1
|
Merlo R, Mattossovich R, Genta M, Valenti A, Di Mauro G, Minassi A, Miggiano R, Perugino G. First thermostable CLIP-tag by rational design applied to an archaeal O-alkyl-guanine-DNA-alkyl-transferase. Comput Struct Biotechnol J 2022; 20:5275-5286. [PMID: 36212535 PMCID: PMC9519396 DOI: 10.1016/j.csbj.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Self-labelling protein tags (SLPs) are resourceful tools that revolutionized sensor imaging, having the versatile ability of being genetically fused with any protein of interest and undergoing activation with alternative probes specifically designed for each variant (namely, SNAP-tag, CLIP-tag and Halo-tag). Commercially available SLPs are highly useful in studying molecular aspects of mesophilic organisms, while they fail in characterizing model organisms that thrive in harsh conditions. By applying an integrated computational and structural approach, we designed a engineered variant of the alkylguanine-DNA-alkyl-transferase (OGT) from the hyper-thermophilic archaeon Saccharolobus solfataricus (SsOGT), with no DNA-binding activity, able to covalently react with O6-benzyl-cytosine (BC-) derivatives, obtaining the first thermostable CLIP-tag, named SsOGT-MC8. The presented construct is able to recognize and to covalently bind BC- substrates with a marked specificity, displaying a very low activity on orthogonal benzyl-guanine (BG-) substrate and showing a remarkable thermal stability that broadens the applicability of SLPs. The rational mutagenesis that, starting from SsOGT, led to the production of SsOGT-MC8 was first evaluated by structural predictions to precisely design the chimeric construct, by mutating specific residues involved in protein stability and substrate recognition. The final construct was further validated by biochemical characterization and X-ray crystallography, allowing us to present here the first structural model of a CLIP-tag establishing the molecular determinants of its activity, as well as proposing a general approach for the rational engineering of any O6-alkylguanine-DNA-alkyl-transferase turning it into a SNAP- and a CLIP-tag variant.
Collapse
|
2
|
Farag N, Mattossovich R, Merlo R, Nierzwicki Ł, Palermo G, Porchetta A, Perugino G, Ricci F. Folding-upon-Repair DNA Nanoswitches for Monitoring the Activity of DNA Repair Enzymes. Angew Chem Int Ed Engl 2021; 60:7283-7289. [PMID: 33415794 PMCID: PMC8783695 DOI: 10.1002/anie.202016223] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 09/28/2023]
Abstract
We present a new class of DNA-based nanoswitches that, upon enzymatic repair, could undergo a conformational change mechanism leading to a change in fluorescent signal. Such folding-upon-repair DNA nanoswitches are synthetic DNA sequences containing O6 -methyl-guanine (O6 -MeG) nucleobases and labelled with a fluorophore/quencher optical pair. The nanoswitches are rationally designed so that only upon enzymatic demethylation of the O6 -MeG nucleobases they can form stable intramolecular Hoogsteen interactions and fold into an optically active triplex DNA structure. We have first characterized the folding mechanism induced by the enzymatic repair activity through fluorescent experiments and Molecular Dynamics simulations. We then demonstrated that the folding-upon-repair DNA nanoswitches are suitable and specific substrates for different methyltransferase enzymes including the human homologue (hMGMT) and they allow the screening of novel potential methyltransferase inhibitors.
Collapse
Affiliation(s)
- Nada Farag
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Rosanna Mattossovich
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Rosa Merlo
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Łukasz Nierzwicki
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA, 52512, USA
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA, 52512, USA
- Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA, 52512, USA
| | - Alessandro Porchetta
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Giuseppe Perugino
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Francesco Ricci
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
3
|
Farag N, Mattossovich R, Merlo R, Nierzwicki Ł, Palermo G, Porchetta A, Perugino G, Ricci F. Folding‐upon‐Repair DNA Nanoswitches for Monitoring the Activity of DNA Repair Enzymes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nada Farag
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Rosanna Mattossovich
- Institute of Biosciences and BioResources National Research Council of Italy Via Pietro Castellino 111 80131 Naples Italy
| | - Rosa Merlo
- Institute of Biosciences and BioResources National Research Council of Italy Via Pietro Castellino 111 80131 Naples Italy
| | - Łukasz Nierzwicki
- Department of Bioengineering University of California Riverside 900 University Avenue Riverside CA 52512 USA
| | - Giulia Palermo
- Department of Bioengineering University of California Riverside 900 University Avenue Riverside CA 52512 USA
- Department of Chemistry University of California Riverside 900 University Avenue Riverside CA 52512 USA
| | - Alessandro Porchetta
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Giuseppe Perugino
- Institute of Biosciences and BioResources National Research Council of Italy Via Pietro Castellino 111 80131 Naples Italy
| | - Francesco Ricci
- Department of Chemistry University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
4
|
Mattossovich R, Merlo R, Miggiano R, Valenti A, Perugino G. O6-alkylguanine-DNA Alkyltransferases in Microbes Living on the Edge: From Stability to Applicability. Int J Mol Sci 2020; 21:E2878. [PMID: 32326075 PMCID: PMC7216122 DOI: 10.3390/ijms21082878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
The genome of living cells is continuously exposed to endogenous and exogenous attacks, and this is particularly amplified at high temperatures. Alkylating agents cause DNA damage, leading to mutations and cell death; for this reason, they also play a central role in chemotherapy treatments. A class of enzymes known as AGTs (alkylguanine-DNA-alkyltransferases) protects the DNA from mutations caused by alkylating agents, in particular in the recognition and repair of alkylated guanines in O6-position. The peculiar irreversible self-alkylation reaction of these enzymes triggered numerous studies, especially on the human homologue, in order to identify effective inhibitors in the fight against cancer. In modern biotechnology, engineered variants of AGTs are developed to be used as protein tags for the attachment of chemical ligands. In the last decade, research on AGTs from (hyper)thermophilic sources proved useful as a model system to clarify numerous phenomena, also common for mesophilic enzymes. This review traces recent progress in this class of thermozymes, emphasizing their usefulness in basic research and their consequent advantages for in vivo and in vitro biotechnological applications.
Collapse
Affiliation(s)
- Rosanna Mattossovich
- Institute of Bioscience and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy; (R.M.); (R.M.)
| | - Rosa Merlo
- Institute of Bioscience and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy; (R.M.); (R.M.)
| | - Riccardo Miggiano
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy;
| | - Anna Valenti
- Institute of Bioscience and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy; (R.M.); (R.M.)
| | - Giuseppe Perugino
- Institute of Bioscience and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy; (R.M.); (R.M.)
| |
Collapse
|
5
|
Sacre L, O'Flaherty DK, Archambault P, Copp W, Peslherbe GH, Muchall HM, Wilds CJ. O 4 -Alkylated-2-Deoxyuridine Repair by O 6 -Alkylguanine DNA Alkyltransferase is Augmented by a C5-Fluorine Modification. Chembiochem 2018; 19:575-582. [PMID: 29243336 DOI: 10.1002/cbic.201700660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 11/10/2022]
Abstract
Oligonucleotides containing various adducts, including ethyl, benzyl, 4-hydroxybutyl and 7-hydroxyheptyl groups, at the O4 atom of 5-fluoro-O4 -alkyl-2'-deoxyuridine were prepared by solid-phase synthesis. UV thermal denaturation studies demonstrated that these modifications destabilised the duplex by approximately 10 °C, relative to the control containing 5-fluoro-2'-deoxyuridine. Circular dichroism spectroscopy revealed that these modified duplexes all adopted a B-form DNA structure. O6 -Alkylguanine DNA alkyltransferase (AGT) from humans (hAGT) was most efficient at repair of the 5-fluoro-O4 -benzyl-2'-deoxyuridine adduct, whereas the thymidine analogue was refractory to repair. The Escherichia coli AGT variant (OGT) was also efficient at removing O4 -ethyl and benzyl adducts of 5-fluoro-2-deoxyuridine. Computational assessment of N1-methyl analogues of the O4 -alkylated nucleobases revealed that the C5-fluorine modification had an influence on reducing the electron density of the O4 -Cα bond, relative to thymine (C5-methyl) and uracil (C5-hydrogen). These results reveal the positive influence of the C5-fluorine atom on the repair of larger O4 -alkyl adducts to expand knowledge of the range of substrates able to be repaired by AGT.
Collapse
Affiliation(s)
- Lauralicia Sacre
- Department of Chemistry and Biochemistry and, Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke St. West, Montréal, Québec, H4B 1R6, Canada
| | - Derek K O'Flaherty
- Department of Chemistry and Biochemistry and, Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke St. West, Montréal, Québec, H4B 1R6, Canada.,Present address: Howard Hughes Medical Institute, Department of Molecular Biology and, Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Philippe Archambault
- Department of Chemistry and Biochemistry and, Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke St. West, Montréal, Québec, H4B 1R6, Canada
| | - William Copp
- Department of Chemistry and Biochemistry and, Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke St. West, Montréal, Québec, H4B 1R6, Canada
| | - Gilles H Peslherbe
- Department of Chemistry and Biochemistry and, Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke St. West, Montréal, Québec, H4B 1R6, Canada
| | - Heidi M Muchall
- Department of Chemistry and Biochemistry and, Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke St. West, Montréal, Québec, H4B 1R6, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry and, Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke St. West, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
6
|
McManus FP, Wilds CJ. O(6) -alkylguanine-DNA alkyltransferase-mediated repair of O(4) -alkylated 2'-deoxyuridines. Chembiochem 2014; 15:1966-77. [PMID: 25087488 DOI: 10.1002/cbic.201402169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Indexed: 11/06/2022]
Abstract
O(6) -Alkylguanine-DNA alkyltransferases (AGTs) are responsible for the removal of O(6) -alkyl 2'-deoxyguanosine (dG) and O(4) -alkyl thymidine (dT) adducts from the genome. Unlike the E. coli OGT (O(6) -alkylguanine-DNA-alkyltransferase) protein, which can repair a range of O(4) -alkyl dT lesions, human AGT (hAGT) only removes methyl groups poorly. To uncover the influence of the C5 methyl group of dT on AGT repair, oligonucleotides containing O(4) -alkyl 2'-deoxyuridines (dU) were prepared. The ability of E. coli AGTs (Ada-C and OGT), human AGT, and an OGT/hAGT chimera to remove O(4) -methyl and larger adducts (4-hydroxybutyl and 7-hydroxyheptyl) from dU were examined and compared to those relating to the corresponding dT species. The absence of the C5 methyl group resulted in an increase in repair observed for the O(4) -methyl adducts by hAGT and the chimera. The chimera was proficient at repairing larger adducts at the O(4) atom of dU. There was no observed correlation between the binding affinities of the AGT homologues to adduct-containing oligonucleotides and the amounts of repair measured.
Collapse
Affiliation(s)
- Francis P McManus
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6 (Canada)
| | | |
Collapse
|
7
|
Arozarena I, Goicoechea I, Erice O, Ferguson J, Margison GP, Wellbrock C. Differential chemosensitivity to antifolate drugs between RAS and BRAF melanoma cells. Mol Cancer 2014; 13:154. [PMID: 24941944 PMCID: PMC4079649 DOI: 10.1186/1476-4598-13-154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 06/11/2014] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The importance of the genetic background of cancer cells for the individual susceptibility to cancer treatments is increasingly apparent. In melanoma, the existence of a BRAF mutation is a main predictor for successful BRAF-targeted therapy. However, despite initial successes with these therapies, patients relapse within a year and have to move on to other therapies. Moreover, patients harbouring a wild type BRAF gene (including 25% with NRAS mutations) still require alternative treatment such as chemotherapy. Multiple genetic parameters have been associated with response to chemotherapy, but despite their high frequency in melanoma nothing is known about the impact of BRAF or NRAS mutations on the response to chemotherapeutic agents. METHODS Using cell proliferation and DNA methylation assays, FACS analysis and quantitative-RT-PCR we have characterised the response of a panel of NRAS and BRAF mutant melanoma cell lines to various chemotherapy drugs, amongst them dacarbazine (DTIC) and temozolomide (TMZ) and DNA synthesis inhibitors. RESULTS Although both, DTIC and TMZ act as alkylating agents through the same intermediate, NRAS and BRAF mutant cells responded differentially only to DTIC. Further analysis revealed that the growth-inhibitory effects mediated by DTIC were rather due to interference with nucleotide salvaging, and that NRAS mutant melanoma cells exhibit higher activity of the nucleotide synthesis enzymes IMPDH and TK1. Importantly, the enhanced ability of RAS mutant cells to use nucleotide salvaging resulted in resistance to DHFR inhibitors. CONCLUSION In summary, our data suggest that the genetic background in melanoma cells influences the response to inhibitors blocking de novo DNA synthesis, and that defining the RAS mutation status could be used to stratify patients for the use of antifolate drugs.
Collapse
Affiliation(s)
- Imanol Arozarena
- Manchester Cancer Research Centre, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Ibai Goicoechea
- Oncology area, Biodonostia Research Institute, Calle Doctor Begiristain, San Sebastian 20014, Spain
| | - Oihane Erice
- Division of Hepatology and Gastroenterology, Biodonostia Research Institute, Calle Doctor Begiristain, San Sebastian 20014, Spain
| | - Jennnifer Ferguson
- Manchester Cancer Research Centre, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Geoffrey P Margison
- Centre for Occupational and Environmental Health, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PL, UK
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
8
|
Fang Q, Kanugula S, Tubbs JL, Tainer JA, Pegg AE. Repair of O4-alkylthymine by O6-alkylguanine-DNA alkyltransferases. J Biol Chem 2009; 285:8185-95. [PMID: 20026607 DOI: 10.1074/jbc.m109.045518] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O(6)-Alkylguanine-DNA alkyltransferase (AGT) plays a major role in repair of the cytotoxic and mutagenic lesion O(6)-methylguanine (m(6)G) in DNA. Unlike the Escherichia coli alkyltransferase Ogt that also repairs O(4)-methylthymine (m(4)T) efficiently, the human AGT (hAGT) acts poorly on m(4)T. Here we made several hAGT mutants in which residues near the cysteine acceptor site were replaced by corresponding residues from Ogt to investigate the basis for the inefficiency of hAGT in repair of m(4)T. Construct hAGT-03 (where hAGT sequence -V(149)CSSGAVGN(157)- was replaced with the corresponding Ogt -I(143)GRNGTMTG(151)-) exhibited enhanced m(4)T repair activity in vitro compared with hAGT. Three AGT proteins (hAGT, hAGT-03, and Ogt) exhibited similar protection from killing by N-methyl-N'-nitro-N-nitrosoguanidine and caused a reduction in m(6)G-induced G:C to A:T mutations in both nucleotide excision repair (NER)-proficient and -deficient Escherichia coli strains that lack endogenous AGTs. hAGT-03 resembled Ogt in totally reducing the m(4)T-induced T:A to C:G mutations in NER-proficient and -deficient strains. Surprisingly, wild type hAGT expression caused a significant but incomplete decrease in NER-deficient strains but a slight increase in T:A to C:G mutation frequency in NER-proficient strains. The T:A to C:G mutations due to O(4)-alkylthymine formed by ethylating and propylating agents were also efficiently reduced by either hAGT-03 or Ogt, whereas hAGT had little effect irrespective of NER status. These results show that specific alterations in the hAGT active site facilitate efficient recognition and repair of O(4)-alkylthymines and reveal damage-dependent interactions of base and nucleotide excision repair.
Collapse
Affiliation(s)
- Qingming Fang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | |
Collapse
|
9
|
O(6)-methylguanine-DNA methyltransferase depletion and DNA damage in patients with melanoma treated with temozolomide alone or with lomeguatrib. Br J Cancer 2009; 100:1250-6. [PMID: 19367283 PMCID: PMC2676560 DOI: 10.1038/sj.bjc.6605015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We evaluated the pharmacodynamic effects of the O6-methylguanine-DNA methyltransferase (MGMT) inactivator lomeguatrib (LM) on patients with melanoma in two clinical trials. Patients received temozolomide (TMZ) for 5 days either alone or with LM for 5, 10 or 14 days. Peripheral blood mononuclear cells (PBMCs) were isolated before treatment and during cycle 1. Where available, tumour biopsies were obtained after the last drug dose in cycle 1. Samples were assayed for MGMT activity, total MGMT protein, and O6-methylguanine (O6-meG) and N7-methylguanine levels in DNA. MGMT was completely inactivated in PBMC from patients receiving LM, but detectable in those on TMZ alone. Tumours biopsied on the last day of treatment showed complete inactivation of MGMT but there was recovery of activity in tumours sampled later. Significantly more O6-meG was present in the PBMC DNA of LM/TMZ patients than those on TMZ alone. LM/TMZ leads to greater MGMT inactivation, and higher levels of O6-meG than TMZ alone. Early recovery of MGMT activity in tumours suggested that more protracted dosing with LM is required. Extended dosing of LM completely inactivated PBMC MGMT, and resulted in persistent levels of O6-meG in PBMC DNA during treatment.
Collapse
|
10
|
Fang Q, Noronha AM, Murphy SP, Wilds CJ, Tubbs JL, Tainer JA, Chowdhury G, Guengerich FP, Pegg AE. Repair of O6-G-alkyl-O6-G interstrand cross-links by human O6-alkylguanine-DNA alkyltransferase. Biochemistry 2008; 47:10892-903. [PMID: 18803403 DOI: 10.1021/bi8008664] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
O (6)-Alkylguanine-DNA alkyltransferase (AGT) plays an important role by protecting cells from alkylating agents. This reduces the frequency of carcinogenesis and mutagenesis initiated by such agents, but AGT also provides a major resistance mechanism to some chemotherapeutic drugs. To improve our understanding of the AGT-mediated repair reaction and our understanding of the spectrum of repairable damage, we have studied the ability of AGT to repair interstrand cross-link DNA damage where the two DNA strands are joined via the guanine- O (6) in each strand. An oligodeoxyribonucleotide containing a heptane cross-link was repaired with initial formation of an AGT-oligo complex and further reaction of a second AGT molecule yielding a hAGT dimer and free oligo. However, an oligodeoxyribonucleotide with a butane cross-link was a very poor substrate for AGT-mediated repair, and only the first reaction that forms an AGT-oligo complex could be detected. Models of the reaction of these substrates in the AGT active site show that the DNA duplex is forced apart locally to repair the first guanine. This reaction is greatly hindered with the butane cross-link, which is mostly buried in the active site pocket and limited in conformational flexibility. This limitation also prevents the adoption of a conformation for the second reaction to repair the AGT-oligo complex. These results are consistent with the postulated mechanism of AGT repair that involves DNA binding and flipping of the substrate nucleotide and indicate that hAGT can repair some types of interstrand cross-link damage.
Collapse
Affiliation(s)
- Qingming Fang
- Departments of Cellular and Molecular Physiology and Pharmacology, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Rabik CA, Njoku MC, Dolan ME. Inactivation of O6-alkylguanine DNA alkyltransferase as a means to enhance chemotherapy. Cancer Treat Rev 2006; 32:261-76. [PMID: 16698182 DOI: 10.1016/j.ctrv.2006.03.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 03/14/2006] [Accepted: 03/15/2006] [Indexed: 10/24/2022]
Abstract
DNA adducts at the O6-position of guanine are a result of the carcinogenic, mutagenic and cytotoxic actions of methylating and chloroethylating agents. The presence of the DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT) renders cells resistant to the biological effects induced by agents that attack at this position. O6-Benzylguanine (O6-BG) is a low molecular weight substrate of AGT and therefore, results in sensitizing cells and tumors to alkylating agent-induced cytotoxicity and antitumor activity. Presently, chemotherapy regimens of O6-BG in combination with BCNU, temozolomide and Gliadel are in clinical development. Other ongoing clinical trials include expression of mutant AGT proteins that confer resistance to O6-BG in bone marrow stem cells, in an effort to reduce the potential enhanced toxicity and mutagenicity of alkylating agents in the bone marrow. O6-BG has also been found to enhance the cytotoxicity of agents that do not form adducts at the O6-position of DNA, including platinating agents. O6-BG's mechanism of action with these agents is not fully understood; however, it is independent of AGT activity or AGT inactivation. A better understanding of the effects of this agent will contribute to its clinical usefulness and the design of better analogs to further improve cancer chemotherapy.
Collapse
Affiliation(s)
- Cara A Rabik
- Department of Medicine, Committee on Cancer Biology, Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
12
|
Duguid EM, Rice PA, He C. The structure of the human AGT protein bound to DNA and its implications for damage detection. J Mol Biol 2005; 350:657-66. [PMID: 15964013 DOI: 10.1016/j.jmb.2005.05.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 05/04/2005] [Accepted: 05/14/2005] [Indexed: 11/23/2022]
Abstract
O6-Alklyguanine-DNA alkyltransferase (AGT) is an important DNA repair protein that protects cells from mutagenesis and toxicity arising from alkylating agents. We present an X-ray crystal structure of the wild-type human protein (hAGT) bound to double-stranded DNA with a chemically modified cytosine base. The protein binds at two different sites: one at the modified base, and the other across a sticky-ended DNA junction. The protein molecule that binds the modified cytosine base flips the base and recognizes it in its active site. The one that binds ends of neighboring DNA molecules partially flips an overhanging thymine base. This base is not inserted into the active-site pocket of the protein. These two different hAGT/DNA interactions observed in the structure suggest that hAGT may not detect DNA lesions by searching for the adduct itself, but rather for weakened and/or distorted base-pairs caused by base damage in the duplex DNA. We propose that hAGT imposes a strain on the DNA duplex and searches for DNA regions where the native structure is destabilized. The structure provides implications for pyrimidine recognition, improved inhibitor design, and a possible protein/protein interaction patch on hAGT.
Collapse
Affiliation(s)
- Erica M Duguid
- Department of Chemistry, 5735 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
13
|
Kanugula S, Pegg AE. Alkylation damage repair protein O6-alkylguanine-DNA alkyltransferase from the hyperthermophiles Aquifex aeolicus and Archaeoglobus fulgidus. Biochem J 2003; 375:449-55. [PMID: 12892560 PMCID: PMC1223701 DOI: 10.1042/bj20030809] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Revised: 07/24/2003] [Accepted: 08/01/2003] [Indexed: 10/27/2022]
Abstract
AGT (O6-alkylguanine DNA alkyltransferase) is an important DNA-repair protein that protects cells from killing and mutagenesis by alkylating agents. The AGT genes from two extremely thermophilic organisms, the bacterium Aquifex aeolicus and the archaeon Archaeoglobus fulgidus were PCR-derived and cloned into an expression vector. The nucleotide sequence of the Aq. aeolicus AGT encodes a 201-amino-acid protein with a molecular mass of 23000 Da and Ar. fulgidus AGT codes for a 147-amino-acid protein with a molecular mass of 16718 Da. The Aq. aeolicus and Ar. fulgidus AGTs were expressed at high levels in Escherichia coli fused to an N-terminal polyhistidine tag that allowed single-step isolation and purification by metal-affinity chromatography. Both AGTs formed inclusion bodies and were not soluble under native purification conditions. Therefore AGT isolation was performed under protein-denaturation conditions in the presence of 8.0 M urea. Soluble AGT was obtained by refolding the AGT in the presence of calf thymus DNA. Both AGTs were active in repairing O6-methylguanine and, at a lower rate, O4-methylthymine in DNA. They exhibited thermostability and optimum activity at high temperature. The thermostable AGTs, particularly that from Aq. aeolicus, were readily inactivated by the low-molecular-mass inhibitor O6-benzylguanine, which is currently in clinical trials to enhance cancer chemotherapy.
Collapse
Affiliation(s)
- Sreenivas Kanugula
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|
14
|
Middleton MR, Margison GP. Improvement of chemotherapy efficacy by inactivation of a DNA-repair pathway. Lancet Oncol 2003; 4:37-44. [PMID: 12517538 DOI: 10.1016/s1470-2045(03)00959-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Tumour resistance and dose-limiting toxic effects restrict treatment with most chemotherapeutic drugs. Elucidation of the mechanisms of these effects could permit the development of ways to improve the effectiveness of currently used agents until better therapeutic agents are developed. Several types of alkylating agents are used in the treatment of cancer. The DNA repair protein, O6-alkylguanine-DNA alkyltransferase (ATase) is an important cellular resistance mechanism to one class of alkylating agents. This enzyme removes potentially lethal damage from DNA and experiments in vitro and in vivo have shown that its inactivation can reverse resistance to such agents. Clinical trials of drugs that inactivate ATase are underway and early results indicate that they are active in tumour tissues. However, the ATase present in normal tissues, particularly bone marrow, is also inactivated, necessitating a reduction in the dose of alkylating agent. An important question is whether, in the absence of any tumour-specific delivery strategy, such drugs will improve therapeutic effectiveness; initial reports are not promising.
Collapse
Affiliation(s)
- Mark R Middleton
- Cancer Research UK Medical Oncology Unit, Churchill Hospital, Oxford, UK
| | | |
Collapse
|
15
|
Loktionova NA, Pegg AE. Interaction of mammalian O(6)-alkylguanine-DNA alkyltransferases with O(6)-benzylguanine. Biochem Pharmacol 2002; 63:1431-42. [PMID: 11996884 DOI: 10.1016/s0006-2952(02)00906-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human O(6)-alkylguanine-DNA alkyltransferase (hAGT) activity is a major factor in providing resistance to cancer chemotherapeutic alkylating agents. Inactivation of hAGT by O(6)-benzylguanine (BG) is a promising strategy for overcoming this resistance. Previous studies, which have focused on the region encompassed by residues Pro138 to Gly173, have identified more than 100 individual mutations located at 23 discrete sites at which alterations can render AGT less sensitive to BG. We have now extended the examination of possible sites in hAGT at which alterations might lead to BG resistance to include the residues from Val130 to Asn137, which also make up part of the binding pocket into which BG is postulated to fit. A further 21 mutations located at positions Gly132, Met134, Arg135, and Gly136 were found to lower sensitivity to BG. Mutants R135L, R135Y, and G136P were the most strikingly resistant, with a 50-fold increase in the amount of BG needed to obtain 50% inactivation. These results therefore increase the number of sites at which BG resistance can occur in response to a single amino acid change to 27. Although mammalian AGTs are very similar in amino acid sequence, mouse AGT (mAGT) is significantly less sensitive to BG than rat AGT (rAGT) or hAGT. Construction of chimeric proteins in which portions came from the rAGT and the mAGT indicated that the difference in inactivation resided solely in the amino acids located in the sequence from residues 150 to 188. Individual mutations of the three residues where rAGT and mAGT differ in this region showed that the principal reason for the reduced ability of the mAGT to react with BG was the presence of a histidine residue at position 161, which is occupied by asparagine in rAGT and hAGT. These experiments indicate that many minor changes in amino acids forming all parts of the nucleoside binding pocket of AGT can alter its ability to react with BG and that the possibility that polymorphisms or variants may occur reducing the effectiveness of combination therapy with BG and alkylating agents must be considered.
Collapse
Affiliation(s)
- Natalia A Loktionova
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|
16
|
Abril N, Luque-Romero FL, Yamada M, Nohmi T, Pueyo C. The effectiveness of the O(6)-alkylguanine-DNA alkyltransferase encoded by the ogt(ST) gene from S. typhimurium in protection against alkylating drugs, resistance to O(6)-benzylguanine and sensitisation to dibromoalkane genotoxicity. Mutat Res 2001; 497:111-21. [PMID: 11525913 DOI: 10.1016/s1383-5718(01)00235-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Here we demonstrate that the Ogt(ST) from Salmonella typhimurium is a highly efficient O(6)-alkylguanine-DNA alkyltransferase (AGT) in affording protection against antitumour chloroethylating drugs (1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU)). In addition, Ogt(ST) is refractory to O(6)-benzylguanine (BG) inactivation and its expression provides only minor sensitisation to genotoxicity by environmental dibromoalkanes (DBE). No other of the assayed bacterial or human AGTs displayed such advantageous properties for chemoprotective gene therapy strategy. Our observations indicate that the Ogt(ST) AGT might be, under some circumstances, of potential use to improve cancer chemotherapy. At least, its properties may provide further insight into the design of human AGT variants that could be expressed in normal or tumour cells to provide either protection or ablation.
Collapse
Affiliation(s)
- N Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, edificio C-6, planta 2a, 14071, Córdoba, Spain
| | | | | | | | | |
Collapse
|
17
|
Borowski P, Niebuhr A, Mueller O, Bretner M, Felczak K, Kulikowski T, Schmitz H. Purification and characterization of West Nile virus nucleoside triphosphatase (NTPase)/helicase: evidence for dissociation of the NTPase and helicase activities of the enzyme. J Virol 2001; 75:3220-9. [PMID: 11238848 PMCID: PMC114115 DOI: 10.1128/jvi.75.7.3220-3229.2001] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleoside triphosphatase (NTPase)/helicase associated with nonstructural protein 3 of West Nile (WN) virus was purified from cell culture medium harvested from virus-infected Vero cells. The purification procedure included sequential chromatography on Superdex-200 and Reactive Red 120 columns, followed by a concentration step on an Ultrogel hydroxyapatite column. The nature of the purified protein was confirmed by immunoblot analysis using a WN virus-positive antiserum, determination of its NH(2) terminus by microsequencing, and a binding assay with 5'-[(14)C]fluorosulfonylbenzoyladenosine. Under optimized reaction conditions the enzyme catalyzed the hydrolysis of ATP and the unwinding of the DNA duplex with k(cat) values of 133 and 5.5 x 10(-3) s(-1), respectively. Characterization of the NTPase activity of the WN virus enzyme revealed that optimum conditions with respect to the Mg(2+) requirement and the monovalent salt or polynucleotide response differed from those of other flavivirus NTPases. Initial kinetic studies demonstrated that the inhibition (or activation) of ATPase activity by ribavirin-5'-triphosphate is not directly related to changes in the helicase activity of the enzyme. Further analysis using guanine and O(6)-benzoylguanine derivatives revealed that the ATPase activity of WN virus NTPase/helicase may be modulated, i.e., increased or reduced, with no effect on the helicase activity of the enzyme. On the other hand the helicase activity could be modulated without changing the ATPase activity. Our observations show that the number of ATP hydrolysis events per unwinding cycle is not a constant value.
Collapse
Affiliation(s)
- P Borowski
- Abteilung für Virologie, Bernhard-Nocht-Institut für Tropenmedizin, D-20359 Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Daniels DS, Tainer JA. Conserved structural motifs governing the stoichiometric repair of alkylated DNA by O(6)-alkylguanine-DNA alkyltransferase. Mutat Res 2000; 460:151-63. [PMID: 10946226 DOI: 10.1016/s0921-8777(00)00024-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
O(6)-alkylguanine-DNA alkyltransferase (AGT) directly repairs alkylation damage at the O(6)-position of guanine in a unique, stoichiometric reaction. Crystal structures of AGT homologs from the three kingdoms of life reveal that despite their extremely low primary sequence homology, the topology and overall structure of AGT has been remarkably conserved. The C-terminal domain of the two-domain, alpha/beta fold bears a helix-turn-helix (HTH) motif that has been implicated in DNA-binding by structural and mutagenic studies. In the second helix of the HTH, the recognition helix, lies a conserved RAV[A/G] motif, whose "arginine finger" promotes flipping of the target nucleotide from the base stack. Recognition of the extrahelical guanine is likely predominantly through interactions with the protein backbone, while hydrophobic sidechains line the alkyl-binding pocket, as defined by product complexes of human AGT. The irreversible dealkylation reaction is accomplished by an active-site cysteine that participates in a hydrogen bond network with invariant histidine and glutamic acid residues, reminiscent of the serine protease catalytic triad. Structural and biochemical results suggest that cysteine alkylation opens the domain-interfacing "Asn-hinge", which couples the active-site to the recognition helix, providing both a mechanism for release of repaired DNA and a signal for the observed degradation of alkylated AGT.
Collapse
Affiliation(s)
- D S Daniels
- The Skaggs Institute for Chemical Biology, Department of Molecular Biology, MB-4, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037-1027, USA
| | | |
Collapse
|
19
|
Xu-Welliver M, Pegg AE. Point mutations at multiple sites including highly conserved amino acids maintain activity, but render O6-alkylguanine-DNA alkyltransferase insensitive to O6-benzylguanine. Biochem J 2000; 347:519-26. [PMID: 10749682 PMCID: PMC1220985 DOI: 10.1042/0264-6021:3470519] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The DNA repair protein, O(6)-alkylguanine-DNA alkyltransferase (AGT), is inactivated by reaction with the pseudosubstrate, O(6)-benzylguanine (BG). This inactivation sensitizes tumour cells to chemotherapeutic alkylating agents, and BG is aimed at enhancing cancer treatment in clinical trials. Point mutations in a 24 amino acid sequence likely to form the BG-binding pocket were identified using a screening method designed to identify BG-resistant mutants. It was found that alterations in 21 of these residues were able to render AGT resistant to BG. These included mutations at the highly conserved residues Lys(165), Leu(168) and Leu(169). The two positions at which changes led to the largest increase in resistance to BG were Gly(156) and Lys(165). Eleven mutants at Gly(156) were identified, with increases in resistance ranging from 190-fold (G156V) to 4400-fold (G156P). Two mutants at Lys(165) found in the screen (K165S and K165A) showed 620-fold and 100-fold increases in resistance to BG. Two mutants at the Ser(159) position (S159I and S159V) were >80-fold more resistant than wild-type AGT. Eleven active mutants at Leu(169) were also resistant to BG, but with lower increases (5-86-fold). Fourteen BG-resistant mutants were found for position Cys(150), with 3-26-fold increases in the amount of inhibitor needed to produce a 50% loss of activity in a 30 min incubation. Six BG-resistant mutants at Asn(157) were found with increases of 4-13-fold. These results show that many changes can render human AGT resistant to BG without preventing the ability to protect tumour cells from therapeutic alkylating agents.
Collapse
Affiliation(s)
- M Xu-Welliver
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033-0850, U.S.A
| | | |
Collapse
|
20
|
Daniels DS, Mol CD, Arvai AS, Kanugula S, Pegg AE, Tainer JA. Active and alkylated human AGT structures: a novel zinc site, inhibitor and extrahelical base binding. EMBO J 2000; 19:1719-30. [PMID: 10747039 PMCID: PMC310240 DOI: 10.1093/emboj/19.7.1719] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human O(6)-alkylguanine-DNA alkyltransferase (AGT), which directly reverses endogenous alkylation at the O(6)-position of guanine, confers resistance to alkylation chemotherapies and is therefore an active anticancer drug target. Crystal structures of active human AGT and its biologically and therapeutically relevant methylated and benzylated product complexes reveal an unexpected zinc-stabilized helical bridge joining a two-domain alpha/beta structure. An asparagine hinge couples the active site motif to a helix-turn-helix (HTH) motif implicated in DNA binding. The reactive cysteine environment, its position within a groove adjacent to the alkyl-binding cavity and mutational analyses characterize DNA-damage recognition and inhibitor specificity, support a structure-based dealkylation mechanism and suggest a molecular basis for destabilization of the alkylated protein. These results support damaged nucleotide flipping facilitated by an arginine finger within the HTH motif to stabilize the extrahelical O(6)-alkylguanine without the protein conformational change originally proposed from the empty Ada structure. Cysteine alkylation sterically shifts the HTH recognition helix to evidently mechanistically couple release of repaired DNA to an opening of the protein fold to promote the biological turnover of the alkylated protein.
Collapse
Affiliation(s)
- D S Daniels
- The Skaggs Institute for Chemical Biology, Department of Molecular Biology, MB-4, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037-1027, USA
| | | | | | | | | | | |
Collapse
|
21
|
Kooistra R, Zonneveld JB, Watson AJ, Margison GP, Lohman PH, Pastink A. Identification and characterisation of the Drosophila melanogaster O6-alkylguanine-DNA alkyltransferase cDNA. Nucleic Acids Res 1999; 27:1795-801. [PMID: 10101186 PMCID: PMC148386 DOI: 10.1093/nar/27.8.1795] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The protein O 6-alkylguanine-DNA alkyltransferase(alkyltransferase) is involved in the repair of O 6-alkylguanine and O 4-alkylthymine in DNA and plays an important role in most organisms in attenuating the cytotoxic and mutagenic effects of certain classes of alkylating agents. A genomic clone encompassing the Drosophila melanogaster alkyltransferase gene ( DmAGT ) was identified on the basis of sequence homology with corresponding genes in Saccharomyces cerevisiae and man. The DmAGT gene is located at position 84A on the third chromosome. The nucleotide sequence of DmAGT cDNA revealed an open reading frame encoding 194 amino acids. The MNNG-hypersensitive phenotype of alkyltransferase-deficient bacteria was rescued by expression of the DmAGT cDNA. Furthermore, alkyltransferase activity was identified in crude extracts of Escherichia coli harbouring DmAGT cDNA and this activity was inhibited by preincubation of the extract with an oligonucleotide containing a single O6-methylguanine lesion. Similar to E.coli Ogt and yeast alkyltransferase but in contrast to the human alkyltransferase, the Drosophila alkyltransferase is resistant to inactivation by O 6-benzylguanine. In an E.coli lac Z reversion assay, expression of DmAGT efficiently suppressed MNNG-induced G:C-->A:T as well as A:T-->G:C transition mutations in vivo. These results demonstrate the presence of an alkyltransferase specific for the repair of O 6-methylguanine and O 4-methylthymine in Drosophila.
Collapse
Affiliation(s)
- R Kooistra
- MGC Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Centre, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Elder RH, Jansen JG, Weeks RJ, Willington MA, Deans B, Watson AJ, Mynett KJ, Bailey JA, Cooper DP, Rafferty JA, Heeran MC, Wijnhoven SW, van Zeeland AA, Margison GP. Alkylpurine-DNA-N-glycosylase knockout mice show increased susceptibility to induction of mutations by methyl methanesulfonate. Mol Cell Biol 1998; 18:5828-37. [PMID: 9742100 PMCID: PMC109169 DOI: 10.1128/mcb.18.10.5828] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alkylpurine-DNA-N-glycosylase (APNG) null mice have been generated by homologous recombination in embryonic stem cells. The null status of the animals was confirmed at the mRNA level by reverse transcription-PCR and by the inability of cell extracts of tissues from the knockout (ko) animals to release 3-methyladenine (3-meA) or 7-methylguanine (7-meG) from 3H-methylated calf thymus DNA in vitro. Following treatment with DNA-methylating agents, increased persistence of 7-meG was found in liver sections of APNG ko mice in comparison with wild-type (wt) mice, demonstrating an in vivo phenotype for the APNG null animals. Unlike other null mutants of the base excision repair pathway, the APNG ko mice exhibit a very mild phenotype, show no outward abnormalities, are fertile, and have an apparently normal life span. Neither a difference in the number of leukocytes in peripheral blood nor a difference in the number of bone marrow polychromatic erythrocytes was found when ko and wt mice were exposed to methylating or chloroethylating agents. These agents also showed similar growth-inhibitory effects in primary embryonic fibroblasts isolated from ko and wt mice. However, treatment with methyl methanesulfonate resulted in three- to fourfold more hprt mutations in splenic T lymphocytes from APNG ko mice than in those from wt mice. These mutations were predominantly single-base-pair changes; in the ko mice, they consisted primarily of AT-->TA and GC-->TA transversions, which most likely are caused by 3-meA and 3- or 7-meG, respectively. These results clearly show an important role for APNG in attenuating the mutagenic effects of N-alkylpurines in vivo.
Collapse
Affiliation(s)
- R H Elder
- CRC Section of Genome Damage and Repair, Paterson Institute for Cancer Research, Christie Hospital (NHS) Trust, Manchester M20 4BX, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chinnasamy N, Fairbairn LJ, Laher J, Willington MA, Rafferty JA. Modulation of O6-alkylating agent induced clastogenicity by enhanced DNA repair capacity of bone marrow cells. Mutat Res 1998; 416:1-10. [PMID: 9725988 DOI: 10.1016/s1383-5718(98)00087-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The murine bone marrow micronucleus assay has been used to examine (1) the potentiation of fotemustine and streptozotocin induced-clastogenicity by the O6-alkylguanine-DNA alkyltransferase (ATase) inactivator O6-benzylguanine (O6-beG) and (2) the level of protection afforded against this potentiation by retrovirus-mediated expression of an O6-beG-resistant mutant of human ATase (haTPA/GA) in mouse bone marrow. Both fotemustine and streptozotocin induced significantly higher levels of micronucleated polychromatic erythrocytes (p < 0.001 for the highest doses studied) compared to those seen in vehicle-treated animals. The number of micronuclei produced by either agent was dramatically elevated by pretreatment with O6-beG (p < 0.001). Furthermore, in myeloablated mice reconstituted with bone marrow expressing the O6-beG-resistant hATPA/GA as a result of retroviral gene transfer, the frequency of micronucleus formation following exposure of mice to otherwise clastogenic doses of fotemustine or streptozotocin, in the presence of O6-beG, wash highly significantly reduced (p < 0.001 for both agents) relative to that in mock transduced controls. These data clearly implicate O6-chloroethyl- and O6-methylguanine as clastogenic lesions in vivo and establish ATase as a major protective mechanism operating to reduce the frequency of such damage. The potentiation of drug induced clastogenicity by O6-beG suggests that the clinical use of this inactivator in combination with O6-alkylating agents, could substantially increase the risk of therapy related malignancy. Nevertheless the use of hATPA/GA as a protective mechanism via gene therapy may overcome this risk.
Collapse
Affiliation(s)
- N Chinnasamy
- CRC Section of Haemopoietic Cell, Paterson Institute for Cancer Research, Christine Hospital NHS Trust, Mancester M20 4BX, UK
| | | | | | | | | |
Collapse
|
24
|
Pegg AE, Kanugula S, Edara S, Pauly GT, Moschel RC, Goodtzova K. Reaction of O6-benzylguanine-resistant mutants of human O6-alkylguanine-DNA alkyltransferase with O6-benzylguanine in oligodeoxyribonucleotides. J Biol Chem 1998; 273:10863-7. [PMID: 9556560 DOI: 10.1074/jbc.273.18.10863] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inactivation of the human DNA repair protein, O6-alkylguanine-DNA alkyltransferase (AGT), by O6-benzylguanine renders tumor cells susceptible to killing by alkylating agents. AGT mutants resistant to O6-benzylguanine can be made by converting Pro140 to an alanine (P140A) or Gly156 to an alanine (G156A). These mutations had a much smaller effect on the reaction with O6-benzylguanine when it was incorporated into a short single-stranded oligodeoxyribonucleotide. Such oligodeoxyribonucleotides could form the basis for the design of improved AGT inhibitors. AGT and mutants P140A and G156A preferentially reacted with O6-benzylguanine when incubated with a mixture of two 16-mer oligodeoxyribonucleotides, one containing O6-benzylguanine and the other, O6-methylguanine. When the 6 amino acids located in positions 159-164 in AGT were replaced by the equivalent sequence from the Escherichia coli Ada-C protein (mutant AGT/6ada) the preference for benzyl repair was eliminated. Further mutation incorporating the P140A change into AGT/6ada giving mutant P140A/6ada led to a protein that resembled Ada-C in preference for the repair of methyl groups, but P140A/6ada did not differ from P140A in reaction with the free base O6-benzylguanine. Changes in the AGT active site pocket can therefore affect the preference for repair of O6-benzyl or -methyl groups when present in an oligodeoxyribonucleotide without altering the reaction with free O6-benzylguanine.
Collapse
Affiliation(s)
- A E Pegg
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Rafferty JA, Wibley JE, Speers P, Hickson I, Margison GP, Moody PC, Douglas KT. The potential role of glycine-160 of human O6-alkylguanine-DNA alkyltransferase in reaction with O6-benzylguanine as determined by site-directed mutagenesis and molecular modelling comparisons. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1342:90-102. [PMID: 9366274 DOI: 10.1016/s0167-4838(97)00095-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
O6-Alkylguanine DNA-alkyltransferase (ATase) repairs toxic, mutagenic and carcinogenic O6-alkylguanine (O6-alkG) lesions in DNA by a highly conserved reaction involving the stoichiometric transfer of the alkyl group to the active centre cysteine residue of the ATase protein. In the Escherichia coli Ada ATase, which is effectively refactory to inhibition by O6-benzylguanine (O6-BzG), the residue corresponding to glycine-160 (G160) for the mammalian proteins of this class is replaced by a tryptophan (W). Therefore, to investigate the potential role of the G160 of the human ATase (hAT) protein in determining sensitivity to O6-BzG, site-directed mutagenesis was used to produce a mutant protein (hATG160W) substituted at position 160 with a W residue. The hATG160W mutant was found to be stably expressed and was 3- and 5-fold more sensitive than hAT to inactivation by O6-BzG, in the absence and presence of additional calf-thymus DNA respectively. A similar, DNA dependent increased sensitivity of the hATG160W mutant relative to wild-type was also found for O6-methylguanine mediated inactivation. The potential role of the W160 residue in stabilising the binding of the O6-alkG to the protein is discussed in terms of a homology model of the structure of hAT. The region occupied by G/W-160 forms the site of a putative hinge that could be important in the conformational change that is likely to occur on DNA binding. Three sequence motifs have been identified in this region which may influence O6-BzG access to the active site; YSGG or YSGGG in mammals (YAGG in E. coli Ogt, YAGS in Dat from Bacillus subtilis), YRWG in E. coli Ada and Salmonella typhimurium (but YKWS in Saccharomyces cerevisiae) or YRGGF in AdaB from B. Subtilis. Finally,conformational and stereoelectronic analysis of the putative transition states for the alkyl transfer from a series of inactivators of hAT, including O6-BzG was undertaken to rationalise the unexpected weak inhibition shown by the alpha-pi-unsaturated electrophiles.
Collapse
Affiliation(s)
- J A Rafferty
- CRC Department of Carcinogenesis, Paterson Institute for Cancer Research, Christie Hospital (NHS) Trust, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Inhibition of DNA repair as a means of increasing the antitumor activity of DNA reactive agents. Adv Drug Deliv Rev 1997; 26:105-118. [PMID: 10837537 DOI: 10.1016/s0169-409x(97)00028-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemotherapeutic alkylnitrosoureas (BCNU, CCNU, streptozotocin) and alkyltriazenes (DTIC, temozolomide) produce a cytotoxic lesion at the O(6)-position of guanine. The DNA repair protein, O(6)-alkylguanine-DNA alkyltransferase removes damage from the O(6)-position in a single-step mechanism without co-factors. There is extensive evidence that this protein is one of the most important factors contributing to alkylnitrosourea and alkyltriazene treatment failure. There is an inverse correlation between the level of this protein and the sensitivity of cells to the cytotoxic effects of O(6)-alkylating agents. Attempts have been made to modulate AGT activity using anti-sense technology, methylating agents, O(6)-alkylguanines, and O(6)-benzylguanine analogs. O(6)-Benzylguanine and its analogs are clearly the most potent direct inactivators of the AGT protein. The mechanism involves O(6)-benzylguanine acting as a low-molecular weight substrate with transfer of the benzyl group to the cysteine residue within the active site of the repair protein. Pretreatment of cells with non-toxic doses of O(6)-benzylguanine results in an increase in the sensitivity to O(6)-alkylating agents. Animal studies revealed that the therapeutic index of BCNU increased when administered in combination with O(6)-benzylguanine. This drug is currently in phase I clinical trials. Evidence from animal studies indicates that myelosuppression may be the dose-limiting toxicity, thus, efforts are aimed at improving the therapeutic index by the stable expression of O(6)-benzylguanine-resistant AGT proteins into targeted normal tissue such as bone marrow. The successful modulation of alkyltransferases brings on an exciting new era for alkylnitrosoureas and alkyltriazenes.
Collapse
|
27
|
Singer B, Hang B. What structural features determine repair enzyme specificity and mechanism in chemically modified DNA? Chem Res Toxicol 1997; 10:713-32. [PMID: 9250405 DOI: 10.1021/tx970011e] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A crucial question in repair is how do enzymes recognize substrates. In surveying the relevant literature, it becomes evident that there are no rules which can be clearly applied. At this time it appears that uracil glycosylase is the only repair enzyme for which all the known substrates can be rationalized on the basis of chemical structure. When surveying the multiplicity of substrates for m3A-DNA glycosylase, it is difficult, on the basis of present knowledge, to explain why 1,N6-etheno-A (epsilon A) is as good a substrate, if not better, than m3A for which the enzyme is named. There is no apparent unifying chemical structure which is required for recognition. It should also be noted that many studies of the mechanism of m3A-DNA glycosylase only utilized-N-3- and N-7-alkylpurines. On this basis, an electron-deficient purine, and later pyrimidine, was considered to be the recognition signal. Since epsilon A and Hx do not fall in this class, this is one illustration of why exploring new substrates becomes important in elucidating enzyme mechanisms. Ubiquitous enzymes, such as 5'-AP endonucleases, are present in both prokaryotes and eukaryotes. The primary function is the same, i.e., repair of an AP site which occurs through natural processes or from the action of DNA glycosylases. There are, however, completely unrelated substrates such as the exocyclic adducts pBQ-dC and pBQ-dG. pBQ-dC is repaired by both the human HAP1 and E. coli Exo III and Endo IV, while pBQ-dG is only repaired by the E. coli enzymes. Yet, when repair of these adducts occurs, it is by the same unusual pathway which differs from the usual base excision repair mechanism. This finding may ultimately not be as unusual as it now seems. The understanding of substrate recognition by repair enzymes, which can have different repair pathways, is complex. For example, three exocyclic derivatives which each have either the same modification (1,N4-epsilon dA and 3,N4-epsilon dC) or the same base with different modifying groups (3,N4-epsilon dC and 3,N4-pBQ-dC) are repaired by three separate enzymes and two mechanism (Figure 9). Investigators have also reported that two separate enzymes and pathways can be found for simple adducts such as m6G and O4T. It is not clear why, for these adducts, both MGMT and excision repair can be utilized. This could be visualized as a "backup" system and may be more common than now known. We cannot think like an enzyme or vice versa. In the absence of enough necessary information, we can only be descriptive. What information is necessary for further understanding? (1) More detailed structural studies of adducts in defined oligonucleotides would be useful. (2) New substrates should be explored. For example, is the mechanism for PBQ-dC (and pBQ-dG) repair unique? This involves guesswork and intuition. (3) For the adducts mentioned in this Perspective and others, understanding enzyme/substrate recognition will be facilitated by cocrystallography and site-directed mutagenesis. (4) Genetic approaches, such as knockouts or targeted mutations in repair genes, should be expanded in order to focus on the physiological role of a specific enzyme. Above all: structure, structure, structure! Enzymologists, organic chemists, physical chemiste, X-ray crystallographers, and others must combine forces if the fundamental problems addressed here are to be understood.
Collapse
Affiliation(s)
- B Singer
- Donner Laboratory, Lawrence Berkeley National Laboratory, University of California, 94720, USA
| | | |
Collapse
|
28
|
Goodtzova K, Kanugula S, Edara S, Pauly GT, Moschel RC, Pegg AE. Repair of O6-benzylguanine by the Escherichia coli Ada and Ogt and the human O6-alkylguanine-DNA alkyltransferases. J Biol Chem 1997; 272:8332-9. [PMID: 9079656 DOI: 10.1074/jbc.272.13.8332] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
O6-Methylguanine is removed from DNA via the transfer of the methyl group to a cysteine acceptor site present in the DNA repair protein O6-alkylguanine-DNA alkyltransferase. The human alkyltransferase is inactivated by the free base O6-benzylguanine, raising the possibility that substantially larger alkyl groups could also be accepted as substrates. However, the Escherichia coli alkyltransferase, Ada-C, is not inactivated by O6-benzylguanine. The Ada-C protein was rendered capable of reaction by the incorporation of two site-directed mutations converting Ala316 to a proline (A316P) and Trp336 to alanine (W336A) or glycine (W336G). These changes increase the space at the active site of the protein where Cys321 is buried and thus permit access of the O6-benzylguanine inhibitor. Reaction of the mutant A316P/W336A-Ada-C with O6-benzylguanine was greatly stimulated by the presence of DNA, providing strong support for the concept that binding of DNA to the Ada-C protein activates the protein. The Ada-C protein was able to repair O6-benzylguanine in a 16-mer oligodeoxyribonucleotide. However, the rate of repair was very slow, whereas the E. coli Ogt, the human alkyltransferase, and the mutant A316P/W336A-Ada-C alkyltransferases reacted very rapidly with this 16-mer substrate and preferentially repaired it when incubated with a mixture of the methylated and benzylated 16-mers. These results show that benzyl groups are better substrates than methyl groups for alkyltransferases provided that steric factors do not prevent binding of the substrate in the correct orientation for alkyl group transfer.
Collapse
Affiliation(s)
- K Goodtzova
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | | | | | | | | | | |
Collapse
|
29
|
Newlands ES, Stevens MF, Wedge SR, Wheelhouse RT, Brock C. Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev 1997; 23:35-61. [PMID: 9189180 DOI: 10.1016/s0305-7372(97)90019-0] [Citation(s) in RCA: 547] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- E S Newlands
- Department of Medical Oncology, Charing Cross Hospital, London, U.K
| | | | | | | | | |
Collapse
|
30
|
Rafferty JA, Hickson I, Chinnasamy N, Lashford LS, Margison GP, Dexter TM, Fairbairn LJ. Chemoprotection of normal tissues by transfer of drug resistance genes. Cancer Metastasis Rev 1996; 15:365-83. [PMID: 9034597 DOI: 10.1007/bf00046348] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effectiveness of many types of antitumour agent is limited by (i) acute dose limiting cytotoxicity, principally myelosuppression but also lung, liver and gastrointestinal tract toxicity, (ii) the risk of therapy related secondary malignancy and (iii) the inherent or acquired drug-resistance of tumour cells. As the management of the acute toxic effects improve, the more insidious effects, and particularly haematological malignancies, are anticipated to increase. Furthermore, attempts to overcome tumour cell resistance to treatment can lead to increased collateral damage in normal tissues. One approach to circumventing both the acute toxic and chronic carcinogenic effects of chemotherapy would be to use gene therapy to achieve high levels of expression of drug resistance proteins in otherwise drug-sensitive tissues. To date the products of the multi-drug resistance (MDR-1) and the human O6-alkylguanine-DNA-alkyltransferase (ATase) gene have been used in preclinical experiments to demonstrate proof of principle, and the former of these is now being tested in a clinical situation. Here we discuss the potential of drug-resistance gene therapy to provide chemoprotection to normal tissues and examine the prospects for a dual approach which combines this with pharmacological sensitisation of tumours to chemotherapeutic agents.
Collapse
Affiliation(s)
- J A Rafferty
- CRC Department of Carcinogenesis, Paterson Institute for Cancer Research, Christie Hospital (NHS)-Trust, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Bender K, Federwisch M, Loggen U, Nehls P, Rajewsky MF. Binding and repair of O6-ethylguanine in double-stranded oligodeoxynucleotides by recombinant human O6-alkylguanine-DNA alkyltransferase do not exhibit significant dependence on sequence context. Nucleic Acids Res 1996; 24:2087-94. [PMID: 8668540 PMCID: PMC145916 DOI: 10.1093/nar/24.11.2087] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Double-stranded (ds) oligodeoxynucleotides (29mers) containing an O6-ethylguanine (O6-EtGua) flanked 5' and 3' by different bases (5'..TGT..3'; 5'..CGG..3', 5'..GGT..3'; 5'..GGG..3'; 5'..GGA..3') were synthesized to investigate the binding and repair characteristics of recombinant human O6-alkylguanine-DNA alkyltransferase (AT) in vitro. The apparent association constant (KA(app)) of AT to the oligomers and the repair rate constant for O6-EtGua (k) respectively, were determined by gel retardation and a monoclonal antibody-based filter binding assay. When ds- or single-stranded (ss) oligomers with or without O6-EtGua were used, no major differences in KA(app) values were observed with either substrate: KA(app) values for native AT were 7.1 and 8.4 x 10(5) M(-1) respectively, for unmodified and [O6-EtGua]-containing ds-oligomers. The corresponding values for ss-oligomers were 1.0 and 4.9 x 10(5) M(-1). The N-terminal first 56 amino acids of AT only exert a limited influence on DNA binding; the KA(app) values for an N-terminally truncated AT protein (1.1 x 10(5) M(-1)) and native AT were of the same order. Moreover, KA(app) was hardly affected by Cys(145)-methylated AT (2.0 x 10(5) M(-1)). The k-values (6.5-11.5 x 10(6) M(-1)s(-1)) were not significantly dependent on nucleotide sequence. k-values of 5.3 and 4.0 x 10(6) M(-1)s(-1) respectively, were obtained with the N-terminally truncated AT protein and for repair of the postreplicative mispair [O6-EtGua]: T by native AT. The low KA(app), the negligible influence on O6 of ethylation, and the minor modulation KA(app) and k by varying the bases flanking O6-EtGua, all indicate that the binding of AT to DNA is non-specific and mediated mainly by ionic interactions [reduced KA(app) and k-values at increased ionic strength]. Surplus DNA reduces the rate of O6-EtGua repair in ds-oligomers by competitive binding of AT molecules. The reaction mechanism of AT with DNA in vivo requires further investigation.
Collapse
Affiliation(s)
- K Bender
- Institute of Cell Biology (Cancer Research), University of Essen Medical School, Germany
| | | | | | | | | |
Collapse
|
32
|
Koç ON, Phillips WP, Lee K, Liu L, Zaidi NH, Allay JA, Gerson SL. Role of DNA repair in resistance to drugs that alkylate O6 of guanine. Cancer Treat Res 1996; 87:123-46. [PMID: 8886451 DOI: 10.1007/978-1-4613-1267-3_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mechanism of cytotoxicity of a number of chemotherapeutic agents involves alkylation at the O6 position of guanine, a site that strongly influences cytotoxicity. Repair of these lesions by the alkyltransferase protects from cytotoxicity and is a major mechanism of resistance to these agents. O6-benzylguanine inhibition of alkyltransferase sensitizes tumor cells, and clinical trials are underway to determine its efficacy. The use of gene therapy to enhance the expression of alkyltransferase in hematopoietic cells may prevent dose-limiting myelosuppression and may enhance the utility of this class of chemotherapeutic agents.
Collapse
Affiliation(s)
- O N Koç
- Department of Medicine, Case Western Reserve University School of Medicine, University Hospitals of Cleveland, OH 44106-4937, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
O 6 -Alkylguanine-DNA Alkyltransferase: A Target for the Modulation of Drug Resistance. Hematol Oncol Clin North Am 1995. [DOI: 10.1016/s0889-8588(18)30103-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|