1
|
Jiang N, Su D, Chen D, Huang S, Tang C, Jing L, Yang C, Zhou Z, Yan Z, Han J. Discovery of a Novel Glucagon-like Peptide-1 (GLP-1) Analogue from Bullfrog and Investigation of Its Potential for Designing GLP-1-Based Multiagonists. J Med Chem 2024; 67:180-198. [PMID: 38117235 DOI: 10.1021/acs.jmedchem.3c01049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In this study, we aimed to discover novel GLP-1 analogues from natural sources. We investigated GLP-1 analogues from fish and amphibians, and bullfrog GLP-1 (bGLP-1) showed the highest potency. Starting with bGLP-1, we explored the structure-activity relationship and performed optimization and long-acting modifications, resulting in a potent analogue called 2f. Notably, 2f exhibited superior effects on food intake, glycemic control, and body weight compared to semaglutide. Furthermore, we explored the usefulness of bGLP-1 in designing GLP-1-based multiagonists. Using the bGLP-1 sequence, we designed novel dual GLP-1/glucagon receptor agonists and triple GLP-1/GIP/glucagon receptor agonists. The selected dual GLP-1/glucagon receptor agonist 3o and triple GLP-1/GIP/glucagon receptor agonist 4b exhibited significant therapeutic effects on lipid regulation, glycemic control, and body weight. Overall, our study highlights the potential of discovering potent GLP-1 receptor agonists from natural sources. Additionally, utilizing natural GLP-1 analogues for designing multiagonists presents a practical approach for developing antiobesity and antidiabetic agents.
Collapse
Affiliation(s)
- Neng Jiang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Di Su
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - De Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Shutong Huang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, PR China
| | - Chunli Tang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Lin Jing
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Caiyan Yang
- School of Pharmacy, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Baise, Guangxi 533000, PR China
| | - Zhongbo Zhou
- School of Pharmacy, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Baise, Guangxi 533000, PR China
| | - Zhiming Yan
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, PR China
| | - Jing Han
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| |
Collapse
|
2
|
Conlon JM, O'Harte FPM, Flatt PR. Dual-agonist incretin peptides from fish with potential for obesity-related Type 2 diabetes therapy - A review. Peptides 2022; 147:170706. [PMID: 34861327 DOI: 10.1016/j.peptides.2021.170706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022]
Abstract
The long-acting glucagon-like peptide-1 receptor (GLP1R) agonist, semaglutide and the unimolecular glucose-dependent insulinotropic polypeptide receptor (GIPR)/GLP1R dual-agonist, tirzepatide have been successfully introduced as therapeutic options for patients with Type-2 diabetes (T2DM) and obesity. Proglucagon-derived peptides from phylogenetically ancient fish act as naturally occurring dual agonists at the GLP1R and the glucagon receptor (GCGR) with lamprey GLP-1 and paddlefish glucagon being the most potent and effective in stimulating insulin release from BRIN-BD11 clonal β-cells. These peptides were also the most effective in lowering blood glucose and elevating plasma insulin concentrations when administered intraperitoneally to overnight-fasted mice together with a glucose load. Zebrafish GIP acts as a dual agonist at the GIPR and GLP1R receptors. Studies with the high fat-fed mouse, an animal model with obesity, impaired glucose-tolerance and insulin-resistance, have shown that twice-daily administration of the long-acting analogs [D-Ala2]palmitoyl-lamprey GLP-1 and [D-Ser2]palmitoyl-paddlefish glucagon over 21 days improves glucose tolerance and insulin sensitivity. This was associated with β-cell proliferation, protection of β-cells against apoptosis, decreased pancreatic glucagon content, improved lipid profile, reduced food intake and selective alteration in the expression of genes involved in β-cell stimulus-secretion coupling. In insulin-deficient GluCreERT2;ROSA26-eYFP transgenic mice, the peptides promoted an increase in β-cell mass with positive effects on transdifferentiation of glucagon-producing to insulin-producing cells. Naturally occurring fish dual agonist peptides, particularly lamprey GLP-1 and paddlefish glucagon, provide templates for development into therapeutic agents for obesity-related T2DM.
Collapse
Affiliation(s)
- J Michael Conlon
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK.
| | - Finbarr P M O'Harte
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Peter R Flatt
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| |
Collapse
|
3
|
Graham GV, Conlon JM, Abdel-Wahab YH, Flatt PR. Glucagon-like peptides-1 from phylogenetically ancient fish show potent anti-diabetic activities by acting as dual GLP1R and GCGR agonists. Mol Cell Endocrinol 2019; 480:54-64. [PMID: 30312651 DOI: 10.1016/j.mce.2018.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/24/2022]
Abstract
Glucagon-like peptides-1 (GLP-1)from phylogenetically ancient fish (lamprey, dogfish, ratfish, paddlefish and bowfin) and from a teleost, the rainbow trout produced concentration-dependent stimulations of insulin release from clonal β-cells and isolated mouse islets. Lamprey and paddlefish GLP-1 were the most potent and effective. Incubation of BRIN-BD11 cells with GLP-1 receptor (GLP1R) antagonist, exendin-4 (9-39) attenuated insulinotropic activity of all peptides whereas glucagon receptor (GCGR) antagonist [des-His1,Pro4,Glu9] glucagon amide significantly decreased the activities of lamprey and paddlefish GLP-1 only. The GIP receptor antagonist GIP (6-30) Cex-K40 [Pal] attenuated the activity of bowfin GLP-1. All peptides (1 μM) produced significant increases in cAMP concentration in CHL cells transfected with GLP1R but only lamprey and paddlefish GLP-1 stimulated cAMP production in HEK293 cells transfected with GCGR. Intraperitoneal administration of lamprey and paddlefish GLP-1 (25 nmol/kg body weight) in mice produced significant decreases in blood glucose and increased insulin concentrations comparable to the effects of human GLP-1. Lamprey and paddlefish GLP-1 display potent insulinotropic activity in vitro and glucose-lowering activity in vivo that is mediated through GLP1R and GCGR so that these peptides may constitute templates for design of new antidiabetic drugs.
Collapse
Affiliation(s)
- Galyna V Graham
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - J Michael Conlon
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK.
| | - Yasser H Abdel-Wahab
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| |
Collapse
|
4
|
Graham GV, Conlon JM, Abdel-Wahab YH, Flatt PR. Glucagon-related peptides from phylogenetically ancient fish reveal new approaches to the development of dual GCGR and GLP1R agonists for type 2 diabetes therapy. Peptides 2018; 110:19-29. [PMID: 30391422 DOI: 10.1016/j.peptides.2018.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022]
Abstract
The insulinotropic and antihyperglycaemic properties of glucagons from the sea lamprey (Petromyzontiformes), paddlefish (Acipenseriformes) and trout (Teleostei) and oxyntomodulin from dogfish (Elasmobranchii) and ratfish (Holocephali) were compared with those of human glucagon and GLP-1 in mammalian test systems. All fish peptides produced concentration-dependent stimulation of insulin release from BRIN-BD11 rat and 1.1 B4 human clonal β-cells and isolated mouse islets. Paddlefish glucagon was the most potent and effective peptide. The insulinotropic activity of paddlefish glucagon was significantly (P < 0.01) decreased after incubating BRIN-BD11 cells with the GLP1R antagonist, exendin-4(9-39) and the GCGR antagonist [des-His1,Pro4, Glu9] glucagon amide but GIPR antagonist, GIP(6-30)Cex-K40[palmitate] was without effect. Paddlefish and lamprey glucagons and dogfish oxyntomodulin (10 nmol L-1) produced significant (P < 0.01) increases in cAMP concentration in Chinese hamster lung (CHL) cells transfected with GLP1R and human embryonic kidney (HEK293) cells transfected with GCGR. The insulinotropic activity of paddlefish glucagon was attenuated in CRISPR/Cas9-engineered GLP1R knock-out INS-1 cells but not in GIPR knock-out cells. Intraperitoneal administration of all fish peptides, except ratfish oxyntomodulin, to mice together with a glucose load produced significant (P < 0.05) decreases in plasma glucose concentrations and paddlefish glucagon produced a greater release of insulin compared with GLP-1. Paddlefish glucagon shares the sequences Glu15-Glu16 and Glu24-Trp25-Leu26-Lys27-Asn28-Gly29 with the potent GLP1R agonist, exendin-4 so may be regarded as a naturally occurring, dual-agonist hybrid peptide that may serve as a template design of new drugs for type 2 diabetes therapy.
Collapse
Affiliation(s)
- Galyna V Graham
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - J Michael Conlon
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK.
| | - Yasser H Abdel-Wahab
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Peter R Flatt
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| |
Collapse
|
5
|
Cardoso JCR, Félix RC, Costa C, Palma PFS, Canário AVM, Power DM. Evolution of the glucagon-like system across fish. Gen Comp Endocrinol 2018; 264:113-130. [PMID: 29056448 DOI: 10.1016/j.ygcen.2017.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 12/25/2022]
Abstract
In fishes, including the jawless lampreys, the most ancient lineage of extant vertebrates, plasma glucose levels are highly variable and regulation is more relaxed than in mammals. The regulation of glucose and lipid in fishes in common with mammals involves members of the glucagon (GCG)-like family of gastrointestinal peptides. In mammals, four peptides GCG, glucagon-like peptide 1 and 2 (GLP1 and GLP2) and glucose-dependent insulinotropic peptide (GIP) that activate four specific receptors exist. However, in lamprey and other fishes the glucagon-like family evolved differently and they retained additional gene family members (glucagon-related peptide, gcrp and its receptor, gcrpr) that are absent from mammals. In the present study, we analysed the evolution of the glucagon-like system in fish and characterized gene expression of the family members in the European sea bass (Dicentrarchus labrax) a teleost fish. Phylogenetic analysis revealed that multiple receptors and peptides of the glucagon-like family emerged early during the vertebrate radiation and evolved via lineage specific events. Synteny analysis suggested that family member gene loss is likely to be the result of a single gene deletion event. Lamprey was the only fish where a putative glp1r persisted and the presence of the receptor gene in the genomes of the elephant shark and coelacanth remains unresolved. In the coelacanth and elephant shark, unique proglucagon genes were acquired which in the former only encoded Gcg and Glp2 and in the latter, shared a similar structure to the teleost proglucagon gene but possessed an extra exon coding for Glp-like peptide that was most similar to Glp2. The variable tissue distribution of the gene transcripts encoding the ligands and receptors of the glucagon-like system in an advanced teleost, the European sea bass, suggested that, as occurs in mammals, they have acquired distinct functions. Statistically significant (p < .05) down-regulation of teleost proglucagon a in sea bass with modified plasma glucose levels confirmed the link between these peptides and metabolism. The tissue distribution of members of the glucagon-like system in sea bass and human suggests that evolution of the brain-gut-peptide regulatory loop diverged between teleosts and mammals despite the overall conservation and similarity of glucagon-like family members.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Carina Costa
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Pedro F S Palma
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Adelino V M Canário
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
6
|
Busby ER, Mommsen TP. Proglucagons in vertebrates: Expression and processing of multiple genes in a bony fish. Comp Biochem Physiol B Biochem Mol Biol 2016; 199:58-66. [PMID: 26927880 DOI: 10.1016/j.cbpb.2016.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 11/16/2022]
Abstract
In contrast to mammals, where a single proglucagon (PG) gene encodes three peptides: glucagon, glucagon-like peptide 1 and glucagon-like peptide 2 (GLP-1; GLP-2), many non-mammalian vertebrates carry multiple PG genes. Here, we investigate proglucagon mRNA sequences, their tissue expression and processing in a diploid bony fish. Copper rockfish (Sebastes caurinus) express two independent genes coding for distinct proglucagon sequences (PG I, PG II), with PG II lacking the GLP-2 sequence. These genes are differentially transcribed in the endocrine pancreas, the brain, and the gastrointestinal tract. Alternative splicing identified in rockfish is only one part of this complex regulation of the PG transcripts: the system has the potential to produce two glucagons, four GLP-1s and a single GLP-2, or any combination of these peptides. Mass spectrometric analysis of partially purified PG-derived peptides in endocrine pancreas confirms translation of both PG transcripts and differential processing of the resulting peptides. The complex differential regulation of the two PG genes and their continued presence in this extant teleostean fish strongly suggests unique and, as yet largely unidentified, roles for the peptide products encoded in each gene.
Collapse
Affiliation(s)
- Ellen R Busby
- Department of Biochemistry and Microbiology, and Department of Biology, University of Victoria, Victoria, BC, Canada.
| | - Thomas P Mommsen
- Department of Biochemistry and Microbiology, and Department of Biology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
7
|
Abstract
Glucagon-like peptide 1 (GLP1) is an intestinal incretin that regulates glucose homeostasis through stimulation of insulin secretion from pancreatic β-cells and inhibits appetite by acting on the brain. Thus, it is a promising therapeutic agent for the treatment of type 2 diabetes mellitus and obesity. Studies using synteny and reconstructed ancestral chromosomes suggest that families for GLP1 and its receptor (GLP1R) have emerged through two rounds (2R) of whole genome duplication and local gene duplications before and after 2R. Exon duplications have also contributed to the expansion of the peptide family members. Specific changes in the amino acid sequence following exon/gene/genome duplications have established distinct yet related peptide and receptor families. These specific changes also confer selective interactions between GLP1 and GLP1R. In this review, we present a possible macro (genome level)- and micro (gene/exon level)-evolution mechanisms of GLP1 and GLP1R, which allows them to acquire selective interactions between this ligand-receptor pair. This information may provide critical insight for the development of potent therapeutic agents targeting GLP1R.
Collapse
Affiliation(s)
- Jong-Ik Hwang
- Graduate School of MedicineKorea University, Seoul 136-705, Republic of Korea
| | - Seongsik Yun
- Graduate School of MedicineKorea University, Seoul 136-705, Republic of Korea
| | - Mi Jin Moon
- Graduate School of MedicineKorea University, Seoul 136-705, Republic of Korea
| | - Cho Rong Park
- Graduate School of MedicineKorea University, Seoul 136-705, Republic of Korea
| | - Jae Young Seong
- Graduate School of MedicineKorea University, Seoul 136-705, Republic of Korea
| |
Collapse
|
8
|
Ng SYL, Lee LTO, Chow BKC. Insights into the evolution of proglucagon-derived peptides and receptors in fish and amphibians. Ann N Y Acad Sci 2010; 1200:15-32. [PMID: 20633130 DOI: 10.1111/j.1749-6632.2010.05505.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Glucagon and the glucagon-like peptides (GLP-1 and GLP-2) share a common evolutionary origin and are triplication products of an ancestral glucagon exon. In mammals, a standard scenario is found where only a single proglucagon-derived peptide set exists. However, fish and amphibians have either multiple proglucagon genes or exons that are likely resultant of duplication events. Through phylogenetic analysis and examination of their respective functions, the proglucagon ligand-receptor pairs are believed to have evolved independently before acquiring specificity for one another. This review will provide a comprehensive overview of current knowledge of proglucagon-derived peptides and receptors, with particular focus on fish and amphibian species.
Collapse
Affiliation(s)
- Stephanie Y L Ng
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | | | | |
Collapse
|
9
|
Youson JH. Peripheral Endocrine Glands. I. The Gastroenteropancreatic Endocrine System and the Thyroid Gland. FISH PHYSIOLOGY 2007. [DOI: 10.1016/s1546-5098(07)26008-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
10
|
Abstract
The conformation of insulin in the crystalline state has been known for more than 30 years but there remains uncertainty regarding the biologically active conformation and the structural features that constitute the receptor-binding domain. The primary structure of insulin has been determined for at least 100 vertebrate species. In addition to the invariant cysteines, only ten amino acids (GlyA1, IleA2, ValA3, TyrA19, LeuB6, GlyB8, LeuB11, ValB12, GlyB23 and PheB24) have been fully conserved during vertebrate evolution. This observation supports the hypothesis derived from alanine-scanning mutagenesis studies that five of these invariant residues (IleA2, ValA3, TyrA19, GlyB23, and Phe24) interact directly with the receptor and five additional conserved residues (LeuB6, GlyB8, LeuB11, GluB13 and PheB25) are important in maintaining the receptor-binding conformation. With the exception of the hagfish, only conservative substitutions are found at B13 (Glu --> Asp) and B25(Phe --> Tyr). In contrast, amino acid residues that were also considered to be important in receptor binding based upon the crystal structure of insulin (GluA4, GlnA5, AsnA21, TyrB16, TyrB26) have been much less well conserved and are probably not components of the receptor-binding domain. The hypothesis that LeuA13 and LeuB17 form part of a second receptor-binding site in the insulin molecule finds some support in terms of their conservation during vertebrate evolution, although the site is probably absent in some hystricomorph insulins. In general, the amino acid sequences of insulins are not useful in cladistic analyses especially when evolutionary distant taxa are compared but, among related species in a particular order or family, the presence of unusual structural features in the insulin molecule may permit a meaningful phylogenetic inference. For example, analysis of insulin sequences supports monophyletic status for Dipnoi, Elasmobranchii, Holocephali and Petromyzontiformes.
Collapse
Affiliation(s)
- J M Conlon
- Regulatory Peptide Center, Department of Biomedical Sciences, Creighton University Medical School, Omaha NE 68178-0405, USA.
| |
Collapse
|
11
|
Al-Mahrouki AA, Irwin DM, Graham LC, Youson JH. Molecular cloning of preproinsulin cDNAs from several osteoglossomorphs and a cyprinid. Mol Cell Endocrinol 2001; 174:51-8. [PMID: 11306171 DOI: 10.1016/s0303-7207(00)00449-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Several preproinsulin cDNAs were isolated and characterized from four members of the Osteoglossomorpha (an ancient teleost group); Osteoglossum bicirrhosum (arawana), Pantodon buchholzi (butterfly fish), Notopterus chitala (feather fin knife fish), Hiodon alosoides (goldeye) and Gnathonemus petersii (elephantnose). In addition, we isolated and characterized the preproinsulin cDNA from Catostomus commersoni (white sucker, as a representative of a generalized teleost). The comparative analysis of the sequences revealed conservation of the cystine residues known to be involved in the formation of the disulfide bridges, as well as residues involved in the hexamer formation, except for B-17 in the butterfly fish, the arawana and the goldeye. However, the N-terminus of the B-chain was very weakly conserved among the species studied. Residues known to be significant for maintaining receptor-binding conformation and those known to comprise the receptor-binding domain were all conserved, except for a conservative substitution at B13, aspartate substituted glutamate in the arawana, goldeye, butterfly fish and white sucker, and at B16, phenylalanine substituted tyrosine in the elephantnose. Phylogenetic analysis of the sequences revealed a monophyletic grouping of the osteoglossomorphs, and showed that they were not the most basal living teleost. Comparative sequence analysis of preproinsulins among the osteoglossomorphs was useful in assessment of intergroup relationship, relating elephantnose with the feather fin knife fish and the arawana, butterfly fish, and goldeye. This arrangement of species is consistent with relationships based on other more classical parameters, except for the goldeye which was assessed as being sister to all the osteoglossomorphs. The white sucker was grouped with the common carp and both are cyprinids.
Collapse
Affiliation(s)
- A A Al-Mahrouki
- Department of Zoology and Division of Life Sciences, University of Toronto at Scarborough, Scarborough, Ont., M1C 1A4, Canada
| | | | | | | |
Collapse
|
12
|
Andoh T, Nagasawa H, Matsubara T. Multiple molecular forms of glucagon and insulin in the kaluga sturgeon, Huso dauricus. Peptides 2000; 21:1785-92. [PMID: 11150638 DOI: 10.1016/s0196-9781(00)00337-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Five molecular forms of glucagon and two molecular forms of insulin were characterized from the kaluga sturgeon. Substitutions occurred at two to thirteen internal amino acid residues among the five molecular forms of glucagons, indicating that these glucagons were encoded by five distinct genes. The amino acid sequences of two insulins from the kaluga sturgeon were identical to those of paddlefish insulin-II and Russian sturgeon insulin except that kaluga sturgeon insulin-I had an extension of five residues at the B-chain N-terminus. This is the first demonstration that more than two molecular forms of glucagon have been characterized from a single animal species.
Collapse
Affiliation(s)
- T Andoh
- Hokkaido National Fisheries Research Institute, 116 Katsurakoi, 085-0802, Kushiro, Japan.
| | | | | |
Collapse
|
13
|
Kim JB, Gadsbøll V, Whittaker J, Barton BA, Conlon JM. Gastroenteropancreatic hormones (insulin, glucagon, somatostatin, and multiple forms of PYY) from the pallid sturgeon, Scaphirhynchus albus (Acipenseriformes). Gen Comp Endocrinol 2000; 120:353-63. [PMID: 11121300 DOI: 10.1006/gcen.2000.7571] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin, glucagon, somatostatin-14, and three structurally related molecular forms of peptide tyrosine-tyrosine (PYY) were isolated from an extract of the combined pancreas and gastrointestinal tract of the pallid sturgeon, Scaphirhynchus albus. Pallid sturgeon insulin was identical to insulin from the Russian sturgeon, Acipenser guldenstaedti, and to insulin-2 from the paddlefish, Polyodon spathula, and was approximately twofold less potent than human insulin in inhibiting the binding of [3-[(125)I] iodotyrosine-A14] human insulin to the soluble human insulin receptor. The sturgeon glucagon (HSQGMFTNDY(10)-SKYLEEKLAQ(20) EFVEWLKNGK(30)S), like the two paddlefish glucagons, contains 31 rather than 29 amino acid residues, indicative of an anomalous pathway of posttranslational processing of proglucagon. Pallid sturgeon somatostatin, identical to human somatostatin-14, was also isolated in a second molecular form containing an oxidized tryptophan residue, but [Pro(2)]somatostatin-14, previously isolated from the pituitary of A. guldenstaedti, was not identified. Sturgeon PYY (FPPKPEHPGD(10)DAPAEDVAKY(20)YTALRHYINL(30) ITRQRY.HN(2)) was also isolated in variant forms containing the substitutions (Phe(1) --> Ala) and (Ala(18) --> Val), indicative of at least two gene duplications occurring within the Acipenseriformes lineage. The amino acid sequences of the pallidsturgeon PYY peptides are appreciably different from the proposed "ancestral" PYY sequence that has otherwise been very strongly conserved among the actinopterygian and elasmobranch fish.
Collapse
Affiliation(s)
- J B Kim
- Regulatory Peptide Center, Creighton University School of Medicine, Omaha, Nebraska 68178, USA
| | | | | | | | | |
Collapse
|
14
|
Sherwood NM, Krueckl SL, McRory JE. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev 2000; 21:619-70. [PMID: 11133067 DOI: 10.1210/edrv.21.6.0414] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP)/ glucagon superfamily includes nine hormones in humans that are related by structure, distribution (especially the brain and gut), function (often by activation of cAMP), and receptors (a subset of seven-transmembrane receptors). The nine hormones include glucagon, glucagon-like peptide-1 (GLP-1), GLP-2, glucose-dependent insulinotropic polypeptide (GIP), GH-releasing hormone (GRF), peptide histidine-methionine (PHM), PACAP, secretin, and vasoactive intestinal polypeptide (VIP). The origin of the ancestral superfamily members is at least as old as the invertebrates; the most ancient and tightly conserved members are PACAP and glucagon. Evidence to date suggests the superfamily began with a gene or exon duplication and then continued to diverge with some gene duplications in vertebrates. The function of PACAP is considered in detail because it is newly (1989) discovered; it is tightly conserved (96% over 700 million years); and it is probably the ancestral molecule. The diverse functions of PACAP include regulation of proliferation, differentiation, and apoptosis in some cell populations. In addition, PACAP regulates metabolism and the cardiovascular, endocrine, and immune systems, although the physiological event(s) that coordinates PACAP responses remains to be identified.
Collapse
Affiliation(s)
- N M Sherwood
- Department of Biology, University of Victoria, British Columbia, Canada.
| | | | | |
Collapse
|
15
|
Bachle LA, Smith DD, Petzel D. Isolation and characterization of insulin from the Brockmann body of Dissostichus mawsoni, an Antarctic teleost fish. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2000; 56:47-54. [PMID: 10917456 DOI: 10.1034/j.1399-3011.2000.00742.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Brockmann body of fish synthesizes and secretes insulin. The Brockmann body of Antarctic fish has been described anatomically and shown to contain insulin immunoreactive sites, however, the primary structure of an Antarctic fish insulin has yet to be reported. Insulin was isolated from the Brockmann bodies of the Antarctic perciform teleost, Dissostichus mawsoni. The peptide was purified to homogeneity by gel filtration and reversed-phase HPLC. Insulin-containing fractions were identified by radioimmunoassay using antisera raised against porcine insulin. Electrospray ionization-mass spectrometry determined the mass of the isolated product to be 5725.27 a.m.u. The amino acid composition and primary structure were determined for the pyridylethylated A- and B-chains. The amino acid sequences of the A chain and B chain were H-Gly-lle-Val-Glu-Gln-Cys-Cys-His-Gln-Pro10-Cys-Asn-Ile-Phe- Asp-Leu-Gln-Asn-Tyr-Cys20-Asn-OH and H-Ala-Pro-Gly-Pro-GIn-His-Leu-Cys-Gly-Ser10-His-Leu-Val-Asp-Ala-Le u-Tyr-Leu-Val-Cys20-Gly-Glu-Arg-Gly-Phe-Phe-Tyr-Asn-Pro-Lys30++ +-OH, respectively. The primary structure of insulin from Antarctic fish is compared with known structures of insulin from other vertebrates.
Collapse
Affiliation(s)
- L A Bachle
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | |
Collapse
|
16
|
Michael Conlon J. Molecular Evolution of Insulin in Non-Mammalian Vertebrates. ACTA ACUST UNITED AC 2000. [DOI: 10.1093/icb/40.2.200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Affiliation(s)
- T J Kieffer
- Department of Medicine, University of Alberta, Edmonton, Canada.
| | | |
Collapse
|
18
|
Wang Y, Barton BA, Nielsen PF, Conlon JM. Tachykinins (substance P and neuropeptide gamma) from the brains of the pallid sturgeon, Scaphirhynchus albus and the paddlefish, Polyodon spathula (Acipenseriformes). Gen Comp Endocrinol 1999; 116:21-30. [PMID: 10525358 DOI: 10.1006/gcen.1999.7348] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A peptide with substance P-like immunoreactivity was isolated from extracts of the brains of the pallid sturgeon, Scaphirhynchus albus and the North American paddlefish, Polyodon spathula. The primary structure of the peptide (Lys-Pro-Lys-Pro-His-Gln-Phe-Phe-Gly-Leu-Met.NH(2)) is the same in both species and contains 2 amino acid substitutions (Arg(1) --> Lys and Gln(5) --> His) compared with human substance P and 1 substitution (Arg(3) --> Lys) compared with substance P from the trout (Teleostei). Scyliorhinin I, a tachykinin previously isolated from an extract of sturgeon intestine, was not detected in either brain extract. A peptide with neurokinin A-like immunoreactivity (Ser-Ser-Ala-Asn-Arg-Gln-Ile-Thr-Gly-Lys(10)Arg-Gln-Lys-Ile-Asn-Ser-P he-Val-Gly-Leu(20)Met.NH(2)) was isolated from sturgeon brain and contains 10 amino acid substitutions compared with human neuropeptide gamma (a specific product of the posttranslational processing of gamma-preprotachykinin A) but only 4 substitutions compared with trout neuropeptide gamma. It was not possible to obtain the paddlefish neurokinin A-related peptide in pure form. The structural similarity between the sturgeon and the trout tachykinins supports the hypothesis that the Acipenseriformes (sturgeons and paddlefish) represent the sister group of the Neopterygii (gars, bowfin, and teleosts).
Collapse
Affiliation(s)
- Y Wang
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178, USA
| | | | | | | |
Collapse
|
19
|
Conlon JM, Basir Y, Joss JM. Purification and characterization of insulin from the Australian lungfish, Neoceratodus forsteri (Dipnoi). Gen Comp Endocrinol 1999; 116:1-9. [PMID: 10525356 DOI: 10.1006/gcen.1999.7346] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Australian lungfish Neoceratodus forsteri, a facultative air breather, is considered to be the most primitive of the extant Dipnoi and so occupies a uniquely important evolutionary position in the transition from fish to tetrapods. Insulin was isolated from an extract of the pancreas of N. forsteri and its primary structure established as: A-Chain, Gly-Ile-Val-Glu-Gln-Cys-Cys-His-Thr-Pro(10)-Cys-Ser-Leu-Tyr-Gln-Leu-G lu-Asn-Tyr-Cys(20)-Asn-Glu-Thr-Glu; B-Chain, Ala-Ala-Val-Asn-Gln-His-Leu-Cys-Gly-Ser(10)-His-Leu-Val-Glu-Ala-Leu- Tyr-Phe-Val-Cys(20)-Gly-Glu-Arg-Gly-Phe-Phe-Tyr-Leu-Pro- Lys(30)-Gly. This amino acid sequence is more similar to that of human insulin than to insulins from present-day amphibians. All the residues in human insulin that are considered to be important in receptor binding, dimerization, and hexamerization are conserved in lungfish insulin except for the substitution (Leu --> Phe) at the position corresponding to B17 in human insulin. Consistent with the assertion that the Dipnoi is a monophyletic group, insulins from N. forsteri and from the African lungfish Protopterus annectens contain extensions to the C-terminus of the A-chain and to the N-terminus of the B-chain that have not been found in other sarcopterygian species. However, the unusual amino acid substitutions found in insulin from P. annectens (e.g., GlyB21 --> Ala, GluB22 --> Asp, and ArgB23 --> Asn) are not present in N. forsteri insulin, suggesting that they occurred in the Protopterus lineage after divergence of the genera.
Collapse
Affiliation(s)
- J M Conlon
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178, USA.
| | | | | |
Collapse
|
20
|
Goraya J, Knoop FC, Conlon JM. Ranatuerin 1T: an antimicrobial peptide isolated from the skin of the frog, Rana temporaria. Peptides 1999; 20:159-63. [PMID: 10422869 DOI: 10.1016/s0196-9781(98)00174-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A peptide, termed ranatuerin 1T, with growth-inhibiting activity toward Staphylococcus aureus, was isolated from an extract of the skin of the European brown frog, Rana temporaria. The primary structure of the peptide was established as: GLLSGLKKVG10 KHVAKNVAVS20LMDSLKCKIS30GDC. In common with other anti-microbial peptides from Ranid frogs, (e.g., ranalexin, ranatuerins, gaegurins, brevinins, esculetins, rugosins), ranatuerin IT contains an intramolecular disulfide bridge forming a heptapeptide ring but there is little structural similarity outside this cyclic region. The minimum inhibitory concentration (MIC) of ranatuerin 1T was 120 microM against the Gram-positive bacterium S. aureus and 40 microM against the Gram-negative bacterium Escherichia coli, but the peptide was not active against the yeast Candida albicans.
Collapse
Affiliation(s)
- J Goraya
- Department of Biomedical Sciences, Creighton University Medical School, Omaha, Nebraska 68178, USA
| | | | | |
Collapse
|
21
|
de Lima JA, Oliveira B, Conlon JM. Purification and characterization of insulin and peptides derived from proglucagon and prosomatostatin from the fruit-eating fish, the pacu Piaractus mesopotamicus. Comp Biochem Physiol B Biochem Mol Biol 1999; 122:127-35. [PMID: 10327603 DOI: 10.1016/s0305-0491(98)10164-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The fruit-eating teleost fish, the pacu Piaractus mesopotamicus (Characiformes, Characidae) is classified along with the carp and the catfish in the superorder Ostariophysi. The pacu is able to survive and grow in captive conditions feeding exclusively on carbohydrates. Hormonal polypeptides in an extract of pacu Brockmann bodies were purified to homogeneity by reversed phase HPLC and their primary structures determined by automated Edman degradation. Pacu insulin contains only two substitutions, Glu-->Asp at A15 and Thr-->Ser at B24 (corresponding to B22 in mammalian insulins) compared with carp insulin. The B-chains of both insulins contain a dipeptide extension to the N-terminus and a deletion of the C-terminal residue compared with human insulin. Pacu glucagon differs from catfish glucagon by a single substitution at position 17 (Arg-->Gln. The primary structure of the 34 amino acid residue glucagon-like peptide (GLP) differs from catfish GLP only at positions 12 (Ser-->Ala) and 33 (Pro-->Gln). In common with other teleost species, the pacu expresses two somatostatin genes. Somatostatin-14, derived from preprosomatostatin-I (PSS-I), is identical to mammalian/catfish somatostatin-14. Although pacu somatostatin-II was not identified in this study, a peptide was purified that shows 67% sequence identity with residues (1-58) of catfish preprosomatostatin-II (PSS-II). This relatively high degree of sequence similarity contrasts with the fact that catfish PSS-II shows virtually no sequence identity with the corresponding PSS-II from anglerfish (Acanthopterygii) and trout (Protoacanthopterygii). A comparison of the primary structures of the islet hormones suggest that amino acid sequences may have been better conserved within the Ostariophysi than in other groups of the taxon Euteleostei that have been studied.
Collapse
Affiliation(s)
- J A de Lima
- Research and Training Center for Aquaculture-Cepta/Ibama, University of Campinas, Sao Paulo, Brazil
| | | | | |
Collapse
|
22
|
Wang Y, Barton BA, Thim L, Nielsen PF, Conlon JM. Purification and characterization of galanin and scyliorhinin I from the hybrid sturgeon, Scaphirhynchus platorynchus x Scaphirhynchus albus (Acipenseriformes). Gen Comp Endocrinol 1999; 113:38-45. [PMID: 9882542 DOI: 10.1006/gcen.1998.7174] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sturgeons (order Acipenseriformes) are extant representatives of a group of ancient Actinopterygian (ray-finned) fish. Galanin and scyliorhinin I (a tachykinin with limited structural similarity to mammalian substance P) have been isolated from an extract of the gastrointestinal tract of a sturgeon (an F1 hybrid between the shovelnose sturgeon, Scaphirhynchus platorynchus, and the pallid sturgeon, Scaphirhynchus albus). The primary structure of sturgeon galanin (Gly-Trp-Thr-Leu-Asn-Ser-Ala-Gly-Tyr-Leu10-Leu-Gly-Pro-His-Ala-Val -As p-Gly-His-Arg20-Ser-Leu-Ser-Asp-Lys-His-Gly-Leu-Pro.NH2) contains only two amino acid substitutions (Ser23 --> Asn and Pro29 --> Ala) compared with galanin from the bowfin, Amia calva (Amiiformes), but five amino acid substitutions compared with galanin from the trout (Teleostei). Similarly, the sturgeon tachykinin (Ser-Lys-Tyr-His-Gln-Phe-Tyr-Gly-Leu-Met.NH2) contains only one amino acid substitution (Tyr3 --> Ser) compared with scyliorhinin I previously isolated from bowfin stomach but five amino acid substitutions compared with trout substance P. The data support the hypothesis that the Acipenseriformes and the basal Neopterygians (gars and bowfin) share a close phylogenetic relationship.
Collapse
Affiliation(s)
- Y Wang
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, 68178, USA
| | | | | | | | | |
Collapse
|
23
|
Andoh T, Nagasawa H. Two Molecular Forms of Insulin from Barfin Flounder, Verasper moseri, are Derived from a Single Gene. Zoolog Sci 1998. [DOI: 10.2108/zsj.15.931] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Andoh T, Nagasawa H. Purification and Structural Determination of Insulins, Glucagons and Somatostatin from Stone Flounder, Kareius bicoloratus. Zoolog Sci 1998. [DOI: 10.2108/zsj.15.939] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Mommsen TP, Mojsov S. Glucagon-like peptide-1 activates the adenylyl cyclase system in rockfish enterocytes and brain membranes. Comp Biochem Physiol B Biochem Mol Biol 1998; 121:49-56. [PMID: 9972283 DOI: 10.1016/s0305-0491(98)10110-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Glucagon-like peptide (GLP) exerts important physiological functions in fish liver, but extrahepatic sites of action and physiological roles have been largely ignored. We show here that GLP activates adenylyl cyclase in isolated brain and enterocyte membranes and increases cellular cyclic adenosine monophosphate (cAMP) levels in isolated enterocytes of rockfish (Sebastes caurinus). Following exposure to synthetic zebrafish GLP (zf-GLP) (1 nM-1 microM), a concentration-dependent increase in enterocyte cAMP is noted. The maximum increase in cAMP levels is observed at 1 microM zf-GLP, and represents a 30% increase above control values. Exendin-4, a GLP receptor agonist in mammals, elicits a similar concentration-dependent increase in enterocyte cAMP. In contrast, norepinephrine or prostaglandin E2 (at 1 microM) increased cAMP levels by 2 and 4-fold, respectively. Brain membrane adenylyl cyclase is activated 20-40% by zf-GLP, and to a smaller extent by zf-glucagon, while exendin-4 is as effective as zf-GLP at a dose of 100 nM. These results suggest potential physiological roles of GLP in brain and intestine in piscine systems analogous to GLP-1 functions in these tissues described for mammals.
Collapse
Affiliation(s)
- T P Mommsen
- Department of Biochemistry and Microbiology, University of Victoria, BC, Canada.
| | | |
Collapse
|
26
|
Moriyama S, Bondareva VM, Kolychev AP, Amemiya Y, Yasuda A, Kawauchi H. Isolation and characterization of insulin in Russian sturgeon (Acipenser guldenstaedti). THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1998; 51:395-400. [PMID: 9650713 DOI: 10.1111/j.1399-3011.1998.tb00637.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Insulin was isolated from the pancreas of Chondrostean fish, the Russian sturgeon, Acipenser guldenstaedti, by acid-ethanol extraction followed by ion-exchange and reverse-phase high-performance liquid chromatographies. The amino acid sequence determined by automated Edman degradation is as follows: A-chain (21-amino-acid peptide), H-Gly-Ile-Val-Glu-Gln-Cys-Cys-His-Ser-Pro-Cys-Ser-Leu-Tyr-Asp-Leu-Glu-As n-Tyr-Cys-Asn-OH; and B-chain (31-amino-acid peptide), H-Ala-Ala-Asn-Gln-His-Leu-Cys-Gly-Ser-His-Leu-Val-Glu-Ala-Leu-Tyr-Leu-Va l-Cys-Gly-Glu-Arg-Gly-Phe-Phe-Tyr-Thr-Pro-Asn-Lys-Val-OH. The sturgeon insulin appears to be identical with one of two forms of paddlefish insulin and differs from the other form by a single substitution in the A-chain, Asp15: His15. The amino acid sequence of sturgeon insulin is more similar to the amino acid sequence of mammalian insulins than of other fish insulins. Sturgeon insulin showed parallel but weaker displacement than porcine insulin and pink salmon insulin in their respective radioimmunoassays and was less potent than porcine insulin in displacing radiolabeled porcine insulin bound to partially purified rat liver plasma membranes.
Collapse
|
27
|
Conlon JM, Fan H, Fritzsch B. Purification and structural characterization of insulin and glucagon from the bichir Polypterus senegalis (Actinopterygii: Polypteriformes). Gen Comp Endocrinol 1998; 109:86-93. [PMID: 9446726 DOI: 10.1006/gcen.1997.7007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Polypteriformes (bichirs and reedfish) are a family of ray-finned fishes of ancient lineage. Insulin has been isolated from an extract of the pancreas and upper gastrointestinal tract of the bichir Polypterus senegalis and its primary structure established as A-chain: Gly-Ile-Val-Glu-Gln-Cys-Cys-Asp-Thr-Pro10-Cys-Ser- Leu-Tyr-Asp-Leu-Glu-Asn-Tyr-Cys20-Asn: B-chain: Ala-Ala-Asn-Arg-His-Leu-Cys-Gly-Ser-His10-Leu-Val- Glu-Ala-Leu-Tyr-Leu-Val-Cys-Gly20-Asn-Arg-Gly-Phe- Phe-Tyr-Ile-Pro-Ser-Lys30-Met. Despite the fact that Polypterus insulin contains several unusual structural features that are not found in insulins from other jawed fish (Asp at A-8, Thr at A-9, Arg at B-4, Asn at B-21, Ile at B-27, Met at B-31), all the residues in human insulin that are involved in receptor binding, dimerization, and hexamerization have been conserved. A comparison of the structures of insulins from a range of species indicates that Polypterus insulin most closely resembles paddlefish insulin II (seven amino acid substitutions). In contrast, Polypterus glucagon (His-Ser- Gln-Gly-Thr-Phe-Thr-Asn-Asp-Tyr10-Thr-Lys-Tyr- Gln-Asp-Ser-Arg-Arg-Ala-Gln20-Asp-Phe-Val-Gln- Trp-Leu-Met-Ser-Asn) most closely resembles the glucagons from the gar Lepisosteus spatula and the bowfin Amia calva (four amino acid substitutions). The data are consistent with the conclusion based on comparison of morphological characteristics that the Polypterids are the most basal living group of the Actinopterygians with evolutionary connections to both the Acipenserids and the Neopterygians.
Collapse
Affiliation(s)
- J M Conlon
- Department of Biomedical Sciences, Creighton University Medical School, Omaha, Nebraska 68178, USA
| | | | | |
Collapse
|
28
|
Conlon JM, Platz JE, Nielsen PF, Vaudry H, Vallarino M. Primary structure of insulin from the african lungfish, Protopterus annectens. Gen Comp Endocrinol 1997; 107:421-7. [PMID: 9268623 DOI: 10.1006/gcen.1997.6939] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Among the extant Sarcopterygii, the interrelationship between the Dipnoi (lungfishes), Actinistia (coelacanths), and Tetrapoda (tetrapods) is controversial. Insulin has been purified from an extract of the pancreas of the African lungfish Protopterus annectens and its primary structure established as A-chain, Gly-Ile-Val-Glu-Gln-Cys-Cys-His-Lys-Pro10-Cys-Ser-Leu- Tyr -Glu-Leu-Glu-Asn-Tyr-Cys20-Asn-Val-Pro; and B-chain, Ala-Val-Leu-Asn-Gln-His-Leu-Cys-Gly-Ser10-His-Leu-Val- Glu- Ala-Leu-Tyr-Leu-Val-Cys20-Ala-Asp-Asn-Gly-Phe- Phe-Tyr-Lys-Pro-Ser30-Gly. Lungfish insulin contains unusual structural features, such as the dipeptide extension to the C-terminus of the A-chain and the substitution Arg --> Asn at position B-23 in the putative receptor binding region of insulin, which may be expected to influence appreciably its biological potency relative to mammalian insulins. Lungfish insulin also contains amino acid substitutions such as Gly --> Ala at position B-21, Glu --> Asp at position B-22, and a Lys --> Ser residue at position B-30, previously found in insulins from amphibia. This observation is consistent with paleontological data suggesting that lungfish and amphibia share a close phylogenetic relationship.
Collapse
Affiliation(s)
- J M Conlon
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, 68178, USA
| | | | | | | | | |
Collapse
|
29
|
Plisetskaya EM, Mommsen TP. Glucagon and glucagon-like peptides in fishes. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 168:187-257. [PMID: 8843650 DOI: 10.1016/s0074-7696(08)60885-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Glucagon and glucagon-like peptides (GLPs) are coencoded in the vertebrate proglucagon gene. Large differences exist between fishes and other vertebrates in gene structure, peptide expression, peptide chemistry, and function of the hormones produced. Here we review selected aspects of glucagon and glucagon-like peptides in vertebrates with special focus on the contributions made by analysis of piscine systems. Our topics range from the history of discovery to gene structure and expression, through primary structures and regulation of plasma concentrations to physiological effects and message transduction. In fishes, the pancreas synthesizes glucagon and GLP-1, while the intestine may contribute oxyntomodulin, glucagon, GLP-1, and GLP-2. The pancreatic gene is short and lacks the sequence for GLP-2. GLP-1, which is produced exclusively in its biologically active form, is a potent metabolic hormone involved in regulation of liver glycogenolysis and gluconeogenesis. The responsiveness of isolated hepatocytes to glucagon is limited to high concentrations, while physiological concentrations of GLP-1 effectively regulate hepatic metabolism. Plasma concentrations of GLP-1 are higher than those of glucagon, and liver is identified as the major site of removal of both hormones from fish plasma. Ultimately, GLP-1 and glucagon exert effects on glucose metabolism that directly and indirectly oppose several key actions of insulin. Both glucagon and GLP-1 show very weak insulinotropic activity, if any, when tested on fish pancreas. Intracellular message transduction for glucagon, especially at slightly supraphysiological concentrations, involves cAMP and protein kinase A, while pathways for GLP are largely unknown and may involve a multitude of messengers, including cAMP. In spite of fundamental differences in GLP-1 function between fishes and mammals, fish GLP-1 is as powerful an insulinotropin for mammalian B-cells as mammalian GLP-1 is a metabolic hormone if tested on piscine liver.
Collapse
Affiliation(s)
- E M Plisetskaya
- School of Fisheries, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
30
|
Nguyen TM, Wright JR, Nielsen PF, Conlon JM. Characterization of the pancreatic hormones from the Brockmann body of the tilapia: implications for islet xenograft studies. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1995; 111:33-44. [PMID: 7656183 DOI: 10.1016/0742-8413(95)00023-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Brockmann body of the teleost fish, the tilapia (Oreochromis nilotica) has been considered as a potential source of islet xenograft tissue for patients with insulin-dependent diabetes. This study describes the purification from an extract of tilapia Brockmann bodies of insulin and several peptides arising from different pathways of post-translational processing of two proglucagons, two prosomatostatins and proPYY. The primary structure of tilapia insulin is similar to insulins from other teleosts (particularly the anglerfish, Lophius americanus) except that the strongly conserved glutamine residue at position 5 in the A-chain, a residue that is important in the binding of insulin to its receptor, is replaced by glutamic acid. In common with other teleosts, the tilapia Brockmann body expresses two non-allelic glucagon genes. Alternative pathways of post-translational processing lead to glucagons with 29 and 36 amino acid residues derived from proglucagon I and glucagons with 29 and 32 residues derived from proglucagon II. Glucagon-like peptides with 30 and 34 residues derived from proglucagon II were also isolated. In each case, the longer peptide is a C-terminally extended form of the shorter. Tilapia peptide tyrosine-tyrosine (PYY) was isolated in a C-terminally alpha-amidated from with 36 amino acid residues that is structurally similar (89% sequence identity) to anglerfish PYY. A 30-amino acid peptide, representing the C-terminal flanking peptide of PYY, was also isolated that shows only 53% sequence identity with the corresponding anglerfish peptide. Tilapia somatostatin-14 is identical to mammalian somatostatin but the [Tyr7, Gly10] somatostatin-containing peptide derived from prosomatostatin II contains the additional substitution (Phe11-->Leu) compared with the corresponding peptide from other teleosts.
Collapse
Affiliation(s)
- T M Nguyen
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | | | |
Collapse
|
31
|
8 Molecular Aspects of Pancreatic Peptides. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s1546-5098(08)60069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
|