1
|
Bazzano M, Laghi L, Zhu C, Magi GE, Serri E, Spaterna A, Tesei B, Laus F. Metabolomics of tracheal wash samples and exhaled breath condensates in healthy horses and horses affected by equine asthma. J Breath Res 2018; 12:046015. [PMID: 30168442 DOI: 10.1088/1752-7163/aade13] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present work characterized the metabolomic profile of tracheal wash (TW) and exhaled breath condensate (EBC) in healthy horses and horses with respiratory disease. Six asthma-affected horses (group A) and six healthy controls (group H) underwent clinical, endoscopic and cytologic examinations of upper airways to confirm the active phase of asthma. TW and EBC samples were collected from each animal and investigated by proton nuclear magnetic resonance (1H-NMR) metabolomic analysis. A total of ten out of 38 metabolites found in the TW were significantly different between the groups (p < 0.05). Higher concentrations of histamine and oxidant agents, such as glutamate, valine, leucine and isoleucine, as well as lower levels of ascorbate, methylamine, dimethylamine and O-phosphocholine, were found in group A compared to group H. Eight metabolites were found in equine EBC, namely methanol, ethanol, formate, trimethylamine, acetone, acetate, lactate and butanone, previously observed also in human EBC. Despite the fact that this was a pilot study, the results showed that the metabolomic analysis of TW and EBC has the potentiality to serve as a basis for diagnostic tools in horses with asthma.
Collapse
Affiliation(s)
- Marilena Bazzano
- School of Biosciences and Veterinary Medicine, University of Camerino, Macerata, Italy
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Lapenna D, Ciofani G, Calafiore AM, Cipollone F, Porreca E. Impaired glutathione-related antioxidant defenses in the arterial tissue of diabetic patients. Free Radic Biol Med 2018; 124:525-531. [PMID: 29964170 DOI: 10.1016/j.freeradbiomed.2018.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 11/23/2022]
Abstract
We studied the specific enzymatic activities of selenium-dependent (GSH-Px) and -independent (GST-Px) glutathione peroxidase, glutathione reductase (GSSG-Red), and glutathione S-transferase (GST) in internal mammary arteries (IMArt) specimens obtained during coronary artery bypass surgery in 18 patients with type 2 diabetes mellitus as compared to 18 non-diabetic controls; vascular lipid peroxidation, namely fluorescent damage products of lipid peroxidation (FDPL) as 4-hydroxynonenal-related oxidative stress indicators, was also studied. Moreover, in other 16 diabetic patients and 16 controls, total glutathione (TGlut) was determined in IMArt specimens specifically homogenized in sulfosalycilic acid to prevent vascular GSH depletion. The activities of GSH-Px, GSSG-Red, and GST were significantly lower, and FDPL levels higher, in the arterial tissue of diabetic patients than in that of controls; GST-Px was undetectable. Such enzymatic activities were inversely correlated with vascular lipid peroxidation, highlighting their antioxidant role in the arterial tissue, as were HbA1c and FDPL levels with the enzymatic activities, suggesting that glycation, oxidant species and lipoperoxidation aldehydes may be involved in glutathione-related enzyme inactivation. Further, in the diabetic patients HbA1c was correlated directly with lipid peroxidation but inversely with TGlut of the arterial tissue. In the patients considered for vascular enzymatic activities and FDPL assay, 3/4-vessel coronary artery disease (CAD) as expression of atherosclerosis severity was present in 9 diabetic patients and in 3 controls. Notably, vascular glutathione-related enzymatic activities were significantly lower, and FDPL levels higher, in the 9 diabetic patients with 3/4-vessel CAD than in the 9 without, as well as in the total of 12 patients with 3/4-vessel CAD than in the total of 24 patients without. Moreover, vascular TGlut content was significantly lower in the diabetic than in the control patients. Three/4-vessel CAD was present in 6 diabetic patients and in 2 controls considered for determination of vascular Tglut content, which was significantly lower in the diabetic patients with 3/4-vessel CAD than in those without, as well in the total of 8 patients with 3/4-vessel CAD than in the total of 24 patients without. Thus, weakened glutathione-related antioxidant capacity and oxidative stress of the arterial tissue are associated with the severity of atherosclerosis. In conclusion, impaired glutathione-related antioxidant defenses of the arterial tissue occur in diabetic patients, eventually favoring vascular oxidative stress and the severity of atherosclerosis.
Collapse
Affiliation(s)
- Domenico Lapenna
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi G. d'Annunzio Chieti Pescara, Facoltà di Medicina e Chirurgia, 66100 Chieti, Italy; Laboratorio di Fisiopatologia dello Stress Ossidativo, Centro di Scienze dell'Invecchiamento-Fondazione Università G. d'Annunzio, Università degli Studi G. d'Annunzio Chieti Pescara, Facoltà di Medicina e Chirurgia, 66100, Chieti, Italy.
| | - Giuliano Ciofani
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi G. d'Annunzio Chieti Pescara, Facoltà di Medicina e Chirurgia, 66100 Chieti, Italy; Laboratorio di Fisiopatologia dello Stress Ossidativo, Centro di Scienze dell'Invecchiamento-Fondazione Università G. d'Annunzio, Università degli Studi G. d'Annunzio Chieti Pescara, Facoltà di Medicina e Chirurgia, 66100, Chieti, Italy
| | - Antonio Maria Calafiore
- Dipartimento di Cardiochirurgia,Università degli Studi G. d'Annunzio Chieti Pescara, Facoltà di Medicina e Chirurgia, 66100 Chieti, Italy; Department of Adult Cardiac Surgery, Prince Sultan Cardiac Center, Riyadh, Saudi Arabia
| | - Francesco Cipollone
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi G. d'Annunzio Chieti Pescara, Facoltà di Medicina e Chirurgia, 66100 Chieti, Italy
| | - Ettore Porreca
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, Università degli Studi "G. d'Annunzio" Chieti Pescara, 66100 Chieti, Italy
| |
Collapse
|
3
|
Peana AT, Pintus FA, Bennardini F, Rocchitta G, Bazzu G, Serra PA, Porru S, Rosas M, Acquas E. Is catalase involved in the effects of systemic and pVTA administration of 4-methylpyrazole on ethanol self-administration? Alcohol 2017; 63:61-73. [PMID: 28847383 DOI: 10.1016/j.alcohol.2017.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/31/2017] [Accepted: 04/03/2017] [Indexed: 12/31/2022]
Abstract
The oxidative metabolism of ethanol into acetaldehyde involves several enzymes, including alcohol dehydrogenase (ADH) and catalase-hydrogen peroxide (H2O2). In this regard, while it is well known that 4-methylpyrazole (4-MP) acts by inhibiting ADH in the liver, little attention has been placed on its ability to interfere with fatty acid oxidation-mediated generation of H2O2, a mechanism that may indirectly affect catalase whose enzymatic activity requires H2O2. The aim of our investigation was twofold: 1) to evaluate the effect of systemic (i.p. [intraperitoneal]) and local (into the posterior ventral tegmental area, pVTA) administration of 4-MP on oral ethanol self-administration, and 2) to assess ex vivo whether or not systemic 4-MP affects liver and brain H2O2 availability. The results show that systemic 4-MP reduced ethanol but not acetaldehyde or saccharin self-administration, and decreased the ethanol deprivation effect. Moreover, local intra-pVTA administration of 4-MP reduced ethanol but not saccharin self-administration. In addition, although unable to affect basal catalase activity, systemic administration of 4-MP decreased H2O2 availability both in liver and in brain. Overall, these results indicate that 4-MP interferes with ethanol self-administration and suggest that its behavioral effects could be due to a decline in catalase-H2O2 system activity as a result of a reduction of H2O2 availability, thus highlighting the role of central catalase-mediated metabolism of ethanol and further supporting the key role of acetaldehyde in the reinforcing properties of ethanol.
Collapse
|
4
|
Rathod JP, Prakash G, Vira C, Lali AM. Trehalose phosphate synthase overexpression in Parachlorella kessleri improves growth and photosynthetic performance under high light conditions. Prep Biochem Biotechnol 2016; 46:803-809. [DOI: 10.1080/10826068.2015.1135465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jayant Pralhad Rathod
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Gunjan Prakash
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Chaitali Vira
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Arvind M. Lali
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai, India
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, India
| |
Collapse
|
5
|
Fatima N, Faisal SM, Zubair S, Ajmal M, Siddiqui SS, Moin S, Owais M. Role of Pro-Inflammatory Cytokines and Biochemical Markers in the Pathogenesis of Type 1 Diabetes: Correlation with Age and Glycemic Condition in Diabetic Human Subjects. PLoS One 2016; 11:e0161548. [PMID: 27575603 PMCID: PMC5004869 DOI: 10.1371/journal.pone.0161548] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/08/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Type 1 diabetes mellitus is a chronic inflammatory disease involving insulin producing β-cells destroyed by the conjoined action of auto reactive T-cells, inflammatory cytokines and monocytic cells. The aim of this study was to elucidate the status of pro-inflammatory cytokines and biochemical markers and possible correlation of these factors towards outcome of the disease. METHODS The study was carried out on 29 T1D subjects and 20 healthy subjects. Plasma levels of oxidative stress markers, enzymatic and non-enzymatic antioxidants were estimated employing biochemical assays. The levels of pro-inflammatory cytokines such as by IL-1β & IL-17 in the serum were determined by ELISA, while the expression of TNF-α, IL-23 & IFN-γ was ascertained by qRT-PCR. RESULTS The onset of T1D disease was accompanied with elevation in levels of Plasma malondialdehyde, protein carbonyl content and nitric oxide while plasma vitamin C, reduced glutathione and erythrocyte sulfhydryl groups were found to be significantly decreased in T1D patients as compared to healthy control subjects. Activity of antioxidant enzymes, superoxide dismutase, catalase, glutathione reductase and glutathione-s-transferase showed a significant suppression in the erythrocytes of T1D patients as compared to healthy subjects. Nevertheless, the levels of pro-inflammatory cytokines IL-1β and IL-17A were significantly augmented (***p≤.001) on one hand, while expression of T cell based cytokines IFN-γ, TNF-α and IL-23 was also up-regulated (*p≤.05) as compared to healthy human subjects. CONCLUSION The level of pro-inflammatory cytokines and specific biochemical markers in the serum of the patient can be exploited as potential markers for type 1 diabetes pathogenesis. The study suggests that level of inflammatory markers is up-regulated in T1D patients in an age dependent manner.
Collapse
Affiliation(s)
- Naureen Fatima
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh-202002, India
| | - Syed Mohd Faisal
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh-202002, India
| | - Swaleha Zubair
- Women’s College, Aligarh Muslim University, Aligarh, Uttar Pradesh-202002, India
| | - Mohd Ajmal
- Department of Anatomy, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh-202002, India
| | - Sheelu Shafiq Siddiqui
- Rajiv Gandhi Centre for Diabetes and Endocrinology, Aligarh Muslim University, Aligarh, Uttar Pradesh-202002, India
| | - Shagufta Moin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh-202002, India
| | - Mohammad Owais
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh-202002, India
| |
Collapse
|
6
|
Zhang S, Ntasis E, Kabtni S, van den Born J, Navis G, Bakker SJL, Krämer BK, Yard BA, Hauske SJ. Hyperglycemia Does Not Affect Iron Mediated Toxicity of Cultured Endothelial and Renal Tubular Epithelial Cells: Influence of L-Carnosine. J Diabetes Res 2016; 2016:8710432. [PMID: 26788523 PMCID: PMC4691606 DOI: 10.1155/2016/8710432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/28/2015] [Accepted: 08/10/2015] [Indexed: 12/22/2022] Open
Abstract
Iron has been suggested to affect the clinical course of type 2 diabetes (T2DM) as accompanying increased intracellular iron accumulation may provide an alternative source for reactive oxygen species (ROS). Although carnosine has proven its therapeutic efficacy in rodent models of T2DM, little is known about its efficacy to protect cells from iron toxicity. We sought to assess if high glucose (HG) exposure makes cultured human umbilical vein endothelial cells (HUVECs) and renal proximal tubular epithelial cells (PTECs) more susceptible to metal induced toxicity and if this is ameliorated by L-carnosine. HUVECs and PTECs, cultured under normal glucose (5 mM, NG) or HG (30 mM), were challenged for 24 h with FeCl3. Cell viability was not impaired under HG conditions nor did HG increase susceptibility to FeCl3. HG did not change the expression of divalent metal transporter 1 (DMT1), ferroportin (IREG), and transferrin receptor protein 1 (TFRC). Irrespective of glucose concentrations L-carnosine prevented toxicity in a dose-dependent manner, only if it was present during the FeCl3 challenge. Hence our study indicates that iron induced cytotoxicity is not enhanced under HG conditions. L-Carnosine displayed a strong protective effect, most likely by chelation of iron mediated toxicity.
Collapse
Affiliation(s)
- Shiqi Zhang
- Vth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Emmanouil Ntasis
- Vth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Department of Cardiology, Pulmonology, Intensive Care and Vascular Medicine, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Sarah Kabtni
- Vth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Jaap van den Born
- Department of Nephrology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, Netherlands
| | - Gerjan Navis
- Department of Nephrology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, Netherlands
| | - Stephan J. L. Bakker
- Department of Nephrology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, Netherlands
| | - Bernhard K. Krämer
- Vth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Benito A. Yard
- Vth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- *Benito A. Yard:
| | - Sibylle J. Hauske
- Vth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
7
|
Santilli F, Lapenna D, La Barba S, Davì G. Oxidative stress-related mechanisms affecting response to aspirin in diabetes mellitus. Free Radic Biol Med 2015; 80:101-10. [PMID: 25530150 DOI: 10.1016/j.freeradbiomed.2014.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 01/19/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a major cardiovascular risk factor. Persistent platelet activation plays a key role in atherothrombosis in T2DM. However, current antiplatelet treatments appear less effective in T2DM patients vs nondiabetics at similar risk. A large body of evidence supports the contention that oxidative stress, which characterizes DM, may be responsible, at least in part, for less-than-expected response to aspirin, with multiple mechanisms acting at several levels. This review discusses the pathophysiological mechanisms related to oxidative stress and contributing to suboptimal aspirin action or responsiveness. These include: (1) mechanisms counteracting the antiplatelet effect of aspirin, such as reduced platelet sensitivity to the antiaggregating effects of NO, due to high-glucose-mediated oxidative stress; (2) mechanisms interfering with COX acetylation especially at the platelet level, e.g., lipid hydroperoxide-dependent impaired acetylating effects of aspirin; (3) mechanisms favoring platelet priming (lipid hydroperoxides) or activation (F2-isoprostanes, acting as partial agonists of thromboxane receptor), or aldose-reductase pathway-mediated oxidative stress, leading to enhanced platelet thromboxane A2 generation or thromboxane receptor activation; (4) mechanisms favoring platelet recruitment, such as aspirin-induced platelet isoprostane formation; (5) modulation of megakaryocyte generation and thrombopoiesis by oxidative HO-1 inhibition; and (6) aspirin-iron interactions, eventually resulting in impaired pharmacological activity of aspirin, lipoperoxide burden, and enhanced generation of hydroxyl radicals capable of promoting protein kinase C activation and platelet aggregation. Acknowledgment of oxidative stress as a major contributor, not only of vascular complications, but also of suboptimal response to antiplatelet agents in T2DM, may open the way to designing and testing novel antithrombotic strategies, specifically targeting oxidative stress-mediated mechanisms of less-than-expected response to aspirin.
Collapse
Affiliation(s)
- Francesca Santilli
- Center of Excellence on Aging, "G. d'Annunzio" University Foundation, and Department of Medicine and Aging, University of Chieti "G. d'Annunzio" School of Medicine, 66013 Chieti, Italy.
| | - Domenico Lapenna
- Center of Excellence on Aging, "G. d'Annunzio" University Foundation, and Department of Medicine and Aging, University of Chieti "G. d'Annunzio" School of Medicine, 66013 Chieti, Italy
| | - Sara La Barba
- Center of Excellence on Aging, "G. d'Annunzio" University Foundation, and Department of Medicine and Aging, University of Chieti "G. d'Annunzio" School of Medicine, 66013 Chieti, Italy
| | - Giovanni Davì
- Center of Excellence on Aging, "G. d'Annunzio" University Foundation, and Department of Medicine and Aging, University of Chieti "G. d'Annunzio" School of Medicine, 66013 Chieti, Italy
| |
Collapse
|
8
|
Induction of brain cytochrome P450 2E1 boosts the locomotor-stimulating effects of ethanol in mice. Neuropharmacology 2014; 85:36-44. [PMID: 24863043 DOI: 10.1016/j.neuropharm.2014.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/14/2014] [Accepted: 05/13/2014] [Indexed: 11/23/2022]
Abstract
In the central nervous system ethanol (EtOH) is metabolized into acetaldehyde by different enzymes. Brain catalase accounts for 60% of the total production of EtOH-derived acetaldehyde, whereas cerebral cytochrome P450 2E1 (CYP 2E1) produces 20% of this metabolite. Acetaldehyde formed by the activity of central catalase has been implicated in some of the neurobehavioral properties of EtOH, yet the contribution of CYP 2E1 to the pharmacological actions of this drug has not been investigated. Here we assessed the possible participation of CYP 2E1 in the behavioral effects of EtOH. Thus, we induced CYP 2E1 activity and expression by exposing mice to chronic acetone intake (1% v/v for 10 days) and examined its consequences on the stimulating and uncoordinating effects of EtOH (0-3.2 g/kg) injected intraperitoneally. Our data showed that 24 h after withdrawal of acetone brain expression and activity of CYP 2E1 was induced. Furthermore, the locomotion produced by EtOH was boosted over the same interval of time. Locomotor stimulation produced by amphetamine or tert-butanol was unchanged by previous treatment with acetone. EtOH-induced motor impairment as evaluated in a Rota-Rod apparatus was unaffected by the preceding exposure to acetone. These results indicate that cerebral CYP 2E1 activity could contribute to the locomotor-stimulating effects of EtOH, and therefore we suggest that centrally produced acetaldehyde might be a possible mediator of some EtOH-induced pharmacological effects.
Collapse
|
9
|
Ledesma JC, Escrig MA, Pastor R, Aragon CM. The MAO-A inhibitor clorgyline reduces ethanol-induced locomotion and its volitional intake in mice. Pharmacol Biochem Behav 2014; 116:30-8. [DOI: 10.1016/j.pbb.2013.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/26/2013] [Accepted: 11/08/2013] [Indexed: 01/31/2023]
|
10
|
Ledesma JC, Aragon CMG. Acquisition and reconditioning of ethanol-induced conditioned place preference in mice is blocked by the H₂O₂ scavenger alpha lipoic acid. Psychopharmacology (Berl) 2013; 226:673-85. [PMID: 22885873 DOI: 10.1007/s00213-012-2831-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/26/2012] [Indexed: 12/30/2022]
Abstract
RATIONALE Hydrogen peroxide (H2O2) is the co-substrate used by catalase to metabolize ethanol to acetaldehyde in the brain. This centrally formed acetaldehyde has been involved in several ethanol-related behaviors. OBJECTIVES The present research evaluated the effect of the H2O2 scavenger, alpha lipoic acid (LA), on the acquisition and reconditioning of ethanol-induced conditioned place preference (CPP). METHODS Mice received pairings of a distinctive floor stimulus (CS+) associated with intraperitoneal injections of ethanol (2.5 g/kg). On alternate days, animals received pairings of a different floor stimulus (CS-) associated with saline injections. A different group of animals received pairings with the (CS-) associated with saline injections, and on alternate days they received LA (100 mg/kg) injected 30 min prior to ethanol (2.5 g/kg) administration paired with the (CS+). A preference test assessed the effect of LA on the acquisition of ethanol-induced CPP. A similar procedure was followed to study the effect of LA on the acquisition of cocaine- and morphine-induced CPP. A separate experiment evaluated the effect of LA on the reconditioning of ethanol-induced CPP. In addition, we investigated the consequence of LA administration on central H2O2 levels. RESULTS LA selectively blocked the acquisition of ethanol-induced CPP. Moreover, this compound impaired the reconditioning of ethanol-induced CPP. Additionally, we found that LA diminished H2O2 levels in the brain. CONCLUSIONS These data suggest that a decline in H2O2 availability by LA might impede the formation of brain ethanol-derived acetaldehyde by catalase, which results in an impairment of the rewarding properties of ethanol.
Collapse
Affiliation(s)
- Juan Carlos Ledesma
- Area de Psicobiologia, Universitat Jaume I, Avenida Sos Baynat s/n, 12071, Castellón, Spain
| | | |
Collapse
|
11
|
Lapenna D, Ciofani G, Cuccurullo C, Pierdomenico SD, Cuccurullo F. Ascorbic acid supplementation reduces oxidative stress and platelet biochemical function in type 2 diabetic patients. Relevance of ascorbic acid dosage and formulation. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.clnme.2012.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Ledesma JC, Font L, Aragon CMG. The H2O2 scavenger ebselen decreases ethanol-induced locomotor stimulation in mice. Drug Alcohol Depend 2012; 124:42-9. [PMID: 22261181 DOI: 10.1016/j.drugalcdep.2011.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 10/28/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND In the brain, the enzyme catalase by reacting with H(2)O(2) forms Compound I (catalase-H(2)O(2) system), which is the main system of central ethanol metabolism to acetaldehyde. Previous research has demonstrated that acetaldehyde derived from central-ethanol metabolism mediates some of the psychopharmacological effects produced by ethanol. Manipulations that modulate central catalase activity or sequester acetaldehyde after ethanol administration modify the stimulant effects induced by ethanol in mice. However, the role of H(2)O(2) in the behavioral effects caused by ethanol has not been clearly addressed. The present study investigated the effects of ebselen, an H(2)O(2) scavenger, on ethanol-induced locomotion. METHODS Swiss RjOrl mice were pre-treated with ebselen (0-50mg/kg) intraperitoneally (IP) prior to administration of ethanol (0-3.75g/kg; IP). In another experiment, animals were pre-treated with ebselen (0 or 25mg/kg; IP) before caffeine (15mg/kg; IP), amphetamine (2mg/kg; IP) or cocaine (10mg/kg; IP) administration. Following these treatments, animals were placed in an open field to measure their locomotor activity. Additionally, we evaluated the effect of ebselen on the H(2)O(2)-mediated inactivation of brain catalase activity by 3-amino-1,2,4-triazole (AT). RESULTS Ebselen selectively prevented ethanol-induced locomotor stimulation without altering the baseline activity or the locomotor stimulating effects caused by caffeine, amphetamine and cocaine. Ebselen reduced the ability of AT to inhibit brain catalase activity. CONCLUSIONS Taken together, these data suggest that a decline in H(2)O(2) levels might result in a reduction of the ethanol locomotor-stimulating effects, indicating a possible role for H(2)O(2) in some of the psychopharmacological effects produced by ethanol.
Collapse
Affiliation(s)
- Juan Carlos Ledesma
- Àrea de Psicobiologia, Universitat Jaume I, Avda Sos Baynat, 12071 Castellón, Spain
| | | | | |
Collapse
|
13
|
Ledesma JC, Aragon CMG. α-Lipoic acid, a scavenging agent for H₂O₂, reduces ethanol-stimulated locomotion in mice. Psychopharmacology (Berl) 2012; 219:171-80. [PMID: 21769567 DOI: 10.1007/s00213-011-2407-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 06/13/2011] [Indexed: 12/30/2022]
Abstract
RATIONALE The main system of central ethanol oxidation is mediated by the enzyme catalase. By reacting with H(2)O(2), brain catalase forms compound I (the catalase-H(2)O(2) system), which is able to oxidize ethanol to acetaldehyde in the brain. Previous studies have demonstrated that pharmacological manipulations of brain catalase activity modulate the stimulant effects of ethanol in mice. However, the role of H(2)O(2) in the behavioral effects of ethanol has not yet been clearly addressed. OBJECTIVES In the present study, we investigated the effects of alpha-lipoic acid (LA), a scavenging agent for H(2)O(2), on ethanol-induced locomotor stimulation. METHODS CD-1 mice were pretreated with LA [0-100 mg/kg, intraperitoneally (IP)] 0-60 min prior to administration of ethanol (0-3.75 g/kg, IP). In another experiment, animals were pretreated with LA (0, 25, or 50 mg/kg, IP) 30 min before cocaine (10 mg/kg, IP), amphetamine (2 mg/kg, IP), or caffeine (25 mg/kg, IP). After these treatments the animals were placed in an open-field chamber and their locomotor activity was measured for 20 min. RESULTS LA 25, 50, and 100 mg/kg IP prevented ethanol-induced locomotor stimulation. LA did not affect the locomotor-stimulating effects of cocaine, amphetamine, and caffeine. Additionally, we demonstrated that LA prevents the inactivation of brain catalase by 3-amino-1,2,4-triazole, thus indicating that H(2)O(2) levels are reduced by LA. CONCLUSIONS These data support the idea that a decrease in cerebral H(2)O(2) production by LA administration inhibits ethanol-stimulated locomotion. This study suggests that the brain catalase-H(2)O(2) system, and by implication centrally formed acetaldehyde, plays a key role in the psychopharmacological effects of ethanol.
Collapse
Affiliation(s)
- Juan Carlos Ledesma
- Area de Psicobiologia, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | | |
Collapse
|
14
|
Cell density plays a critical role in ex vivo expansion of T cells for adoptive immunotherapy. J Biomed Biotechnol 2010; 2010:386545. [PMID: 20625484 PMCID: PMC2896674 DOI: 10.1155/2010/386545] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 04/05/2010] [Accepted: 05/06/2010] [Indexed: 11/17/2022] Open
Abstract
The successful ex vivo expansion of a large numbers of T cells is a prerequisite for adoptive immunotherapy. In this study, we found that cell density had important effects on the process of expansion of T cells in vitro. Resting T cells were activated to expand at high cell density but failed to be activated at low cell density. Activated T cells (ATCs) expanded rapidly at high cell density but underwent apoptosis at low cell density. Our studies indicated that low-cell-density related ATC death is mediated by oxidative stress. Antioxidants N-acetylcysteine, catalase, and albumin suppressed elevated reactive oxygen species (ROS) levels in low-density cultures and protected ATCs from apoptosis. The viability of ATCs at low density was preserved by conditioned medium from high-density cultures of ATCs in which the autocrine survival factor was identified as catalase. We also found that costimulatory signal CD28 increases T cell activation at lower cell density, paralleled by an increase in catalase secretion. Our findings highlight the importance of cell density in T cell activation, proliferation, survival and apoptosis and support the importance of maintaining T cells at high density for their successful expansion in vitro.
Collapse
|
15
|
|
16
|
Li SD, Su YD, Li M, Zou CG. Hemin-mediated hemolysis in erythrocytes: effects of ascorbic acid and glutathione. Acta Biochim Biophys Sin (Shanghai) 2006; 38:63-9. [PMID: 16395529 DOI: 10.1111/j.1745-7270.2006.00127.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In the present work, we investigated the effect of ascorbic acid and glutathione on hemolysis induced by hemin in erythrocytes. Ascorbic acid not only enhanced hemolysis, but also induced formation of thiobarbituric acid-reactive substances in the presence of hemin. It has been shown that glutathione inhibits hemin-induced hemolysis by mediating hemin degradation. Erythrocytes depleted of glutathione became very sensitive to oxidative stress induced by hemin and ascorbic acid. H(2)O(2) was involved in hemin-mediated hemolysis in the presence of ascorbic acid. However, a combination of glutathione and ascorbic acid was more effective in inhibiting hemolysis induced by hemin than glutathione alone. Extracellular and intracellular ascorbic acid exhibited a similar effect on hemin-induced hemolysis or inhibition of hemin-induced hemolysis by glutathione. The current study indicates that ascorbic acid might function as an antioxidant or prooxidant in hemin-mediated hemolysis, depending on whether glutathione is available.
Collapse
Affiliation(s)
- Shu-De Li
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | | | | | | |
Collapse
|
17
|
Li X, May JM. Catalase-dependent measurement of H2O2 in intact mitochondria. Mitochondrion 2005; 1:447-53. [PMID: 16120297 DOI: 10.1016/s1567-7249(02)00010-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2002] [Revised: 03/04/2002] [Accepted: 03/06/2002] [Indexed: 10/17/2022]
Abstract
Mitochondria generate potentially damaging amounts of superoxide and H2O2 during oxidative metabolism. Although many assays are available to measure mitochondrial H2O2 generation, most detect H2O2 that has escaped the organelle. To measure H2O2 within mitochondria that contain catalase, we have developed an assay based on the ability of H2O2 to inhibit catalase in the presence of 3-amino-1,2,4-triazole. The assay is simple to perform, does not require expensive instrumentation, and is specific for H2O2. Results from this assay show that H2O2 generation in rat heart mitochondria reflects the activity of the electron transport chain. Further, liver mitochondria prepared from selenium-deficient rats have increased succinate-stimulated rates of H2O2 generation. This indicates that mitochondrial selenoenzymes are important for H2O2 removal. It also demonstrates the utility of this assay in measuring H2O2 release from mitochondria that do not contain catalase. The assay should be useful for study of both superoxide-dependent H2O2 generation in situ, and the role of endogenous mitochondrial catalase in H2O2 removal.
Collapse
Affiliation(s)
- Xia Li
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6303, USA
| | | |
Collapse
|
18
|
Moran EC, Kamiguti AS, Cawley JC, Pettitt AR. Cytoprotective antioxidant activity of serum albumin and autocrine catalase in chronic lymphocytic leukaemia. Br J Haematol 2002. [DOI: 10.1046/j.1365-2141.2002.03280.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Zou CG, Agar NS, Jones GL. Enhancement of glutathione-dependent haemin degradation by ascorbic acid. Biochem Pharmacol 2002; 64:565-72. [PMID: 12167475 DOI: 10.1016/s0006-2952(02)01214-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the current work, we investigated the effect of ascorbic acid on GSH-mediated haemin degradation. GSH-mediated haemin degradation in the presence of ascorbic acid in phosphate-buffered saline and in erythrocyte ghosts was determined by recording absorbance at 365 and 399nm, respectively. Generation of intracellular H(2)O(2) was measured indirectly in terms of the inactivation of endogenous catalase in erythrocytes in the presence of 3-amino-1,2,4-triazole. Although ascorbic acid itself did not induce haemin degradation, it enhanced GSH-mediated haemin degradation. Experiments with catalase showed that H(2)O(2) was essential in this process. The oxidation of ascorbic acid in the presence of haemin was stimulated by GSH, suggesting that ascorbic acid can alter the mechanism of H(2)O(2) generation observed with GSH and haemin alone. These results suggest that enhancement of GSH-mediated haemin degradation by ascorbic acid may be due to an increase in the production of H(2)O(2) generated by GSH and haemin in the absence of ascorbic acid.
Collapse
Affiliation(s)
- Cheng-Gang Zou
- School of Biological Biomedical and Molecular Sciences, University of New England, Armidale, NSW 2351, Australia
| | | | | |
Collapse
|
20
|
Atalay M, Laaksonen DE. Diabetes, oxidative stress and physical exercise. J Sports Sci Med 2002; 1:1-14. [PMID: 24672266 PMCID: PMC3957575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2002] [Accepted: 02/18/2002] [Indexed: 06/03/2023]
Abstract
Oxidative stress, an imbalance between the generation of reactive oxygen species and antioxidant defense capacity of the body, is closely associated with aging and a number of diseases including cancer, cardiovascular diseases, diabetes and diabetic complications. Several mechanisms may cause oxidative insult in diabetes, although their exact contributions are not entirely clear. Accumulating evidence points to many interrelated mechanisms that increase production of reactive oxygen and nitrogen species or decrease antioxidant protection in diabetic patients. In modern medicine, regular physical exercise is an important tool in the prevention and treatment of diseases including diabetes. Although acute exhaustive exercise increases oxidative stress, exercise training has been shown to up regulate antioxidant protection. This review aims to summarize the mechanisms of increased oxidative stress in diabetes and with respect to acute and chronic exercise.
Collapse
Affiliation(s)
- Mustafa Atalay
- Department of Physiology, University of Kuopio , Kuopio, 70211 Kuopio, Finland
| | - David E Laaksonen
- Department of Physiology, University of Kuopio , Kuopio, 70211 Kuopio, Finland
| |
Collapse
|
21
|
May JM, Qu Z, Morrow JD. Mechanisms of ascorbic acid recycling in human erythrocytes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1528:159-66. [PMID: 11687303 DOI: 10.1016/s0304-4165(01)00188-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vitamin C, or ascorbic acid, is efficiently recycled from its oxidized forms by human erythrocytes. In this work the dependence of this recycling on reduced glutathione (GSH) was evaluated with regard to activation of the pentose cycle and to changes in pyridine nucleotide concentrations. The two-electron-oxidized form of ascorbic acid, dehydroascorbic acid (DHA) was rapidly taken up by erythrocytes and reduced to ascorbate, which reached intracellular concentrations as high as 2 mM. In the absence of D-glucose, DHA caused dose-dependent decreases in erythrocyte GSH, NADPH, and NADH concentrations. In the presence of 5 mM D-glucose, GSH and NADH concentrations were maintained, but those of NADPH decreased. Reduction of extracellular ferricyanide by erythrocytes, which reflects intracellular ascorbate recycling, was also enhanced by D-glucose, and ferricyanide activated the pentose cycle. Diethylmaleate at concentrations up to 1 mM was found to specifically deplete erythrocyte GSH by 75-90% without causing oxidant stress in the cells. Such GSH-depleted erythrocytes showed parallel decreases in their ability to take up and reduce DHA to ascorbate, and to reduce extracellular ferricyanide. These results show that DHA reduction involves GSH-dependent activation of D-glucose metabolism in the pentose cycle, but that in the absence of D-glucose DHA reduction can also utilize NADH.
Collapse
Affiliation(s)
- J M May
- Department of Medicine, Vanderbilt University School of Medicine, 715 Medical Research Building II, 2220 Pierce Avenue, Nashville, TN 37232-6303, USA.
| | | | | |
Collapse
|
22
|
Abstract
A range of hydroperoxides were reduced by ferrous ions in acid solutions and the amount of ferric product was measured as a xylenol orange complex at 560 nm. Dilute sulfuric acid, 50% acetic acid, and acidified 90% methanol proved to be suitable solvents. The color developed within 15 min and was stable for several hours in most solvents. The apparent molar absorption coefficients (epsilon(app)) of H(2)O(2) and of the t-butyl, cumene, bovine serum albumin, and linoleate hydroperoxides were measured, using known hydroperoxide concentrations determined independently by an iodometric assay. The epsilon(app) values differed significantly and depended on the hydroperoxide, the solvent, and the source of the xylenol orange. The numbers of Fe(3+) ions formed by a range of hydroperoxides in different solvents showed that H(2)O(2) gave 2.5, t-butyl and cumene hydroperoxides 5, and the other hydroperoxides 2 Fe(3+) ions per -OOH group. This general finding allows the determination of approximate hydroperoxide concentrations even in chemically complex systems. Accurate measurements require knowledge of the nature of the hydroperoxide and its epsilon(app) and careful control of the assay conditions. However, the convenience of the assay makes it potentially useful in a variety of applications.
Collapse
Affiliation(s)
- C Gay
- School of Biological Sciences, Macquarie University, Sydney, 2109, Australia
| | | | | |
Collapse
|
23
|
Mendiratta S, Qu Z, May JM. Erythrocyte defenses against hydrogen peroxide: the role of ascorbic acid. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1380:389-95. [PMID: 9555101 DOI: 10.1016/s0304-4165(98)00005-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ascorbate has been reported to increase intracellular hydrogen peroxide (H2O2) generation in human erythrocytes. In the present work, the basis for this prooxidant effect of the vitamin was investigated in the context of erythrocyte defenses against H2O2. Ascorbate added to erythrocytes caused a dose-dependent increase in intracellular H2O2, which was measured as inactivation of endogenous catalase in the presence of 3-amino-1,2,4-triazole (aminotriazole). Ascorbate-induced catalase inactivation was not observed when only the intracellular ascorbate concentration was increased, when cells were incubated with ascorbate in plasma, or when extracellular Fe3+ was chelated. Together, these results suggest that the observed ascorbate-induced H2O2 generation is due to Fe3+-catalyzed oxidation of extracellular, as opposed to intracellular, ascorbate by molecular oxygen. Rather than generate an oxidant stress in erythrocytes, ascorbate was one of the most sensitive intracellular antioxidants to H2O2 coming from outside the cells. On the other hand, intracellular ascorbate contributed little to the detoxification of H2O2, which was found to be mediated by both catalase and by the GSH system.
Collapse
Affiliation(s)
- S Mendiratta
- Department of Medicine, 715 Medical Research Building II, Vanderbilt University School of Medicine, Nashville, TN 37232-6303, USA
| | | | | |
Collapse
|
24
|
Davis JL, Mendiratta S, May JM. Similarities in the metabolism of alloxan and dehydroascorbate in human erythrocytes. Biochem Pharmacol 1998; 55:1301-7. [PMID: 9719486 DOI: 10.1016/s0006-2952(97)00637-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The beta-cell toxin alloxan is reduced within cells to dialuric acid, which may then decompose to release damaging reactive oxygen species. We tested whether such redox cycling of alloxan occurs in the human erythrocyte, a cell with stronger antioxidant defenses than beta-cells. Erythrocytes incubated with increasing concentrations of alloxan progressively accumulated dialuric acid, as measured directly by HPLC with electrochemical detection. At concentrations up to 2 mM, alloxan decreased cellular GSH slightly, but did not affect erythrocyte contents of ascorbate or alpha-tocopherol. Intracellular H2O2 generation, measured as inhibition of endogenous catalase activity in the presence of 3-amino-1,2,4-triazole (aminotriazole), was decreased by alloxan. Despite its failure to induce significant oxidant stress in erythrocytes, 2 mM of alloxan doubled the activity of the hexose monophosphate pathway (HMP). This likely reflected consumption of reducing equivalents during reduction of alloxan to dialuric acid. Alloxan pretreatment enhanced the ability of erythrocytes to reduce extracellular ferricyanide while protecting alpha-tocopherol in the cell membrane from oxidation by ferricyanide. Ninhydrin, a hydrophobic derivative of alloxan, showed similar effects, but caused progressive GSH depletion and cell lysis at concentrations above 50 microM. The ability of alloxan to enhance ferricyanide reduction and to spare alpha-tocopherol suggests that dialuric acid or other reducing species within the cells can protect or recycle alpha-tocopherol and donate electrons to a transmembrane transfer process. This behavior resembles that observed for the dehydroascorbate (DHA)/ascorbate pair, and leads to the unexpected conclusion that alloxan increases the reducing capacity of the erythrocyte.
Collapse
Affiliation(s)
- J L Davis
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6303, USA
| | | | | |
Collapse
|
25
|
Kocha T, Yamaguchi M, Ohtaki H, Fukuda T, Aoyagi T. Hydrogen peroxide-mediated degradation of protein: different oxidation modes of copper- and iron-dependent hydroxyl radicals on the degradation of albumin. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1337:319-26. [PMID: 9048910 DOI: 10.1016/s0167-4838(96)00180-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cupric ions (Cu2+) added to hydrogen peroxide (H2O2) were found to generate hydroxyl radicals (HO) capable of benzoate hydroxylation. Although ferrous (Fe2+) and ferric (Fe3+) ions, when added to H2O2, resulted in very little production of HO, the addition of EDTA to the reaction mixture markedly increased their catalytic activity. In the absence of albumin, catalase (a H2O2 scavenger) and mannitol (an HO radical scavenger) effectively inhibited the formation of HO in H2O2/Cu2+ and H2O2/Fe2+/EDTA oxidation systems. On analysis using SDS-polyacrylamide gel electrophoresis, catalase was shown to prevent the degradation of albumin by both oxidation systems, whereas mannitol was an effective scavenger of the H2O2/Fe2+/EDTA oxidation system but not of the H2O2/Cu2+ oxidation system. Furthermore, the effect of alteration of benzoate hydroxylation and H2O2 consumption on the H2O2/Cu2+ and H2O2/Fe2+/EDTA oxidation systems resulted in opposite behavior that was dependent upon the presence or absence of albumin. These observations suggest that copper ions bind to albumin and induce site-specific degradation by HO generated at the copper-binding site, whereas the Fe2+/EDTA-catalyzed oxidation system induces non-specific degradation of albumin by HO generated by the Fenton reaction between H2O2 and free Fe2+/EDTA in solution.
Collapse
Affiliation(s)
- T Kocha
- Department of Hygienic Chemistry, Showa College of Pharmaceutical Sciences, Tokyo, Japan
| | | | | | | | | |
Collapse
|
26
|
Zavodnik IB, Piasecka A, Szosland K, Bryszewska M. Human red blood cell membrane potential and fluidity in glucose solutions. Scand J Clin Lab Invest 1997; 57:59-63. [PMID: 9127458 DOI: 10.3109/00365519709057819] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study aimed to investigate the membrane potential and fluidity changes of human red blood cells subjected to isotonic glucose solutions. For the control erythrocytes a membrane potential value of -10.1 +/- 1.8 mV was obtained, whereas erythrocyte membranes in diabetic cells were hyperpolarized, with a potential of -13.9 +/- 2.3 mV. Incubation of both types of red blood cells with increasing glucose concentrations resulted in a substantial hyperpolarization of the cell membranes. Glucose solutions in water had a much stronger effect on membrane potential than glucose dissolved in phosphate-buffered saline. Red blood cell membrane fluidity measurements using the fluorescent label TMADPH did not reveal any significant changes upon incubation with glucose.
Collapse
Affiliation(s)
- I B Zavodnik
- Institute of Biochemistry, Academy of Sciences of Belarus, Grodno
| | | | | | | |
Collapse
|
27
|
Abstract
Salicylic acid (SA) plays a key role in the establishment of resistance to microbial pathogens in many plants. The discovery that SA inhibits catalase from tobacco led us to suggest that H2O2 acts as second messenger to activate plant defenses. Detailed analyses of SA's interaction with tobacco and mammalian catalases indicate that SA acts as an electron donor for the peroxidative cycle of catalase. When H2O2 fluxes were relatively low (1 microM/min or less), SA inhibited catalase, consistent with its suggested signaling function via H2O2. However, significant inhibition was only observed at 100 microM SA or more, a level reached in infected, but not in uninfected, leaves. This inhibition was probably due to siphoning catalase into the slow peroxidative reaction. Surprisingly, SA was also able to protect catalase from inactivation by damaging levels of H2O2 (lower millimolar range), which is generally assumed to reflect accumulation of inactive ferro-oxy intermediates. SA did so by supporting or substituting for the protective function of catalase-bound NADPH. These results add new features to SA's interaction with heme enzymes and its in vivo redox properties. Thus, SA, in addition to its proposed signaling function, may also have an important antioxidant role in containing oxidative processes associated with plant defense responses.
Collapse
Affiliation(s)
- J Durner
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, P. O. Box 759, Piscataway, New Jersey 08855, USA
| | | |
Collapse
|
28
|
Ou P, Nourooz-Zadeh J, Tritschler HJ, Wolff S. Activation of aldose reductase in rat lens and metal-ion chelation by aldose reductase inhibitors and lipoic acid. Free Radic Res 1996; 25:337-46. [PMID: 8889497 DOI: 10.3109/10715769609149056] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sorbitol formation in rat lenses incubated with high levels of glucose was related to activation of aldose reductase (AR). The hyperglycaemia-activated aldose reductase was inhibited by alpha-lipoic (thioctic) acid, O-phenanthroline and aldose reductase inhibitors (ARIs) including Zeopolastat (ZPLS), Sorbinil (SBN) and AL-1576. This study also examined ARIs for the ability to chelate metal ions. We found that ARIs suppress copper-dependent ascorbate oxidation, lipid peroxidation and hydrogen peroxide production in erythrocytes. ARIs also increased partition of copper ions into noctanol, which indicates formation of lipophilic complexes. Our data support the hypothesis that transition metals may be involved in activation of the polyol (aldose reductase) pathway. Also, ARIs function as metal-chelating antioxidants that may contribute to their therapeutic role for diabetic complications.
Collapse
Affiliation(s)
- P Ou
- Department of Medicine, University College London, England
| | | | | | | |
Collapse
|
29
|
Augustyniak K, Zavodnik I, Palecz D, Szosland K, Bryszewska M. The effect of oxidizing agents and diabetes mellitus on the human red blood cell membrane potential. Clin Biochem 1996; 29:283-6. [PMID: 8740517 DOI: 10.1016/0009-9120(95)02045-n] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- K Augustyniak
- Department of Medical Biophysics, University of Lodz, Poland
| | | | | | | | | |
Collapse
|
30
|
Ou P, Wolff SP. A discontinuous method for catalase determination at 'near physiological' concentrations of H2O2 and its application to the study of H2O2 fluxes within cells. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1996; 31:59-67. [PMID: 8926339 DOI: 10.1016/0165-022x(95)00039-t] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We describe a discontinuous method for the measurement of catalase using the Ferrous Oxidation in Xylenol orange (FOX) assay. Samples containing catalase are incubated with H2O2 for varying time intervals prior to rapid mixing of aliquots of the incubation mixtures with FOX reagent, which measures residual H2O2. Absorbance is then read at 560 nm after 30-min incubation at room temperature. Decay of H2O2 is proportional to catalase activity in the original sample. An adaptation of the method involves exposure of intact cells to H2O2-generating systems in the presence of aminotriazole. The extent of catalase inactivation allows estimates of total H2O2 accumulation within the cell.
Collapse
Affiliation(s)
- P Ou
- Department of Medicine, University College London Medical School, UK
| | | |
Collapse
|
31
|
Bode AM. Metabolism of vitamin C in health and disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1996; 38:21-47. [PMID: 8895802 DOI: 10.1016/s1054-3589(08)60977-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- A M Bode
- Physiology Department School of Medicine and Health Sciences, University of North Dakota, Grand Forks 58201, USA
| |
Collapse
|
32
|
Ou P, Tritschler HJ, Wolff SP. Thioctic (lipoic) acid: a therapeutic metal-chelating antioxidant? Biochem Pharmacol 1995; 50:123-6. [PMID: 7605337 DOI: 10.1016/0006-2952(95)00116-h] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Thioctic (alpha-lipoic) acid (TA) is a drug used for the treatment of diabetic polyneuropathy in Germany. It has been proposed that TA acts as an antioxidant and interferes with the pathogenesis of diabetic polyneuropathy. We suggest that one component of its antioxidant activity requiring study is the direct transition metal-chelating activity of the drug. We found that TA had a profound dose-dependent inhibitory effect upon Cu(2+)-catalysed ascorbic acid oxidation (monitored by O2 uptake and spectrophotometrically at 265 nm) and also increased the partition of Cu2+ into n-octanol from an aqueous solution suggesting that TA forms a lipophilic complex with Cu2+. TA also inhibited Cu(2+)-catalysed liposomal peroxidation. Furthermore, TA inhibited intracellular H2O2 production in erythrocytes challenged with ascorbate, a process thought to be mediated by loosely chelated Cu2+ within the erythrocyte. These data, taken together, suggest that prior intracellular reduction of TA to dihydrolipoic acid is not an obligatory mechanism for an antioxidant effect of the drug, which may also operate via Cu(2+)-chelation. The R-enantiomer and racemic mixture of the drug (alpha-TA) generally seemed more effective than the S-enantiomer in these assays of metal chelation.
Collapse
Affiliation(s)
- P Ou
- Department of Medicine, University College London Medical School, U.K
| | | | | |
Collapse
|