1
|
Chen T, Lin R, Avula L, Sarker R, Yang J, Cha B, Tse CM, McNamara G, Seidler U, Waldman S, Snook A, Bijvelds MJC, de Jonge HR, Li X, Donowitz M. NHERF3 is necessary for Escherichia coli heat-stable enterotoxin-induced inhibition of NHE3: differences in signaling in mouse small intestine and Caco-2 cells. Am J Physiol Cell Physiol 2019; 317:C737-C748. [PMID: 31365292 DOI: 10.1152/ajpcell.00351.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of childhood death from diarrhea and the leading cause of Traveler's diarrhea. E. coli heat-stable enterotoxin (ST) is a major virulence factor of ETEC and inhibits the brush border Na/H exchanger NHE3 in producing diarrhea. NHE3 regulation involves multiprotein signaling complexes that form on its COOH terminus. In this study, the hypothesis was tested that ST signals via members of the Na/H exchanger regulatory factor (NHERF) family of scaffolding proteins, NHERF2, which had been previously shown to have a role, and now with concentration on a role for NHERF3. Two models were used: mouse small intestine and Caco-2/BBe cells. In both models, ST rapidly increased intracellular cGMP, inhibited NHE3 activity, and caused a quantitatively similar decrease in apical expression of NHE3. The transport effects were NHERF3 and NHERF2 dependent. Also, mutation of the COOH-terminal amino acids of NHERF3 supported that NHERF3-NHERF2 heterodimerization was likely to account for this dual dependence. The ST increase in cGMP in both models was partially dependent on NHERF3. The intracellular signaling pathways by which ST-cGMP inhibits NHE3 were different in mouse jejunum (activation of cGMP kinase II, cGKII) and Caco-2 cells, which do not express cGKII (elevation of intracellular Ca2+ concentration [Ca2+]i). The ST elevation of [Ca2+]i was from intracellular stores and was dependent on NHERF3-NHERF2. This study shows that intracellular signaling in the same diarrheal model in multiple cell types may be different; this has implications for therapeutic strategies, which often assume that models have similar signaling mechanisms.
Collapse
Affiliation(s)
- Tiane Chen
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ruxian Lin
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Leela Avula
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rafiquel Sarker
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jianbo Yang
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Boyoung Cha
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chung Ming Tse
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - George McNamara
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ursula Seidler
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Scott Waldman
- Division of Clinical Pharmacology, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam Snook
- Division of Clinical Pharmacology, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Xuhang Li
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark Donowitz
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Choudhary HH, Gupta R, Mishra S. PKAc is not required for the preerythrocytic stages of Plasmodium berghei. Life Sci Alliance 2019; 2:2/3/e201900352. [PMID: 31142638 PMCID: PMC6545604 DOI: 10.26508/lsa.201900352] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022] Open
Abstract
The mutant salivary gland sporozoites lacking PKAc are able to glide, invade hepatocytes, and mature into hepatic merozoites, which release successfully from the merosome, however, fail to initiate blood stage infection when inoculated into mice. Plasmodium sporozoites invade hepatocytes to initiate infection in the mammalian host. In the infected hepatocytes, sporozoites undergo rapid expansion and differentiation, resulting in the formation and release of thousands of invasive merozoites into the bloodstream. Both sporozoites and merozoites invade their host cells by activation of a signaling cascade followed by discharge of micronemal content. cAMP-dependent protein kinase catalytic subunit (PKAc)–mediated signaling plays an important role in merozoite invasion of erythrocytes, but its role during other stages of the parasite remains unknown. Becaused of the essentiality of PKAc in blood stages, we generated conditional mutants of PKAc by disrupting the gene in Plasmodium berghei sporozoites. The mutant salivary gland sporozoites were able to glide, invaded hepatocytes, and matured into hepatic merozoites which were released successfully from merosome, however failed to initiate blood stage infection when inoculated into mice. Our results demonstrate that malaria parasite complete preerythrocytic stages development without PKAc, raising the possibility that the PKAc independent signaling operates in preerythrocytic stages of P. berghei.
Collapse
Affiliation(s)
| | - Roshni Gupta
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Satish Mishra
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India .,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
3
|
Park EYJ, Kwak M, Ha K, So I. Identification of clustered phosphorylation sites in PKD2L1: how PKD2L1 channel activation is regulated by cyclic adenosine monophosphate signaling pathway. Pflugers Arch 2017; 470:505-516. [PMID: 29230552 DOI: 10.1007/s00424-017-2095-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 01/01/2023]
Abstract
Polycystic kidney disease 2-like-1 (PKD2L1), or polycystin-L or TRPP2, formerly TRPP3, is a transient receptor potential (TRP) superfamily member. It is a calcium-permeable non-selective cation channel that regulates intracellular calcium concentration and thereby calcium signaling. PKD2L1 has been reported to take part in hedgehog signaling in renal primary cilia and sour tasting coupling with PKD1L3. In addition to the previous reports, PKD2L1 is recently found to play a crucial role in localization with β2-adrenergic receptor (β2AR) on the neuronal primary cilia. The disruption of PKD2L1 leads to the loss of β2AR on the primary cilia and reduction in intracellular concentration of cyclic adenosine monophosphate (cAMP). Since the role of cAMP and PKA is frequently mentioned in the studies of PKD diseases, we investigated on the mechanism of cAMP regulation in relation to the function of PKD2L1 channel. In this study, we observed the activity of PKD2L1 channel increased by the downstream cascades of β2AR and found the clustered phosphorylation sites, Ser-682, Ser-685, and Ser-686 that are significant in the channel regulation by phosphorylation.
Collapse
Affiliation(s)
- Eunice Yon June Park
- Department of Physiology, Seoul National University, College of Medicine, Biomedical Science Building 117, 103 Daehakro, Jongro-gu, Seoul, 110-799, South Korea
| | - Misun Kwak
- Department of Physiology, Seoul National University, College of Medicine, Biomedical Science Building 117, 103 Daehakro, Jongro-gu, Seoul, 110-799, South Korea
| | - Kotdaji Ha
- Department of Physiology, University of California, San Francisco, CA, 94158-2517, USA
| | - Insuk So
- Department of Physiology, Seoul National University, College of Medicine, Biomedical Science Building 117, 103 Daehakro, Jongro-gu, Seoul, 110-799, South Korea.
| |
Collapse
|
4
|
Albiñana E, Luengo JG, Baraibar AM, Muñoz MD, Gandía L, Solís JM, Hernández-Guijo JM. Choline induces opposite changes in pyramidal neuron excitability and synaptic transmission through a nicotinic receptor-independent process in hippocampal slices. Pflugers Arch 2017; 469:779-795. [PMID: 28176016 DOI: 10.1007/s00424-017-1939-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/13/2023]
Abstract
Choline is present at cholinergic synapses as a product of acetylcholine degradation. In addition, it is considered a selective agonist for α5 and α7 nicotinic acetylcholine receptors (nAChRs). In this study, we determined how choline affects action potentials and excitatory synaptic transmission using extracellular and intracellular recording techniques in CA1 area of hippocampal slices obtained from both mice and rats. Choline caused a reversible depression of evoked field excitatory postsynaptic potentials (fEPSPs) in a concentration-dependent manner that was not affected by α7 nAChR antagonists. Moreover, this choline-induced effect was not mimicked by either selective agonists or allosteric modulators of α7 nAChRs. Additionally, this choline-mediated effect was not prevented by either selective antagonists of GABA receptors or hemicholinium, a choline uptake inhibitor. The paired pulse facilitation paradigm, which detects whether a substance affects presynaptic release of glutamate, was not modified by choline. On the other hand, choline induced a robust increase of population spike evoked by orthodromic stimulation but did not modify that evoked by antidromic stimulation. We also found that choline impaired recurrent inhibition recorded in the pyramidal cell layer through a mechanism independent of α7 nAChR activation. These choline-mediated effects on fEPSP and population spike observed in rat slices were completely reproduced in slices obtained from α7 nAChR knockout mice, which reinforces our conclusion that choline modulates synaptic transmission and neuronal excitability by a mechanism independent of nicotinic receptor activation.
Collapse
Affiliation(s)
- E Albiñana
- Department of Pharmacology and Therapeutic, University Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain.,Instituto Teófilo Hernando, Facultad de Medicina, University Autónoma de Madrid, 28029, Madrid, Spain
| | - J G Luengo
- Department of Pharmacology and Therapeutic, University Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain.,Instituto Teófilo Hernando, Facultad de Medicina, University Autónoma de Madrid, 28029, Madrid, Spain
| | - A M Baraibar
- Department of Pharmacology and Therapeutic, University Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain.,Instituto Teófilo Hernando, Facultad de Medicina, University Autónoma de Madrid, 28029, Madrid, Spain
| | - M D Muñoz
- Servicio de Neurología Experimental, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
| | - L Gandía
- Department of Pharmacology and Therapeutic, University Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain.,Instituto Teófilo Hernando, Facultad de Medicina, University Autónoma de Madrid, 28029, Madrid, Spain
| | - J M Solís
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
| | - J M Hernández-Guijo
- Department of Pharmacology and Therapeutic, University Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain. .,Instituto Teófilo Hernando, Facultad de Medicina, University Autónoma de Madrid, 28029, Madrid, Spain.
| |
Collapse
|
5
|
Arlauckas SP, Popov AV, Delikatny EJ. Choline kinase alpha-Putting the ChoK-hold on tumor metabolism. Prog Lipid Res 2016; 63:28-40. [PMID: 27073147 PMCID: PMC5360181 DOI: 10.1016/j.plipres.2016.03.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/14/2016] [Accepted: 03/26/2016] [Indexed: 12/24/2022]
Abstract
It is well established that lipid metabolism is drastically altered during tumor development and response to therapy. Choline kinase alpha (ChoKα) is a key mediator of these changes, as it represents the first committed step in the Kennedy pathway of phosphatidylcholine biosynthesis and ChoKα expression is upregulated in many human cancers. ChoKα activity is associated with drug resistant, metastatic, and malignant phenotypes, and represents a robust biomarker and therapeutic target in cancer. Effective ChoKα inhibitors have been developed and have recently entered clinical trials. ChoKα's clinical relevance was, until recently, attributed solely to its production of second messenger intermediates of phospholipid synthesis. The recent discovery of a non-catalytic scaffolding function of ChoKα may link growth receptor signaling to lipid biogenesis and requires a reinterpretation of the design and validation of ChoKα inhibitors. Advances in positron emission tomography, magnetic resonance spectroscopy, and optical imaging methods now allow for a comprehensive understanding of ChoKα expression and activity in vivo. We will review the current understanding of ChoKα metabolism, its role in tumor biology and the development and validation of targeted therapies and companion diagnostics for this important regulatory enzyme. This comes at a critical time as ChoKα-targeting programs receive more clinical interest.
Collapse
Affiliation(s)
- Sean P Arlauckas
- Department of Radiology, 317 Anatomy-Chemistry Building, 3620 Hamilton Walk, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anatoliy V Popov
- Department of Radiology, 317 Anatomy-Chemistry Building, 3620 Hamilton Walk, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E James Delikatny
- Department of Radiology, 317 Anatomy-Chemistry Building, 3620 Hamilton Walk, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Chang CC, Few LL, Konrad M, See Too WC. Phosphorylation of Human Choline Kinase Beta by Protein Kinase A: Its Impact on Activity and Inhibition. PLoS One 2016; 11:e0154702. [PMID: 27149373 PMCID: PMC4858151 DOI: 10.1371/journal.pone.0154702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/18/2016] [Indexed: 12/19/2022] Open
Abstract
Choline kinase beta (CKβ) is one of the CK isozymes involved in the biosynthesis of phosphatidylcholine. CKβ is important for normal mitochondrial function and muscle development as the lack of the ckβ gene in human and mice results in the development of muscular dystrophy. In contrast, CKα is implicated in tumorigenesis and has been extensively studied as an anticancer target. Phosphorylation of human CKα was found to regulate the enzyme’s activity and its subcellular location. This study provides evidence for CKβ phosphorylation by protein kinase A (PKA). In vitro phosphorylation of CKβ by PKA was first detected by phosphoprotein staining, as well as by in-gel kinase assays. The phosphorylating kinase was identified as PKA by Western blotting. CKβ phosphorylation by MCF-7 cell lysate was inhibited by a PKA-specific inhibitor peptide, and the intracellular phosphorylation of CKβ was shown to be regulated by the level of cyclic adenosine monophosphate (cAMP), a PKA activator. Phosphorylation sites were located on CKβ residues serine-39 and serine-40 as determined by mass spectrometry and site-directed mutagenesis. Phosphorylation increased the catalytic efficiencies for the substrates choline and ATP about 2-fold, without affecting ethanolamine phosphorylation, and the S39D/S40D CKβ phosphorylation mimic behaved kinetically very similar. Remarkably, phosphorylation drastically increased the sensitivity of CKβ to hemicholinium-3 (HC-3) inhibition by about 30-fold. These findings suggest that CKβ, in concert with CKα, and depending on its phosphorylation status, might play a critical role as a druggable target in carcinogenesis.
Collapse
Affiliation(s)
- Ching Ching Chang
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ling Ling Few
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Manfred Konrad
- Enzyme Biochemistry Group, Max Planck Institute for Biophysical Chemistry, 37077, Goettingen, Germany
- * E-mail: (WCST); (MK)
| | - Wei Cun See Too
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
- * E-mail: (WCST); (MK)
| |
Collapse
|
7
|
PKA Inhibitor H89 (N-[2-p-bromocinnamylamino-ethyl]-5-isoquinolinesulfonamide) Attenuates Synaptic Dysfunction and Neuronal Cell Death following Ischemic Injury. Neural Plast 2015; 2015:374520. [PMID: 26448879 PMCID: PMC4584069 DOI: 10.1155/2015/374520] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/27/2015] [Accepted: 03/17/2015] [Indexed: 11/26/2022] Open
Abstract
The cyclic AMP-dependent protein kinase (PKA), which activates prosurvival signaling proteins, has been implicated in the expression of long-term potentiation and hippocampal long-term memory. It has come to light that H89 commonly known as the PKA inhibitor have diverse roles in the nervous system that are unrelated to its role as a PKA inhibitor. We have investigated the role of H89 in ischemic and reperfusion injury. First, we examined the expression of postsynaptic density protein 95 (PSD95), microtubule-associated protein 2 (MAP2), and synaptophysin in mouse brain after middle cerebral artery occlusion injury. Next, we examined the role of H89 pretreatment on the expression of brain-derived neurotrophic factor (BDNF), PSD95, MAP2, and the apoptosis regulators Bcl2 and cleaved caspase-3 in cultured neuroblastoma cells exposed to hypoxia and reperfusion injury. In addition, we investigated the alteration of AKT activation in H89 pretreated neuroblastoma cells under hypoxia and reperfusion injury. The data suggest that H89 may contribute to brain recovery after ischemic stroke by regulating neuronal death and proteins related to synaptic plasticity.
Collapse
|
8
|
Chen T, Kocinsky HS, Cha B, Murtazina R, Yang J, Tse CM, Singh V, Cole R, Aronson PS, de Jonge H, Sarker R, Donowitz M. Cyclic GMP kinase II (cGKII) inhibits NHE3 by altering its trafficking and phosphorylating NHE3 at three required sites: identification of a multifunctional phosphorylation site. J Biol Chem 2014; 290:1952-65. [PMID: 25480791 DOI: 10.1074/jbc.m114.590174] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The epithelial brush-border Na(+)/H(+) exchanger NHE3 is acutely inhibited by cGKII/cGMP, but how cGKII inhibits NHE3 is unknown. This study tested the hypothesis that cGMP inhibits NHE3 by phosphorylating it and altering its membrane trafficking. Studies were carried out in PS120/NHERF2 and in Caco-2/Bbe cells overexpressing HA-NHE3 and cGKII, and in mouse ileum. NHE3 activity was measured with 2',7'-bis(carboxyethyl)-S-(and 6)carboxyfluorescein acetoxy methylester/fluorometry. Surface NHE3 was determined by cell surface biotinylation. Identification of NHE3 phosphorylation sites was by iTRAQ/LC-MS/MS with TiO2 enrichment and immunoblotting with specific anti-phospho-NHE3 antibodies. cGMP/cGKII rapidly inhibited NHE3, which was associated with reduced surface NHE3. cGMP/cGKII increased NHE3 phosphorylation at three sites (rabbit Ser(554), Ser(607), and Ser(663), equivalent to mouse Ser(552), Ser(605), and Ser(659)), all of which had to be present at the same time for cGMP to inhibit NHE3. NHE3-Ser(663) phosphorylation was not necessary for cAMP inhibition of NHE3. Dexamethasone (4 h) stimulated wild type NHE3 activity and increased surface expression but failed to stimulate NHE3 activity or increase surface expression when NHE3 was mutated to either S663A or S663D. We conclude that 1) cGMP inhibition of NHE3 is associated with phosphorylation of NHE3 at Ser(554), Ser(607), and Ser(663), all of which are necessary for cGMP/cGKII to inhibit NHE3. 2) Dexamethasone stimulates NHE3 by phosphorylation of a single site, Ser(663). The requirement for three phosphorylation sites in NHE3 for cGKII inhibition, and for phosphorylation of one of these sites for dexamethasone stimulation of NHE3, is a unique example of regulation by phosphorylation.
Collapse
Affiliation(s)
- Tiane Chen
- From the Departments of Physiology and Medicine, Gastroenterology Division, and
| | | | - Boyoung Cha
- From the Departments of Physiology and Medicine, Gastroenterology Division, and
| | - Rakhilya Murtazina
- From the Departments of Physiology and Medicine, Gastroenterology Division, and
| | - Jianbo Yang
- From the Departments of Physiology and Medicine, Gastroenterology Division, and
| | - C Ming Tse
- From the Departments of Physiology and Medicine, Gastroenterology Division, and
| | - Varsha Singh
- From the Departments of Physiology and Medicine, Gastroenterology Division, and
| | - Robert Cole
- the Biological Chemistry Department, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Peter S Aronson
- Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Hugo de Jonge
- the GI Division, Erasmus Medical Center, 3015CN Rotterdam, Netherlands
| | - Rafiquel Sarker
- From the Departments of Physiology and Medicine, Gastroenterology Division, and
| | - Mark Donowitz
- From the Departments of Physiology and Medicine, Gastroenterology Division, and
| |
Collapse
|
9
|
Fanti M, Singh S, Ledda-Columbano GM, Columbano A, Monga SP. Tri-iodothyronine induces hepatocyte proliferation by protein kinase A-dependent β-catenin activation in rodents. Hepatology 2014; 59:2309-20. [PMID: 24122933 PMCID: PMC3979513 DOI: 10.1002/hep.26775] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/25/2013] [Indexed: 12/31/2022]
Abstract
UNLABELLED Thyroid hormone (T3), like many other ligands of the steroid/thyroid hormone nuclear receptor superfamily, is a strong inducer of liver cell proliferation in rats and mice. However, the molecular basis of its mitogenic activity, which is currently unknown, must be elucidated if its use in hepatic regenerative medicine is to be considered. F-344 rats or C57BL/6 mice were fed a diet containing T3 for 2-7 days. In rats, administration of T3 led to an increased cytoplasmic stabilization and nuclear translocation of β-catenin in pericentral hepatocytes with a concomitant increase in cyclin-D1 expression. T3 administration to wild-type (WT) mice resulted in increased hepatocyte proliferation; however, no mitogenic response in hepatocytes to T3 was evident in the hepatocyte-specific β-catenin knockout mice (KO). In fact, T3 induced β-catenin-TCF4 reporter activity both in vitro and in vivo. Livers from T3-treated mice demonstrated no changes in Ctnnb1 expression, activity of glycogen synthase kinase-3β, known to phosphorylate and eventually promote β-catenin degradation, or E-cadherin-β-catenin association. However, T3 treatment increased β-catenin phosphorylation at Ser675, an event downstream of protein kinase A (PKA). Administration of PKA inhibitor during T3 treatment of mice and rats as well as in cell culture abrogated Ser675-β-catenin and simultaneously decreased cyclin-D1 expression to block hepatocyte proliferation. CONCLUSION We have identified T3-induced hepatocyte mitogenic response to be mediated by PKA-dependent β-catenin activation. Thus, T3 may be of therapeutic relevance to stimulate β-catenin signaling to in turn induce regeneration in selected cases of hepatic insufficiency.
Collapse
Affiliation(s)
- Maura Fanti
- Department of Pathology, University of Pittsburgh, School of Medicine, USA,Department of Biomedical Sciences, University of Cagliari, Italy
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh, School of Medicine, USA
| | | | - Amedeo Columbano
- Department of Biomedical Sciences, University of Cagliari, Italy,Address correspondence to: Satdarshan Pal Singh Monga, MD, Endowed Chair, Vice Chair and Division Director of Experimental Pathology (EP), Professor of Pathology (EP) & Medicine (GI, Hepatology & Nutrition), University of Pittsburgh School of Medicine, 200 Lothrop Street S-422 BST, Pittsburgh, PA 15261; Tel: (412) 648-9966; Fax: (412) 648-1916; ; Amedeo Columbano, PhD, Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy, Tel: +39-070-6758345; Fax: +39-070-666062;
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh, School of Medicine, USA,Address correspondence to: Satdarshan Pal Singh Monga, MD, Endowed Chair, Vice Chair and Division Director of Experimental Pathology (EP), Professor of Pathology (EP) & Medicine (GI, Hepatology & Nutrition), University of Pittsburgh School of Medicine, 200 Lothrop Street S-422 BST, Pittsburgh, PA 15261; Tel: (412) 648-9966; Fax: (412) 648-1916; ; Amedeo Columbano, PhD, Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy, Tel: +39-070-6758345; Fax: +39-070-666062;
| |
Collapse
|
10
|
Natter K, Kohlwein SD. Yeast and cancer cells - common principles in lipid metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1831:314-26. [PMID: 22989772 PMCID: PMC3549488 DOI: 10.1016/j.bbalip.2012.09.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/07/2012] [Accepted: 09/08/2012] [Indexed: 12/15/2022]
Abstract
One of the paradigms in cancer pathogenesis is the requirement of a cell to undergo transformation from respiration to aerobic glycolysis - the Warburg effect - to become malignant. The demands of a rapidly proliferating cell for carbon metabolites for the synthesis of biomass, energy and redox equivalents, are fundamentally different from the requirements of a differentiated, quiescent cell, but it remains open whether this metabolic switch is a cause or a consequence of malignant transformation. One of the major requirements is the synthesis of lipids for membrane formation to allow for cell proliferation, cell cycle progression and cytokinesis. Enzymes involved in lipid metabolism were indeed found to play a major role in cancer cell proliferation, and most of these enzymes are conserved in the yeast, Saccharomyces cerevisiae. Most notably, cancer cell physiology and metabolic fluxes are very similar to those in the fermenting and rapidly proliferating yeast. Both types of cells display highly active pathways for the synthesis of fatty acids and their incorporation into complex lipids, and imbalances in synthesis or turnover of lipids affect growth and viability of both yeast and cancer cells. Thus, understanding lipid metabolism in S. cerevisiae during cell cycle progression and cell proliferation may complement recent efforts to understand the importance and fundamental regulatory mechanisms of these pathways in cancer.
Collapse
Affiliation(s)
- Klaus Natter
- University of Graz, Institute of Molecular Biosciences, Lipidomics Research Center Graz, Humboldtstrasse 50/II, 8010 Graz,
| | | |
Collapse
|
11
|
Malagoli D, Ottaviani E. Yessotoxin affects fMLP-induced cell shape changes inMytilus galloprovincialisimmunocytes. Cell Biol Int 2013; 28:57-61. [PMID: 14759769 DOI: 10.1016/j.cellbi.2003.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Revised: 09/15/2003] [Accepted: 10/31/2003] [Indexed: 10/26/2022]
Abstract
Using computer-assisted microscopic image analysis, we have found that algal yessotoxin (YTX) affects the immune response of Mytilus galloprovincialis. Indeed, YTX increases immunocyte cell motility through the involvement of both extracellular Ca2+ and cAMP, but not through protein kinase A, protein kinase C or phosphoinositide 3-kinase. Alone, however, the toxin does not induce any effect, as its action on cell motility is observed only after addition of the chemotactic substance N-formyl-Meth-Leu-Phe (fMLP). fMLP is known to induce cellular changes via both the phosphatidylinositol and cAMP pathways and, from this scenario, we can surmise that Ca2+ and cAMP concentrations rise sufficiently in fMLP-activated immunocytes to reveal YTX action. One possible explanation is that the toxin increases fMLP-mediated cell activation by intervening in L-type Ca2+-channel opening through a cAMP-dependent/PKA-independent pathway.
Collapse
Affiliation(s)
- Davide Malagoli
- Department of Animal Biology, University of Modena and Reggio Emilia, via Campi 213/D, 41100 Modena, Italy
| | | |
Collapse
|
12
|
Glynn P. Neuronal phospholipid deacylation is essential for axonal and synaptic integrity. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:633-41. [PMID: 22903185 DOI: 10.1016/j.bbalip.2012.07.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/20/2012] [Accepted: 07/31/2012] [Indexed: 12/24/2022]
Abstract
Recessively-inherited deficiency in the catalytic activity of calcium-independent phospholipase A2-beta (iPLA2β) and neuropathy target esterase (NTE) causes infantile neuroaxonal dystrophy and hereditary spastic paraplegia, respectively. Thus, these two related phospholipases have non-redundant functions that are essential for structural integrity of synapses and axons. Both enzymes are expressed in essentially all neurons and also have independent roles in glia. iPLA2β liberates sn-2 fatty acid and lysophospholipids from diacyl-phospholipids. Ca(2+)-calmodulin tonically-inhibits iPLA2β, but this can be alleviated by oleoyl-CoA. Together with fatty acyl-CoA-mediated conversion of lysophospholipid to diacyl-phospholipid this may regulate sn-2 fatty acyl composition of phospholipids. In the nervous system, iPLA2β is especially important for the turnover of polyunsaturated fatty acid-associated phospholipid at synapses. More information is required on the interplay between iPLA2β and iPLA2-gamma in deacylation of neuronal mitochondrial phospholipids. NTE reduces levels of phosphatidylcholine (PtdCho) by degrading it to glycerophosphocholine and two free fatty acids. The substrate for NTE may be nascent PtdCho complexed with a phospholipid-binding protein. Protein kinase A-mediated phosphorylation enhances PtdCho synthesis and may allow PtdCho accumulation by coordinate inhibition of NTE activity. NTE operates primarily at the endoplasmic reticulum in neuronal soma but is also present in axons. NTE-mediated PtdCho homeostasis facilitates membrane trafficking and this appears most critical for the integrity of axon terminals in the spinal cord and hippocampus. For maintenance of peripheral nerve axons, iPLA2β activity may be able to compensate for NTE-deficiency but not vice-versa. Whether agonists acting at neuronal receptors modulate the activity of either enzyme remains to be determined. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Paul Glynn
- Department of Cell Physiology & Pharmacology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK.
| |
Collapse
|
13
|
Glutamate potentiates lipopolysaccharide-stimulated interleukin-10 release from neonatal rat spinal cord astrocytes. Neuroscience 2012; 207:12-24. [PMID: 22326966 DOI: 10.1016/j.neuroscience.2012.01.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/19/2012] [Accepted: 01/20/2012] [Indexed: 11/20/2022]
Abstract
Interleukin-10 (IL-10) has important anti-inflammatory effects and can be protective in inflammatory conditions, such as chronic pain and infection. Exploring factors that modulate IL-10 levels may provide insight into pathomechanisms of inflammatory conditions and may provide a method of neuroprotection during these conditions. Lipopolysaccharide (LPS) stimulation of astrocytes is a source of IL-10; hence, it is of interest to investigate factors that modulate this process. Glutamate is present in increased concentrations in inflammatory conditions, and astrocytes also express glutamate receptors. The present study, therefore, investigated whether glutamate modulates LPS stimulation of IL-10 release from neonatal spinal cord astrocytes. Enzyme-linked immunosorbent assays (ELISAs) were used to quantify IL-10 release from cultured neonatal spinal cord astrocytes, and reverse transcriptase-polymerase chain reaction (RT-PCR) was used to measure IL-10 mRNA expression. Glutamate (1 mM) significantly increased LPS (1 μg/ml)-stimulated IL-10 release from astrocytes by 166% and significantly upregulated IL-10 mRNA levels. Glutamate synergistically signaled through metabotropic glutamate receptor subgroups and the phospholipase C signaling pathway. Spinal cord astrocytes may, therefore, play a larger anti-inflammatory role than first thought in situations where glutamate and a high concentration of Toll-like receptor 4 (TLR4) agonists are present.
Collapse
|
14
|
Abstract
Abnormal choline metabolism is emerging as a metabolic hallmark that is associated with oncogenesis and tumour progression. Following transformation, the modulation of enzymes that control anabolic and catabolic pathways causes increased levels of choline-containing precursors and breakdown products of membrane phospholipids. These increased levels are associated with proliferation, and recent studies emphasize the complex reciprocal interactions between oncogenic signalling and choline metabolism. Because choline-containing compounds are detected by non-invasive magnetic resonance spectroscopy (MRS), increased levels of these compounds provide a non-invasive biomarker of transformation, staging and response to therapy. Furthermore, enzymes of choline metabolism, such as choline kinase, present novel targets for image-guided cancer therapy.
Collapse
Affiliation(s)
- Kristine Glunde
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, 720 Rutland Avenue, 212 Traylor Building, Baltimore, Maryland 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21231, USA
| | - Zaver M. Bhujwalla
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, 720 Rutland Avenue, 212 Traylor Building, Baltimore, Maryland 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21231, USA
| | - Sabrina M. Ronen
- Department of Radiology, University of California San Francisco School of Medicine, UCSF Mission Bay Campus, Byers Hall, San Francisco, California CA94158-2330, USA
| |
Collapse
|
15
|
Tang Y, Chen A. Curcumin prevents leptin raising glucose levels in hepatic stellate cells by blocking translocation of glucose transporter-4 and increasing glucokinase. Br J Pharmacol 2011; 161:1137-49. [PMID: 20977462 DOI: 10.1111/j.1476-5381.2010.00956.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Hyperleptinemia is commonly found in obese patients, associated with non-alcoholic steatohepatitis and hepatic fibrosis. Hepatic stellate cells (HSCs) are the most relevant effectors during hepatic fibrogenesis. We recently reported that leptin stimulated HSC activation, which was eliminated by curcumin, a phytochemical from turmeric. This study was designed to explore the underlying mechanisms, focusing on their effects on intracellular glucose in HSCs. We hypothesized that leptin stimulated HSC activation by elevating the level of intracellular glucose, which was eliminated by curcumin by inhibiting the membrane translocation of glucose transporter-4 (GLUT4) and inducing the conversion of glucose to glucose-6-phosphate (G-6-P). EXPERIMENTAL APPROACH Levels of intracellular glucose were measured in rat HSCs and immortalized human hepatocytes. Contents of GLUT4 in cell fractions were analysed by Western blotting analyses. Activation of signalling pathways was assessed by comparing phosphorylation levels of protein kinases. KEY RESULTS Leptin elevated the level of intracellular glucose in cultured HSCs, which was diminished by curcumin. Curcumin suppressed the leptin-induced membrane translocation of GLUT4 by interrupting the insulin receptor substrates/phosphatidyl inositol 3-kinase/AKT signalling pathway. Furthermore, curcumin stimulated glucokinase activity, increasing conversion of glucose to G-6-P. CONCLUSIONS AND IMPLICATIONS Curcumin prevented leptin from elevating levels of intracellular glucose in activated HSCs in vitro by inhibiting the membrane translocation of GLUT4 and stimulating glucose conversion, leading to the inhibition of HSC activation. Our results provide novel insights into mechanisms of curcumin in inhibiting leptin-induced HSC activation.
Collapse
Affiliation(s)
- Youcai Tang
- Department of Pathology, School of Medicine, Saint Louis University, 1100 S.Grand Boulevard, St Louis, MO 63104, USA
| | | |
Collapse
|
16
|
Werry E, Liu G, Lovelace M, Nagarajah R, Hickie I, Bennett M. Lipopolysaccharide-stimulated interleukin-10 release from neonatal spinal cord microglia is potentiated by glutamate. Neuroscience 2011; 175:93-103. [DOI: 10.1016/j.neuroscience.2010.10.080] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/28/2010] [Accepted: 10/30/2010] [Indexed: 01/18/2023]
|
17
|
Gibellini F, Smith TK. The Kennedy pathway--De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 2010; 62:414-28. [PMID: 20503434 DOI: 10.1002/iub.337] [Citation(s) in RCA: 323] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The glycerophospholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE) account for greater than 50% of the total phospholipid species in eukaryotic membranes and thus play major roles in the structure and function of those membranes. In most eukaryotic cells, PC and PE are synthesized by an aminoalcoholphosphotransferase reaction, which uses sn-1,2-diradylglycerol and either CDP-choline or CDP-ethanolamine, respectively. This is the last step in a biosynthetic pathway known as the Kennedy pathway, so named after Eugene Kennedy who elucidated it over 50 years ago. This review will cover various aspects of the Kennedy pathway including: each of the biosynthetic steps, the functions and roles of the phospholipid products PC and PE, and how the Kennedy pathway has the potential of being a chemotherapeutic target against cancer and various infectious diseases.
Collapse
Affiliation(s)
- Federica Gibellini
- Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife, Scotland, UK
| | | |
Collapse
|
18
|
Gabellieri C, Beloueche-Babari M, Jamin Y, Payne GS, Leach MO, Eykyn TR. Modulation of choline kinase activity in human cancer cells observed by dynamic 31P NMR. NMR IN BIOMEDICINE 2009; 22:456-461. [PMID: 19156696 DOI: 10.1002/nbm.1361] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Choline metabolites are widely studied in cancer research as biomarkers of malignancy and as indicators of therapeutic response. However, endogenous phosphocholine levels are determined by a number of processes that confound the interpretation of these measurements, including membrane transport rates and a series of enzyme catalysed reactions in the Kennedy pathway. Employing a dynamic (31)P NMR assay that is specific to choline kinase (ChoK) we have measured the rates of this enzyme reaction in cell lysates of MDA-MB-231 breast, PC-3 prostate and HeLa cervical cancer cells and in solutions of purified human ChoK. The rates are sensitive to inhibition by hemicholinium-3 (HC-3), a competitive ChoK inhibitor, and to N-[2-bromocinnamyl(amino)ethyl]-5-isoquinolinesulphonamide (H-89), an agent commercialized as a specific cyclic-AMP-dependent protein kinase A (PKA) inhibitor.
Collapse
Affiliation(s)
- Cristina Gabellieri
- Cancer Research UK Clinical Magnetic Resonance Research Group, The Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
H89 is marketed as a selective and potent inhibitor of protein kinase A (PKA). Since its discovery, it has been used extensively for evaluation of the role of PKA in the heart, osteoblasts, hepatocytes, smooth muscle cells, neuronal tissue, epithelial cells, etc. Despite the frequent use of H89, its mode of specific inhibition of PKA is still not completely understood. It has also been shown that H89 inhibits at least 8 other kinases, while having a relatively large number of PKA-independent effects which may seriously compromise interpretation of data. Thus, while recognizing its kinase inhibiting properties, it is advised that H89 should not be used as the single source of evidence of PKA involvement. H-89 should be used in conjunction with other PKA inhibitors, such as Rp-cAMPS or PKA analogs.
Collapse
Affiliation(s)
- A Lochner
- Dept. Biomedical Sciences, Faculty of Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | | |
Collapse
|
20
|
Choubey V, Maity P, Guha M, Kumar S, Srivastava K, Puri SK, Bandyopadhyay U. Inhibition of Plasmodium falciparum choline kinase by hexadecyltrimethylammonium bromide: a possible antimalarial mechanism. Antimicrob Agents Chemother 2006; 51:696-706. [PMID: 17145794 PMCID: PMC1797733 DOI: 10.1128/aac.00919-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Choline kinase is the first enzyme in the Kennedy pathway (CDP-choline pathway) for the biosynthesis of the most essential phospholipid, phosphatidylcholine, in Plasmodium falciparum. In addition, choline kinase also plays a pivotal role in trapping essential polar head group choline inside the malaria parasite. Recently, Plasmodium falciparum choline kinase (PfCK) has been cloned, overexpressed, and purified. However, the function of this enzyme in parasite growth and survival has not been evaluated owing to the lack of a suitable inhibitor. Purified recombinant PfCK enabled us to identify an inhibitor of PfCK, hexadecyltrimethylammonium bromide (HDTAB), which has a very close structural resemblance to hexadecylphosphocholine (miltefosin), the well-known antiproliferative and antileishmanial drug. HDTAB inhibited PfCK in a dose-dependent manner and offered very potent antimalarial activity in vitro against Plasmodium falciparum. Moreover, HDTAB exhibited profound antimalarial activity in vivo against the rodent malaria parasite Plasmodium yoelii (N-67 strain). Interestingly, parasites at the trophozoite and schizont stages were found to be particularly sensitive to HDTAB. The stage-specific antimalarial effect of HDTAB correlated well with the expression pattern of PfCK in P. falciparum, which was observed by reverse transcription-PCR and immunofluorescence microscopy. Furthermore, the antimalarial activity of HDTAB paralleled the decrease in phosphatidylcholine content, which was found to correlate with the decreased phosphocholine generation. These results suggest that inhibition of choline kinase by HDTAB leads to decreased phosphocholine, which in turn causes a decrease in phosphatidylcholine biosynthesis, resulting in death of the parasite.
Collapse
Affiliation(s)
- Vinay Choubey
- Division of Drug Target Discovery and Development, Central Drug Research Institute, Chatter Manzil Palace, Lucknow, Uttar Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
21
|
Iorio E, Mezzanzanica D, Alberti P, Spadaro F, Ramoni C, D'Ascenzo S, Millimaggi D, Pavan A, Dolo V, Canevari S, Podo F. Alterations of Choline Phospholipid Metabolism in Ovarian Tumor Progression. Cancer Res 2005; 65:9369-76. [PMID: 16230400 DOI: 10.1158/0008-5472.can-05-1146] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent characterization of abnormal phosphatidylcholine metabolism in tumor cells by nuclear magnetic resonance (NMR) has identified novel fingerprints of tumor progression that are potentially useful as clinical diagnostic indicators. In the present study, we analyzed the concentrations of phosphatidylcholine metabolites, activities of phosphocholine-producing enzymes, and uptake of [methyl-14C]choline in human epithelial ovarian carcinoma cell lines (EOC) compared with normal or immortalized ovary epithelial cells (EONT). Quantification of phosphatidylcholine metabolites contributing to the 1H NMR total choline resonance (3.20-3.24 ppm) revealed intracellular [phosphocholine] and [total choline] of 2.3 +/- 0.9 and 5.2 +/- 2.4 nmol/10(6) cells, respectively, with a glycerophosphocholine/phosphocholine ratio of 0.95 +/- 0.93 in EONT cells; average [phosphocholine] was 3- to 8-fold higher in EOC cells (P < 0.0001), becoming the predominant phosphatidylcholine metabolite, whereas average glycerophosphocholine/phosphocholine values decreased significantly to < or =0.2. Two-dimensional (phosphocholine/total choline, [total choline]) and (glycerophosphocholine/total choline, [total choline]) maps allowed separate clustering of EOC from EONT cells (P < 0.0001, 95% confidence limits). Rates of choline kinase activity in EOC cells were 12- to 24-fold higher (P < 0.03) than those in EONT cells (basal rate, 0.5 +/- 0.1 nmol/10(6) cells/h), accounting for a consistently elevated (5- to 15-fold) [methyl-14C]choline uptake after 1-hour incubation (P < 0.0001). The overall activity of phosphatidylcholine-specific phospholipase C and phospholipase D was also higher ( approximately 5-fold) in EOC cells, suggesting that both biosynthetic and catabolic pathways of the phosphatidylcholine cycle likely contribute to phosphocholine accumulation. Evidence of abnormal phosphatidylcholine metabolism might have implications in EOC biology and might provide an avenue to the development of noninvasive clinical tools for EOC diagnosis and treatment follow-up.
Collapse
Affiliation(s)
- Egidio Iorio
- Section of Molecular and Cellular Imaging, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rodríguez-González A, Ramirez de Molina A, Fernández F, Lacal JC. Choline kinase inhibition induces the increase in ceramides resulting in a highly specific and selective cytotoxic antitumoral strategy as a potential mechanism of action. Oncogene 2004; 23:8247-59. [PMID: 15378008 DOI: 10.1038/sj.onc.1208045] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Choline kinase (ChoK, E.C. 2.7.1.32) is involved in the synthesis of phosphatidylcholine (PC), and has been found to be increased in human tumors and tumor-derived cell lines. Furthermore, ChoK inhibitors have been reported to show a potent and selective antitumoral activity both in vitro and in vivo. Here, we provide the basis for a rational understanding of the antitumoral activity of ChoK inhibitors. In normal cells, blockage of de novo phosphorylcholine (PCho) synthesis by inhibition of ChoK promotes the dephosphorylation of pRb, resulting in a reversible cell cycle arrest at G0/G1 phase. In contrast, ChoK inhibition in tumor cells renders cells unable to arrest in G0/G1 as manifested by a lack of pRb dephosphorylation. Furthermore, tumor cells specifically suffer a drastic wobble in the metabolism of main membrane lipids PC and sphingomyelin (SM). This lipid disruption results in the enlargement of the intracellular levels of ceramides. As a consequence, normal cells remain unaffected, but tumor cells are promoted to apoptosis. Thus, we provide in this study the rationale for the potential clinical use of ChoK inhibitors.
Collapse
Affiliation(s)
- Agustín Rodríguez-González
- Translational Oncology Unit, Department of Molecular and Cellular Biology of Cancer, Instituto de Investigaciones Biomédicas, CSIC, Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
23
|
Abstract
Choline kinase (CK) catalyzes the first phosphorylation reaction in the CDP-choline pathway for the biosynthesis of phosphatidylcholine (PC), yielding phosphocholine (P-Cho) from choline and ATP in the presence of Mg(2+). This enzyme exists in mammalian cells as at least three isoforms that are encoded by two separate genes termed ck-alpha and ck-beta. Each isoform is not active in its monomeric form. The active enzyme consists of either their homo- or hetero-dimeric (or oligomeric) forms. In recent years, the roles of CK in cell growth and cell stress/defense mechanisms have been intensely investigated. These functions of CK do not seem to be directly related to the net PC biosynthesis but predict another important role of this enzyme in certain cell physiology. This review summarizes briefly the recent progress of mammalian CK study which will include the gene structure of each isoform and its possible transcriptional regulation, the active configuration of the enzyme, induction of the particular isoform in chemically induced cell stress, and the possible role of this enzyme as well as of its reaction product, P-Cho, in cell growth and other cellular physiology.
Collapse
Affiliation(s)
- Chieko Aoyama
- Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyodaku, Tokyo 101-0062, Japan
| | | | | |
Collapse
|
24
|
Cao A, Ramos-Martínez JI, Barcia R. In vitro effects of LPS, IL-2, PDGF and CRF on haemocytes of Mytilus galloprovincialis Lmk. FISH & SHELLFISH IMMUNOLOGY 2004; 16:215-225. [PMID: 15123325 DOI: 10.1016/s1050-4648(03)00080-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2002] [Revised: 05/01/2003] [Accepted: 05/28/2003] [Indexed: 05/24/2023]
Abstract
The cells in charge of the innate immune response in the marine mussel Mytilus galloprovincialis Lmk. are the haemocytes. These cells respond in different ways to agents such as lipopolysaccharide (LPS), interleukin-2 (IL-2), platelet-derived growth factor (PDGF) and corticotropin releasing factor (CRF). After stimulation of the haemocytes, the expression of molecules reactive with monoclonal antibodies raised to the alpha chain of the IL-2 receptor, present in their membrane, differed depending on the agent used. The same happened with regard to the levels of dopamine, adrenaline and noradrenaline released to the medium by the haemocytes. It should also be noted that no catecholamine release was detected and the level of expression of IL-2Ralpha showed no significant variation in cultured cells that had not been treated with inducers. These facts would indicate that most haemocytes were in the same starting condition at the moment that the stimulation was performed. Therefore, cultured haemocytes can be a highly reliable model in the study of the innate immune system.
Collapse
Affiliation(s)
- Asunción Cao
- Departamento de Bioquímica y Biología Molecular, Universidad de Santiago de Compostela, Facultad de Veterinaria, Campus de Lugo, E-27002 Lugo, Spain
| | | | | |
Collapse
|
25
|
Rodríguez-González A, Ramírez de Molina A, Fernández F, Ramos MA, del Carmen Núñez M, Campos J, Lacal JC. Inhibition of choline kinase as a specific cytotoxic strategy in oncogene-transformed cells. Oncogene 2004; 22:8803-12. [PMID: 14654777 DOI: 10.1038/sj.onc.1207062] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cancer treatment is in the need of selective drugs that can interfere specifically with signalling pathways affected during the carcinogenic process. Identification of new potential molecular targets is the key event in the design of new anticancer strategies. Once identified, attempts for the generation of specific molecules to regulate their function can be achieved. The relevance of deregulation of choline kinase (ChoK, E.C. 2.7.1.32) in oncogene-driven cell transformation has been previously demonstrated. Here we provide strong evidence that MN58b, a selective inhibitor of ChoK, is rather specific to this enzyme, with no effect on a variety of oncogene-activated signalling pathways involved in the regulation of cell proliferation. MN58b does not affect MAPKs, PI3K, and other enzymes involved in the regulation of phospholipid metabolism such as phospholipases C, D, and A2, CTP:phosphocholine cytidylyltransferase, or diacylglycerol choline-phosphotransferase. Consistent with this specificity, ectopic expression of ChoK resulted in resistance to its inhibitor. Finally, nontransformed cells were able to resume cell proliferation after removal of the drug, while transformed cells were irreversibly affected. These results indicate that inhibition of ChoK is a rather specific strategy for the cytotoxic treatment of transformed cells.
Collapse
Affiliation(s)
- Agustín Rodríguez-González
- Department of Molecular and Cellular Biology of Cancer, Instituto de Investigaciones Biomédicas (CSIC), Arturo Duperier 4, Madrid 28029, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Malagoli D, Gobba F, Ottaviani E. Effects of 50-Hz magnetic fields on the signalling pathways of fMLP-induced shape changes in invertebrate immunocytes: the activation of an alternative "stress pathway". BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1620:185-90. [PMID: 12595088 DOI: 10.1016/s0304-4165(02)00531-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
N-formyl-Meth-Leu-Phe (fMLP)-induced immunocyte shape changes in the mussel Mytilus galloprovincialis through both the phosphatidylinositol and the cAMP pathways are studied. Fifteen- and thirty-minute exposures of mussels to 50-Hz magnetic fields (MFs) at intensities of 300 and 400 microT do not provoke permanent cell damage, since immunocytes maintain the capacity to respond to fMLP. This avoidance of external insult seems to be achieved through the activation of a "stress pathway" which is not functionally detectable in nonexposed animals and which involves mitogen activated protein (MAP) kinase members. This phenomenon is clearly evident at 400 microT. Contemporaneously, a different expression of Jun transcriptional regulatory proteins is also found.
Collapse
Affiliation(s)
- Davide Malagoli
- Department of Animal Biology, University of Modena and Reggio Emilia, via Campi 213/D, Italy
| | | | | |
Collapse
|
27
|
Ottaviani E, Malagoli D, Franchini A. Invertebrate Humoral Factors: Cytokines as Mediators of Cell Survival. INVERTEBRATE CYTOKINES AND THE PHYLOGENY OF IMMUNITY 2003; 34:1-25. [PMID: 14979662 DOI: 10.1007/978-3-642-18670-7_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The presence and the different functional aspects of cytokine-related molecules in invertebrates are described. Cytokine-like factors affect immune functions, such as cell motility, chemotaxis, phagocytosis and cytotoxicity. In particular, cell migration shows a species-specific effect for IL-1alpha and TNF-alpha and a dose-correlated effect for IL-8, PDGF-AB and TGF-beta1. Apart from some exceptions, the phagocytic effect increases significantly at all the concentrations tested and with all the species used. PDGF-AB, TGF-beta1 and IL-8 provoke conformational changes in mollusk immunocytes, involving the signaling transduction pathways of phosphatidylinositol and cAMP. PDGF-AB and TGF-beta1 partially inhibit the induced programmed cell death in an insect cell line, and the survival effect is mediated by the activation of phosphatidylinositol 3-kinase, PKA and PKC. The exogenous administration of these growth factors in an invertebrate wound repair model showed that they are able to control the wound environment and promote the repair process by accelerating the coordinated activities involved. Moreover, IL-1alpha, IL-2 and TNF-alpha are able to induce nitric oxide synthase. PDGF-AB and TGF-beta1 provoke an increase in neutral endopeptidase-24.11 (NEP)-like activity in membrane preparations from mollusk immunocytes, while NEP deactivates the PDGF-AB- and TGF-beta1-induced cell shape changes. Cytokines are also involved in invertebrate stress response in a manner extremely similar to that in vertebrates. Several studies suggest the existence on the mollusk immunocyte membrane of an ancestral receptor capable of binding both IL-2 and CRH. Furthermore, the competition found between CRH and a large number of cytokines supports the idea that invertebrate cytokine receptors show a certain degree of promiscuity. The multiple functions of cytokines detected in invertebrates underline another characteristic of mammalian cytokines, i.e. their great pleiotropicity. Altogether, the studies on the function of the invertebrate humoral factors show a close overlapping with those found in vertebrates, and the hypothesized missing correlation between invertebrate and vertebrate cytokine genes that is emerging from the limited molecular biology data present in literature might represent a very peculiar strategy followed by Nature in the evolution of cytokines.
Collapse
Affiliation(s)
- E Ottaviani
- Department of Animal Biology, University of Modena and Reggio Emilia, Via Campi 213/D, 41100 Modena, Italy
| | | | | |
Collapse
|
28
|
Malagoli D, Franchini A, Ottaviani E. Synergistic role of cAMP and IP(3) in corticotropin-releasing hormone-induced cell shape changes in invertebrate immunocytes. Peptides 2000; 21:175-82. [PMID: 10764942 DOI: 10.1016/s0196-9781(99)00203-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunocytes from the mollusc Mytilus galloprovincialis express corticotropin-releasing hormone (CRH) receptor subtype (CRH-R1 and CRH-R2)-like mRNAs. Using computer-assisted microscopic image analysis, we have found that exogenous CRH provokes changes in the cellular shape of immunocytes, and that this response is extracellular Ca(2+)-dependent. The various inhibitors of transduction signaling pathways, i.e. suramin sodium, 2', 5'-dideoxyadenosine, neomycin sulfate, calphostin C, H-89, and wortmannin, completely or partially inhibit these changes. The present findings demonstrate that PKA, PKC, and PKB/Akt are involved in CRH-induced cell shape changes in immunocytes, and that the cellular effect of CRH needs the synergistic action of the two second messengers, cAMP and IP(3).
Collapse
Affiliation(s)
- D Malagoli
- Department of Animal Biology, University of Modena and Reggio Emilia, via Berengario, 14-41100, Modena, Italy.
| | | | | |
Collapse
|
29
|
Ottaviani E, Malagoli D, Kletsas D. Platelet-derived growth factor and transforming growth factor-β induce shape changes in invertebrate immunocytes via multiple signalling pathways and provoke the expression of Fos-, Jun- and SMAD-family members. Comp Biochem Physiol B Biochem Mol Biol 1999. [DOI: 10.1016/s0305-0491(99)00012-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Sassi D, Kletsas D, Ottaviani E. Interactions of signaling pathways in ACTH (1-24)-induced cell shape changes in invertebrate immunocytes. Peptides 1998; 19:1105-10. [PMID: 9700762 DOI: 10.1016/s0196-9781(98)00039-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ACTH (1-24) induces cell shape changes in the immunocytes of the bivalve mollusc, Mytilus galloprovincialis. Using computer-assisted microscopic image analysis, we have found that the G protein antagonist suramin sodium, the adenylate cyclase inhibitor 2',5'-dideoxyadenosine, and the protein kinase inhibitor staurosporine inhibit this effect. The highly specific inhibitors H-89 (for protein kinase A) and calphostin C (for protein kinase C) only inhibited partially the morphological alterations. In contrast, the simultaneous action of H-89 and calphostin C completely blocked these changes. The above findings indicate that ACTH (1-24) induces cell shape changes in molluscan immunocytes via adenylate cyclase/cAMP/protein kinase A pathway, as well as the activation of protein kinase C.
Collapse
Affiliation(s)
- D Sassi
- Department of Animal Biology, University of Modena, Italy
| | | | | |
Collapse
|
31
|
Plevin R, Malarkey K, Aidulis D, McLees A, Gould GW. Cyclic AMP inhibitors inhibits PDGF-stimulated mitogen-activated protein kinase activity in rat aortic smooth muscle cells via inactivation of c-Raf-1 kinase and induction of MAP kinase phosphatase-1. Cell Signal 1997; 9:323-8. [PMID: 9218135 DOI: 10.1016/s0898-6568(96)00193-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In rat aortic smooth muscle cells (RASMC), pretreatment with forskolin inhibited the activation of p42/44 isoforms of mitogen-activated protein kinase (MAP) kinase stimulated in response to low concentrations of PDGF (10 ng/ml). This correlated with a strong inhibition of PDGF-stimulated MEK and C-Raf-1 kinase activity. However, the effect of forskolin could be surmounted by increasing the concentration of PDGF. Under such conditions forskolin was only effective against prolonged MAP kinase activation. The ability of forskolin to inhibit the late phase of MAP kinase activity was reversed by pretreatment of the cells with cycloheximide, suggesting the involvement of a protein synthesis step. This was not due to effects upstream of MAP kinase since PDGF-stimulated MEK activation was decreased by cycloheximide, an effect potentiated by forskolin. Forskolin stimulated the induction of the dual specific phosphatase MAP kinase phosphatase-1 (MKP-1), although this effect was small relative to levels induced by PDGF and angiotensin II. However, PDGF stimulated induction of MKP-1 was abolished by the protein kinase A inhibitor H89 and this correlated with the reversal of forskolin-mediated inhibition of PDGF-stimulated MAP kinase activity. These studies implicate a role for intracellular cyclic AMP in at least two aspects of MAP kinase signaling, including both the inhibition of Raf-1 activation and the induction of MKP-1.
Collapse
Affiliation(s)
- R Plevin
- Department of Physiology & Pharmacology, University of Strathclyde, Glasgow, UK
| | | | | | | | | |
Collapse
|
32
|
Wieprecht M, Wieder T, Paul C, Geilen CC, Orfanos CE. Evidence for phosphorylation of CTP:phosphocholine cytidylyltransferase by multiple proline-directed protein kinases. J Biol Chem 1996; 271:9955-61. [PMID: 8626633 DOI: 10.1074/jbc.271.17.9955] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Reversible phosphorylation of CTP:phosphocholine cytidylyltransferase, the rate-limiting enzyme of phosphatidylcholine biosynthesis, is thought to play a role in regulating its activity. In the present study, the hypothesis that proline-directed kinases play a major role in phosphorylating cytidylyltransferase is substantiated using a c-Ha-ras-transfected clone of the human keratinocyte cell line HaCaT. Cellular extracts from epidermal growth factor-stimulated HaCaT cells and from ras-transfected HaCaT cells phosphorylated cytidylyltransferase much stronger as compared with extracts from quiescent HaCaT cells. The tryptic phosphopeptide pattern of cytidylyltransferase phosphorylated by cell-free extracts from ras-transfected HaCaT cells was similar compared with the patterns of cytidylyltransferase phosphorylated by p44mpkmitogen-activated protein kinase and p34cdc2 kinase in vitro, whereas in the case of casein kinase II the pattern was different. Furthermore, in c-Ha-ras-transfected HaCaT cells the in vivo phosphorylation state of cytidylyltransferase was 2-fold higher as compared with untransfected HaCaT cells. This higher phosphorylation of cytidylyltransferase in the ras-transfected clone was reduced to a level below the phosphorylation of cytidylyltransferase in untransfected cells, using olomoucine, a specific inhibitor of proline-directed kinases. The reduced phosphorylation of cytidylyltransferase in olomoucine-treated cells correlated with an enhanced stimulation of enzyme activity by oleic acid.
Collapse
Affiliation(s)
- M Wieprecht
- Institute of Molecular Biology and Biochemistry, University Medical Center Benjamin Franklin, Free University of Berlin, Berlin D-12200, Germany
| | | | | | | | | |
Collapse
|
33
|
Geilen CC, Wieder T, Boremski S, Wieprecht M, Orfanos CE. c-Ha-ras oncogene expression increases choline uptake, CTP: phosphocholine cytidylyltransferase activity and phosphatidylcholine biosynthesis in the immortalized human keratinocyte cell line HaCaT. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1299:299-305. [PMID: 8597584 DOI: 10.1016/0005-2760(95)00221-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effect of c-Ha-ras transfection on phosphatidylcholine biosynthesis of the keratinocyte cell line HaCaT was investigated. It was shown that ras-transfection caused a 3-fold increase of choline incorporation into phosphatidylcholine. By investigating the mechanisms underlying this phenomenon, two targets were obtained. First, the choline uptake was elevated by 2-fold in ras-transfected HaCaT cells as compared with untransfected HaCaT cells, and second, the activity of the rate-limiting enzyme of phosphatidylcholine biosynthesis, CTP:phosphocholine cytidylyltransferase, was increased by 43%. Stimulation of HaCaT cells and ras-transfected HaCaT cells with oleate revealed that the increased activity of cytidylyltransferase might be due to a higher level of enzyme. In these experiments, a 75% increase of the specific activity of fully stimulated, membrane-bound cytidylyltransferase was found in ras-transfected HaCaT cells. Choline kinase which has been previously described as a target of ras-transfection in fibroblasts was unaffected.
Collapse
Affiliation(s)
- C C Geilen
- Department of Dermatology, Univeristy Medical Center Benjamin Franklin, Free University of Berlin, Germany
| | | | | | | | | |
Collapse
|
34
|
Wieder T, Perlitz C, Wieprecht M, Huang RT, Geilen CC, Orfanos CE. Two new sphingomyelin analogues inhibit phosphatidylcholine biosynthesis by decreasing membrane-bound CTP: phosphocholine cytidylyltransferase levels in HaCaT cells. Biochem J 1995; 311 ( Pt 3):873-9. [PMID: 7487944 PMCID: PMC1136082 DOI: 10.1042/bj3110873] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The effects of two newly synthesized sphingomyelin analogues on phosphatidylcholine biosynthesis were investigated in the immortalized human keratinocyte cell line HaCaT. N-Acetyl-erythro-sphingosine-1-phosphocholine (AcSM) and N-octanoyl-erythro-sphingosine-1-phosphocholine (OcSM) inhibited the incorporation of choline into phosphatidylcholine with half-inhibitory concentrations (IC50) of 6 micrograms/ml and 10 micrograms/ml respectively. Further experiments revealed that AcSM and OcSM interfered with the translocation of the rate-limiting enzyme of phosphatidylcholine biosynthesis, CTP:phosphocholine cytidylyltransferase (EC 2.7.7.15), in HaCaT cells and inhibited cytidylyltransferase activity in vitro. Despite the fact that OcSM was a potent inhibitor of cytidylyltransferase in vitro, its effects on phosphatidylcholine biosynthesis and translocation of cytidylyltransferase in HaCaT cells were less pronounced as compared with AcSM. Finally, we showed that the comparatively strong effects of AcSM in cell culture experiments were due to the uptake of large amounts of this sphingomyelin analogue into the cells. The results presented demonstrate that the activity of cytidylyltransferase may be negatively regulated by a high ratio of choline head group-containing sphingolipids.
Collapse
Affiliation(s)
- T Wieder
- Department of Dermatology, University Medical Center Benjamin Franklin, Free University of Berlin, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Wieprecht M, Wieder T, Geilen CC, Orfanos CE. Growth factors stimulate phosphorylation of CTP:phosphocholine cytidylyltransferase in HeLa cells. FEBS Lett 1994; 353:221-4. [PMID: 7926053 DOI: 10.1016/0014-5793(94)01040-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of insulin and epidermal growth factor on the phosphorylation of CTP:phosphocholine cytidylyltransferase (EC 2.7.7.15) was investigated in HeLa cells. For the first time, cytidylyltransferase phosphorylation was shown to be influenced by growth factors in cell culture experiments. The rephosphorylation of cytidylyltransferase after an oleate-mediated dephosphorylation and translocation to membranes was increased after 2 min in the presence of insulin or epidermal growth factor by 99% and 76%, respectively, compared with controls. However, the increased phosphorylation of cytidylyltransferase did not have an effect on its subcellular distribution. Furthermore, purified cytidylyltransferase preincubated with alkaline phosphatase is a substrate for p44mapk, a member of the mitogen-activated protein (MAP) kinase family downstream of the growth factor receptors, in vitro. In accordance with the in vivo data, in vitro phosphorylation of cytidylyltransferase by p44mapk occurred after 2 min.
Collapse
Affiliation(s)
- M Wieprecht
- Institute of Molecular Biology and Biochemistry, University Medical Center Benjamin Franklin, Free University of Berlin, Germany
| | | | | | | |
Collapse
|
36
|
Weisskopf MG, Castillo PE, Zalutsky RA, Nicoll RA. Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science 1994; 265:1878-82. [PMID: 7916482 DOI: 10.1126/science.7916482] [Citation(s) in RCA: 487] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Repetitive activation of hippocampal mossy fibers evokes a long-term potentiation (LTP) of synaptic responses in pyramidal cells in the CA3 region that is independent of N-methyl-D-aspartate receptor activation. Previous results suggest that the site for both the induction and expression of this form of LTP is presynaptic. Experimental elevation of cyclic adenosine 3',5'-monophosphate (cAMP) both mimics and interferes with tetanus-induced mossy fiber LTP, and blockers of the cAMP cascade block mossy fiber LTP. It is proposed that calcium entry into the presynaptic terminal may activate Ca(2+)-calmodulin-sensitive adenylyl cyclase I which, through protein kinase A, causes a persistent enhancement of evoked glutamate release.
Collapse
Affiliation(s)
- M G Weisskopf
- Neuroscience Graduate Program, University of California, San Francisco 94143-0450
| | | | | | | |
Collapse
|