film (0.02% w/w enzyme) that fully disintegrated under home-compost conditions within 20-24 weeks, meeting home-composting standards. The mechanical and degradation properties of the enzymated film were compatible with industrial packaging applications, and they remained intact during long-term storage. This innovative material not only opens new avenues for composters and biomethane production but also provides a feasible industrial solution for PLA degradation.
Collapse
Affiliation(s)
- M Guicherd
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Carbios, Clermont-Ferrand, France
| | - M Ben Khaled
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - M Guéroult
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Carbios, Clermont-Ferrand, France
| | - J Nomme
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | | | - P Alvarez
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - E Kamionka
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - S Gavalda
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Carbios, Clermont-Ferrand, France
| | - M Noël
- Carbiolice, Clermont-Ferrand, France
| | - M Vuillemin
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - E Amillastre
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - D Labourdette
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - G Cioci
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | - V Kitpreechavanich
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - P Dubois
- Center of Innovation and Research in Materials & Polymers, University of Mons, Mons, Belgium
| | - I André
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| | - S Duquesne
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - A Marty
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
- Carbios, Clermont-Ferrand, France.
| |
Collapse
|
8
|
Shestakova A, Fatkulin A, Surkova D, Osmolovskiy A, Popova E. First Insight into the Degradome of Aspergillus ochraceus: Novel Secreted Peptidases and Their Inhibitors. Int J Mol Sci 2024; 25:7121. [PMID: 39000228 PMCID: PMC11241649 DOI: 10.3390/ijms25137121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Aspergillus fungi constitute a pivotal element within ecosystems, serving as both contributors of biologically active compounds and harboring the potential to cause various diseases across living organisms. The organism's proteolytic enzyme complex, termed the degradome, acts as an intermediary in its dynamic interaction with the surrounding environment. Using techniques such as genome and transcriptome sequencing, alongside protein prediction methodologies, we identified putative extracellular peptidases within Aspergillus ochraceus VKM-F4104D. Following manual annotation procedures, a total of 11 aspartic, 2 cysteine, 2 glutamic, 21 serine, 1 threonine, and 21 metallopeptidases were attributed to the extracellular degradome of A. ochraceus VKM-F4104D. Among them are enzymes with promising applications in biotechnology, potential targets and agents for antifungal therapy, and microbial antagonism factors. Thus, additional functionalities of the extracellular degradome, extending beyond mere protein substrate digestion for nutritional purposes, were demonstrated.
Collapse
Affiliation(s)
- Anna Shestakova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| | - Artem Fatkulin
- Laboratory of Molecular Physiology, HSE University, Moscow 101000, Russia
| | - Daria Surkova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| | | | - Elizaveta Popova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| |
Collapse
|
9
|
Koper K, Han SW, Kothadia R, Salamon H, Yoshikuni Y, Maeda HA. Multisubstrate specificity shaped the complex evolution of the aminotransferase family across the tree of life. Proc Natl Acad Sci U S A 2024; 121:e2405524121. [PMID: 38885378 PMCID: PMC11214133 DOI: 10.1073/pnas.2405524121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Aminotransferases (ATs) are an ancient enzyme family that play central roles in core nitrogen metabolism, essential to all organisms. However, many of the AT enzyme functions remain poorly defined, limiting our fundamental understanding of the nitrogen metabolic networks that exist in different organisms. Here, we traced the deep evolutionary history of the AT family by analyzing AT enzymes from 90 species spanning the tree of life (ToL). We found that each organism has maintained a relatively small and constant number of ATs. Mapping the distribution of ATs across the ToL uncovered that many essential AT reactions are carried out by taxon-specific AT enzymes due to wide-spread nonorthologous gene displacements. This complex evolutionary history explains the difficulty of homology-based AT functional prediction. Biochemical characterization of diverse aromatic ATs further revealed their broad substrate specificity, unlike other core metabolic enzymes that evolved to catalyze specific reactions today. Interestingly, however, we found that these AT enzymes that diverged over billion years share common signatures of multisubstrate specificity by employing different nonconserved active site residues. These findings illustrate that AT family enzymes had leveraged their inherent substrate promiscuity to maintain a small yet distinct set of multifunctional AT enzymes in different taxa. This evolutionary history of versatile ATs likely contributed to the establishment of robust and diverse nitrogen metabolic networks that exist throughout the ToL. The study provides a critical foundation to systematically determine diverse AT functions and underlying nitrogen metabolic networks across the ToL.
Collapse
Affiliation(s)
- Kaan Koper
- Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| | - Sang-Woo Han
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Biotechnology, Konkuk University, Chungju27478, South Korea
| | - Ramani Kothadia
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Hugh Salamon
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Yasuo Yoshikuni
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Center for Advanced Bioenergy and Bioproducts Innovation, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Global Center for Food, Land, and Water Resources, Research Faculty of Agriculture, Hokkaido University, Hokkaido, Japan 060-8589
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo183-8538, Japan
| | - Hiroshi A. Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
10
|
Yang H, Wu X, Sun C, Wang L. Unraveling the metabolic potential of biocontrol fungi through omics data: a key to enhancing large-scaleapplication strategies. Acta Biochim Biophys Sin (Shanghai) 2024; 56:825-832. [PMID: 38686460 PMCID: PMC11214957 DOI: 10.3724/abbs.2024056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/07/2024] [Indexed: 05/02/2024] Open
Abstract
Biological control of pests and pathogens has attracted much attention due to its green, safe and effective characteristics. However, it faces the dilemma of insignificant effects in large-scale applications. Therefore, an in-depth exploration of the metabolic potential of biocontrol fungi based on big omics data is crucial for a comprehensive and systematic understanding of the specific modes of action operated by various biocontrol fungi. This article analyzes the preferences for extracellular carbon and nitrogen source degradation, secondary metabolites (nonribosomal peptides, polyketide synthases) and their product characteristics and the conversion relationship between extracellular primary metabolism and intracellular secondary metabolism for eight different filamentous fungi with characteristics appropriate for the biological control of bacterial pathogens and phytopathogenic nematodes. Further clarification is provided that Paecilomyces lilacinus, encoding a large number of hydrolase enzymes capable of degrading pathogen protection barrier, can be directly applied in the field as a predatory biocontrol fungus, whereas Trichoderma, as an antibiosis-active biocontrol control fungus, can form dominant strains on preferred substrates and produce a large number of secondary metabolites to achieve antibacterial effects. By clarifying the levels of biological control achievable by different biocontrol fungi, we provide a theoretical foundation for their application to cropping habitats.
Collapse
Affiliation(s)
- Haolin Yang
- />State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
| | - Xiuyun Wu
- />State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
| | - Caiyun Sun
- />State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
| | - Lushan Wang
- />State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
| |
Collapse
|
11
|
Guzel M, Yucefaydali A, Yetiskin S, Deniz A, Yaşar Tel O, Akçelik M, Soyer Y. Genomic analysis of Salmonella bacteriophages revealed multiple endolysin ORFs and importance of ligand-binding site of receptor-binding protein. FEMS Microbiol Ecol 2024; 100:fiae079. [PMID: 38816206 PMCID: PMC11180984 DOI: 10.1093/femsec/fiae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024] Open
Abstract
Salmonella is a prevalent foodborne pathogen causing millions of global cases annually. Antimicrobial resistance is a growing public health concern, leading to search for alternatives like bacteriophages. A total of 97 bacteriophages, isolated from cattle farms (n = 48), poultry farms (n = 37), and wastewater (n = 5) samples in Türkiye, were subjected to host-range analysis using 36 Salmonella isolates with 18 different serotypes. The broadest host range belonged to an Infantis phage (MET P1-091), lysing 28 hosts. A total of 10 phages with the widest host range underwent further analysis, revealing seven unique genomes (32-243 kb), including a jumbophage (>200 kb). Except for one with lysogenic properties, none of them harbored virulence or antibiotic resistance genes, making them potential Salmonella reducers in different environments. Examining open reading frames (ORFs) of endolysin enzymes revealed surprising findings: five of seven unique genomes contained multiple endolysin ORFs. Despite sharing same endolysin sequences, phages exhibited significant differences in host range. Detailed analysis unveiled diverse receptor-binding protein sequences, with similar structures but distinct ligand-binding sites. These findings emphasize the importance of ligand-binding sites of receptor-binding proteins. Additionally, bacterial reduction curve and virulence index revealed that Enteritidis phages inhibit bacterial growth even at low concentrations, unlike Infantis and Kentucky phages.
Collapse
Affiliation(s)
- Mustafa Guzel
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Türkiye
- Department of Food Engineering, Hitit University, Corum 19030, Türkiye
| | - Aysenur Yucefaydali
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara 06800, Türkiye
| | - Segah Yetiskin
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara 06800, Türkiye
| | - Aysu Deniz
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara 06800, Türkiye
| | - Osman Yaşar Tel
- Faculty of Veterinary Medicine, Harran University, Şanlıurfa 63300, Türkiye
| | - Mustafa Akçelik
- Department of Biology, Ankara University, Ankara 06100, Türkiye
| | - Yeşim Soyer
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Türkiye
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara 06800, Türkiye
| |
Collapse
|
12
|
Lan X, Huang W, Sun B, Waiho K, Song H, Hu M, Khalid M, Wang Y. Combined effects of pentachlorophenol and nano-TiO 2 with different sizes on antioxidant, digestive, and immune responses of the swimming crab Portunus trituberculatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106900. [PMID: 38537436 DOI: 10.1016/j.aquatox.2024.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
Marine nano-titanium dioxide (nano-TiO2) and pentachlorophenol (PCP) pollution are escalating concerns in coastal areas. This study investigated the combined effects of continuous exposure to nano-TiO2 (25 nm, 100 nm) and PCP (0, 1, 10 μg/L) for 28 days on the antioxidant, digestive, and immune abilities of the swimming crab Portunus trituberculatus. Compared with the control group, the interaction between nano-TiO2 and PCP was significantly higher than exposure to a single stressor, with a pronounced decrease in amylase activity observed due to the reducing nano-TiO2 particle sizes. Resulting in increased MDA and SOD activity. The expression levels of Toll4, CSP3, and SER genes in crab hemolymph showed perturbations following exposure to nano-TiO2 and PCP. In summary, according to the results of CAT, GPX, PES and AMS enzyme activities, it was concluded that compared to the larger particle size (100 nm), the single stress of nano-TiO2 at a smaller particle size (25 nm) and co-stress with PCP have more significant impacts on P. trituberculatus. However, the potential physiological regulation mechanism of the interaction between these pollutants remains elusive and requires further study.
Collapse
Affiliation(s)
- Xukai Lan
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Bingyan Sun
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Khor Waiho
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Terengganu, Terengganu 20000, Malaysia
| | - Hanting Song
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mansoor Khalid
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| |
Collapse
|
13
|
Li XY, Si FL, Zhang XX, Zhang YJ, Chen B. Characteristics of Trypsin genes and their roles in insecticide resistance based on omics and functional analyses in the malaria vector Anopheles sinensis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105883. [PMID: 38685249 DOI: 10.1016/j.pestbp.2024.105883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024]
Abstract
Trypsin is one of the most diverse and widely studied protease hydrolases. However, the diversity and characteristics of the Trypsin superfamily of genes have not been well understood, and their role in insecticide resistance is yet to be investigated. In this study, a total of 342 Trypsin genes were identified and classified into seven families based on homology, characteristic domains and phylogenetics in Anopheles sinensis, and the LY-Domain and CLECT-Domain families are specific to the species. Four Trypsin genes, (Astry2b, Astry43a, Astry90, Astry113c) were identified to be associated with pyrethroid resistance based on transcriptome analyses of three field resistant populations and qRT-PCR validation, and the knock-down of these genes significantly decrease the pyrethroid resistance of Anopheles sinensis based on RNAi. The activity of Astry43a can be reduced by five selected insecticides (indoxacarb, DDT, temephos, imidacloprid and deltamethrin); and however, the Astry43a could not directly metabolize these five insecticides, like the trypsin NYD-Tr did in earlier reports. This study provides the overall information frame of Trypsin genes, and proposes the role of Trypsin genes to insecticide resistance. Further researches are necessary to investigate the metabolism function of these trypsins to insecticides.
Collapse
Affiliation(s)
- Xiang-Ying Li
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China
| | - Feng-Ling Si
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China
| | - Xiao-Xiao Zhang
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China
| | - Yu-Juan Zhang
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
14
|
Santos MPF, de Souza Junior EC, Villadóniga C, Vallés D, Castro-Sowinski S, Bonomo RCF, Veloso CM. Proteases: Importance, Immobilization Protocols, Potential of Activated Carbon as Support, and the Importance of Modifying Supports for Immobilization. BIOTECH 2024; 13:13. [PMID: 38804295 PMCID: PMC11130871 DOI: 10.3390/biotech13020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Although enzymes have been used for thousands of years, their application in industrial processes has gained importance since the 20th century due to technological and scientific advances in several areas, including biochemistry [...].
Collapse
Affiliation(s)
- Mateus Pereira Flores Santos
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos (PPGBBM), Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado, km 16, Ilhéus 45662-900, Bahia, Brazil;
| | - Evaldo Cardozo de Souza Junior
- Laboratório de Engenharia de Processos, Universidade Estadual do Sudoeste da Bahia (UESB), BR 415, km 04, s/n, Itapetinga 45700-000, Bahia, Brazil; (E.C.d.S.J.); (C.M.V.)
| | - Carolina Villadóniga
- Laboratório de Biocatalisadores e suas Aplicações, Instituto de Química Biológica, Faculdade de Ciências, Universidade da República, Iguá 4225, Montevideo 11400, Uruguay; (C.V.); (D.V.); (S.C.-S.)
| | - Diego Vallés
- Laboratório de Biocatalisadores e suas Aplicações, Instituto de Química Biológica, Faculdade de Ciências, Universidade da República, Iguá 4225, Montevideo 11400, Uruguay; (C.V.); (D.V.); (S.C.-S.)
| | - Susana Castro-Sowinski
- Laboratório de Biocatalisadores e suas Aplicações, Instituto de Química Biológica, Faculdade de Ciências, Universidade da República, Iguá 4225, Montevideo 11400, Uruguay; (C.V.); (D.V.); (S.C.-S.)
| | - Renata Cristina Ferreira Bonomo
- Laboratório de Engenharia de Processos, Universidade Estadual do Sudoeste da Bahia (UESB), BR 415, km 04, s/n, Itapetinga 45700-000, Bahia, Brazil; (E.C.d.S.J.); (C.M.V.)
| | - Cristiane Martins Veloso
- Laboratório de Engenharia de Processos, Universidade Estadual do Sudoeste da Bahia (UESB), BR 415, km 04, s/n, Itapetinga 45700-000, Bahia, Brazil; (E.C.d.S.J.); (C.M.V.)
| |
Collapse
|
15
|
Locci C, Chicconi E, Antonucci R. Current Uses of Bromelain in Children: A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:377. [PMID: 38539412 PMCID: PMC10969483 DOI: 10.3390/children11030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/14/2024]
Abstract
Bromelain is a complex natural mixture of sulfhydryl-containing proteolytic enzymes that can be extracted from the stem or fruit of the pineapple. This compound is considered a safe nutraceutical, has been used to treat various health problems, and is also popular as a health-promoting dietary supplement. There is continued interest in bromelain due to its remarkable therapeutic properties. The mechanism of action of bromelain appears to extend beyond its proteolytic activity as a digestive enzyme, encompassing a range of effects (mucolytic, anti-inflammatory, anticoagulant, and antiedematous effects). Little is known about the clinical use of bromelain in pediatrics, as most of the available data come from in vitro and animal studies, as well as a few RCTs in adults. This narrative review was aimed at highlighting the main aspects of the use of bromelain in children, which still appears to be limited compared to its potential. Relevant articles were identified through searches in MEDLINE, PubMed, and EMBASE. There is no conclusive evidence to support the use of bromelain in children, but the limited literature data suggest that its addition to standard therapy may be beneficial in treating conditions such as upper respiratory tract infections, specific dental conditions, and burns. Further studies, including RCTs in pediatric settings, are needed to better elucidate the mechanism of action and properties of bromelain in various therapeutic areas.
Collapse
Affiliation(s)
| | | | - Roberto Antonucci
- Pediatric Clinic, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (C.L.); (E.C.)
| |
Collapse
|
16
|
Lu H, Zhao Z, Yu H, Iqbal A, Jiang P. The serine protease 2 gene regulates lipid metabolism through the LEP/ampkα1/SREBP1 pathway in bovine mammary epithelial cells. Biochem Biophys Res Commun 2024; 698:149558. [PMID: 38271832 DOI: 10.1016/j.bbrc.2024.149558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024]
Abstract
Molecular breeding has brought about significant transformations in the milk market and production system during the twenty-first century. The primary economic characteristic of dairy production pertains to milk fat content. Our previous transcriptome analyses revealed that serine protease 2 (PRSS2) is a candidate gene that could impact milk fat synthesis in bovine mammary epithelial cells (BMECs) of Chinese Holstein dairy cows. To elucidate the function of the PRSS2 gene in milk fat synthesis, we constructed vectors for PRSS2 overexpression and interference and assessed intracellular triglycerides (TGs), cholesterol (CHOL), and nonesterified fatty acid (NEFA) contents in BMECs. Fatty acid varieties and components were also quantified using gas chromatography‒mass spectrometry (GC‒MS) technology. The regulatory pathway mediated by PRSS2 was validated through qPCR, ELISA, and WB techniques. Based on our research findings, PRSS2 emerges as a pivotal gene that regulates the expression of associated genes, thereby making a substantial contribution to lipid metabolism via the leptin (LEP)/Adenylate-activated protein kinase, alpha 1 catalytic subunit (AMPKα1)/sterol regulatory element binding protein 1(SREBP1) pathway by inhibiting TGs and CHOL accumulation while potentially promoting NEFA synthesis in BMECs. Furthermore, the PRSS2 gene enhances intracellular medium- and long-chain fatty acid metabolism by modulating genes related to the LEP/AMPKα1/SREBP1 pathway, leading to increased contents of unsaturated fatty acids C17:1N7 and C22:4N6. This study provides a robust theoretical framework for further investigation into the underlying molecular mechanisms through which PRSS2 influences lipid metabolism in dairy cows.
Collapse
Affiliation(s)
- Huixian Lu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang, China
| | - Zhihui Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang, China
| | - Haibin Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang, China
| | - Ambreen Iqbal
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang, China
| | - Ping Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
17
|
Talab F, Alam A, Zainab, Ullah S, Elhenawy AA, Shah SAA, Ali M, Halim SA, Khan A, Latif A, Al-Harrasi A, Ahmad M. Novel hydrazone schiff's base derivatives of polyhydroquinoline: synthesis, in vitro prolyl oligopeptidase inhibitory activity and their Molecular docking study. J Biomol Struct Dyn 2024:1-15. [PMID: 38385366 DOI: 10.1080/07391102.2024.2319677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
This research work reports the synthesis of new derivatives of the hydrazone Schiff bases (1-17) based on polyhydroquinoline nucleus through multistep reactions. HR-ESIMS,1H- and 13C-NMR spectroscopy were used to structurally infer all of the synthesized compounds and lastly evaluated for prolyl oligopeptidase inhibitory activity. All the prepared products displayed good to excellent inhibitory activity when compared with standard z-prolyl-prolinal. Three derivatives 3, 15 and 14 showed excellent inhibition with IC50 values 3.21 ± 0.15 to 5.67 ± 0.18 µM, while the remaining 12 compounds showed significant activity. Docking studies indicated a good correlation with the biochemical potency of compounds estimated in the in-vitro test and showed the potency of compounds 3, 15 and 14. The MD simulation results confirmed the stability of the most potent inhibitors 3, 15 and 14 at 250 ns using the parameters RMSD, RMSF, Rg and number of hydrogen bonds. The RMSD values indicate the stability of the protein backbone in complex with the inhibitors over the simulation time. The RMSF values of the binding site residues indicate that the potent inhibitors contributed to stabilizing these regions of the protein, through formed stable interactions with the protein. The Rg. analysis assesses the overall size and compactness of the complexes. The maintenance of stable hydrogen bonds suggests the existence of favorable binding interactions. SASA analysis suggests that they maintained stable conformations without large-scale exposure to the solvent. These results indicate that the ligand-protein interactions are stable and could be exploited to design new drugs for disease treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Faiz Talab
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Aftab Alam
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Zainab
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, China
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed A Elhenawy
- Chemistry Department, Faculty of Science and Art, Al Baha University, Al Bahah, Saudi Arabia
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam, Selangor D. E, Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam, Selangor D. E, Malaysia
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Abdul Latif
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Manzoor Ahmad
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
18
|
Gallego-Parrilla JJ, Severi E, Chandra G, Palmer T. Identification of novel tail-anchored membrane proteins integrated by the bacterial twin-arginine translocase. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001431. [PMID: 38363712 PMCID: PMC10924467 DOI: 10.1099/mic.0.001431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
The twin-arginine protein transport (Tat) system exports folded proteins across the cytoplasmic membranes of prokaryotes and the energy transducing-membranes of plant thylakoids and mitochondria. Proteins are targeted to the Tat machinery by N-terminal signal peptides with a conserved twin-arginine motif, and some substrates are exported as heterodimers where the signal peptide is present on one of the partner proteins. A subset of Tat substrates is found in the membrane. Tat-dependent membrane proteins usually have large globular domains and a single transmembrane helix present at the N- or C-terminus. Five Tat substrates that have C-terminal transmembrane helices have previously been characterized in the model bacterium Escherichia coli. Each of these is an iron-sulfur cluster-containing protein involved in electron transfer from hydrogen or formate. Here we have undertaken a bioinformatic search to identify further tail-anchored Tat substrates encoded in bacterial genomes. Our analysis has revealed additional tail-anchored iron-sulfur proteins associated in modules with either a b-type cytochrome or a quinol oxidase. We also identified further candidate tail-anchored Tat substrates, particularly among members of the actinobacterial phylum, that are not predicted to contain cofactors. Using reporter assays, we show experimentally that six of these have both N-terminal Tat signal peptides and C-terminal transmembrane helices. The newly identified proteins include a carboxypeptidase and a predicted protease, and four sortase substrates for which membrane integration is a prerequisite for covalent attachment to the cell wall.
Collapse
Affiliation(s)
- José Jesús Gallego-Parrilla
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Emmanuele Severi
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Govind Chandra
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
19
|
Jesus EGD, Souza FFD, Andrade JV, Andrade E Silva ML, Cunha WR, Ramos RC, Campos OS, Santos JAN, Santos MFC. In silico and in vitro elastase inhibition assessment assays of rosmarinic acid natural product from Rosmarinus officinalis Linn. Nat Prod Res 2024; 38:879-884. [PMID: 37004998 DOI: 10.1080/14786419.2023.2196077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/19/2023] [Indexed: 04/04/2023]
Abstract
The use of various herbs and their compounds has been a strategy widely used in the fight against various human diseases. For example, rosmarinic acid, a bioactive phenolic compound commonly found in Rosemary plants (Rosmarinus officinalis Labiatae), has multiple therapeutic benefits in different diseases, such as cancer. Therefore, the study aimed to evaluate in silico and in vitro the inhibition potential of the enzyme Elastase from the porcine pancreas by rosmarinic acid isolated from the plant species R. officinalis Linn. Through Molecular Docking, the mechanism of action was investigated. In addition, rosmarinic acid presented a range of 5-60 µg/mL and significantly inhibited Elastase. At 60 µg/mL, there was an inhibition of 55% on the enzymatic activity. The results demonstrate the inhibition of Elastase by rosmarinic acid, which can lead to the development of new enzyme inhibitors that can be an inspiration for developing various drugs, including anticancer drugs.
Collapse
Affiliation(s)
- Ester Gonçalves de Jesus
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Brazil
| | - Fernanda Fernandes de Souza
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Brazil
| | - João Victor Andrade
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Brazil
| | | | - Wilson R Cunha
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Rafael Corrêa Ramos
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Othon Souto Campos
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Brazil
| | - Jorge Alexandre Nogueira Santos
- Departamento de Bioquímica, Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais, Minas Gerais, Brazil
| | - Mario F C Santos
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Brazil
| |
Collapse
|
20
|
Singh R, Gautam P, Sharma C, Osmolovskiy A. Fibrin and Fibrinolytic Enzyme Cascade in Thrombosis: Unravelling the Role. Life (Basel) 2023; 13:2196. [PMID: 38004336 PMCID: PMC10672518 DOI: 10.3390/life13112196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Blood clot formation in blood vessels (thrombosis) is a major cause of life-threatening cardiovascular diseases. These clots are formed by αA-, βB-, and ϒ-peptide chains of fibrinogen joined together by isopeptide bonds with the help of blood coagulation factor XIIIa. These clot structures are altered by various factors such as thrombin, platelets, transglutaminase, DNA, histones, and red blood cells. Various factors are used to dissolve the blood clot, such as anticoagulant agents, antiplatelets drugs, fibrinolytic enzymes, and surgical operations. Fibrinolytic enzymes are produced by microorganisms (bacteria, fungi, etc.): streptokinase of Streptococcus hemolyticus, nattokinase of Bacillus subtilis YF 38, bafibrinase of Bacillus sp. AS-S20-I, longolytin of Arthrobotrys longa, versiase of Aspergillus versicolor ZLH-1, etc. They act as a thrombolytic agent by either enhancing the production of plasminogen activators (tissue or urokinase types), which convert inactive plasminogen to active plasmin, or acting as plasmin-like proteins themselves, forming fibrin degradation products which cause normal blood flow again in blood vessels. Fibrinolytic enzymes may be classified in two groups, as serine proteases and metalloproteases, based on their catalytic properties, consisting of a catalytic triad responsible for their fibrinolytic activity having different physiochemical properties (such as molecular weight, pH, and temperature). The analysis of fibrinolysis helps to detect hyperfibrinolysis (menorrhagia, renal failure, etc.) and hypofibrinolysis (diabetes, obesity, etc.) with the help of various fibrinolytic assays such as a fibrin plate assay, fibrin microplate assay, the viscoelastic method, etc. These fibrinolytic activities serve as a key aspect in the recognition of numerous cardiovascular diseases and can be easily produced on a large scale with a short generation time by microbes and are less expensive.
Collapse
Affiliation(s)
- Rajni Singh
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India; (P.G.); (C.S.)
| | - Prerna Gautam
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India; (P.G.); (C.S.)
| | - Chhavi Sharma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India; (P.G.); (C.S.)
| | | |
Collapse
|
21
|
Cavalcanti DMLP, Teófilo TS, D Rodrigues T, Barbosa TNS, Fontenele-Neto JD. Thimet oligopeptidase (THOP 1) distribution in cane toad (Bufo Marinus, Linnaeus, 1758) brain. J Chem Neuroanat 2023; 133:102345. [PMID: 37778734 DOI: 10.1016/j.jchemneu.2023.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
Thimet oligopeptides (THOP 1) is a metal-dependent peptidase involved in the metabolism of neuropeptides and the presentation of peptides via MHC-1. It has been shown to play a role in the regulation of protein-protein interactions and the metabolism of intracellular peptides. THOP 1 is associated with important biological processes such as metabolism and neurodegenerative diseases, among others. The objective of this study is to elucidate the distribution of THOP 1 in the Bufo marinus brain. The analysis of THOP 1 amino acid sequences indicates that they have been conserved throughout evolution, with significant homology observed across various phyla. When comparing amphibians with other species, more than 70% identity can be identified. Immunohistochemistry analysis of the toad's brain has demonstrated that the enzyme has a ubiquitous distribution, consistent with previous findings in mammals. THOP 1 can be found in important areas of the brain, such as bulb, thalamic nuclei, striatum, hypothalamus, and among others. Nonetheless, THOP 1 is consistently localized within the nucleus, a pattern also observed in the rat brain. Therefore, based on these results, the toad appears to be an excellent model for studying the general biology of THOP 1, given the substantial homology of this enzyme with mammals and its similarity in distribution within the brain.
Collapse
Affiliation(s)
- Diogo M L P Cavalcanti
- Laboratory of Tissue and Development Biology, Medicine College, Department of Health Science, Center for Biological and Health Sciences, Universidade Federal Rural do Semiárido - UFERSA, Brazil.
| | - Tiago S Teófilo
- Laboratory of Tissue and Development Biology, Medicine College, Department of Health Science, Center for Biological and Health Sciences, Universidade Federal Rural do Semiárido - UFERSA, Brazil
| | - Tayline D Rodrigues
- Master's Degree Students, Multicentric Graduate Program in the area of Biochemistry and Molecular Biology (PMBqBM), Universidade do Estado do Rio Grande do Norte - UERN, Brazil
| | - Tayssa N S Barbosa
- Master's Degree Students, Multicentric Graduate Program in the area of Biochemistry and Molecular Biology (PMBqBM), Universidade do Estado do Rio Grande do Norte - UERN, Brazil
| | - José D Fontenele-Neto
- Laboratory of Tissue and Development Biology, Veterinary Medicine College, Department of Animal Science, Center for Biological and Health Sciences, Universidade Federal Rural do Semiárido - UFERSA, Brazil
| |
Collapse
|
22
|
Kikuchi F, Ikeda Z, Kakegawa K, Nishikawa Y, Sasaki S, Fukuda K, Takami K, Banno Y, Nishikawa H, Taya N, Nakahata T, Itono S, Yashiro H, Tsuchimori K, Hiyoshi H, Sasaki M, Tohyama K, Matsumiya K, Ishihara Y, Kawamoto T, Kamaura M, Watanabe M, Kitazaki T, Maekawa T, Sasaki M. Discovery of a novel series of medium-sized cyclic enteropeptidase inhibitors. Bioorg Med Chem 2023; 93:117462. [PMID: 37683572 DOI: 10.1016/j.bmc.2023.117462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Enteropeptidase is located in the duodenum that involved in intestinal protein digestion. We have reported enteropeptidase inhibitors with low systemic exposure. The aim of this study was to discover novel enteropeptidase inhibitors showing more potent in vivo efficacy while retaining low systemic exposure. Inhibitory mechanism-based drug design led us to cyclize ester 2 to medium-sized lactones, showing potent enteropeptidase inhibitory activity and improving the ester stability, thus increasing fecal protein output in vivo. Optimization on the linker between two benzene rings resulted in discovery of ether lactone 6b, exhibiting further enhanced enteropeptidase inhibitory activity and long duration of inhibitory state. Oral administration of 6b in mice significantly elevated fecal protein output compared with the lead 2. In addition, 6b showed low systemic exposure along with low intestinal absorption. Furthermore, we identified the 10-membered lactonization method for scale-up synthesis of 6b, which does not require high-dilution conditions.
Collapse
Affiliation(s)
- Fumiaki Kikuchi
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Zenichi Ikeda
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Keiko Kakegawa
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Youichi Nishikawa
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shigekazu Sasaki
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Koichiro Fukuda
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazuaki Takami
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshihiro Banno
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hitoaki Nishikawa
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Naohiro Taya
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takashi Nakahata
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Sachiko Itono
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroaki Yashiro
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazue Tsuchimori
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hideyuki Hiyoshi
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masako Sasaki
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kimio Tohyama
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kouta Matsumiya
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Youko Ishihara
- Pharmaceutical Sciences, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tetsuji Kawamoto
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masahiro Kamaura
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masanori Watanabe
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomoyuki Kitazaki
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tsuyoshi Maekawa
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Minoru Sasaki
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
23
|
Nwankwo C, Hou J, Cui HL. Extracellular proteases from halophiles: diversity and application challenges. Appl Microbiol Biotechnol 2023; 107:5923-5934. [PMID: 37566160 DOI: 10.1007/s00253-023-12721-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Halophilic extracellular proteases offer promising application in various fields. Information on these prominent proteins including the synthesizing organisms, biochemical properties, domain organisation, purification, and application challenges has never been covered in recent reviews. Although extracellular proteases from bacteria pioneered the study of proteases in halophiles, progress is being made in proteases from halophilic archaea. Recent advances in extracellular proteases from archaea revealed that archaeal proteases are more robust and applicable. Extracellular proteases are composed of domains that determine their mechanisms of action. The intriguing domain structure of halophilic extracellular proteases consists of N-terminal domain, catalytic domain, and C-terminal extension. The role of C-terminal domains varies among different organisms. A high diversity of C-terminal domains would endow the proteases with diverse functions. With the development of genomics, culture-independent methods involving heterologous expression, affinity chromatography, and in vitro refolding are deployed with few challenges on purification and presenting novel research opportunities. Halophilic extracellular proteases have demonstrated remarkable potentials in industries such as detergent, leather, peptide synthesis, and biodegradation, with desirable properties and ability to withstand harsh industrial processes. KEY POINTS: • Halophilic extracellular proteases have robust properties suitable for applications. • A high diversity of C-terminal domains may endow proteases with diverse properties. • Novel protease extraction methods present novel application opportunities.
Collapse
Affiliation(s)
- Chidiebele Nwankwo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, Jiangsu, People's Republic of China
- Natural Sciences Unit, School of General Studies, University of Nigeria, Nsukka, 410002, Enugu State, Nigeria
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410002, Enugu State, Nigeria
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
24
|
Sarkar D, Majumder S, Giri K, Sabnam N. In silico characterization, molecular docking, and dynamic simulation of a novel fungal cell-death suppressing effector, MoRlpA as potential cathepsin B-like cysteine protease inhibitor during rice blast infection. J Biomol Struct Dyn 2023; 41:9039-9056. [PMID: 36345772 DOI: 10.1080/07391102.2022.2139763] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022]
Abstract
The blast fungus Magnaporthe oryzae is one of the most notorious pathogens affecting rice production worldwide. The cereal killer employs a special class of small secreted proteins called effectors to manipulate and perturb the host metabolism. In turn, the host plants trigger effector-triggered immunity (ETI) via localized cell death and hypersensitive response (HR). We have identified and characterized a novel secreted effector MoRlpA from M. oryzae by extensive in silico methods. The localization studies suggested that it is exclusively secreted in the host apoplasts. Interestingly, MoRlpA interacts with a protease, cathepsin B from rice with highest affinity. The 3D structural models of both the proteins were generated. Cathepsin B-like cysteine proteases are usually involved in programmed cell death (PCD) and autophagy in plants which lead to generation of HR upon infection. Our results suggest that MoRlpA interacts with rice cathepsin B-like cysteine protease and demolish the host counter-attack by suppressing cell death and HR during an active blast infection. This was further validated by molecular docking and molecular dynamic simulation analyses. The important residues involved in the rice-blast pathogen interactions were deciphered. Overall, this research highlights stable interactions between MoRlpA-OsCathB during rice blast pathogenesis and providing an insight into how this novel RlpA protease inhibitor-cum-effector modulates the host's apoplast to invade the host tissues and establish a successful infection. Thus, this research will help to develop potential fungicide to block the binding region of MoRlpA target so that the cryptic pathogen would be recognized by the host. HIGHLIGHTSFor the first time, a novel secreted effector protein, MoRlpA has been identified and characterised from M. oryzae in silicoMoRlpA contains a rare lipoprotein A-like DPBB domain which is often an enzymatic domain in other systemsMoRlpA as an apoplastic effector interacts with the rice protease OsCathB to suppress the cell death and hypersensitive response during rice blast infectionThe three-dimensional structures of both the MoRlpA and OsCathB proteins were predictedMoRlpA-OsCathB interactions were analysed by molecular docking and molecular dynamic simulation studiesCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debrup Sarkar
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | - Kalyan Giri
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Nazmiara Sabnam
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
25
|
Roberts CG, Franklin TG, Pruneda JN. Ubiquitin-targeted bacterial effectors: rule breakers of the ubiquitin system. EMBO J 2023; 42:e114318. [PMID: 37555693 PMCID: PMC10505922 DOI: 10.15252/embj.2023114318] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Regulation through post-translational ubiquitin signaling underlies a large portion of eukaryotic biology. This has not gone unnoticed by invading pathogens, many of which have evolved mechanisms to manipulate or subvert the host ubiquitin system. Bacteria are particularly adept at this and rely heavily upon ubiquitin-targeted virulence factors for invasion and replication. Despite lacking a conventional ubiquitin system of their own, many bacterial ubiquitin regulators loosely follow the structural and mechanistic rules established by eukaryotic ubiquitin machinery. Others completely break these rules and have evolved novel structural folds, exhibit distinct mechanisms of regulation, or catalyze foreign ubiquitin modifications. Studying these interactions can not only reveal important aspects of bacterial pathogenesis but also shed light on unexplored areas of ubiquitin signaling and regulation. In this review, we discuss the methods by which bacteria manipulate host ubiquitin and highlight aspects that follow or break the rules of ubiquitination.
Collapse
Affiliation(s)
- Cameron G Roberts
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Tyler G Franklin
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
26
|
Maurer J, Grouzmann E, Eugster PJ. Tutorial review for peptide assays: An ounce of pre-analytics is worth a pound of cure. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123904. [PMID: 37832388 DOI: 10.1016/j.jchromb.2023.123904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
The recent increase in peptidomimetic-based medications and the growing interest in peptide hormones has brought new attention to the quantification of peptides for diagnostic purposes. Indeed, the circulating concentrations of peptide hormones in the blood provide a snapshot of the state of the body and could eventually lead to detecting a particular health condition. Although extremely useful, the quantification of such molecules, preferably by liquid chromatography coupled to mass spectrometry, might be quite tricky. First, peptides are subjected to hydrolysis, oxidation, and other post-translational modifications, and, most importantly, they are substrates of specific and nonspecific proteases in biological matrixes. All these events might continue after sampling, changing the peptide hormone concentrations. Second, because they include positively and negatively charged groups and hydrophilic and hydrophobic residues, they interact with their environment; these interactions might lead to a local change in the measured concentrations. A phenomenon such as nonspecific adsorption to lab glassware or materials has often a tremendous effect on the concentration and needs to be controlled with particular care. Finally, the circulating levels of peptides might be low (pico- or femtomolar range), increasing the impact of the aforementioned effects and inducing the need for highly sensitive instruments and well-optimized methods. Thus, despite the extreme diversity of these peptides and their matrixes, there is a common challenge for all the assays: the need to keep concentrations unchanged from sampling to analysis. While significant efforts are often placed on optimizing the analysis, few studies consider in depth the impact of pre-analytical steps on the results. By working through practical examples, this solution-oriented tutorial review addresses typical pre-analytical challenges encountered during the development of a peptide assay from the standpoint of a clinical laboratory. We provide tips and tricks to avoid pitfalls as well as strategies to guide all new developments. Our ultimate goal is to increase pre-analytical awareness to ensure that newly developed peptide assays produce robust and accurate results.
Collapse
Affiliation(s)
- Jonathan Maurer
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eric Grouzmann
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe J Eugster
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
27
|
Pascual Alonso I, Almeida García F, Valdés Tresanco ME, Arrebola Sánchez Y, Ojeda Del Sol D, Sánchez Ramírez B, Florent I, Schmitt M, Avilés FX. Marine Invertebrates: A Promissory Still Unexplored Source of Inhibitors of Biomedically Relevant Metallo Aminopeptidases Belonging to the M1 and M17 Families. Mar Drugs 2023; 21:md21050279. [PMID: 37233473 DOI: 10.3390/md21050279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Proteolytic enzymes, also known as peptidases, are critical in all living organisms. Peptidases control the cleavage, activation, turnover, and synthesis of proteins and regulate many biochemical and physiological processes. They are also involved in several pathophysiological processes. Among peptidases, aminopeptidases catalyze the cleavage of the N-terminal amino acids of proteins or peptide substrates. They are distributed in many phyla and play critical roles in physiology and pathophysiology. Many of them are metallopeptidases belonging to the M1 and M17 families, among others. Some, such as M1 aminopeptidases N and A, thyrotropin-releasing hormone-degrading ectoenzyme, and M17 leucyl aminopeptidase, are targets for the development of therapeutic agents for human diseases, including cancer, hypertension, central nervous system disorders, inflammation, immune system disorders, skin pathologies, and infectious diseases, such as malaria. The relevance of aminopeptidases has driven the search and identification of potent and selective inhibitors as major tools to control proteolysis with an impact in biochemistry, biotechnology, and biomedicine. The present contribution focuses on marine invertebrate biodiversity as an important and promising source of inhibitors of metalloaminopeptidases from M1 and M17 families, with foreseen biomedical applications in human diseases. The results reviewed in the present contribution support and encourage further studies with inhibitors isolated from marine invertebrates in different biomedical models associated with the activity of these families of exopeptidases.
Collapse
Affiliation(s)
- Isel Pascual Alonso
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Fabiola Almeida García
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Mario Ernesto Valdés Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Daniel Ojeda Del Sol
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | | | - Isabelle Florent
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245), Muséum National d'Histoire Naturelle, CNRS, CP52, 57 Rue Cuvier, 75005 Paris, France
| | - Marjorie Schmitt
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA UMR 7042, 68000 Mulhouse, France
| | - Francesc Xavier Avilés
- Institute for Biotechnology and Biomedicine and Department of Biochemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
28
|
Bera I, O'Sullivan M, Flynn D, Shields DC. Relationship between Protein Digestibility and the Proteolysis of Legume Proteins during Seed Germination. Molecules 2023; 28:molecules28073204. [PMID: 37049968 PMCID: PMC10096060 DOI: 10.3390/molecules28073204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 04/14/2023] Open
Abstract
Legume seed protein is an important source of nutrition, but generally it is less digestible than animal protein. Poor protein digestibility in legume seeds and seedlings may partly reflect defenses against herbivores. Protein changes during germination typically increase proteolysis and digestibility, by lowering the levels of anti-nutrient protease inhibitors, activating proteases, and breaking down storage proteins (including allergens). Germinating legume sprouts also show striking increases in free amino acids (especially asparagine), but their roles in host defense or other processes are not known. While the net effect of germination is generally to increase the digestibility of legume seed proteins, the extent of improvement in digestibility is species- and strain-dependent. Further research is needed to highlight which changes contribute most to improved digestibility of sprouted seeds. Such knowledge could guide the selection of varieties that are more digestible and also guide the development of food preparations that are more digestible, potentially combining germination with other factors altering digestibility, such as heating and fermentation. Techniques to characterize the shifts in protein make-up, activity and degradation during germination need to draw on traditional analytical approaches, complemented by proteomic and peptidomic analysis of mass spectrometry-identified peptide breakdown products.
Collapse
Affiliation(s)
- Indrani Bera
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Michael O'Sullivan
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Darragh Flynn
- Flynn & Flynn Global Trade Ltd., T/A The Happy Pear, A67 EC56 Wicklow, Ireland
| | - Denis C Shields
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
29
|
Naeemi SM, Aminzadeh S, Sari S, Nemati F, Naseroleslami M. In vitro and in silico characterization of a novel glutamate carboxypeptidase from Cohnella sp. A01. Biochimie 2023; 207:83-95. [PMID: 36493965 DOI: 10.1016/j.biochi.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/25/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Glutamate carboxypeptidase is a bacterial enzyme of metallopeptidase superfamily. This enzyme is an exo-peptidase that catalyzes the hydrolysis of glutamate residues at the C-terminus of folic acid. The rCP302 is a novel zinc ion-dependent recombinant glutamate carboxypeptidase derived from a thermophilic bacterium, Cohnella sp. A01 (PTCC No: 1921). By simulating the structure of rCP302, analyzing its activity in various environmental settings, and contrasting it with that of related enzymes, we wanted to evaluate the heterologous production, purification, and characterization of this enzyme. The bioinformatics study showed that rCP302 had maximum similarity to M20 family of metallopeptidases. The purified rCP302 molecular weight was about 41.6 kDa. The optimum temperature and pH for the catalytic activity of rCP302 were 50 °C and 7.2, respectively. Fluorescence spectroscopy data elucidated the secondary structure of rCP302 and determined conformational changes caused by alterations in ambient conditions. Using folate as a substrate, Km and specific activity values were calculated as 0.108 μM and 687 μmol/min/mg, respectively. The enzyme activity was strongly inhibited when EDTA sequestered zinc ions. The half-life of this enzyme at 30 °C was 2012 min. Regarding the ability of rCP302 to degrade folic acid, and its long half-life at 37 °C, the normal temperature of many mammals, this enzyme can be introduced for further study for use in the pharmaceutical industry.
Collapse
Affiliation(s)
- Seyed Mahdi Naeemi
- Department of Molecular and Cellular Sciences, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Soyar Sari
- Department of Molecular and Cellular Sciences, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fahimeh Nemati
- Department of Biotechnoligy, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Naseroleslami
- Department of Molecular and Cellular Sciences, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
30
|
Pawar KS, Singh PN, Singh SK. Fungal alkaline proteases and their potential applications in different industries. Front Microbiol 2023; 14:1138401. [PMID: 37065163 PMCID: PMC10098022 DOI: 10.3389/fmicb.2023.1138401] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
The consumption of various enzymes in industrial applications around the world has increased immensely. Nowadays, industries are more focused on incorporating microbial enzymes in multiple processes to avoid the hazardous effects of chemicals. Among these commercially exploited enzymes, proteases are the most abundantly used enzymes in different industries. Numerous bacterial alkaline proteases have been studied widely and are commercially available; however, fungi exhibit a broader variety of proteases than bacteria. Additionally, since fungi are often recognized as generally regarded as safe (GRAS), using them as enzyme producers is safer than using bacteria. Fungal alkaline proteases are appealing models for industrial use because of their distinct spectrum of action and enormous diversity in terms of being active under alkaline range of pH. Unlike bacteria, fungi are less studied for alkaline protease production. Moreover, group of fungi growing at alkaline pH has remained unexplored for their capability for the production of commercially valuable products that are stable at alkaline pH. The current review focuses on the detailed classification of proteases, the production of alkaline proteases from different fungi by fermentation (submerged and solid–state), and their potential applications in detergent, leather, food, pharmaceutical industries along with their important role in silk degumming, waste management and silver recovery processes. Furthermore, the promising role of alkali–tolerant and alkaliphilic fungi in enzyme production has been discussed briefly. This will highlight the need for more research on fungi growing at alkaline pH and their biotechnological potential.
Collapse
|
31
|
Yang L, Xu X, Wei W, Chen X, Peng C, Wang X, Xu J. Identification and gene expression analysis of serine proteases and their homologs in the Asian corn borer Ostrinia furnacalis. Sci Rep 2023; 13:4766. [PMID: 36959303 PMCID: PMC10036332 DOI: 10.1038/s41598-023-31830-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 03/17/2023] [Indexed: 03/25/2023] Open
Abstract
Serine proteases (SPs) and their homologs (SPHs) are among the best-characterized gene families. They are involved in several physiological processes, including digestion, embryonic development and immunity. In the current study, a total of 177 SPs-related genes were characterized in the genome of Ostrinia furnacalis. The activation site of SPs/SPHs and enzyme specificity of SPs were identified, and the findings showed that most of the SPs analyzed possessed trypsin substrate specificity. Several SPs/SPHs with similar simple gene structures had tandem repeat-like distributions on the scaffold, indicated that gene expansion has occurred in this large family. Furthermore, we constructed 30 RNA sequencing libraries including four with developmental stage and four middle larval stage tissues to study the transcript levels of these genes. Differentially upregulated and downregulated genes were obtained via data analysis. More than one-quarter of the genes were specifically identified as highly expressed in the midgut in compared to the other three tissues evaluated. In the current study, the domain structure, gene location and phylogenetic relationship of genes in O. furnacalis were explored. Orthologous comparisons of SPs/SPHs between model insects and O. furnacalis indicated their possible functions. This information provides a basis for understanding the functional roles of this large family.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoli Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoyun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cheng Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
32
|
Zhang X, Qiu D, Chen J, Zhang Y, Wang J, Chen D, Liu Y, Cheng M, Monchaud D, Mergny JL, Ju H, Zhou J. Chimeric Biocatalyst Combining Peptidic and Nucleic Acid Components Overcomes the Performance and Limitations of the Native Horseradish Peroxidase. J Am Chem Soc 2023; 145:4517-4526. [PMID: 36795970 DOI: 10.1021/jacs.2c11318] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Chimeric peptide-DNAzyme (CPDzyme) is a novel artificial peroxidase that relies on the covalent assembly of DNA, peptides, and an enzyme cofactor in a single scaffold. An accurate control of the assembly of these different partners allows for the design of the CPDzyme prototype G4-Hemin-KHRRH, found to be >2000-fold more active (in terms of conversion number kcat) than the corresponding but non-covalent G4/Hemin complex and, more importantly, >1.5-fold more active than the corresponding native peroxidase (horseradish peroxidase) when considering a single catalytic center. This unique performance originates in a series of gradual improvements, thanks to an accurate selection and arrangement of the different components of the CPDzyme, in order to benefit from synergistic interactions between them. The optimized prototype G4-Hemin-KHRRH is efficient and robust as it can be used under a wide range of non-physiologically relevant conditions [organic solvents, high temperature (95 °C), and in a wide range of pH (from 2 to 10)], thus compensating for the shortcomings of the natural enzymes. Our approach thus opens broad prospects for the design of ever more efficient artificial enzymes.
Collapse
Affiliation(s)
- Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiawei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.,Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Desheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuan Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, UBFC, 21078 Dijon, France
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.,Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
33
|
Oda K, Wlodawer A. Overview of the Properties of Glutamic Peptidases That Are Present in Plant and Bacterial Pathogens and Play a Role in Celiac Disease and Cancer. Biochemistry 2023; 62:672-694. [PMID: 36705990 DOI: 10.1021/acs.biochem.2c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Seven peptidase (proteinase) families─aspartic, cysteine, metallo, serine, glutamic, threonine, and asparagine─are in the peptidase database MEROPS, version 12.4 (https://www.ebi.ac.uk/merops/). The glutamic peptidase family is assigned two clans, GA and GB, and comprises six subfamilies. This perspective summarizes the unique features of their representatives. (1) G1, scytalidoglutamic peptidase, has a β-sandwich structure containing catalytic residues glutamic acid (E) and glutamine (Q), thus the name eqolisin. Most family members are pepstatin-insensitive and act as plant pathogens. (2) G2, preneck appendage protein, originates in phages, is a transmembrane protein, and its catalytic residues consist of glutamic and aspartic acids. (3) G3, strawberry mottle virus glutamic peptidase, originates in viruses and has a β-sandwich structure with catalytic residues E and Q. Neprosin has propyl endopeptidase activity, is associated with celiac disease, has a β-sandwich structure, and contains catalytic residues E-E and Q-tryptophan. (4) G4, Tiki peptidase, of the erythromycin esterase family, is a transmembrane protein, and its catalytic residues are E-histidine pairs. (5) G5, RCE1 peptidase, is associated with cancer, is a transmembrane protein, and its catalytic residues are E-histidine and asparagine-histidine. Microcystinase, a bacterial toxin, is a transmembrane protein with catalytic residues E-histidine and asparagine-histidine. (6) G6, Ras/Rap1-specific peptidase, is a bacterial pathogen, a transmembrane protein, and its catalytic residues are E-histidine pairs. This family's common features are that their catalytic residues consist of a glutamic acid and another (variable) amino acid and that they exhibit a diversity of biological functions─plant and bacterial pathogens and involvement in celiac disease and cancer─that suggests they are viable drug targets.
Collapse
Affiliation(s)
- Kohei Oda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-Ku, Kyoto 606-8585, Japan
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
34
|
Macaulay AD, Ortman CS, Moore KRJ, Baltz JM. Initial detachment of the mouse oocyte from the zona pellucida is mediated by metallopeptidase activity†. Biol Reprod 2023; 108:81-97. [PMID: 36179245 PMCID: PMC9843679 DOI: 10.1093/biolre/ioac185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 01/21/2023] Open
Abstract
The fully grown mammalian oocyte is tightly attached to its extracellular matrix shell, the zona pellucida (ZP), but the oocyte detaches from the ZP shortly after ovulation is signaled. The mechanism by which the oocyte detaches from the ZP is unknown. Because ZP proteins are initially secreted as transmembrane proteins, we hypothesized that attachment of the oocyte to the ZP is mediated by transmembrane ZP proteins and that detachment occurs when these proteins are cleaved by peptidases. To identify potential candidates for the type of peptidase, we used mouse oocyte transcriptome data sets to identify candidate peptidases localized to the exterior of the oocyte. Screening with a set of small molecule inhibitors that broadly target the families of peptidases represented by the candidates, we found that only inhibitors of the M10 and M12 families of metallopeptidases prevented detachment. Using more selective inhibitors indicated that detachment was prevented by an inhibitor, GI254023X, developed to be selective for ADAM10 in the M12 family but not by those considered selective for the M10 family or for other M12 metallopeptidases expressed in oocytes. Using an antibody that binds to an epitope just distal to the likely cleavage site of murine ZP3 showed that this site was gradually lost from the oocyte surface during the period when detachment occurs and that inhibiting metallopeptidase activity prevented the loss of this epitope. Taken together, these results indicate that detachment of the oocyte from the ZP is mediated by a metallopeptidase.
Collapse
Affiliation(s)
| | - Chyna S Ortman
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
| | | | - Jay M Baltz
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
- Department of Obstetrics and Gynecology, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
| |
Collapse
|
35
|
Xie YC, Zhang HH, Li HJ, Zhang XY, Luo XM, Jiang MX, Zhang CX. Molting-related proteases in the brown planthopper, Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103893. [PMID: 36513274 DOI: 10.1016/j.ibmb.2022.103893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Digestion and absorption of old cuticles during insect molting are necessary for new cuticle formation, during which complicated enzyme catalysis is essential. To date, a few carboxypeptidases, aminopeptidases and serine proteases (mostly trypsins) connected with cuticle digestion, zymogen activation and histological differentiation during the ecdysis of lepidopteran, dipteran and hymenopteran insects have been identified. However, little is known about these proteins in hemimetabolous insects. In this study, we identified 33 candidate trypsin and trypsin-like homologs, 14 metallocarboxypeptidase and 32 aminopeptidase genes in the brown planthopper Nilaparvata lugens, a hemipteran rice pest. Among the proteins encoded by these genes, 9 trypsin-like proteases, 3 metallocarboxypeptidases and 1 aminopeptidase were selected as potential procuticle hydrolases by bioinformatics analysis and in vivo validation. RNA interference targeting these genes demonstrated that 3 trypsin-like proteases (NlTrypsin-8, NlTrypsin-29 and NlTrypsin-32) genes and 1 metallocarboxypeptidase (NlCpB) gene were found to be essential for ecdysis in N. lugens; specifically, gene silencing led to incomplete cuticle degradation and arrested ecdysis, causing lethal morphological phenotype acquisition. Spatiotemporal expression profiling by quantitative PCR and western blotting revealed their specific expression in the integument and their periodic expression during each stadium, with a peak before ecdysis and eclosion. Transmission electron microscopy demonstrated corresponding ultrastructural defects after RNAi targeting, with NlCpB-silenced specimens having the most undigested old procuticles. Immunohistochemical staining revealed that NlTrypsin-8, NlTrypsin-29 and NlCpB were predominantly located in the exuvial space. This research further adds to our understanding of proteases and its potential role in insect ecdysis.
Collapse
Affiliation(s)
- Yu-Cheng Xie
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Hou-Hong Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Han-Jing Li
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Ya Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Mei Luo
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Xing Jiang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
36
|
Sagona S, D’Onofrio C, Miragliotta V, Felicioli A. Detection and pH-Thermal Characterization of Proteinases Exclusive of Honeybee Worker-Fate Larvae ( Apis mellifera L.). Int J Mol Sci 2022; 23:ijms232415546. [PMID: 36555186 PMCID: PMC9779378 DOI: 10.3390/ijms232415546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The occurrence of the honeybee caste polyphenism arises when a change in diet is transduced into cellular metabolic responses, resulting in a developmental shift mediated by gene expression. The aim of this investigation was to detect and describe the expression profile of water-soluble proteases during the ontogenesis of honeybee worker-fate larvae. The extraction of insect homogenates was followed by the electrophoretic separation of the protein extract in polyacrylamide gels under semi-denaturing condition, precast with gelatin, pollen, or royal jelly protein extracts. The worker-fate honeybee larva showed a proteolytic pattern that varied with aging, and a protease with the highest activity at 72 h after hatching was named PS4. PS4 has a molecular weight of 45 kDa, it remained active until cell sealing, and its enzymatic properties suggest a serine-proteinase nature. To define the process that originates a queen-fate larvae, royal jelly and pollen were analysed, but PS4 was not detected in either of them. The effect of food on the PS4 was investigated by mixing crude extracts of queen and worker-fate larvae with pollen and royal jelly, respectively. Only royal jelly inhibited PS4 in worker-fate larvae. Taken together, our data suggest that PS4 could be involved in caste differentiation.
Collapse
Affiliation(s)
- Simona Sagona
- Department of Veterinary Sciences, Pisa University, Viale delle Piagge 2, 56124 Pisa, Italy
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Chiara D’Onofrio
- Department of Veterinary Sciences, Pisa University, Viale delle Piagge 2, 56124 Pisa, Italy
- Biosensor Technologies, Austrian Institute of Technology GmbH, Konrad-Lorenz Straße, 24, 3430 Tulln, Austria
| | - Vincenzo Miragliotta
- Department of Veterinary Sciences, Pisa University, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Antonio Felicioli
- Department of Veterinary Sciences, Pisa University, Viale delle Piagge 2, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-221-6835
| |
Collapse
|
37
|
Proteases and Their Potential Role as Biomarkers and Drug Targets in Dry Eye Disease and Ocular Surface Dysfunction. Int J Mol Sci 2022; 23:ijms23179795. [PMID: 36077189 PMCID: PMC9456293 DOI: 10.3390/ijms23179795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disorder that leads to ocular discomfort, visual disturbance, and tear film instability. DED is accompanied by an increase in tear osmolarity and ocular surface inflammation. The diagnosis and treatment of DED still present significant challenges. Therefore, novel biomarkers and treatments are of great interest. Proteases are present in different tissues on the ocular surface. In a healthy eye, proteases are highly regulated. However, dysregulation occurs in various pathologies, including DED. With this review, we provide an overview of the implications of different families of proteases in the development and severity of DED, along with studies involving protease inhibitors as potential therapeutic tools. Even though further research is needed, this review aims to give suggestions for identifying novel biomarkers and developing new protease inhibitors.
Collapse
|
38
|
Wang X, Sang W, Xie Y, Xu J, Sun T, Cuthbertson AGS, Wu J, Ali S. Comparative proteomic analysis reveals insights into the response of Cryptolaemus montrouzieri to bottom-up transfer of cadmium and lead across a multi-trophic food chain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113852. [PMID: 36068768 DOI: 10.1016/j.ecoenv.2022.113852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Contamination of agro-ecosystems with heavy metals can affect the development and reproduction of insect natural enemies. This study reports a detailed Tandem Mass Tag based quantitative proteomic analysis of underlying mechanisms responsible for stress response of Cryptolaemus montrouzieri against heavy metals (cadmium (Cd) and lead (Pb)) transported across a multi-trophic food chain. A total of 6639 proteins were detected under Cd as well as Pb stress. In Pb versus the control cluster, 69 proteins (28 up-regulated and 41 down-regulated) were differentially expressed whereas 268 proteins were differentially expressed under Cd versus the control cluster, having 198 proteins up-regulated and 70 down-regulated proteins. The analysis of differentially expressed proteins showed that 27 proteins overlapped in both clusters representing the core proteome to Pb and Cd stress. The bioinformatics analysis demonstrated that these proteins were mapped to 57 and 99 pathways in Pb versus control and Cd versus control clusters, respectively. The functional classification by COG, GO and KEGG databases showed significant changes in protein expression by C. montrouzieri under Pb and Cd stress. The heavy metal stress (Pb and Cd) induced significant changes in expression of proteins like hexokinase (HK), succinyl-CoA, trypsin like proteins, cysteine proteases, cell division cycle proteins, and yellow gene proteins. The results provide detailed information on the protein expression levels of C. montrouzieri and will serve as basic information for future proteomic studies on heavy metal responses of insect predators within a multi-trophic food chain.
Collapse
Affiliation(s)
- Xingmin Wang
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou 510642, PR China; Engineering Research Centre of Agricultural Pest Biocontrol, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, PR China.
| | - Wen Sang
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou 510642, PR China; Engineering Research Centre of Agricultural Pest Biocontrol, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, PR China.
| | - Yonghui Xie
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming 650021, PR China.
| | - Jing Xu
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou 510642, PR China; Engineering Research Centre of Agricultural Pest Biocontrol, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, PR China.
| | - Tingfei Sun
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou 510642, PR China; Engineering Research Centre of Agricultural Pest Biocontrol, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, PR China.
| | | | - Jianhui Wu
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou 510642, PR China; Engineering Research Centre of Agricultural Pest Biocontrol, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, PR China.
| | - Shaukat Ali
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou 510642, PR China; Engineering Research Centre of Agricultural Pest Biocontrol, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
39
|
Corre MH, Bachmann V, Kohn T. Bacterial matrix metalloproteases and serine proteases contribute to the extra-host inactivation of enteroviruses in lake water. THE ISME JOURNAL 2022; 16:1970-1979. [PMID: 35545659 PMCID: PMC9296489 DOI: 10.1038/s41396-022-01246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
Abstract
AbstractEnteroviruses are ubiquitous contaminants of surface waters, yet their fate in presence of microbial congeners is poorly understood. In this work, we investigated the inactivation of Echovirus-11 (E11) and Coxsackievirus-A9 (CVA9) by bacteria isolated from Lake Geneva. Incubation of E11 or CVA9 in biologically active lake water caused inactivation of 2- and 4-log10, respectively, within 48 h. To evaluate the antiviral action of individual bacterial species, we isolated 136 bacterial strains belonging to 31 genera from Lake Geneva. The majority of isolates (92) induced decay of at least 1.5-log10 of CVA9, whereas only 13 isolates induced a comparable inactivation on E11. The most extensive viral decay was induced by bacterial isolates producing matrix metalloproteases (MMPs). Correspondingly, the addition of a specific MMP inhibitor to lake water reduced the extent of inactivation for both viruses. A lesser, though significant protective effect was also observed with inhibitors of chymotrypsin-like or trypsin-like proteases, suggesting involvement of serine proteases in enterovirus inactivation in natural systems. Overall, we demonstrate the direct effect of bacterial proteases on the inactivation of enteroviruses and identify MMPs as effective controls on enteroviruses’ environmental persistence.
Collapse
|
40
|
Alaerjani WMA, Abu-Melha S, Alshareef RMH, Al-Farhan BS, Ghramh HA, Al-Shehri BMA, Bajaber MA, Khan KA, Alrooqi MM, Modawe GA, Mohammed MEA. Biochemical Reactions and Their Biological Contributions in Honey. Molecules 2022; 27:4719. [PMID: 35897895 PMCID: PMC9331712 DOI: 10.3390/molecules27154719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
Honey is known for its content of biomolecules, such as enzymes. The enzymes of honey originate from bees, plant nectars, secretions or excretions of plant-sucking insects, or from microorganisms such as yeasts. Honey can be characterized by enzyme-catalyzed and non-enzymatic reactions. Notable examples of enzyme-catalyzed reactions are the production of hydrogen peroxide through glucose oxidase activity and the conversion of hydrogen peroxide to water and oxygen by catalase enzymes. Production of hydroxymethylfurfural (HMF) from glucose or fructose is an example of non-enzymatic reactions in honey.
Collapse
Affiliation(s)
- Wed Mohammed Ali Alaerjani
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; (R.M.H.A.); (M.A.B.)
| | - Sraa Abu-Melha
- Department of Chemistry, Faculty of Girls for Science, King Khalid University, Abha 61413, Saudi Arabia; (S.A.-M.); (B.S.A.-F.); (B.M.A.A.-S.)
| | | | - Badriah Saad Al-Farhan
- Department of Chemistry, Faculty of Girls for Science, King Khalid University, Abha 61413, Saudi Arabia; (S.A.-M.); (B.S.A.-F.); (B.M.A.A.-S.)
| | - Hamed A. Ghramh
- Unit of Honeybee Research and Honey Production, King Khalid University, Abha 61413, Saudi Arabia; (H.A.G.); (K.A.K.)
- Research Center for Material Science, King Khalid University, Abha 61413, Saudi Arabia
- Department of Biology, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Badria Mohammed Abdallah Al-Shehri
- Department of Chemistry, Faculty of Girls for Science, King Khalid University, Abha 61413, Saudi Arabia; (S.A.-M.); (B.S.A.-F.); (B.M.A.A.-S.)
- Unit of Honeybee Research and Honey Production, King Khalid University, Abha 61413, Saudi Arabia; (H.A.G.); (K.A.K.)
- Research Center for Material Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Majed A. Bajaber
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; (R.M.H.A.); (M.A.B.)
| | - Khalid Ali Khan
- Unit of Honeybee Research and Honey Production, King Khalid University, Abha 61413, Saudi Arabia; (H.A.G.); (K.A.K.)
- Research Center for Material Science, King Khalid University, Abha 61413, Saudi Arabia
- Department of Biology, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Munira M. Alrooqi
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24382, Saudi Arabia;
| | - Gad Allah Modawe
- Biochemistry Department, Faculty of Medicine and Health Sciences, Omdurman Islamic University, Omdurman 14415, Sudan;
| | - Mohammed Elimam Ahamed Mohammed
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; (R.M.H.A.); (M.A.B.)
- Unit of Honeybee Research and Honey Production, King Khalid University, Abha 61413, Saudi Arabia; (H.A.G.); (K.A.K.)
- Research Center for Material Science, King Khalid University, Abha 61413, Saudi Arabia
| |
Collapse
|
41
|
Izvekova GI, Frolova TV, Izvekov EI, Zhokhov AE. Surviving in the fish gut: Comparative inhibitory capacities against the host proteinases in cestodes of the genus Proteocephalus. JOURNAL OF FISH DISEASES 2022; 45:1011-1021. [PMID: 35441367 DOI: 10.1111/jfd.13624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Currently, little is known about inhibitory substances enabling tapeworms to settle in fish intestines thereby avoiding proteolysis. Contrary to previous studies with certain host-parasite pairs, this research compares the inhibitory capacities in three tapeworm species of the same genus Proteocephalus from four different fishes (P. torulosus from dace and zope, P. sagittus from stone loach and P. cernuae from ruffe). The tapeworm extracts studied significantly reduced the activity of commercial trypsin (although to a lesser degree than the synthetic inhibitor of serine proteinases PMSF), displaying clear inter-specific variation in worms' inhibitory ability. We also measured the proteolytic activity of the host intestinal mucosa exposed to tapeworm extracts which served as inhibitors. Based on per cent inhibition values, all tapeworm extracts significantly suppressed the mucosal proteolytic activity, with marked differences between certain host-parasite pairs. SDS-PAGE electrophoresis of the incubation media and extracts detected in each tapeworm species 20-36 protein bands with apparent molecular weights from 10-12 to 312.5 kDa, mostly below 50 kDa. The incubation medium and extract of each parasite shared one to six bands ranging from 12 to 35 kDa, depending on its species, with only four bands common for two or more species. The band profiles suggest that in various Proteocephalus species inhibitory capacities against host proteinases can be ensured by different proteins.
Collapse
Affiliation(s)
- Galina I Izvekova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Tatyana V Frolova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Evgeny I Izvekov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Alexander E Zhokhov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| |
Collapse
|
42
|
Genomic Insights into the Distribution of Peptidases and Proteolytic Capacity among Prevotella and Paraprevotella Species. Microbiol Spectr 2022; 10:e0218521. [PMID: 35377228 PMCID: PMC9045265 DOI: 10.1128/spectrum.02185-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacterial peptidases play important roles in health and nutrient digestion in both humans and animals, especially ruminant animals. In this study, we examined and compared the various peptidases (both total and secretory) among species of Prevotella (44 in total) and Paraprevotella (2) revealed in their sequenced genomes that were archived in the MEROPS database. The phylogenetic relationships were also compared among the species based on 16S rRNA gene sequences and the occurrence of peptidases. A rich repertoire of peptidases was found that represents six catalytic types of peptidases (aspartic, cysteine, glutamic, metallo, mixed, and serine), together with some with unknown catalytic mechanisms, and 78 families. Metallopeptidases were the most predominant, followed by serine and cysteine peptidases. Considerable variations in peptidase occurrence and distribution were noted among the species and the different families of peptidases. A total of 48 different families of secretory peptidases were found in the genomes of the Prevotella and Paraprevotella species. Secretory peptidases in the families of S41 and M13 were ubiquitous, and S9, M16, C1, S13, and C69 were found in more than 95% of the species. Multivariate analysis of the peptidases indicated that species were mostly clustered except for a few species. Analysis using a bipartite association network showed that the majority of peptidase families were shared among the species. The relatedness of peptidase distributions among the species did not significantly correlate with their phylogenetic relationship based on the 16S rRNA genes. The genomic overview on the peptidases of Prevotella and Paraprevotella species provided new insights into their potential capacity to degrade proteins. IMPORTANCE Species of Prevotella are prevalent and predominant bacteria residing in animals and humans, and their proteolytic capacity and activity play important roles in nutrient utilization in animals (especially ruminants) and some anaerobic infections of the intestinal, respiratory, and urinary tracts in humans. This study reveals the large repertoire and wide distribution of metallo, serine, and cysteine peptidases, especially secretory peptidases, among the Prevotella species. The information presented here could aid in the identification of the Prevotella species and the peptidases to target to decrease the excessive protein degradation in the rumen and improve dietary nitrogen utilization by ruminant animals.
Collapse
|
43
|
Iwanicki NS, Botelho ABRZ, Klingen I, Júnior ID, Rossmann S, Lysøe E. Genomic signatures and insights into host niche adaptation of the entomopathogenic fungus Metarhizium humberi. G3 (BETHESDA, MD.) 2022; 12:6449448. [PMID: 34865006 PMCID: PMC9210286 DOI: 10.1093/g3journal/jkab416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/22/2021] [Indexed: 12/30/2022]
Abstract
The genus Metarhizium is composed of species used in biological control programs of agricultural pests worldwide. This genus includes common fungal pathogen of many insects and mites and endophytes that can increase plant growth. Metarhizium humberi was recently described as a new species. This species is highly virulent against some insect pests and promotes growth in sugarcane, strawberry, and soybean crops. In this study, we sequenced the genome of M. humberi, isolate ESALQ1638, and performed a functional analysis to determine its genomic signatures and highlight the genes and biological processes associated with its lifestyle. The genome annotation predicted 10633 genes in M. humberi, of which 92.0% are assigned putative functions, and ∼17% of the genome was annotated as repetitive sequences. We found that 18.5% of the M. humberi genome is similar to experimentally validated proteins associated with pathogen-host interaction. Compared to the genomes of eight Metarhizium species, the M. humberi ESALQ1638 genome revealed some unique traits that stood out, e.g., more genes functionally annotated as polyketide synthases (PKSs), overrepresended GO-terms associated to transport of ions, organic and amino acid, a higher percentage of repetitive elements, and higher levels of RIP-induced point mutations. The M. humberi genome will serve as a resource for promoting studies on genome structure and evolution that can contribute to research on biological control and plant biostimulation. Thus, the genomic data supported the broad host range of this species within the generalist PARB clade and suggested that M. humberi ESALQ1638 might be particularly good at producing secondary metabolites and might be more efficient in transporting amino acids and organic compounds.
Collapse
Affiliation(s)
- Natasha Sant′Anna Iwanicki
- Department of Entomology and Acarology, “Luiz de Queiroz” College of Agriculture (ESALQ/USP), Piracicaba 13418-900, Brazil
- Corresponding author: (N.S.I.); (E.L.)
| | | | - Ingeborg Klingen
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås 1431, Norway
| | - Italo Delalibera Júnior
- Department of Entomology and Acarology, “Luiz de Queiroz” College of Agriculture (ESALQ/USP), Piracicaba 13418-900, Brazil
| | - Simeon Rossmann
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås 1431, Norway
| | - Erik Lysøe
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås 1431, Norway
- Corresponding author: (N.S.I.); (E.L.)
| |
Collapse
|
44
|
Escandón M, Bigatton ED, Guerrero-Sánchez VM, Hernández-Lao T, Rey MD, Jorrín-Novo JV, Castillejo MA. Identification of Proteases and Protease Inhibitors in Seeds of the Recalcitrant Forest Tree Species Quercus ilex. FRONTIERS IN PLANT SCIENCE 2022; 13:907042. [PMID: 35832232 PMCID: PMC9271950 DOI: 10.3389/fpls.2022.907042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 05/09/2023]
Abstract
Proteases and protease inhibitors have been identified in the recalcitrant species Quercus ilex using in silico and wet methods, with focus on those present in seeds during germination. In silico analyses showed that the Q. ilex transcriptome database contained 2,240 and 97 transcripts annotated as proteases and protease inhibitors, respectively. They belonged to the different families according to MEROPS, being the serine and metallo ones the most represented. The data were compared with those previously reported for other Quercus species, including Q. suber, Q. lobata, and Q. robur. Changes in proteases and protease inhibitors alongside seed germination in cotyledon and embryo axis tissues were assessed using proteomics and in vitro and in gel activity assays. Shotgun (LC-MSMS) analysis of embryo axes and cotyledons in nonviable (NV), mature (T1) and germinated (T3) seeds allowed the identification of 177 proteases and 12 protease inhibitors, mostly represented by serine and metallo types. Total protease activity, as determined by in vitro assays using azocasein as substrate, was higher in cotyledons than in embryo axes. There were not differences in activity among cotyledon samples, while embryo axis peaked at germinated T4 stage. Gel assays revealed the presence of protease activities in at least 10 resolved bands, in the Mr range of 60-260 kDa, being some of them common to cotyledons and embryo axes in either nonviable, mature, and germinated seeds. Bands showing quantitative or qualitative changes upon germination were observed in embryo axes but not in cotyledons at Mr values of 60-140 kDa. Proteomics shotgun analysis of the 10 bands with protease activity supported the results obtained in the overall proteome analysis, with 227 proteases and 3 protease inhibitors identified mostly represented by the serine, cysteine, and metallo families. The combined use of shotgun proteomics and protease activity measurements allowed the identification of tissue-specific (e.g., cysteine protease inhibitors in embryo axes of mature acorns) and stage-specific proteins (e.g., those associated with mobilization of storage proteins accumulated in T3 stage). Those proteins showing differences between nonviable and viable seeds could be related to viability, and those variables between mature and germinated could be associated with the germination process. These differences are observed mostly in embryo axes but not in cotyledons. Among them, those implicated in mobilization of reserve proteins, such as the cathepsin H cysteine protease and Clp proteases, and also the large number of subunits of the CNS and 26S proteasome complex differentially identified in embryos of the several stages suggests that protein degradation via CNS/26S plays a major role early in germination. Conversely, aspartic proteases such as nepenthesins were exclusively identified in NV seeds, so their presence could be used as indicator of nonviability.
Collapse
Affiliation(s)
- Monica Escandón
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Ezequiel D. Bigatton
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
- Agricultural Microbiology, Faculty of Agricultural Science, National University of Córdoba, CONICET, Córdoba, Argentina
| | - Victor M. Guerrero-Sánchez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Tamara Hernández-Lao
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Maria-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Jesus V. Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
- Jesus V. Jorrín-Novo,
| | - Maria Angeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
- *Correspondence: Maria Angeles Castillejo,
| |
Collapse
|
45
|
Arya PS, Yagnik SM, Rajput KN, Panchal RR, Raval VH. Understanding the Basis of Occurrence, Biosynthesis, and Implications of Thermostable Alkaline Proteases. Appl Biochem Biotechnol 2021; 193:4113-4150. [PMID: 34648116 DOI: 10.1007/s12010-021-03701-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022]
Abstract
The group of hydrolytic enzymes synonymously known as proteases is predominantly most favored for the class of industrial enzymes. The present work focuses on the thermostable nature of these proteolytic enzymes that occur naturally among mesophilic and thermophilic microbes. The broad thermo-active feature (40-80 °C), ease of cultivation, maintenance, and bulk production are the key features associated with these enzymes. Detailing of contemporary production technologies, and controllable operational parameters including the purification strategies, are the key features that justify their industrial dominance as biocatalysts. In addition, the rigorous research inputs by protein engineering and enzyme immobilization studies add up to the thermo-catalytic features and application capabilities of these enzymes. The work summarizes key features of microbial proteases that make them numero-uno for laundry, biomaterials, waste management, food and feed, tannery, and medical as well as pharmaceutical industries. The quest for novel and/or designed and engineered thermostable protease from unexplored sources is highly stimulating and will address the ever-increasing industrial demands.
Collapse
Affiliation(s)
- Prashant S Arya
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Shivani M Yagnik
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Kiransinh N Rajput
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Rakeshkumar R Panchal
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Vikram H Raval
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India.
| |
Collapse
|
46
|
Hemkemeyer M, Schwalb SA, Heinze S, Joergensen RG, Wichern F. Functions of elements in soil microorganisms. Microbiol Res 2021; 252:126832. [PMID: 34508963 DOI: 10.1016/j.micres.2021.126832] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
The soil microbial community fulfils various functions, such as nutrient cycling and carbon (C) sequestration, therefore contributing to maintenance of soil fertility and mitigation of global warming. In this context, a major focus of research has been on C, nitrogen (N) and phosphorus (P) cycling. However, from aquatic and other environments, it is well known that other elements beyond C, N, and P are essential for microbial functioning. Nonetheless, for soil microorganisms this knowledge has not yet been synthesised. To gain a better mechanistic understanding of microbial processes in soil systems, we aimed at summarising the current knowledge on the function of a range of essential or beneficial elements, which may affect the efficiency of microbial processes in soil. This knowledge is discussed in the context of microbial driven nutrient and C cycling. Our findings may support future investigations and data evaluation, where other elements than C, N, and P affect microbial processes.
Collapse
Affiliation(s)
- Michael Hemkemeyer
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany.
| | - Sanja A Schwalb
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| | - Stefanie Heinze
- Department of Soil Science & Soil Ecology, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Rainer Georg Joergensen
- Department of Soil Biology and Plant Nutrition, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Florian Wichern
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| |
Collapse
|
47
|
Grahame DAS, Dupuis JH, Bryksa BC, Tanaka T, Yada RY. Improving the alkaline stability of pepsin through rational protein design using renin, an alkaline-stable aspartic protease, as a structural and functional reference. Enzyme Microb Technol 2021; 150:109871. [PMID: 34489030 DOI: 10.1016/j.enzmictec.2021.109871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
The present study sought to identify the structural determinants of aspartic protease structural stability and activity at elevated pH. Various hypotheses have been published regarding the features responsible for the unusual alkaline structural stability of renin, however, few structure-function studies have verified these claims. Using pepsin as a model system, and renin as a template for functional and structural alkaline stability, a rational re-design of pepsin was undertaken to identify residues contributing to the alkaline instability of pepsin-like aspartic proteases in regards to both structure and function. We constructed 13 mutants based on this strategy. Among them, mutants D159 L and D60A led to an increase in activity at elevated pH levels (p ≤ 0.05) and E4V and H53F were shown to retain native-like structure at elevated pH (p ≤ 0.05). Previously suggested carboxyl groups Asp11, Asp118, and Glu13 were individually shown not to be responsible for the structural instability or lack of activity at neutral pH in pepsin. The importance of the β-barrel to structural stability was highlighted as the majority of the stabilizing residues identified, and 39% of the weakly conserved residues in the N-terminal lobe, were located in β-sheet strands of the barrel. The results of the present study indicate that alkaline stabilization of pepsin will require reduction of electrostatic repulsions and an improved understanding of the role of the hydrogen bonding network of the characteristic β-barrel.
Collapse
Affiliation(s)
- Douglas A S Grahame
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - John H Dupuis
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Brian C Bryksa
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Takuji Tanaka
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Rickey Y Yada
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
48
|
Abstract
All living organisms depend on tightly regulated cellular networks to control biological functions. Proteolysis is an important irreversible post-translational modification that regulates most, if not all, cellular processes. Proteases are a large family of enzymes that perform hydrolysis of protein substrates, leading to protein activation or degradation. The 473 known and 90 putative human proteases are divided into 5 main mechanistic groups: metalloproteases, serine proteases, cysteine proteases, threonine proteases, and aspartic acid proteases. Proteases are fundamental to all biological systems, and when dysregulated they profoundly influence disease progression. Inhibiting proteases has led to effective therapies for viral infections, cardiovascular disorders, and blood coagulation just to name a few. Between 5 and 10% of all pharmaceutical targets are proteases, despite limited knowledge about their biological roles. More than 50% of all human proteases have no known substrates. We present here a comprehensive list of all current known human proteases. We also present current and novel biochemical tools to characterize protease functions in vitro, in vivo, and ex vivo. These tools make it achievable to define both beneficial and detrimental activities of proteases in health and disease.
Collapse
Affiliation(s)
- Longxiang Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Kimberly Main
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada.,McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Henry Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Antoine Dufour
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada.,McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
49
|
Al-Essa MK, Alzayadneh E, Al-Hadidi K. Assessment of Proteolysis by Pyrylium and Other Fluorogenic Reagents. Protein Pept Lett 2021; 28:809-816. [PMID: 33390107 PMCID: PMC9175085 DOI: 10.2174/0929866528999201231214954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 11/22/2022]
Abstract
Aims We aim to evaluate the potential application of amine reactive fluorogenic reagents for estimating enzymatic proteolysis. Background Proteolytic enzymes play important roles in regulating many physiological processes in living organisms. Objectives
Assessment of protein degradation by using reagents for protein assay techniques. Methods We have assayed samples at the start and after 30-60 minutes incubation with trypsin by Chromeo P503 (Py 1 pyrylium compound) and CBQCA (3-(4-carboxybenzoyl) quinoline-2-carboxaldehyde) as amine reactive reagents and NanoOrange as non-amine reactive dye. Results All BSA prepared samples with trypsin have shown significantly higher fluorescence intensity (FI) versus controls (which reflects proteolysis) when assayed by Chromeo P503 (Py 1 pyrylium compound) and CBQCA (3-(4-carboxybenzoyl) quinoline-2-carboxaldehyde) as amine reactive reagents. However, same samples assayed with NanoOrange as non-amine reactive reagent did not show any significant variation between samples containing trypsin and controls. Conclusion These results are confirming reliability of highly sensitive protein assays utilizing amine reactive fluorogenic reagents for general estimation of proteolysis.
Collapse
Affiliation(s)
- Mohamed K Al-Essa
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Ebaa Alzayadneh
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Kamal Al-Hadidi
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
50
|
Zhang Y, Zhao C, Ma W, Cui S, Chen H, Ma C, Guo J, Wan F, Zhou Z. Larger males facilitate population expansion in Ophraella communa. J Anim Ecol 2021; 90:2782-2792. [PMID: 34448211 DOI: 10.1111/1365-2656.13579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/08/2021] [Indexed: 12/20/2022]
Abstract
One of the most intriguing concepts in animal ecology is the reproductive advantages offered by larger body size, and the females prefer to mate with larger males to gain reproductive advantage. Currently, it is not clear how females recognize signs of male 'quality' and what mechanisms are involved in producing offspring with direct or indirect benefits. Our study aims to assess the preferences of females for males in Ophraella communa, determine the reproductive benefits and reveal the underlying mechanism behind this advantage. We demonstrate that male body size is an important determinant in the evolutionary process of O. communa, affecting female mate choice. Moreover, our study establishes that females prefer males with a larger body size, and this could further improve the developmental and reproductive fitness of their offspring. Finally, we focus on the seminal fluid proteins (SFPs) in O. communa, determine differentially expressed genes (i.e. OcACE, OcCBP and OcSFP) by analysing their proteomes and transcriptomes, and define the role of these SFPs-related genes through RNAi. Our study proved that the reproductive benefit of large males may be regulated by biased expression of crucial SFPs genes. The present study advances our understanding of the biological significance of preferential mating.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenchen Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Weihua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shaowei Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongsong Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Chao Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|