1
|
Zang X, Geng X, Wang F, Liu Z, Zhang L, Zhao Y, Tian X, Ni Z, Yao Y, Xin M, Hu Z, Sun Q, Peng H. Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging. BMC PLANT BIOLOGY 2017; 17:14. [PMID: 28088182 PMCID: PMC5237568 DOI: 10.1186/s12870-016-0958-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/20/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND The yield of wheat (Triticum aestivum L.), an important crop, is adversely affected by heat stress in many regions of the world. However, the molecular mechanisms underlying thermotolerance are largely unknown. RESULTS A novel ferritin gene, TaFER, was identified from our previous heat stress-responsive transcriptome analysis of a heat-tolerant wheat cultivar (TAM107). TaFER was mapped to chromosome 5B and named TaFER-5B. Expression pattern analysis revealed that TaFER-5B was induced by heat, polyethylene glycol (PEG), H2O2 and Fe-ethylenediaminedi(o-hydroxyphenylacetic) acid (Fe-EDDHA). To confirm the function of TaFER-5B in wheat, TaFER-5B was transformed into the wheat cultivar Jimai5265 (JM5265), and the transgenic plants exhibited enhanced thermotolerance. To examine whether the function of ferritin from mono- and dico-species is conserved, TaFER-5B was transformed into Arabidopsis, and overexpression of TaFER-5B functionally complemented the heat stress-sensitive phenotype of a ferritin-lacking mutant of Arabidopsis. Moreover, TaFER-5B is essential for protecting cells against heat stress associated with protecting cells against ROS. In addition, TaFER-5B overexpression also enhanced drought, oxidative and excess iron stress tolerance associated with the ROS scavenging. Finally, TaFER-5B transgenic Arabidopsis and wheat plants exhibited improved leaf iron content. CONCLUSIONS Our results suggest that TaFER-5B plays an important role in enhancing tolerance to heat stress and other abiotic stresses associated with the ROS scavenging.
Collapse
Affiliation(s)
- Xinshan Zang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Xiaoli Geng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Fei Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Zhenshan Liu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Liyuan Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Yue Zhao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Xuejun Tian
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| |
Collapse
|
2
|
de Llanos R, Martínez-Garay CA, Fita-Torró J, Romero AM, Martínez-Pastor MT, Puig S. Soybean Ferritin Expression in Saccharomyces cerevisiae Modulates Iron Accumulation and Resistance to Elevated Iron Concentrations. Appl Environ Microbiol 2016; 82:3052-3060. [PMID: 26969708 PMCID: PMC4959083 DOI: 10.1128/aem.00305-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/08/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Fungi, including the yeast Saccharomyces cerevisiae, lack ferritin and use vacuoles as iron storage organelles. This work explored how plant ferritin expression influenced baker's yeast iron metabolism. Soybean seed ferritin H1 (SFerH1) and SFerH2 genes were cloned and expressed in yeast cells. Both soybean ferritins assembled as multimeric complexes, which bound yeast intracellular iron in vivo and, consequently, induced the activation of the genes expressed during iron scarcity. Soybean ferritin protected yeast cells that lacked the Ccc1 vacuolar iron detoxification transporter from toxic iron levels by reducing cellular oxidation, thus allowing growth at high iron concentrations. Interestingly, when simultaneously expressed in ccc1Δ cells, SFerH1 and SFerH2 assembled as heteropolymers, which further increased iron resistance and reduced the oxidative stress produced by excess iron compared to ferritin homopolymer complexes. Finally, soybean ferritin expression led to increased iron accumulation in both wild-type and ccc1Δ yeast cells at certain environmental iron concentrations. IMPORTANCE Iron deficiency is a worldwide nutritional disorder to which women and children are especially vulnerable. A common strategy to combat iron deficiency consists of dietary supplementation with inorganic iron salts, whose bioavailability is very low. Iron-enriched yeasts and cereals are alternative strategies to diminish iron deficiency. Animals and plants possess large ferritin complexes that accumulate, detoxify, or buffer excess cellular iron. However, the yeast Saccharomyces cerevisiae lacks ferritin and uses vacuoles as iron storage organelles. Here, we explored how soybean ferritin expression influenced yeast iron metabolism, confirming that yeasts that express soybean seed ferritin could be explored as a novel strategy to increase dietary iron absorption.
Collapse
Affiliation(s)
- Rosa de Llanos
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain
| | - Carlos Andrés Martínez-Garay
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain
| | - Josep Fita-Torró
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain
| | - Antonia María Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain
| | | | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain
| |
Collapse
|
3
|
Zielińska-Dawidziak M. Plant ferritin--a source of iron to prevent its deficiency. Nutrients 2015; 7:1184-201. [PMID: 25685985 PMCID: PMC4344583 DOI: 10.3390/nu7021184] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/03/2015] [Indexed: 12/20/2022] Open
Abstract
Iron deficiency anemia affects a significant part of the human population. Due to the unique properties of plant ferritin, food enrichment with ferritin iron seems to be a promising strategy to prevent this malnutrition problem. This protein captures huge amounts of iron ions inside the apoferritin shell and isolates them from the environment. Thus, this iron form does not induce oxidative change in food and reduces the risk of gastric problems in consumers. Bioavailability of ferritin in human and animal studies is high and the mechanism of absorption via endocytosis has been confirmed in cultured cells. Legume seeds are a traditional source of plant ferritin. However, even if the percentage of ferritin iron in these seeds is high, its concentration is not sufficient for food fortification. Thus, edible plants have been biofortified in iron for many years. Plants overexpressing ferritin may find applications in the development of bioactive food. A crucial achievement would be to develop technologies warranting stability of ferritin in food and the digestive tract.
Collapse
Affiliation(s)
- Magdalena Zielińska-Dawidziak
- Department of Food Biochemistry and Analysis, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-623 Poznań, Poland.
| |
Collapse
|
4
|
Identification and Characterization of a Ferritin Gene and Its Product from the Multicellular Green AlgaUlva pertusa. Biosci Biotechnol Biochem 2014; 76:1913-9. [DOI: 10.1271/bbb.120400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Li M, Yun S, Yang X, Zhao G. Stability and iron oxidation properties of a novel homopolymeric plant ferritin from adzuki bean seeds: a comparative analysis with recombinant soybean seed H-1 chain ferritin. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1830:2946-53. [PMID: 23313843 DOI: 10.1016/j.bbagen.2013.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND All reported plant ferritins are heteropolymers comprising two different H-type subunits. Whether or not homopolymeric plant ferritin occurs in nature is an open question. METHODS A homopolymeric phytoferritin from adzuki bean seeds (ASF) was obtained by various protein purification techniques for the first time, which shares the highest identity (89.6%) with soybean seed H-1 ferritin (rH-1). Therefore, we compared iron oxidation activity and protein stability of ASF with those of rH-1 by stopped-flow combined with light scattering or UV/Vis spectrophotography, SDS- and native- PAGE analyses. Additionally, a new rH-1 variant (S68E) was prepared by site-directed mutagenesis approach to elucidate their difference in protein stability. RESULTS At high iron loading of protein, the extension peptide (EP) of plant ferritin was involved in iron oxidation, and the EP of ASF exhibited a much stronger iron oxidative activity than that of rH-1. Besides, ASF is more stable than rH-1 during storage, which is ascribed to one amino acid residue, Ser68. CONCLUSIONS ASF exhibits a different mechanism in iron oxidation from rH-1 at high iron loading of protein, and a higher stability than rH-1. These differences are mainly stemmed from their different EP sequences. GENERAL SIGNIFICANCE This work demonstrates that plant cells have evolved the EP of phytoferritin to control iron chemistry and protein stability by exerting a fine tuning of its amino acid sequence.
Collapse
Affiliation(s)
- Meiliang Li
- CAU & ACC Joint-Laboratory of Space Food, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | | | | | | |
Collapse
|
6
|
Sato N, Moriyama T, Toyoshima M, Mizusawa M, Tajima N. The all0458/lti46.2 gene encodes a low temperature-induced Dps protein homologue in the cyanobacteria Anabaena sp. PCC 7120 and Anabaena variabilis M3. MICROBIOLOGY-SGM 2012; 158:2527-2536. [PMID: 22837304 DOI: 10.1099/mic.0.060657-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DNA-binding proteins from starved cells (Dps), which are encoded by many bacterial genomes, protect genomic DNA via non-specific DNA binding, as well as inhibition of free radical formation by chelating Fe(II). In the filamentous cyanobacterium Anabaena, the second gene (lti46.2) in the low temperature-induced gene operon lti46 in strain M3 was found to encode a homologue of Dps, but for a long time this gene remained poorly characterized. A gene cluster, all0459-all0458-all0457, was found later to be 100% identical to the lti46 gene cluster in a closely related strain, PCC 7120. In the present study, we detected ferroxidase activity of the Lti46.2/All0458 protein, which formed a dodecamer, as found in other Dps proteins. In addition, three homologues of all0458 were found in strain PCC 7120, namely, all1173, alr3808 and all4145. We analysed expression of the lti46 or all0459-8-7 gene cluster in both strains, M3 and PCC 7120, and confirmed its induction by low temperature. We found that the All0458-GFP fusion protein and the All1173-GFP fusion protein were localized to the nucleoids. In the all0458 null mutant, the transcript of the alr3808 gene accumulated. These results suggest that there might be complex cooperation of various members of the dps family in protecting the genome from environmental stresses such as changing temperature.
Collapse
Affiliation(s)
- Naoki Sato
- JST, CREST, K's Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Takashi Moriyama
- JST, CREST, K's Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Masakazu Toyoshima
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Mika Mizusawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Naoyuki Tajima
- JST, CREST, K's Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
7
|
Galatro A, Robello E, Puntarulo S. Soybean ferritin: isolation, characterization, and free radical generation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:45-54. [PMID: 22112169 DOI: 10.1111/j.1744-7909.2011.01091.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The main aim of this work was to assess the multi-task role of ferritin (Ft) in the oxidative metabolism of soybean (Glycine max). Soybean seeds incubated for 24 h yielded 41 ± 5 μg Ft/g fresh weight. The rate of in vitro incorporation of iron (Fe) into Ft was tested by supplementing the reaction medium with physiological Fe chelators. The control rate, observed in the presence of 100 μM Fe, was not significantly different from the values observed in the presence of 100 μM Fe-his. However, it was significantly higher in the presence of 100 μM Fe-citrate (approximately 4.5-fold) or of 100 μM Fe-ATP (approximately 14-fold). Moreover, a substantial decrease in the Trp-dependent fluorescence of the Ft protein was determined during Fe uptake from Fe-citrate, as compared with the control. On the other hand, Ft addition to homogenates from soybean embryonic axes reduced endogenously generated ascorbyl radical, according to its capacity for Fe uptake. The data presented here suggest that Ft could be involved in the generation of free radicals, such as hydroxyl radical, by Fe-catalyzed reactions. Moreover, the scavenging of these radicals by Ft itself could then lead to protein damage. However, Ft could also prevent cellular damage by the uptake of catalytically active Fe.
Collapse
Affiliation(s)
- Andrea Galatro
- Physical Chemistry-PRALIB, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires C1113AAD, Argentina
| | | | | |
Collapse
|
8
|
Iron and ROS control of the DownSTream mRNA decay pathway is essential for plant fitness. EMBO J 2011; 31:175-86. [PMID: 21946558 DOI: 10.1038/emboj.2011.341] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 08/11/2011] [Indexed: 11/08/2022] Open
Abstract
A new regulatory pathway involved in plant response to oxidative stress was revealed using the iron-induced Arabidopsis ferritin AtFER1 as a model. Using pharmacological and genetic approaches, the DownSTream (DST) cis-acting element in the 3'-untranslated region of the AtFER1 mRNA was shown to be involved in the degradation of this transcript, and oxidative stress triggers this destabilization. In the two previously identified trans-acting mutants (dst1 and dst2), AtFER1 mRNA stability is indeed impaired. Other iron-regulated genes containing putative DST sequences also displayed altered expression. Further physiological characterization identified this oxidative stress-induced DST-dependent degradation pathway as an essential regulatory mechanism to modulate mRNA accumulation patterns. Alteration of this control dramatically impacts plant oxidative physiology and growth. In conclusion, the DST-dependent mRNA stability control appears to be an essential mechanism that allows plants to cope with adverse environmental conditions.
Collapse
|
9
|
Zhang Y, Orner BP. Self-assembly in the ferritin nano-cage protein superfamily. Int J Mol Sci 2011; 12:5406-21. [PMID: 21954367 PMCID: PMC3179174 DOI: 10.3390/ijms12085406] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/09/2011] [Accepted: 08/15/2011] [Indexed: 11/17/2022] Open
Abstract
Protein self-assembly, through specific, high affinity, and geometrically constraining protein-protein interactions, can control and lead to complex cellular nano-structures. Establishing an understanding of the underlying principles that govern protein self-assembly is not only essential to appreciate the fundamental biological functions of these structures, but could also provide a basis for their enhancement for nano-material applications. The ferritins are a superfamily of well studied proteins that self-assemble into hollow cage-like structures which are ubiquitously found in both prokaryotes and eukaryotes. Structural studies have revealed that many members of the ferritin family can self-assemble into nano-cages of two types. Maxi-ferritins form hollow spheres with octahedral symmetry composed of twenty-four monomers. Mini-ferritins, on the other hand, are tetrahedrally symmetric, hollow assemblies composed of twelve monomers. This review will focus on the structure of members of the ferritin superfamily, the mechanism of ferritin self-assembly and the structure-function relations of these proteins.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Chemistry and Biology Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore; E-Mail:
| | - Brendan P. Orner
- Division of Chemistry and Biology Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore; E-Mail:
| |
Collapse
|
10
|
Briat JF, Ravet K, Arnaud N, Duc C, Boucherez J, Touraine B, Cellier F, Gaymard F. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. ANNALS OF BOTANY 2010; 105:811-22. [PMID: 19482877 PMCID: PMC2859905 DOI: 10.1093/aob/mcp128] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 03/30/2009] [Accepted: 04/06/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Iron is an essential element for both plant productivity and nutritional quality. Improving plant iron content was attempted through genetic engineering of plants overexpressing ferritins. However, both the roles of these proteins in plant physiology, and the mechanisms involved in the regulation of their expression are largely unknown. Although the structure of ferritins is highly conserved between plants and animals, their cellular localization differs. Furthermore, regulation of ferritin gene expression in response to iron excess occurs at the transcriptional level in plants, in contrast to animals which regulate ferritin expression at the translational level. SCOPE In this review, an overview of our knowledge of bacterial and mammalian ferritin synthesis and functions is presented. Then the following will be reviewed: (a) the specific features of plant ferritins; (b) the regulation of their synthesis during development and in response to various environmental cues; and (c) their function in plant physiology, with special emphasis on the role that both bacterial and plant ferritins play during plant-bacteria interactions. Arabidopsis ferritins are encoded by a small nuclear gene family of four members which are differentially expressed. Recent results obtained by using this model plant enabled progress to be made in our understanding of the regulation of the synthesis and the in planta function of these various ferritins. CONCLUSIONS Studies on plant ferritin functions and regulation of their synthesis revealed strong links between these proteins and protection against oxidative stress. In contrast, their putative iron-storage function to furnish iron during various development processes is unlikely to be essential. Ferritins, by buffering iron, exert a fine tuning of the quantity of metal required for metabolic purposes, and help plants to cope with adverse situations, the deleterious effects of which would be amplified if no system had evolved to take care of free reactive iron.
Collapse
|
11
|
Masuda T, Goto F, Yoshihara T, Mikami B. Crystal structure of plant ferritin reveals a novel metal binding site that functions as a transit site for metal transfer in ferritin. J Biol Chem 2010; 285:4049-4059. [PMID: 20007325 PMCID: PMC2823546 DOI: 10.1074/jbc.m109.059790] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/25/2009] [Indexed: 11/06/2022] Open
Abstract
Ferritins are important iron storage and detoxification proteins that are widely distributed in living kingdoms. Because plant ferritin possesses both a ferroxidase site and a ferrihydrite nucleation site, it is a suitable model for studying the mechanism of iron storage in ferritin. This article presents for the first time the crystal structure of a plant ferritin from soybean at 1.8-A resolution. The soybean ferritin 4 (SFER4) had a high structural similarity to vertebrate ferritin, except for the N-terminal extension region, the C-terminal short helix E, and the end of the BC-loop. Similar to the crystal structures of other ferritins, metal binding sites were observed in the iron entry channel, ferroxidase center, and nucleation site of SFER4. In addition to these conventional sites, a novel metal binding site was discovered intermediate between the iron entry channel and the ferroxidase site. This site was coordinated by the acidic side chain of Glu(173) and carbonyl oxygen of Thr(168), which correspond, respectively, to Glu(140) and Thr(135) of human H chain ferritin according to their sequences. A comparison of the ferroxidase activities of the native and the E173A mutant of SFER4 clearly showed a delay in the iron oxidation rate of the mutant. This indicated that the glutamate residue functions as a transit site of iron from the 3-fold entry channel to the ferroxidase site, which may be universal among ferritins.
Collapse
Affiliation(s)
- Taro Masuda
- From the Laboratory of Food Quality Design and Development, Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011.
| | - Fumiyuki Goto
- the Biotechnology Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| | - Toshihiro Yoshihara
- the Biotechnology Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| | - Bunzo Mikami
- the Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011 and
| |
Collapse
|
12
|
Briat JF, Duc C, Ravet K, Gaymard F. Ferritins and iron storage in plants. Biochim Biophys Acta Gen Subj 2009; 1800:806-14. [PMID: 20026187 DOI: 10.1016/j.bbagen.2009.12.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 10/20/2022]
Abstract
Iron is essential for both plant productivity and nutritional quality. Improving plant iron content was attempted through genetic engineering of plants overexpressing ferritins. However, both the roles of these proteins in the plant physiology, and the mechanisms involved in the regulation of their expression are largely unknown. Although the structure of ferritins is highly conserved between plants and animals, their cellular localization differ. Furthermore, regulation of ferritin gene expression in response to iron excess occurs at the transcriptional level in plants, in contrast to animals which regulate ferritin expression at the translational level. In this review, our knowledge of the specific features of plant ferritins is presented, at the level of their (i) structure/function relationships, (ii) cellular localization, and (iii) synthesis regulation during development and in response to various environmental cues. A special emphasis is given to their function in plant physiology, in particular concerning their respective roles in iron storage and in protection against oxidative stress. Indeed, the use of reverse genetics in Arabidopsis recently enabled to produce various knock-out ferritin mutants, revealing strong links between these proteins and protection against oxidative stress. In contrast, their putative iron storage function to furnish iron during various development processes is unlikely to be essential. Ferritins, by buffering iron, exert a fine tuning of the quantity of metal required for metabolic purposes, and help plants to cope with adverse situations, the deleterious effects of which would be amplified if no system had evolved to take care of free reactive iron.
Collapse
Affiliation(s)
- Jean-François Briat
- Biochimie et Physiologie Moleculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier 2, SupAgro. Bat 7, 2 place Viala, 34060 Montpellier cedex 1, France.
| | | | | | | |
Collapse
|
13
|
Zhang L, Si J, Zeng F, An L. Molecular cloning and characterization of a ferritin gene upregulated by cold stress in Chorispora bungeana. Biol Trace Elem Res 2009; 128:269-83. [PMID: 19034392 DOI: 10.1007/s12011-008-8275-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
Abstract
The ability of iron to accept and donate electrons makes it important for plant growth, but it can also damage plants when they are under environmental stress. Ferritin, a protein encoded by the gene Fer, catalyzes the oxidation of Fe(2+) and subsequent storage of Fe(3+) within the mineral core. Ferritin may reduce the adverse effects of iron on Chorispora bungeana Fisch. & C.A. May during the course of cold stress. C. bungeana is a rare alpine subnival plant species that is highly resistant to a freezing environment. We have isolated and characterized the ferritin cDNA (CbFer) from C. bungeana. It is 975 bp in length with an open reading frame of 260 amino acids, corresponding to a protein of predicted molecular mass of 29.17 kDa and an isoelectric point of 5.44. Amino acid analysis of the polypeptides indicated that CbFer codes for a ferritin subunit plus a chloroplast-targeting transit peptide. Reverse transcription polymerase chain reaction analysis confirmed that CbFer was a tissue-specific gene since the expression could only be detected in leaves. The gene expression patterns were investigated in relation to cold stress (4 degrees C and -4 degrees C) and to various exogenous signals, including excessive iron, hydrogen peroxide (H(2)O(2)), and nitrogen monoxidum (NO). The amount of CbFer mRNA increased in response to low temperatures and gene expression at -4 degrees C was both more distinct and quicker than that at 4 degrees C. Two exogenous signals, excessive iron and H(2)O(2), upregulated the expression of the CbFer gene, but NO had no effect. The CbFer gene may play an important role in response to cold stress, while the expression of the gene during stress may be influenced by major and minor factors such as iron and H(2)O(2), respectively.
Collapse
Affiliation(s)
- Lijing Zhang
- Ministry of Agriculture, Lanzhou University, People's Republic of China
| | | | | | | |
Collapse
|
14
|
FER1 and FER2 encoding two ferritin complexes in Chlamydomonas reinhardtii chloroplasts are regulated by iron. Genetics 2008; 179:137-47. [PMID: 18493046 DOI: 10.1534/genetics.107.083824] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two unlinked genes FER1 and FER2 encoding ferritin subunits were identified in the Chlamydomonas genome. An improved FER2 gene model, built on the basis of manual sequencing and incorporation of unplaced reads, indicated 49% identity between the ferritin subunits. Both FER1 and FER2 transcripts are increased in abundance as iron nutrition is decreased but the pattern for each gene is distinct. Using subunit-specific antibodies, we monitored expression at the protein level. In response to low iron, ferritin1 subunits and the ferritin1 complex are increased in parallel to the increase in FER1 mRNA. Nevertheless, the iron content of the ferritin1 complex is decreased. This suggests that increased expression results in increased capacity for iron binding in the chloroplast of iron-limited cells, which supports a role for ferritin1 as an iron buffer. On the other hand, ferritin2 abundance is decreased in iron-deprived cells, indicative of the operation of iron-nutrition-responsive regulation at the translational or post-translational level for FER2. Both ferritin subunits are plastid localized but ferritin1 is quantitatively recovered in soluble extracts of cells while ferritin2 is found in the particulate fraction. Partial purification of the ferritin1 complex indicates that the two ferritins are associated in distinct complexes and do not coassemble. The ratio of ferritin1 to ferritin2 is 70:1 in iron-replete cells, suggestive of a more dominant role of ferritin1 in iron homeostasis. The Volvox genome contains orthologs of each FER gene, indicating that the duplication of FER genes and potential diversification of function occurred prior to the divergence of species in the Volvocales.
Collapse
|
15
|
Dong X, Sun Q, Wei D, Li J, Li J, Tang B, Jia Q, Hu W, Zhao Y, Hua ZC. A novel ferritin gene, SferH-5, reveals heterogeneity of the 26.5-kDa subunit of soybean (Glycine max) seed ferritin. FEBS Lett 2007; 581:5796-802. [PMID: 18037378 DOI: 10.1016/j.febslet.2007.11.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 11/01/2007] [Accepted: 11/12/2007] [Indexed: 11/21/2022]
Abstract
A novel ferritin cDNA, SferH-5, has been cloned from 7-day-old soybean seedlings. Putative SferH-5 has 96% identity with SferH-1 reported previously. All the five amino acid variants distributed in the mature region are not involved in highly conserved residues associated with ferroxidase activity center. We speculate that SferH-5 encodes a novel 26.5-kDa subunit of soybean seed ferritin, which is designated H-5 in this study. Recombinant H-5 was able to assemble, together with co-expressed H-2, as a functional soybean seed ferritin-like complex, H-5/H-2. Our data reveal the potential heterogeneity of the 26.5-kDa subunit of soybean seed ferritin.
Collapse
Affiliation(s)
- Xiangbai Dong
- The State Key Laboratory of Pharmaceutical, Biotechnology and Department of Biochemistry, College of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
La Fontaine S, Quinn JM, Nakamoto SS, Page MD, Göhre V, Moseley JL, Kropat J, Merchant S. Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii. EUKARYOTIC CELL 2002; 1:736-57. [PMID: 12455693 PMCID: PMC126744 DOI: 10.1128/ec.1.5.736-757.2002] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2002] [Accepted: 07/24/2002] [Indexed: 11/20/2022]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a valuable model for studying metal metabolism in a photosynthetic background. A search of the Chlamydomonas expressed sequence tag database led to the identification of several components that form a copper-dependent iron assimilation pathway related to the high-affinity iron uptake pathway defined originally for Saccharomyces cerevisiae. They include a multicopper ferroxidase (encoded by Fox1), an iron permease (encoded by Ftr1), a copper chaperone (encoded byAtx1), and a copper-transporting ATPase. A cDNA, Fer1, encoding ferritin for iron storage also was identified. Expression analysis demonstrated that Fox1 and Ftrl were coordinately induced by iron deficiency, as were Atx1 and Fer1, although to lesser extents. In addition, Fox1 abundance was regulated at the posttranscriptional level by copper availability. Each component exhibited sequence relationship with its yeast, mammalian, or plant counterparts to various degrees; Atx1 of C. reinhardtii is also functionally related with respect to copper chaperone and antioxidant activities. Fox1 is most highly related to the mammalian homologues hephaestin and ceruloplasmin; its occurrence and pattern of expression in Chlamydomonas indicate, for the first time, a role for copper in iron assimilation in a photosynthetic species. Nevertheless, growth of C. reinhardtii under copper- and iron-limiting conditions showed that, unlike the situation in yeast and mammals, where copper deficiency results in a secondary iron deficiency, copper-deficient Chlamydomonas cells do not exhibit symptoms of iron deficiency. We propose the existence of a copper-independent iron assimilation pathway in this organism.
Collapse
Affiliation(s)
- Sharon La Fontaine
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90095-1569, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Although iron is an essential nutrient for plants, its accumulation within cells can be toxic. Plants, therefore, respond to both iron deficiency and iron excess by inducing expression of different gene sets. Here, we review recent advances in the understanding of iron homeostasis in plants gained through functional genomic approaches
Collapse
Affiliation(s)
- Erin L Connolly
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Mary Lou Guerinot
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
18
|
Petit JM, Briat JF, Lobréaux S. Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochem J 2001; 359:575-82. [PMID: 11672431 PMCID: PMC1222178 DOI: 10.1042/0264-6021:3590575] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Four ferritin genes are found within the complete sequence of the Arabidopsis thaliana genome. All of them are expressed and their corresponding cDNA species have been cloned. The polypeptide sequences deduced from these four genes confirm all the properties of the ferritin subunits described so far, non-exhaustively, from various plant species. All are predicted to be targeted to the plastids, which is consistent with the existence of a putative transit peptide at their N-terminal extremity. They also all possess a conserved extension peptide in the mature subunit. Specific residues for ferroxidase activity and iron nucleation, which are found respectively in H-type or L-type ferritin subunits in animals, are both conserved within each of the four A. thaliana ferritin polypeptides. In addition, the hydrophilic nature of the plant ferritin E-helix is conserved in the four A. thaliana ferritin subunits. Besides this strong structural conservation, the four genes are differentially expressed in response to various environmental signals, and during the course of plant growth and development. AtFer1 and AtFer3 are the two major genes expressed in response to treatment with an iron overload. Under our experimental conditions, AtFer4 is expressed with different kinetics and AtFer2 is not responsive to iron. H(2)O(2) activates the expression of AtFer1 and, to a smaller extent, AtFer3. Abscisic acid promotes the expression of only AtFer2, which is consistent with the observation that this is the only gene of the four to be expressed in seeds, whereas AtFer1, AtFer4 and AtFer3 are expressed in various vegetative organs but not in seeds.
Collapse
Affiliation(s)
- J M Petit
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, Université Montpellier-II, Institut National de la Recherche Agronomique et Ecole Nationale Supérieure d'Agronomie, France
| | | | | |
Collapse
|
19
|
Smól J, Astriab M, Dudzińska-Madej B, Twardowski T. Stress conditions applied to the interpretation of translation machinery. ACTA BIOLOGICA HUNGARICA 2001; 52:161-70. [PMID: 11396835 DOI: 10.1556/abiol.52.2001.1.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gene expression is regulated at the critical steps: a regulatory event occurs at the step which has a critical effect and is responsible for the limiting rate. Enzyme activity can be regulated at several different levels: transcriptional, translational or post-translational. In this review we describe (and illustrate with experimental data) plant stress which induces regulatory mechanisms at the translational and post-translational levels. We found evidence for autorepression regulatory system of ferritin biosynthesis. Based on the knowledge of the molecular mechanism of regulation, we believe that ferritin protects the environment against heavy metal ions and supplements biological system(s) with iron. The quinolizidine alkaloids' (QA) biosynthesis is lysine decarboxylase (LDC)-dependent. The available pool of LDC limits the conversion of lysine to cadaverine. The amount of LDC depends on transcriptional and translational efficiency. However, in the light of the presented data, we have evidence for a post-translational regulatory system, i.e. the activation of LDC from low to high activity enzyme through the conversion from higher to lower molecular weight form. The plant protection system is very efficient. Understanding of the defence systems such as plant response to stress, should provide us with a possibility of applying this knowledge in practice and finding novel applications.
Collapse
Affiliation(s)
- J Smól
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań
| | | | | | | |
Collapse
|
20
|
Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F. Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 1999; 17:282-6. [PMID: 10096297 DOI: 10.1038/7029] [Citation(s) in RCA: 347] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To improve the iron content of rice, we have transferred the entire coding sequence of the soybean ferritin gene into Oryza sativa (L. cv. Kita-ake) by Agrobacterium-mediated transformation. The rice seed-storage protein glutelin promoter, GluB-1, was used to drive expression of the soybean gene specifically in developing, self-pollinated seeds (T1 seeds) of transgenic plants, as confirmed by reverse transcription PCR analysis. Stable accumulation of the ferritin subunit in the rice seed was demonstrated by western blot analysis, and its specific accumulation in the endosperm by immunologic tissue printing. The iron content of T1 seeds was as much as threefold greater than that of their untransformed counterparts.
Collapse
Affiliation(s)
- F Goto
- Department of Bio-Science, Central Research Institute Electric Power Industry, Chiba, Japan
| | | | | | | | | |
Collapse
|
21
|
Barceló F, Miralles F, Otero Areán C. Purification and characterization of ferritin from alfalfa seeds. J Inorg Biochem 1997; 66:23-7. [PMID: 9076971 DOI: 10.1016/s0162-0134(96)00155-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ferritin from alfalfa (Medicago sativa) seeds was isolated, purified, and characterized. The apparent molecular mass of the native protein was found to be 560 kDa. Electrophoresis in denaturing gradient polyacrylamide-SDS gels revealed subunits of 28-26.5 kDa. The average iron cores were 4 nm in diameter and contained about 1400 iron atoms, with an iron-to-phosphorus ratio of 4:1. N-terminal amino acid sequencing of the 28 kDa subunit revealed close homology with other plant proteins. Immunochemical analysis using polyclonal antibodies raised against pea-seed ferritin has confirmed, in agreement with previous reports, that plant proteins share common epitopes.
Collapse
Affiliation(s)
- F Barceló
- Departamento de Biología Fundamental y Ciencias de la Salud, Universidad de las Islas Baleares, Palma de Mallorca, Spain
| | | | | |
Collapse
|
22
|
Accumulation and Storage of Phosphate and Minerals. ADVANCES IN CELLULAR AND MOLECULAR BIOLOGY OF PLANTS 1997. [DOI: 10.1007/978-94-015-8909-3_12] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
23
|
Gaymard F, Boucherez J, Briat JF. Characterization of a ferritin mRNA from Arabidopsis thaliana accumulated in response to iron through an oxidative pathway independent of abscisic acid. Biochem J 1996; 318 ( Pt 1):67-73. [PMID: 8761454 PMCID: PMC1217590 DOI: 10.1042/bj3180067] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A ferritin cDNA, AtFer1, from seedlings of Arabidopsis thaliana has been characterized. The deduced amino acid sequence of the AtFer1 protein indicates that A. thaliana ferritin shares the same characteristics as the plant ferritin already characterized from the Leguminosae and Graminacea families: (i) it contains an additional sequence in its N-terminal part composed of two domains: a transit peptide responsible for plastid targeting and an extension peptide; (ii) amino acids that form the ferroxidase centre of H-type animal ferritin, as well as Glu residues characteristic of L-type animal ferritin, are conserved in AtFer1; (iii) the C-terminal part of the A. thaliana ferritin subunit defining the E-helix is divergent from its animal counterpart, and confirms that 4-fold-symmetry axis channels are hydrophilic in plant ferritin. Southern blot experiments indicate that AtFer1 is likely to be encoded by a unique gene in the A. thaliana genome, although a search in the NCBI dbEST database indicates that other ferritin genes, divergent from AtFer1, may exist. Iron loading of A. thaliana plantlets increased ferritin mRNA and protein abundance. In contrast to maize, the transcript abundance of a gene responding to abscisic acid (RAB18) did not increase in response to iron loading treatment, and A. thaliana ferritin mRNA abundance is not accumulated in response to a treatment with exogenous abscisic acid, at least in the culture system used in this study. In addition, iron-induced increases in ferritin mRNA abundance were the same as wild-type plants in abi1 and abi2 mutants of A. thaliana, both affected in the abscisic acid response in vegetative tissues. Increased AtFer1 transcript abundance in response to iron is inhibited by the antioxidant N-acetylcysteine. These results indicate that an oxidative pathway, independent of abscisic acid, could be responsible for the iron induction of ferritin synthesis in A. thaliana.
Collapse
Affiliation(s)
- F Gaymard
- Centre National de la Recherche Scientifique (Unité de Recherche 2133), Institut National de la Recherche Agronomique, Montpellier, France
| | | | | |
Collapse
|
24
|
Fobis-Loisy I, Loridon K, Lobreaux S, Lebrun M, Briat JF. Structure and Differential Expression of two Maize Ferritin Genes in Response to Iron and Abscisic Acid. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.0609d.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Fobis-Loisy I, Loridon K, Lobréaux S, Lebrun M, Briat JF. Structure and differential expression of two maize ferritin genes in response to iron and abscisic acid. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 231:609-19. [PMID: 7649160 DOI: 10.1111/j.1432-1033.1995.tb20739.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In plants, synthesis of the iron-storage protein ferritin in response to iron is not regulated at the translational level; this is in contrast to ferritin synthesis in animals. Part of the response is mediated through a transduction pathway which involves the plant hormone abscisic acid. In this work, we report the cloning and sequencing of two maize ferritin genes (ZmFer1 and ZmFer2) coding for members of the two ferritin mRNA subclasses, FM1 and FM2, respectively. Although plant and animal ferritins are closely related proteins, a major difference is observed between the organisation of the genes. Both maize ferritin genes are organised as eight exons and seven introns, the positions of which are identical within the two genes, while animal ferritin genes are interrupted by three introns, at positions different from those found in maize genes. Sequence divergence between the 3' untranslated regions of these genes has allowed the use of specific probes to study the accumulation of FM1 and FM2 transcripts in response to various environmental cues. Such probes have shown that FM1 and FM2 transcripts accumulate with differential kinetics in response to iron; FM1 mRNA accumulate earlier than FM2 mRNA and only FM2 transcripts accumulate in response to exogenous abscisic acid or water stress. Mapping of the transcriptional initiation region of these two genes defined their 5' upstream regions and allowed a sequence comparison of their promoters, which appeared highly divergent. This raises the possibility that the differential accumulation of FM1 and FM2 mRNAs in response to iron, abscisic acid and drought could be due to differential transcription of ZmFer1 and ZmFer2.
Collapse
Affiliation(s)
- I Fobis-Loisy
- Laboratoire de Biochimie et Physiologie Végétales, Institut National de la Recherche Agronomique et Ecole Nationale Supérieure d'Agronomie, Montpellier, France
| | | | | | | | | |
Collapse
|