1
|
Gao Y, Han Z, Wu X, Lan R, Zhang X, Shen W, Liu Y, Liu X, Lan X, Xu B, Xu W. Next-generation sequencing identifies a novel heterozygous I229T mutation on LMNA associated with familial cardiac conduction disease. Medicine (Baltimore) 2020; 99:e21797. [PMID: 32846814 PMCID: PMC7447464 DOI: 10.1097/md.0000000000021797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
LMNA gene encodes Lamin A and C (Lamin A/C), which are intermediate filament protein implicating in DNA replication and transcription. Mutations in LMNA are validated to cause cardiac conduction disease (CCD) and cardiomyopathy.In a Chinese family, we identified 5 members harboring the identical heterozygous LMNA (c.686T>C, I229T) disease-causing mutation, which was not found in the 535 healthy controls. In silico analysis, we revealed structural alteration in Lamin A/C I229T mutant. Furthermore, molecular docking identified human polycomb repressive complex 2 and Lamin A/C interact with higher affinity in the presence of I229T, thus may downregulate Nav1.5 channel expression.Our findings expanded the spectrum of mutations associated with CCD and were valuable in the genetic diagnosis and clinical screening for CCD. Molecular docking analysis provided useful information of increased binding affinity between mutant Lamin A/C and polycomb repressive complex 2. However, the concrete mechanism of LMNA mutation (I229T) remains undetermined in our study, future genetics and molecular studies are still needed.
Collapse
Affiliation(s)
- Yuan Gao
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhonglin Han
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School
| | - Xiang Wu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School
| | - Rongfang Lan
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School
| | - Xinlin Zhang
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School
| | - Wenzhi Shen
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School
| | - Yu Liu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School
| | - Xuehua Liu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School
| | - Xi Lan
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School
| | - Biao Xu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School
| | - Wei Xu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School
| |
Collapse
|
2
|
Li X, Wang F, Ren M, Du M, Zhou J. The effects of c-Src kinase on EMT signaling pathway in human lens epithelial cells associated with lens diseases. BMC Ophthalmol 2019; 19:219. [PMID: 31703690 PMCID: PMC6842207 DOI: 10.1186/s12886-019-1229-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
Background The signaling pathway of epithelial to mesenchymal transition (EMT) is regulated by c-Src kinase in many cells. The purpose of this study was to investigate the effects of c-Src kinase on EMT of human lens epithelial cells in vivo stimulated by different factors. Methods Human lens epithelial cells, HLE-B3, were exposed to either an inflammatory factor, specifically IL-1α, IL-6, TNF-α or IL-1β, at 10 ng/mL or high glucose (35.5 mM) for 30 mins. Activity of c-Src kinase was evaluated by the expression of p-Src418 with western blot assay. To investigate the effects of activation of c-Src on EMT, HLE-B3 cells were transfected with pCDNA3.1-SrcY530F to upregulate activity of c-Src kinase, and pSlience4.1-ShSrc to knock it down. The expressions of c-Src kinase and molecular markers of EMT such as E-cadherin, ZO-1, α-SMA, and Vimentin were examined at 48 h by RT-PCR and western blot. At 48 h and 72 h of transfection, cell proliferation was detected by MTT, and cell mobility and migration were determined by scratch and transwell assays. Results Activity of c-Src kinase, which causes the expression of p-Src418, was upregulated by different inflammatory factors and high glucose in HLE-B3 cells. When HLE-B3 cells were transfected with pCDNA3.1-SrcY530F, the expression of c-Src kinase was upregulated on both mRNA and protein levels, and activity of c-Src kinase, expression of p-Src418 increased. The expressions of both E-cadherin and ZO-1 were suppressed, while the expressions of vimentin and α-SMA were elevated on both mRNA and protein levels at the same time. Cell proliferation, mobility and migration increased along with activation of c-Src kinase. Conversely, when HLE-B3 cells were transfected with pSlience4.1-ShSrc, both c-Src kinase and p-Src418 expressions were knocked down. The expressions of E-cadherin and ZO-1 increased, but the expressions of Vimentin and α-SMA decreased; meanwhile, cell proliferation, mobility and migration reduced. Conclusions The c-Src kinase in lens epithelial cells is easily activated by external stimuli, resulting in the induction of cell proliferation, mobility, migration and EMT.
Collapse
Affiliation(s)
- Xingyu Li
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Fang Wang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Meixia Ren
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Minjuan Du
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jian Zhou
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
3
|
Afratis NA, Nikitovic D, Multhaupt HAB, Theocharis AD, Couchman JR, Karamanos NK. Syndecans – key regulators of cell signaling and biological functions. FEBS J 2016; 284:27-41. [DOI: 10.1111/febs.13940] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Nikolaos A. Afratis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group Laboratory of Biochemistry Department of Chemistry University of Patras Greece
- Biotech Research & Innovation Center University of Copenhagen Denmark
| | - Dragana Nikitovic
- Laboratory of Anatomy‐Histology‐Embryology School of Medicine University of Crete Heraklion Greece
| | | | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group Laboratory of Biochemistry Department of Chemistry University of Patras Greece
| | - John R. Couchman
- Biotech Research & Innovation Center University of Copenhagen Denmark
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group Laboratory of Biochemistry Department of Chemistry University of Patras Greece
| |
Collapse
|
4
|
c- Src and its role in cystic fibrosis. Eur J Cell Biol 2016; 95:401-413. [DOI: 10.1016/j.ejcb.2016.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 12/15/2022] Open
|
5
|
Abd-Rabou AA. Calcium, a Cell Cycle Commander, Drives Colon Cancer Cell Diffpoptosis. Indian J Clin Biochem 2016; 32:9-18. [PMID: 28149007 DOI: 10.1007/s12291-016-0562-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/15/2016] [Indexed: 01/08/2023]
Abstract
The story of the cell commonder, calcium, reaches into all corners of the cell and controls cell proliferation, differentiation, function, and even death. The calcium-driven eukaryotic revolution is one of the great turning points in the life history, happened about two billion years later when it was converted from a dangerous killer that had to be kept out of cell into the cell master which drives the cell. This review article will take the readers to a tour of tissues chosen to best show the calcium's many faces (proliferator, differentiator, and killer). The reader will first see calcium and its many helpers, such as the calcium-binding signaler protein calmodulin, directing the key events of the cell cycle. Then the tour will move onto the colon to show calcium driving the proliferation of progenitor cells, then the differentiation and ultimately the programmed death of their progeny. Moreover, the reader will learn of the striking disabling and bypassing of calcium-dependent control mechanisms during carcinogenesis. Finally, recommendations should be taken from the underlying mechanisms through which calcium masters the presistance, progression, and even apoptosis of colorectal cancer cells. Thus, this could be of great interest for designing of chemoprevention protocols.
Collapse
Affiliation(s)
- Ahmed A Abd-Rabou
- Hormones Department (Cancer Biology and Nano-Drug Delivery Group), Medical Research Division, National Research Center, Cairo, 12622 Egypt.,Center for Aging and Associated Diseases, Zewail City of Science and Technology, 6th of October, Egypt
| |
Collapse
|
6
|
Sissung TM, Price DK, Del Re M, Ley AM, Giovannetti E, Figg WD, Danesi R. Genetic variation: effect on prostate cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1846:446-56. [PMID: 25199985 PMCID: PMC4260983 DOI: 10.1016/j.bbcan.2014.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 02/09/2023]
Abstract
The crucial role of androgens in the development of prostate cancer is well established. The aim of this review is to examine the role of constitutional (germline) and tumor-specific (somatic) polymorphisms within important regulatory genes of prostate cancer. These include genes encoding enzymes of the androgen biosynthetic pathway, the androgen receptor gene, genes that encode proteins of the signal transduction pathways that may have a role in disease progression and survival, and genes involved in prostate cancer angiogenesis. Characterization of deregulated pathways critical to cancer cell growth have lead to the development of new treatments, including the CYP17 inhibitor abiraterone and clinical trials using novel drugs that are ongoing or recently completed [1]. The pharmacogenetics of the drugs used to treat prostate cancer will also be addressed. This review will define how germline polymorphisms are known affect a multitude of pathways, and therefore phenotypes, in prostate cancer etiology, progression, and treatment.
Collapse
Affiliation(s)
- Tristan M Sissung
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Douglas K Price
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marzia Del Re
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Ariel M Ley
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elisa Giovannetti
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - William D Figg
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Romano Danesi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
7
|
Gocek E, Moulas AN, Studzinski GP. Non-receptor protein tyrosine kinases signaling pathways in normal and cancer cells. Crit Rev Clin Lab Sci 2014; 51:125-37. [PMID: 24446827 DOI: 10.3109/10408363.2013.874403] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein tyrosine kinases (PTKs) are enzymes that transfer phosphate groups to tyrosine residues on protein substrates. Phosphorylation of proteins causes changes in their function and/or enzymatic activity resulting in specific biological responses. There are two classes of PTKs: the transmembrane receptor PTKs and the cytoplasmic non-receptor PTKs (NRTKs). NRTKs are involved in transduction of signals originating from extracellular clues, which often interact with transmembrane receptors. Thus, they are important components of signaling pathways which regulate fundamental cellular functions such as cell differentiation, apoptosis, survival, and proliferation. The activity of NRTKs is tightly regulated, and de-regulation and/or overexpression of NRTKs has been implicated in malignant transformation and carcinogenesis. Research on NRTKs has shed light on the mechanisms of a number of cellular processes including those involved in carcinogenesis. Not surprisingly, several tyrosine kinase inhibitors are in use as treatment for a number of malignancies, and more are under investigation. This review deals with the structure, function, and signaling pathways of nine main families of NRTKs in normal and cancer cells.
Collapse
Affiliation(s)
- Elzbieta Gocek
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw , Wroclaw , Poland
| | | | | |
Collapse
|
8
|
Catalgol B, Batirel S, Taga Y, Ozer NK. Resveratrol: French paradox revisited. Front Pharmacol 2012; 3:141. [PMID: 22822401 PMCID: PMC3398412 DOI: 10.3389/fphar.2012.00141] [Citation(s) in RCA: 286] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/27/2012] [Indexed: 12/12/2022] Open
Abstract
Resveratrol is a polyphenol that plays a potentially important role in many disorders and has been studied in different diseases. The research on this chemical started through the “French paradox,” which describes improved cardiovascular outcomes despite a high-fat diet in French people. Since then, resveratrol has been broadly studied and shown to have antioxidant, anti-inflammatory, anti-proliferative, and anti-angiogenic effects, with those on oxidative stress possibly being most important and underlying some of the others, but many signaling pathways are among the molecular targets of resveratrol. In concert they may be beneficial in many disorders, particularly in diseases where oxidative stress plays an important role. The main focus of this review will be the pathways affected by resveratrol. Based on these mechanistic considerations, the involvement of resveratrol especially in cardiovascular diseases, cancer, neurodegenerative diseases, and possibly in longevity will be is addressed.
Collapse
Affiliation(s)
- Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center, Marmara University Istanbul, Turkey
| | | | | | | |
Collapse
|
9
|
Rebois RV, Hébert TE. Protein Complexes Involved in Heptahelical Receptor-Mediated Signal Transduction. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Abstract
Resveratrol is a naturally occurring stilbene with desirable cardioprotective and anti-cancer properties. We have demonstrated the existence of a plasma membrane receptor for resveratrol near the arginine-glycine-aspartate (RGD) recognition site on integrin α(v)β₃ that is involved in stilbene-induced apoptosis of cancer cells. Resveratrol treatment in vitro causes activation and nuclear translocation of mitogen-activated protein kinase (ERK1/2), consequent phosphorylation of Ser-15 of p53, and apoptosis. An RGD peptide blocks these actions of resveratrol. By a PD98059-inhibitable process, resveratrol causes inducible COX-2 to accumulate in the nucleus where it complexes with pERK1/2 and p53. Chromatin immunoprecipitation reveals binding of nuclear COX-2 to promoters of certain p53-responsive genes, including PIG3 and Bax. NS-398, a specific pharmacologic inhibitor of COX-2, prevents resveratrol-induced complexing of nuclear ERK1/2 with COX-2 and with pSer-15-p53 and subsequent apoptosis; cyclooxygenase enzyme activity is not involved. Molecular steps in the pro-apoptotic action of resveratrol in cancer cells include induction of intranuclear COX-2 accumulation relevant to activation of p53. Epidermal growth factor, estrogen, and thyroid hormone act downstream of ERK1/2 to prevent resveratrol-induced apoptosis.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Ordway Research Institute, Albany, New York 12208, USA.
| | | | | | | |
Collapse
|
11
|
Weber AA, Schrör K. The significance of platelet-derived growth factors for proliferation of vascular smooth muscle cells. Platelets 2010. [DOI: 10.1080/09537109909169169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Notcovich C, Diez F, Tubio MR, Baldi A, Kazanietz MG, Davio C, Shayo C. Histamine acting on H1 receptor promotes inhibition of proliferation via PLC, RAC, and JNK-dependent pathways. Exp Cell Res 2010; 316:401-11. [DOI: 10.1016/j.yexcr.2009.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 01/06/2023]
|
13
|
Abstract
BACKGROUND Epithelial cells are critically dependent upon cell-matrix and cell-cell adhesion for growth and survival. Anoikis is programmed cell death caused by disruption of cell-substrate adhesion in normal epithelial cells. METHODS We studied the induction of anoikis in vitro in two cell lines; HaCaT and SW742. PI3K, JAK2 and PKC are key elements in signalling pathways regulating cell survival, and using specific inhibitors we also examined their potential role in the induction of anoikis. RESULTS When prevented from adhesion by culture on polyHEMA, HaCaT cells underwent apoptosis selectively from the proliferating population; surviving cells underwent cell cycle arrest. In SW742 cells anoikis also occurred, but was balanced by increased cycling. The effects of specific kinase inhibitors indicated that both Janus kinase 2 and protein kinase C partially protect HaCaT cells from anoikis through inducing cell cycle arrest of surviving nonadherent cells; inhibition of Phosphatidylinositol 3-kinase did not induce cycling in HaCaTs prevented from adhesion but did stimulate anoikis. SW742 cells showed markedly different responses: Janus kinase 2 inhibition activated apoptosis directly, Phosphatidylinositol 3-kinase inhibition stimulated both cell cycling and apoptosis, while protein kinase C inhibition stimulated cycling but inhibited apoptosis. CONCLUSIONS Susceptibility to cell death in adhesion-prevented epithelial cells may thus be regulated by signalling pathways involving Phosphatidylinositol 3-kinase, Janus kinase 2 and protein kinase C. The ability of epithelial tumour cells to invade and metastasize may therefore result from disruption of these pathways.
Collapse
Affiliation(s)
| | - J. Lawry
- Institute for Cancer Studies, University of Sheffield and
| | | |
Collapse
|
14
|
Proteinases and signalling: pathophysiological and therapeutic implications via PARs and more. Br J Pharmacol 2007; 153 Suppl 1:S263-82. [PMID: 18059329 DOI: 10.1038/sj.bjp.0707507] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteinases like thrombin, trypsin and tissue kallikreins are now known to regulate cell signaling by cleaving and activating a novel family of G-protein-coupled proteinase-activated receptors (PARs 1-4) via exposure of a tethered receptor-triggering ligand. On their own, short synthetic PAR-selective PAR-activating peptides (PAR-APs) mimicking the tethered ligand sequences can activate PARs 1, 2 and 4 and cause physiological responses both in vitro and in vivo. Using the PAR-APs as sentinel probes in vivo, it has been found that PAR activation can affect the vascular, renal, respiratory, gastrointestinal, musculoskeletal and nervous systems (both central and peripheral nervous system) and can promote cancer metastasis and invasion. In general, responses triggered by PARs 1, 2 and 4 are in keeping with an innate immune inflammatory response, ranging from vasodilatation to intestinal inflammation, increased cytokine production and increased or decreased nociception. Further, PARs have been implicated in a number of disease states, including cancer and inflammation of the cardiovascular, respiratory, musculoskeletal, gastrointestinal and nervous systems. In addition to activating PARs, proteinases can cause hormone-like effects by other signalling mechanisms, like growth factor receptor activation, that may be as important as the activation of PARs. We, therefore, propose that the PARs themselves, their activating serine proteinases and their associated signalling pathways can be considered as attractive targets for therapeutic drug development. Thus, proteinases in general must now be considered as 'hormone-like' messengers that can signal either via PARs or other mechanisms.
Collapse
|
15
|
Zhu MJ, Du M, Hess BW, Nathanielsz PW, Ford SP. Periconceptional Nutrient Restriction in the Ewe Alters MAPK/ERK1/2 and PI3K/Akt Growth Signaling Pathways and Vascularity in the Placentome. Placenta 2007; 28:1192-9. [PMID: 17586041 DOI: 10.1016/j.placenta.2007.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 04/20/2007] [Accepted: 05/03/2007] [Indexed: 01/02/2023]
Abstract
This study evaluated the role of MAPK/ERK1/2 and/or PI3K/Akt signaling pathways in modulating ovine placentomal vascularity in response to periconceptional maternal nutrient restriction. Ewes were randomly assigned to be nutrient restricted (NR, 50% NRC recommendation, N=7) or control fed (CF, 100% NRC recommendation, N=7) from 60 +/- 2 days before to 30 days after conception (day 0). From day 31 of gestation, all ewes (CF and NR) were fed the control diet until necropsy on day 78. On day 78 of gestation, NR ewes exhibited greater vascularity in both caruncular (CAR) and cotyledon (COT) tissues than CF ewes. Akt or ERK1/2 content in CAR and COT arterial tissue did not differ across dietary treatment. The activated forms, phosphorylated Akt and phosphorylated ERK1/2, were significantly increased in COT but not CAR arterial tissues of NR ewes compared to those of CF ewes (P<0.05). For both CF and NR ewes, phosphorylated Akt and phosphorylated ERK1/2 content in COT are higher (P<0.05) than those in CAR arterial tissues. Immunohistochemical staining revealed cytoplasmic and nuclear localization of Akt, phosphorylated Akt, ERK1/2 and phosphorylated ERK1/2, with phosphorylated Akt and phosphorylated-ERK1/2 specifically localized in trophoblast cells, while binucleate cells remained unstained. In placentomal blood vessels, Akt, phosphorylated Akt, ERK1/2 and phosphorylated ERK1/2 were localized to both endothelium and smooth muscle cells. These findings demonstrate for the first time that periconceptional NR increases vascular density in both COT than CAR tissues of the ovine placentome, and that the MAPK/ERK1/2 and/or PI3K/Akt signaling pathways are increased in NR COT but not NR CAR arterial tissues.
Collapse
Affiliation(s)
- M J Zhu
- Center for the Study of Fetal Programming, University of Wyoming, Laramie, WY, USA
| | | | | | | | | |
Collapse
|
16
|
Extracellular signal-regulated kinase phosphorylation due to menadione-induced arylation mediates growth inhibition of pancreas cancer cells. Cancer Chemother Pharmacol 2007; 62:315-20. [PMID: 17922126 DOI: 10.1007/s00280-007-0610-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 09/17/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Cytotoxicity of Vitamin K3 (VK3) is indicated to have the same mechanism with oxidative stress (H(2)O(2)). In the present study, we analyzed the differences and/or similarities in the cellular responses to oxidative stress and VK3 to clarify the mechanism of growth inhibition. METHODS Cell viability was determined by a test method with 3-[4, 5-dimethyl-thiazol]-2, 5-dephenyl tetrazolium bromide (MTT). Expressions of cellular proteins were evaluated by Western blot analysis. RESULTS The IC50 was calculated to be 47.3 +/- 4.1 microM for VK3 and 2.2 +/- 1.2 microM for H(2)O(2). By Western blot analysis, VK3 or H(2)O(2) was shown to induce rapid phosphorylation of extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinases (JNKs). H(2)O(2)-induced phosphorylation of ERK and JNK was almost complete inhibited by more than 100-muM genistein. VK3-induced JNK phosphorylation was blocked by 100-microM genistein, but ERK phosphorylation was not inhibited completely even if 400-microM genistein was used. H(2)O(2)-induced inhibition of cell proliferation was completely blocked by 400-microM genistein, but the VK3 effect was reduced 72.8 +/- 5.4% by the same concentration of genistein. H(2)O(2)-induced JNK phosphorylation and ERK phosphorylation were inhibited by staurosporine, protein kinase C (PKC) inhibitor. VK3-induced JNK phosphorylation was also blocked, but ERK phosphorylation was not affected. Staurosporine had no effect on VK3- or H(2)O(2)-induced growth inhibition. Treatment with a non-thiol antioxidant agent, catalase, completely abrogated H(2)O(2)-induced JNK and ERK phosphorylation, but a thiol antioxidant, L: -cystein, had no effect on phosphorylation of them. The VK3-induced JNK phosphorylation was inhibited by catalase, but not L: -cystein. But ERK phosphorylation was not inhibited by catalase and was abrogated completely by the thiol antioxidant. Catalase, but not L: -cystein, blocked H(2)O(2)-induced growth inhibition, and L: -cystein, but not catalase, blocked VK3-induced effects on cell proliferation completely. CONCLUSION VK3-induced ERK phosphorylation occurs by a different mechanism from oxidative stress, and it might have an important role to induce growth inhibition.
Collapse
|
17
|
Muchir A, Pavlidis P, Decostre V, Herron AJ, Arimura T, Bonne G, Worman HJ. Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy. J Clin Invest 2007; 117:1282-93. [PMID: 17446932 PMCID: PMC1849984 DOI: 10.1172/jci29042] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 02/14/2007] [Indexed: 12/11/2022] Open
Abstract
Mutations in LMNA, which encodes nuclear Lamins A and C cause diseases affecting various organs, including the heart. We have determined the effects of an Lmna H222P mutation on signaling pathways involved in the development of cardiomyopathy in a knockin mouse model of autosomal dominant Emery-Dreifuss muscular dystrophy. Analysis of genome-wide expression profiles in hearts using Affymetrix GeneChips showed statistically significant differences in expression of genes in the MAPK pathways at the incipience of the development of clinical disease. Using real-time PCR, we showed that activation of MAPK pathways preceded clinical signs or detectable molecular markers of cardiomyopathy. In heart tissue and isolated cardiomyocytes, there was activation of MAPK cascades and downstream targets, implicated previously in the pathogenesis of cardiomyopathy. Expression of H222P Lamin A in cultured cells activated MAPKs and downstream target genes. Activation of MAPK signaling by mutant A-type lamins could be a cornerstone in the development of heart disease in autosomal dominant Emery-Dreifuss muscular dystrophy.
Collapse
Affiliation(s)
- Antoine Muchir
- Department of Medicine and Department of Anatomy and Cell Biology and
Department of Biomedical Informatics, College of Physicians and Surgeons, Columbia University, New York, New York, USA.
INSERM U582, Institut de Myologie, Paris, France.
Faculté de médecine, Université Pierre et Marie Curie, Paris 6, Paris, France.
Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Unité Fonctionelle Myogénétique et Cardiogénétique, Service de Biochimie B, Paris, France.
Institute of Comparative Medicine and Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Paul Pavlidis
- Department of Medicine and Department of Anatomy and Cell Biology and
Department of Biomedical Informatics, College of Physicians and Surgeons, Columbia University, New York, New York, USA.
INSERM U582, Institut de Myologie, Paris, France.
Faculté de médecine, Université Pierre et Marie Curie, Paris 6, Paris, France.
Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Unité Fonctionelle Myogénétique et Cardiogénétique, Service de Biochimie B, Paris, France.
Institute of Comparative Medicine and Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Valérie Decostre
- Department of Medicine and Department of Anatomy and Cell Biology and
Department of Biomedical Informatics, College of Physicians and Surgeons, Columbia University, New York, New York, USA.
INSERM U582, Institut de Myologie, Paris, France.
Faculté de médecine, Université Pierre et Marie Curie, Paris 6, Paris, France.
Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Unité Fonctionelle Myogénétique et Cardiogénétique, Service de Biochimie B, Paris, France.
Institute of Comparative Medicine and Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Alan J. Herron
- Department of Medicine and Department of Anatomy and Cell Biology and
Department of Biomedical Informatics, College of Physicians and Surgeons, Columbia University, New York, New York, USA.
INSERM U582, Institut de Myologie, Paris, France.
Faculté de médecine, Université Pierre et Marie Curie, Paris 6, Paris, France.
Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Unité Fonctionelle Myogénétique et Cardiogénétique, Service de Biochimie B, Paris, France.
Institute of Comparative Medicine and Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Takuro Arimura
- Department of Medicine and Department of Anatomy and Cell Biology and
Department of Biomedical Informatics, College of Physicians and Surgeons, Columbia University, New York, New York, USA.
INSERM U582, Institut de Myologie, Paris, France.
Faculté de médecine, Université Pierre et Marie Curie, Paris 6, Paris, France.
Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Unité Fonctionelle Myogénétique et Cardiogénétique, Service de Biochimie B, Paris, France.
Institute of Comparative Medicine and Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Gisèle Bonne
- Department of Medicine and Department of Anatomy and Cell Biology and
Department of Biomedical Informatics, College of Physicians and Surgeons, Columbia University, New York, New York, USA.
INSERM U582, Institut de Myologie, Paris, France.
Faculté de médecine, Université Pierre et Marie Curie, Paris 6, Paris, France.
Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Unité Fonctionelle Myogénétique et Cardiogénétique, Service de Biochimie B, Paris, France.
Institute of Comparative Medicine and Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Howard J. Worman
- Department of Medicine and Department of Anatomy and Cell Biology and
Department of Biomedical Informatics, College of Physicians and Surgeons, Columbia University, New York, New York, USA.
INSERM U582, Institut de Myologie, Paris, France.
Faculté de médecine, Université Pierre et Marie Curie, Paris 6, Paris, France.
Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Unité Fonctionelle Myogénétique et Cardiogénétique, Service de Biochimie B, Paris, France.
Institute of Comparative Medicine and Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
18
|
Zhou CH, Qian ZY, Xiang M, He SY. Involvement of Ca2+ in the inhibition by crocetin of angiotensin II-induced ERK1/2 activation in vascular smooth muscle cells. Eur J Pharmacol 2007; 554:85-91. [PMID: 17109849 DOI: 10.1016/j.ejphar.2006.09.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 09/23/2006] [Accepted: 09/27/2006] [Indexed: 11/15/2022]
Abstract
Crocetin, a carotenoid compound, was isolated from Gardenia jasminoids Ellis. Our recent study shows that crocetin inhibits angiotensin II-induced extracellular signal-regulated kinases 1/2 (ERK1/2) activation and subsequent proliferation in vascular smooth muscle cells (VSMCs). To further explore the mechanism involved, in the present study, we investigated the effect of Ca(2+) in the activation of ERK1/2 and whether Ca(2+) is involved in the suppression by crocetin of angiotensin II-induced ERK1/2 activation. Our findings showed that crocetin pretreatment partially attenuated both the intracellular Ca(2+) mobilization and the extracellular Ca(2+) influx induced by angiotensin II. Moreover, angiotensin II-induced ERK1/2 activation was completely abolished by acetoxymethyl ester of 1,2-bis(2-aminophenoxy)ethane-N,N,N ',N'-tetraacetic acid (BAPTA-AM), an intracellular Ca(2+) chelator, and partially inhibited by EGTA, an extracellular Ca(2+) chelator, or verapamil, an L-type Ca(2+) channel blocker. These findings suggest that Ca(2+) may play an important role in angiotensin II-induced ERK1/2 activation in VSMCs, and Ca(2+)-dependent pathway may be involved in the inhibitory effect by crocetin of angiotensin II-induced ERK1/2 activation.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Animals, Newborn
- Calcium/metabolism
- Calcium/pharmacokinetics
- Calcium/physiology
- Calcium Channel Blockers/pharmacology
- Carotenoids/pharmacology
- Cattle
- Cells, Cultured
- Chelating Agents/pharmacology
- Dose-Response Relationship, Drug
- Egtazic Acid/pharmacology
- Enzyme Activation/drug effects
- Intracellular Fluid/drug effects
- Intracellular Fluid/metabolism
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Time Factors
- Verapamil/pharmacology
- Vitamin A/analogs & derivatives
Collapse
Affiliation(s)
- Cheng-Hua Zhou
- Department of Pharmacology, China Pharmaceutical University, Tongjia Xiang 24, Nanjing 210009, PR China
| | | | | | | |
Collapse
|
19
|
Villarreal RS, Alvarez SE, Ayub MJ, Ciuffo GM. Angiotensin II modulates tyr-phosphorylation of IRS-4, an insulin receptor substrate, in rat liver membranes. Mol Cell Biochem 2006; 293:35-46. [PMID: 16933034 DOI: 10.1007/s11010-006-2492-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 08/26/2005] [Indexed: 12/22/2022]
Abstract
Angiotensin II (Ang II), a major regulator of blood pressure, is also involved in the control of cellular proliferation and hypertrophy and might exhibit additional actions in vivo by modulating the signaling of other hormones. As hypertension and Insulin (Ins) resistance often coexist and are risk factors for cardiovascular diseases, Ang II and Insulin signaling cross-talk may have an important role in hypertension development. The effect of Ins on protein tyrosine phosphorylation was assayed in rat liver membrane preparations, a rich source of Ins receptors. Following stimulation, Ins (10(-7) M) induced tyr-phosphorylation of different proteins. Insulin consistently induced tyr-phosphorylation of a 160 kDa protein (pp160) with maximum effect between 1 and 3 min. The pp160 protein was identified by anti-IRS-4 but not by anti-IRS-1 antibody. Pre-stimulation with Ang II (10(-7) M) diminishes tyr-phosphorylation level of pp160/IRS-4 in a dose-dependent manner. Okadaic acid, the PP1A and PP2A Ser/Thr phosphatase inhibitor, increases pp160 phosphorylation induced by Ins and prevents the inhibitory effect of Ang II pre-stimulation. Genistein, a tyrosine kinase inhibitor, diminishes tyr-phosphorylation level of IRS-4. PI3K inhibitors Wortmanin and LY294002, both increase tyr-phosphorylation of IRS-4, either in the presence of Ins alone or combined with Ang II. These results suggest that Ins and Ang II modulate IRS-4 tyr-phosphorylation in a PI3K-dependent manner. In summary, we showed that Ins induces tyr-phosphorylation of IRS-4, an effect modulated by Ang II. Assays performed in the presence of different inhibitors points toward a PI3K involvement in this signaling pathway.
Collapse
Affiliation(s)
- Rodrigo S Villarreal
- Bioquímica Avanzada, Departamento Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes, 950-5700 San Luis, Argentina
| | | | | | | |
Collapse
|
20
|
Zhou CH, Qian ZY, Zheng SG, Xiang M. ERK1/2 pathway is involved in the inhibitory effect of crocetin on angiotensin II-induced vascular smooth muscle cell proliferation. Eur J Pharmacol 2006; 535:61-8. [PMID: 16580346 DOI: 10.1016/j.ejphar.2006.02.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 01/26/2006] [Accepted: 02/10/2006] [Indexed: 11/17/2022]
Abstract
Angiotensin II (Ang II) induces vascular smooth muscle cells (VSMCs) proliferation, which plays an important role in the development and progression of atherosclerosis. Ang II-induced cellular events have been implicated, in part, in the activation of extracellular signal-regulated kinases 1/2 (ERK1/2). Crocetin is a natural carotenoid compound isolated from Gardenia jasminoids Ellis. In the present study, we investigated the effect of crocetin on the Ang II-induced VSMCs proliferation and ERK1/2 activation. 3-[4,5-dimethylthiazol-2-yl]-2,5-dephenyl tetrazolium bromide (MTT) and [3H]thymidine incorporation assay showed that the Ang II-induced VSMCs proliferation was inhibited significantly by crocetin. In-gel kinase assay indicated that Ang II elicited rapid and significant increase of ERK1/2 activity in VSMCs, which was suppressed by crocetin markedly. Western blotting analysis and cell-based enzyme-linked immunosorbent assay (ELISA) demonstrated that crocetin significantly inhibited the phosphorylation and activation of ERK1/2 induced by Ang II. Using the indirect immunofluorescent technique, we also found that crocetin inhibited nuclear translocation of activated ERK1/2 induced by Ang II. These findings suggest that the suppression by crocetin of the Ang II-induced VSMCs proliferation can be attributed, at least in part, to its inhibitory effect on ERK1/2 pathway.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Angiotensin II/pharmacology
- Animals
- Antioxidants/pharmacology
- Blotting, Western
- Carotenoids/pharmacology
- Cattle
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Enzyme Activation/drug effects
- Enzyme-Linked Immunosorbent Assay
- Fluorescent Antibody Technique, Indirect
- MAP Kinase Signaling System/drug effects
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphorylation/drug effects
- Vitamin A/analogs & derivatives
Collapse
Affiliation(s)
- Cheng-Hua Zhou
- Department of Pharmacology, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, PR China
| | | | | | | |
Collapse
|
21
|
Barman SA, Marrero MB. Mechanism of Endothelin-1 Activation of Map Kinases in Neonatal Pulmonary Vascular Smooth Muscle. Lung 2005; 183:425-39. [PMID: 16465602 DOI: 10.1007/s00408-005-2554-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2005] [Indexed: 12/01/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) belong to the group of serine-threonine kinases that are rapidly activated in response to growth factor stimulation. In adult mammalian cells, the MAPK family includes extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2 or p44(mapk) and p42(mapk)), which translocate to the nucleus and integrate signals from second messengers leading to cellular proliferation or differentiation, but the specific role of MAPKs in neonatal pulmonary vascular smooth muscle is not well understood. Expression of p44(mapk) and p42(mapk) in primary cultured pulmonary vascular smooth muscle cells from neonatal (1-2 day old) rats was identified by Western immunoblot analysis and treatment with 10 nM endothelin-1 (ET-1), a potent vasoconstrictor with vascular mitogenic properties, induced cell proliferation, and phosphorylation of both p44(mapk) and p42(mapk). The protein kinase C (PKC) isozyme inhibitor (alpha, beta, gamma, delta, zeta) Go 6983, the ET(A) receptor antagonist BQ 123, and the MAPK kinase inhibitor PD98059 blocked the cell proliferation response to ET-1. Also, BQ 123, Go 6983, and PKC inhibitor 20-28 (Myr-N-FARKGAL-RQ-NH2-PKCalpha antagonist) inhibited ET-1-induced phosphorylation of both p44(mapk) and p42(mapk). In contrast, the reactive oxygen species (ROS) inhibitor diphenylene iodonium (DPI), the PKCdelta inhibitor rottlerin, and the ET(B) receptor antagonist BQ 788 did not block ET-1-induced phosphorylation of MAPKs. Collectively, these data demonstrate the expression and phosphorylation of MAPKs by ET-1 and suggests that MAPK activation and cell proliferation by ET-1 occurs via ET(A) receptor stimulation and specific PKC isozyme activation in rat neonatal pulmonary vascular smooth muscle.
Collapse
Affiliation(s)
- Scott A Barman
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912, USA.
| | | |
Collapse
|
22
|
Barman SA. Effect of Nitric Oxide on Mitogen-Activated Protein Kinases in Neonatal Pulmonary Vascular Smooth Muscle. Lung 2005; 183:325-35. [PMID: 16389725 DOI: 10.1007/s00408-005-2545-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) belong to the group of serine/threonine kinases that are rapidly activated in response to growth factor stimulation. In adult mammalian cells, the MAPK family includes extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2 or p44mapk and p42mapk), which translocate to the nucleus and integrate signals from second messengers leading to cellular proliferation or differentiation. However, the specific role of MAPKs in neonatal pulmonary vascular smooth muscle is not well understood. Expression of p44mapk and p42mapk in primary cultured pulmonary vascular smooth muscle cells from neonatal (1-2 day old) rats was identified by Western immunoblot analysis. Treatment with 10 nM endothelin-1 (ET-1), a potent vasoconstrictor with vascular mitogenic properties, induced phosphorylation of both p44mapk and p42mapk, but treatment with the exogenous nitric oxide (NO) donor sodium nitroprusside inhibited both p44mapk and p42mapk phosphorylation by ET-1. The specific cGMP-dependent protein kinase (PKG) inhibitor KT5823, the nonspecific nitric oxide synthase (NOS) inhibitor L-NAME, and the specific NOS 1 blocker NPLA all significantly enhanced both p44mapk and p42mapk phosphorylation by ET-1. Collectively, these data demonstrate the expression and phosphorylation of specific MAPKs in rat neonatal pulmonary vascular smooth muscle and suggests that the NO signaling pathway modulates MAPK activation by ET-1.
Collapse
Affiliation(s)
- Scott A Barman
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta 30912, USA.
| |
Collapse
|
23
|
Cybulsky AV, Takano T, Papillon J, Bijian K, Guillemette J. Activation of the extracellular signal-regulated kinase by complement C5b-9. Am J Physiol Renal Physiol 2005; 289:F593-603. [PMID: 15855657 DOI: 10.1152/ajprenal.00066.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Extracellular signals may be transmitted to nuclear or cytoplasmic effectors via the mitogen-activated protein kinases. In the passive Heymann nephritis (PHN) model of membranous nephropathy, complement C5b-9 induces glomerular epithelial cell (GEC) injury, proteinuria, and activation of phospholipases and protein kinases. This study addresses the complement-mediated activation of the extracellular signal-regulated kinase (ERK). C5b-9 induced ERK threonine202/tyrosine204 phosphorylation (which correlates with activation) in GEC in culture and PHN in vivo. Expression of a dominant-inhibitory mutant of Ras reduced complement-mediated activation of ERK, but activation was not affected significantly by downregulation of protein kinase C. Complement-induced ERK activation resulted in phosphorylation of cytosolic phospholipase A2 and was, in part, responsible for phosphorylation of mitogen-activated protein kinase-associated protein kinase-2, but did not induce phosphorylation of the transcription factor, Elk-1. Activation of ERK was attenuated by drugs that disassemble the actin cytoskeleton (cytochalasin D, latrunculin B), and these compounds interfered with the activation of ERK by mitogen-activated protein kinase kinase (MEK). Overexpression of a constitutively active RhoA as well as inhibition of Rho-associated kinase blocked complement-mediated ERK activation. Complement cytotoxicity was enhanced after disassembly of the actin cytoskeleton but was unaffected after inhibition of complement-induced ERK activation. However, complement cytotoxicity was enhanced in GEC that stably express constitutively active MEK. Thus complement-induced ERK activation depends on cytoskeletal remodelling and affects the regulation of distinct downstream substrates, while chronic, constitutive ERK activation exacerbates complement-mediated GEC injury.
Collapse
Affiliation(s)
- Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
24
|
Boonstra J, Verkleij AJ. Regulation of enzyme activity in vivo is determined by its cellular localization. ACTA ACUST UNITED AC 2005; 44:61-73. [PMID: 15581483 DOI: 10.1016/j.advenzreg.2003.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Johannes Boonstra
- Department of Molecular Cell Biology, Institute of Biomembranes, Utrecht University, Padualaan 8, CH 3584 Utrecht, The Netherlands
| | | |
Collapse
|
25
|
Bogatkevich GS, Gustilo E, Oates JC, Feghali-Bostwick C, Harley RA, Silver RM, Ludwicka-Bradley A. Distinct PKC isoforms mediate cell survival and DNA synthesis in thrombin-induced myofibroblasts. Am J Physiol Lung Cell Mol Physiol 2005; 288:L190-201. [PMID: 15447940 DOI: 10.1152/ajplung.00448.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thrombin activates protease-activated receptor (PAR)-1 and induces a myofibroblast phenotype in normal lung fibroblasts that resembles the phenotype of scleroderma lung fibroblasts. We now demonstrate that PAR-1 expression is dramatically increased in lung tissue from scleroderma patients, where it is associated with inflammatory and fibroproliferative foci. We also observe that thrombin induces resistance to apoptosis in normal lung fibroblasts, and this process is regulated by protein kinase C (PKC)-epsilon but not by PKC-alpha. Overexpression of a constitutively active (c-a) form of PAR-1 or PKC-epsilon significantly inhibits Fas ligand-induced apoptosis in lung fibroblasts, whereas scleroderma lung fibroblasts are resistant to apoptosis de novo. Thrombin translocates p21Cip1/WAF1, a signaling molecule downstream of PKC, from the nucleus to cytoplasm in normal lung fibroblasts mimicking the localization of p21Cip1/WAF1 in scleroderma lung fibroblasts. Overexpression of c-a PKC-alpha or PKC-epsilon results in accumulation of p21Cip1/WAF1 in the cytoplasm. Depletion of PKC-alpha or inhibition of mitogen-activated protein kinase (MAPK) blocks thrombin-induced DNA synthesis in lung fibroblasts. Inhibition of PKC by calphostin or PKC-alpha, but not PKC-epsilon, by antisense oligonucleotides prevents thrombin-induced MAPK phosphorylation and accumulation of G(1) phase regulatory protein cyclin D1, suggesting that PKC-alpha, MAPK, and cyclin D1 mediate lung fibroblast proliferation. These data demonstrate that two distinct PKC isoforms mediate thrombin-induced resistance to apoptosis and proliferation and suggest that p21Cip1/WAF1 promotes both phenomena.
Collapse
Affiliation(s)
- Galina S Bogatkevich
- Division of Rheumatology and Immunology, Dept. of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Li J, Li W, Liu W, Altura BT, Altura BM. Mechanisms of hydroxyl radical-induced contraction of rat aorta. Eur J Pharmacol 2004; 499:171-8. [PMID: 15363964 DOI: 10.1016/j.ejphar.2004.07.094] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 07/16/2004] [Accepted: 07/20/2004] [Indexed: 11/19/2022]
Abstract
The present study was designed to investigate the effects of hydroxyl radicals (*OH), generated via the Fe2+-mediated Fenton reaction, on isolated rat aortic rings with and without endothelium. In the absence of any vasoactive agent, generation of *OH alone elicited an endothelium-independent contraction in rat aortic rings in a concentration-dependent manner. Hydroxyl radical-induced contractions of denuded rat aortic rings appeared, however, to be slightly stronger than those on intact rat aortic rings. The contractile responses to *OH were neither reversible nor reproducible in the same ring; even small concentrations of *OH radicals resulted in tachyphylaxis. Removal of extracellular calcium ions (Ca2+) or buffering intracellular Ca2+ with 10 microM acetyl methyl ester of bis(o-aminophenoxy) ethane-N,N,N',N',-tetraacetic acid (BAPTA-AM) significantly attenuated the contractile actions of *OH radicals. The presence of 1 microM staurosporine, 1 microM bisindolylmaleimide I, 1 microM Gö6976 [inhibitor of protein kinase C (PKC)], 2 microM PD-980592 (inhibitor of ERK), 10 microM genistein, and 1 microM wortmannin significantly inhibited the contractions induced by *OH. Proadifen (10 microM), on the other hand, significantly potentiated the hydroxyl radical-induced contractions. Exposure of primary cultured aortic smooth muscle cells to *OH produced significant, rapid rises of intracellular free Ca2+ ([Ca2+]i). Several, specific antagonists of possible endogenously formed vasoconstrictors did not inhibit or attenuate either hydroxyl radical-induced contractions or the elevation of [Ca2+]i. Our new results suggest that hydroxyl radical-triggered contractions on rat aortic rings are Ca2+-dependent. Several intracellular signal transduction systems seem to play some role in hydroxyl radical-induced vasoconstriction of rat aortic rings.
Collapse
MESH Headings
- Androstadienes/pharmacology
- Animals
- Aorta/drug effects
- Aorta/physiology
- Calcium/metabolism
- Calcium/pharmacology
- Carbazoles/pharmacology
- Cells, Cultured
- Cytochrome P-450 Enzyme Inhibitors
- Dose-Response Relationship, Drug
- Endothelium, Vascular/physiology
- Enzyme Inhibitors/pharmacology
- Ferrous Compounds/pharmacology
- Genistein/pharmacology
- Hydrogen Peroxide/pharmacology
- Hydroxyl Radical/pharmacology
- In Vitro Techniques
- Indoles/pharmacology
- Male
- Maleimides/pharmacology
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Proadifen/pharmacology
- Protein Kinase C/antagonists & inhibitors
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Rats
- Rats, Wistar
- Staurosporine/pharmacology
- Vasoconstriction/drug effects
- Wortmannin
Collapse
Affiliation(s)
- Jianfeng Li
- Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203-2056, USA
| | | | | | | | | |
Collapse
|
28
|
Kumar P, Miller AI, Polverini PJ. p38 MAPK mediates gamma-irradiation-induced endothelial cell apoptosis, and vascular endothelial growth factor protects endothelial cells through the phosphoinositide 3-kinase-Akt-Bcl-2 pathway. J Biol Chem 2004; 279:43352-60. [PMID: 15292252 DOI: 10.1074/jbc.m405777200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Therapeutic radiation is widely used in cancer treatments. The success of radiation therapy depends not only on the radiosensitivity of tumor cells but also on the radiosensitivity of endothelial cells lining the tumor vasculature. Vascular endothelial growth factor (VEGF) plays a critical role in protecting endothelial cells against a number of antitumor agents including ionizing radiation. Strategies designed to overcome the survival advantage afforded to endothelial cells by VEGF might aid in enhancing the efficacy of radiation therapy. In this report we examined the signaling cascade(s) involved in VEGF-mediated protection of endothelial cells against gamma-irradiation. gamma-Irradiation-induced apoptosis of human dermal microvascular endothelial cells (HDMECs) was predominantly mediated through the p38 MAPK pathway as an inhibitor of p38 MAPK (PD169316), and dominant negative mutants of p38 MAPK could significantly enhance HDMEC survival against gamma-irradiation. Inhibition of the PI3K and MAPK pathways markedly up-regulated gamma-irradiation-mediated p38 MAPK activation resulting in enhanced HDMEC apoptosis. In contrast, VEGF-treated HDMECs were protected from gamma-irradiation-induced apoptosis predominantly through the PI3K/Akt pathway. Bcl-2 expression was markedly elevated in VEGF-treated HDMECs, and it was significantly inhibited by the PI3K inhibitor LY294002. HDMECs exposed to irradiation showed a significant decrease in Bcl-2 expression. In contrast, VEGF-stimulated HDMECs, when irradiated, maintained higher levels of Bcl-2 expression. Taken together our results suggest that gamma-irradiation induces endothelial cell apoptosis predominantly via the activation of p38 MAPK, and VEGF protects endothelial cells against gamma-irradiation predominantly via the PI3K-Akt-Bcl-2 signaling pathway.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Oral Medicine, Pathology, and Oncology, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
29
|
Abstract
Cell cycle progression is dependent upon the action of cyclins and their partners the cyclin dependent kinases (CDKs). Each cell cycle phase has its own characteristic cyclin-CDK combination, cyclin D-CDK4,6 and cyclin E-CDK2 being responsible for progression through G(1)-phase into S-phase. Progression through G(1)-phase is regulated by signal transduction cascades activated by polypeptide growth factors and by extracellular matrix (ECM) components. Studies aiming to unravel the molecular mechanism by which these extracellular components activate the cyclin-CDK complexes in the G(1)-phase, are usually performed using serum-starved cells (G(0) cells). These cells are activated by addition of growth factors, or the cells are detached from the substratum by trypsinization and subsequently allowed to re-attach. An alternative approach, however, is to study the effects of growth factors and attachment in the ongoing cell cycle by synchronization of the cells by the mitotic shake-off method. These cells are not serum starved and not actively detached from the substratum. In this contribution it is shown that both methods yield significant different results. These observations demonstrate that data obtained with model systems should be interpreted with care, especially if the findings are used to explain cell cycle progression in cells in an intact organism.
Collapse
Affiliation(s)
- Johannes Boonstra
- Department of Molecular Cell Biology, Institute of Biomembranes, University Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
30
|
Macfarlane SR, Plevin R. Intracellular signalling by the G-protein coupled proteinase-activated receptor (PAR) family. Drug Dev Res 2003. [DOI: 10.1002/ddr.10305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Kanagawa K, Sugimura K, Kuratsukuri K, Ikemoto SI, Kishimoto T, Nakatani T. Norepinephrine activates P44 and P42 MAPK in human prostate stromal and smooth muscle cells but not in epithelial cells. Prostate 2003; 56:313-8. [PMID: 12858360 DOI: 10.1002/pros.10267] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND In vascular smooth muscle cells, alpha1-adrenergic stimulation increases DNA synthesis and cell proliferation via activation of p44/42 (ERK1/2) MAPK. We examined whether norepinephrine (NE) activates MAPK and stimulates the proliferation of prostatic epithelial and non-epithelial cells. METHODS Human prostatic epithelial cells, stromal cells, and smooth muscle cells were purchased from BioWhittaker (Walkersville, MD). After reaching a semi-confluent condition, the cells were cultured in RPMI-1640 without serum for 1 day. At 10 min after adding NE (10(-6) or 10(-7) M) to the medium, the cells were collected. Cell lysate was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by Western blot using anti-phospho-p44/42 and anti-p44/42 antibodies. The activation of p44/42 was estimated by the ratio of phospho-p44/42 to total p44/42. Cell proliferation was evaluated by (3)H-thymidine uptake assay. After reaching a semi-confluent condition, the cells were cultured in RPMI-1640 containing 0.5% FCS with or without NE (10(-6) or 10(-7) M) for 16 hr followed by a (3)H-thymidine uptake period (24 hr). RESULTS P44/42 MAPK was significantly activated by NE in non-epithelial cells (stromal cells and smooth muscle cells) while not in epithelial cells. The uptake of (3)H-thymidine was significantly increased by NE in both non-epithelial cells, which was inhibited by alpha1-adrenoceptor antagonists. CONCLUSIONS These results suggest that NE may stimulate the proliferation of non-epithelial prostatic cells, which may be involved in the pathogenesis of BPH.
Collapse
Affiliation(s)
- Kenji Kanagawa
- Department of Urology, Osaka City University Medical School, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Loeb MJ, Clark EA, Blackburn M, Hakim RS, Elsen K, Smagghe G. Stem cells from midguts of Lepidopteran larvae: clues to the regulation of stem cell fate. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2003; 53:186-198. [PMID: 12886516 DOI: 10.1002/arch.10098] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Previously, we showed that isolated stem cells from midguts of Heliothis virescens can be induced to multiply in response to a multiplication protein (MP) isolated from pupal fat body, or to differentiate to larval types of mature midgut cells in response to either of 4 differentiation factors (MDFs) isolated from larval midgut cell-conditioned medium or pupal hemolymph. In this work, we show that the responses to MDF-2 and MP in H. virescens stem cells decayed at different time intervals, implying that the receptors or response cascades for stem cell differentiation and multiplication may be different. However, the processes appeared to be linked, since conditioned medium and MDF-2 prevented the action of MP on stem cells; MP by itself appeared to repress stem cell differentiation. Epidermal growth factor, retinoic acid, and platelet-derived growth factor induced isolated midgut stem cells of H. virescens and Lymantria dispar to multiply and to differentiate to mature midgut cells characteristic of prepupal, pupal, and adult lepidopteran midgut epithelium, and to squamous-like cells and scales not characteristic of midgut tissue instead of the larval types of mature midgut epithelium induced by the MDFs. Midgut stem cells appear to be multipotent and their various differentiated fates can be influenced by several growth factors.
Collapse
Affiliation(s)
- Marcia J Loeb
- Insect Biocontrol Laboratory, U.S. Dept of Agriculture, Beltsville, Maryland 20705, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Thorsen VAT, Vorland M, Bjørndal B, Bruland O, Holmsen H, Lillehaug JR. Participation of phospholipase D and alpha/beta-protein kinase C in growth factor-induced signalling in C3H10T1/2 fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1632:62-71. [PMID: 12782152 DOI: 10.1016/s1388-1981(03)00063-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have studied phospholipase D (PLD) activation in relation to protein kinase C (PKC) and the involvement of PLD in extracellularly regulated kinase 1 (MAPK) (ERK1) activation and c-fos mRNA expression in C3H/10T1/2 (Cl8) fibroblasts. In these cells, the PLD activity was significantly increased by porcine platelet-derived growth factor (PDGF-BB), phorbol 12-myristate 13-acetate (PMA), and epidermal growth factor (EGF). PLD activation by PDGF-BB and PMA, but not EGF, was inhibited in Cl8 cells expressing the HAbetaC2-1 peptide (Cl8 HAbetaC2-1 cells), with a sequence (betaC2-1) shown to bind receptor for activated C kinase 1 (RACK1) and inhibit c-PKC-mediated cell functions [Science 268 (1995) 247]. A role of alpha-PKC in PLD activation is further underscored by co-immunoprecipitation of alpha-PKC with PLD1 and PLD2 in non-stimulated as well as PMA- and PDGF-BB-stimulated Cl8 cells. However, only PKC in PLD1 precipitates was activated by these agonists, while the PKC in the PLD2 precipitates was constitutively activated. The c-fos mRNA levels in Cl8 cells increased more than 30-fold in response to either PDGF-BB, EGF, or PMA. Approximately 60% inhibition of this increase in c-fos mRNA levels was observed in Cl8 HAbetaC2-1 cells. Formation of phosphatidylbutanol (PtdBut) at the expense of phosphatidic acid (PtdH) in the presence of n-butanol inhibited ERK1 activation and c-fos mRNA expression in PDGF-BB-treated Cl8 cells. ERK activation by PMA was unaffected by n-butanol in Cl8 cells but almost abolished by n-butanol in Cl8 HAbetaC2-1 cells, showing that ERK activation by PMA is heavily dependent on PKC and PLD1. In contrast, ERK activation by EGF in both cell types was not sensitive to n-butanol. These results indicate (1) a role of a functional interaction between the RACK1 scaffolding protein and a alphaPKC-PLD complex for achieving full PLD activity in PDGF-BB- and PMA-stimulated Cl8 cells; (2) PLD-mediated PtdH formation is needed for optimal ERK1 activation by PDGF-BB and maximal increase in c-fos mRNA expression. These findings place PLD as an important component in PDGF-BB- and PMA-stimulated intracellular signalling leading to gene activation in Cl8 cells, while EGF does not require PLD.
Collapse
Affiliation(s)
- Vidar A T Thorsen
- Department of Biochemistry and Molecular Biology, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | | | | | | | | | | |
Collapse
|
34
|
López J, Martínez A. Cell and molecular biology of the multifunctional peptide, adrenomedullin. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 221:1-92. [PMID: 12455746 DOI: 10.1016/s0074-7696(02)21010-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adrenomedullin (AM) is a recently discovered regulatory peptide involved in many functions including vasodilatation, electrolyte balance, neurotransmission, growth, and hormone secretion regulation, among others. This 52-amino acid peptide is expressed by specific cell types in many organs throughout the body. A complex receptor system has been described for AM; it requires at least the presence of a seven-transmembrane-domain G-protein-coupled receptor, a single-transmembrane-domain receptor activity modifying protein, and a receptor component protein needed to establish the connection with the downstream signal transduction pathway, which usually involves cyclicAMP. In addition, a serum-binding protein regulates the biological actions of AM, frequently by increasing AM functional attributes. Changes in levels of circulating AM correlate with several critical diseases, including cardiovascular and renal disorders, sepsis, cancer, and diabetes. Whether AM is a causal agent, a protective reaction, or just a marker for these diseases is currently under investigation. New technologies seeking to elevate and/or reduce AM levels are being investigated as potential therapeutic avenues.
Collapse
Affiliation(s)
- José López
- Cell Biology Unit, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
35
|
Yeh CK, Hymer TK, Sousa AL, Zhang BX, Lifschitz MD, Katz MS. Epidermal growth factor upregulates beta-adrenergic receptor signaling in a human salivary cell line. Am J Physiol Cell Physiol 2003; 284:C1164-75. [PMID: 12540376 DOI: 10.1152/ajpcell.00343.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effects of epidermal growth factor (EGF) on the beta-adrenergic receptor-coupled adenylyl cyclase system were studied in a human salivary cell line (HSY). The beta-adrenergic agonist isoproterenol (10(-5) M) stimulated adenylyl cyclase activity by approximately 2-fold, and the isoproterenol response was increased 1.8-fold after prolonged (48 h) exposure to EGF (5 x 10(-10) M). In contrast, enzyme activation via stimulatory prostaglandin receptors and by agents acting on nonreceptor components of the adenylyl cyclase system was not enhanced by EGF. beta-Adrenergic receptor density, assessed by binding of the beta-adrenergic receptor antagonist (-)-[(125)I]iodopindolol, was increased threefold after EGF treatment. Competition binding studies with unlabeled antagonists selective for beta(1)- and beta(2)-adrenergic receptor subtypes indicated that the increase in (-)-[(125)I]iodopindolol binding sites induced by EGF reflected an increased number of beta(2)-adrenergic receptors. Likewise, Northern blot analysis of RNA from EGF-treated cells revealed selective induction of beta(2)-adrenergic receptor mRNA, which was blocked by the RNA synthesis inhibitor actinomycin D. The increase in beta-adrenergic receptor density produced by EGF was unaltered after phorbol ester-induced downregulation of protein kinase C (PKC). Enhancement of isoproterenol-responsive adenylyl cyclase activity and phosphorylation of mitogen-activated protein kinase (MAPK) by EGF were both blocked by the MAPK pathway inhibitor PD-98059. The results suggest that in HSY cells EGF enhances beta-adrenergic responsiveness by upregulating beta(2)-adrenergic receptor expression at the transcriptional level. Moreover, the stimulatory effect of EGF on beta(2)-adrenergic receptor signaling appears to be mediated by the MAPK pathway and independent of PKC activation.
Collapse
Affiliation(s)
- Chih-Ko Yeh
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care Center, San Antonio 78229-4404, USA
| | | | | | | | | | | |
Collapse
|
36
|
Zhang W, Elimban V, Nijjar MS, Gupta SK, Dhalla NS. Role of mitogen-activated protein kinase in cardiac hypertrophy and heart failure. Exp Clin Cardiol 2003; 8:173-83. [PMID: 19649217 PMCID: PMC2719157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
BACKGROUND Mitogen-activated protein kinases (MAPKs) are involved in the regulation of various cellular responses including cell proliferation, differentiation and survival. Although MAPKs are activated by MAPK kinase and inactivated by phosphatases, different types of MAPKs, including extracellular signal-regulated kinases (ERK1 and 2), c-jun N-terminal protein kinases (JNK) and p38 kinases are known to participate in different signalling pathways. This article will review some salient features of the regulation and function of different forms of MAPKs in the heart. Furthermore, the status of cardiac MAPKs under different pathophysiological conditions will be described. OBSERVATIONS A wide variety of external stimuli are known to activate MAPKs, which are then translocated from the cytoplasm to the nucleus and regulate cardiac gene expression by phosphorylating various transcriptional factors. By virtue of the involvement of ERK1/2 in hypertrophic response and of the stress-activated JNKs and p38 kinases in the process of apoptosis, MAPKs are considered to be intimately involved in cardiac remodelling. Both growth factors and phorbol esters have been shown to strongly activate ERK1/2, whereas the activation of JNKs and p38 kinases by these agents is weak. Although ischemia-reperfusion activates all types of MAPKs, JNKs and p38 kinases are mainly proapoptotic, whereas ERK1/2 are antiapoptotic. CONCLUSIONS The activation of ERK1/2 is involved in signal transduction pathways associated with cardiac hypertrophy; however, the exact status of MAPKs in heart failure remains to be clearly defined. While both JNKs and p38 kinases appear to participate in the genesis of ischemia-reperfusion injury, ERK1/2 are considered to be cytoprotective.
Collapse
Affiliation(s)
- Weihua Zhang
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba
| | - Mohinder S Nijjar
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba
| | - Suresh K Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba
| |
Collapse
|
37
|
Gouni-Berthold I, Sachinidis A. Does the coronary risk factor low density lipoprotein alter growth and signaling in vascular smooth muscle cells? FASEB J 2002; 16:1477-87. [PMID: 12374770 DOI: 10.1096/fj.02-0260rev] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There is increasing evidence that hypertension promotes low density lipoprotein (LDL) transportation into the subendothelial space of the vascular wall. Vascular smooth muscle cell (VSMC) proliferation plays an important role in the development and progression of cardiovascular diseases. Recently, several studies have demonstrated that LDL acts as a classic growth factor promoting VSMC growth via mitogenic signals normally elicited by classic growth factors. The present work summarizes current nontraditional concepts regarding possible cellular mechanisms through which hypertension and LDL may promote the development of atherosclerosis. Especially addressed are the possible effects of an elevated blood pressure in combination with LDL on VSMC growth. The new research concept concerning LDL as a growth factor and carrier for biological active phospholipids such as sphingosine-1-phosphate and sphingosylphosphorylcholine may contribute to an understanding of the pathogenesis of atherosclerosis by elevated high blood pressure.
Collapse
|
38
|
Calcium Signalling in Ocular Tissues: Functional Activity of G-protein and Tyrosine–Kinase Coupled Receptors. Exp Eye Res 2002. [DOI: 10.1006/exer.2002.2033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Abstract
Mesangial cell proliferation is a prominent feature of progression in many forms of renal diseases, including immunoglobulin A nephropathy, lupus nephritis, hemolytic uremic syndrome, and diabetic nephropathy. Platelet-derived growth factor (PDGF) has received much attention as the major mediator of mesangial cell proliferation by autocrine/paracrine mechanisms involving up-regulation of mesangial PDGF and its receptor on mesangial cells. In this review, we wish to spotlight lysophosphatidic acid (LPA), which in combination with PDGF, undoubtedly plays a key role as an autocrine and paracrine mediator in regulating mesangial cell growth. We not only showed that PDGF acts as a bimodal molecule for mesangial cells, inducing mesangial cell proliferation and death simultaneously, but also showed that LPA is a survival factor suppressing PDGF-induced mesangial cell death, thereby remarkably enhancing mesangial mitogenic response by PDGF. We believe that a better understanding of the mechanisms of mesangial cell proliferation by the combined action of PDGF and LPA could lead to novel diagnostic as well as therapeutic strategies, and thus help to better control proliferative glomerulonephritis.
Collapse
Affiliation(s)
- Chiyoko N Inoue
- Department of Pediatrics, Japanese Red Cross Sendai Hospital, Sendai, Japan.
| |
Collapse
|
40
|
Bolamba D, Floyd AA, McGlone JJ, Lee VH. Epidermal growth factor enhances expression of connexin 43 protein in cultured porcine preantral follicles. Biol Reprod 2002; 67:154-60. [PMID: 12080012 DOI: 10.1095/biolreprod67.1.154] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Connexin 43 (Cx43) and gap junctional coupling appear to play a critical role in early follicular development because absence of Cx43 disrupts progression of follicles beyond primary stages in transgenic mouse ovaries. Two experimental culture systems were used to determine whether epidermal growth factor (EGF) stimulates expression of Cx43 in early porcine follicular development. Ovarian explants were collected from 32- to 40-day-old gilts and cultured for 6 days on membrane inserts in Waymouth MB 752/1 medium supplemented with 0, 50, or 500 ng/ml mouse EGF. Western blot analysis demonstrated significant increases (P < 0.05) in relative amounts of Cx43 protein (both phosphorylated and nonphosphorylated) with 50 and 500 ng/ml of EGF as compared with control cultures. Preantral follicles were enzymatically isolated from 70- to 86-day-old gilts and cultured for 8 days in collagen matrices. Medium and EGF treatments were the same as previously described. Western blot analysis demonstrated a significant increase (P < 0.05) in relative amounts of Cx43 protein with 50 and 500 ng/ml of EGF as compared with control cultures. EGF increased expression of Cx43 protein in secondary preantral follicles in a dose-dependent manner, which suggests that EGF or similar growth factor molecules may modulate early folliculogenesis by stimulating expression of Cx43 gap junctions.
Collapse
Affiliation(s)
- Digbo Bolamba
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | | | | | | |
Collapse
|
41
|
Loeb MJ, Jaffe H. Peptides that elicit midgut stem cell differentiation isolated from chymotryptic digests of hemolymph from Lymantria dispar pupae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2002; 50:85-96. [PMID: 12173293 DOI: 10.1002/arch.10033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Isolated stem cells of Heliothis virescens, cultured in vitro, were induced to differentiate by Midgut Differentiation Factors 3 and 4. These were peptides identified from a chymotrypsin digest of hemolymph taken from newly pupated Lymantria dispar. Partial purification was obtained by filtration through size exclusion filters. The most active preparation was subsequently subjected to a series of 3 Reverse Phase-HPLC procedures. Partial sequences of the peptides were identified via automated Edman degradation as the nanomers EEVVKNAIA-OH (MDF 3) and ITPTSSLAT-OH (MDF 4). These sequences were commercially synthesized. The synthetic compounds proved active in a dose-dependent manner. Stem cells responded to synthetic MDF 3 and MDF 4 as they did to previously identified peptides MDF 1 and 2, which have quite different amino acid sequences. All of the 4 MDFs administered singly induced statistically similar differentiation responses at 2 x 10(-8), 2 x 10(-9), and 2 x 10(-10) M. However, pairs of the 4 MDFs produced even more differentiation, the same response as one alone, no response, or were inhibitory, dependent on the MDF pair and its concentration. The data suggests complicated receptor interactions.
Collapse
Affiliation(s)
- Marcia J Loeb
- Insect Biocontrol Laboratory, U.S. Department of Agriculture, Bldg 011A, Rm 214, BARC West, Beltsville, MD 20705, USA.
| | | |
Collapse
|
42
|
Lin CC, Shyr MH, Chien CS, Wang CC, Chiu CT, Hsiao LD, Yang CM. Thrombin-stimulated cell proliferation mediated through activation of Ras/Raf/MEK/MAPK pathway in canine cultured tracheal smooth muscle cells. Cell Signal 2002; 14:265-75. [PMID: 11812655 DOI: 10.1016/s0898-6568(01)00249-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The elevated level of thrombin has been detected in the airway fluids of asthmatic patients and shown to stimulate cell proliferation in tracheal smooth muscle cells (TSMCs). However, the implication of thrombin in the cell proliferation was not completely understood. In this study, thrombin stimulated [3H]thymidine incorporation and p42/p44 mitogen-activated protein kinase (MAPK) phosphorylation in a time- and concentration-dependent manner in TSMCs. Pretreatment of TSMCs with pertussis toxin (PTX) significantly inhibited [3H]thymidine incorporation and phosphorylation of MAPK induced by thrombin. These responses were attenuated by tyrosine kinase inhibitors genistein and herbimycin A, phosphatidyl inositide (PI)-phospholipase C (PLC) inhibitor U73122, protein kinase C inhibitor GF109203X, removal of Ca2+ by addition of BAPTA/AM plus EGTA, PI 3-kinase inhibitors wortmannin and LY294002, and inhibitor of MEK1/2 PD98059. Furthermore, overexpression of dominant negative mutants, H-Ras-15A and Raf-N4, significantly suppressed p42/p44 MAPK activation induced by thrombin and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. These results conclude that the mitogenic effect of thrombin was mediated through the activation of Ras/Raf/MEK/MAPK pathway. Thrombin-mediated MAPK activation was modulated by PI-PLC, Ca2+, PKC, tyrosine kinase, and PI 3-kinase associated with cell proliferation in canine cultured TSMCs.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 Road, Kwei-San, Tao-Yuan, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
43
|
Pébay A, Toutant M, Prémont J, Calvo CF, Venance L, Cordier J, Glowinski J, Tencé M. Sphingosine-1-phosphate induces proliferation of astrocytes: regulation by intracellular signalling cascades. Eur J Neurosci 2001. [DOI: 10.1046/j.0953-816x.2001.01585.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Klip A, Marette A. Regulation of Glucose Transporters by Insulin and Exercise: Cellular Effects and Implications for Diabetes. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
45
|
Misra UK, Pizzo SV. Induction of cyclooxygenase-2 synthesis by ligation of the macrophage alpha(2)-macroglobulin signalling receptor. Cell Signal 2001; 13:801-8. [PMID: 11583915 DOI: 10.1016/s0898-6568(01)00202-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have studied the induction of cyclooxygenase-2 (COX-2) in macrophages consequent to ligating the alpha(2)-macroglobulin (alpha(2)M) signalling receptor (alpha(2)MSR) with receptor-recognized forms of alpha(2)M (alpha(2)M*). Macrophage stimulation with alpha(2)M* increased total cellular and nuclear COX-2 two- to threefold. The maximal increase in COX-2 occurred at a ligand concentration of 50-100 pM and after 2 h. Modulation of intracellular Ca(2+) levels or incubation of [35S] methionine-labelled macrophages with actinomycin D, prior to treatment with alpha(2)M*, markedly reduced the induction of total cellular and nuclear COX-2. Protein kinase C (PKC) or phospholipase A(2) (PLA(2)) inhibition in alpha(2)M*-stimulated macrophages or inhibition of the p21(ras)-dependent mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI 3-kinase) signalling pathways also significantly reduced alpha(2)M*-induced total cellular and nuclear COX-2 expression. Thus, COX-2 induction is dependent on cPLA(2) activity, Ca(2+) mobilization, and PKC activity and requires participation of both the p21(ras)-dependent MAPK and PI 3-kinase signalling pathways. COX-2 activation may mediate alpha(2)M*-induced mitogenesis, which we have previously observed in this and other cell types.
Collapse
Affiliation(s)
- U K Misra
- Department of Pathology, Box 3712, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
46
|
Houliston RA, Pearson JD, Wheeler-Jones CP. Agonist-specific cross talk between ERKs and p38(mapk) regulates PGI(2) synthesis in endothelium. Am J Physiol Cell Physiol 2001; 281:C1266-76. [PMID: 11546664 DOI: 10.1152/ajpcell.2001.281.4.c1266] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have examined the mechanisms regulating prostacyclin (PGI(2)) synthesis after acute exposure of human umbilical vein endothelial cells (HUVEC) to interleukin-1 alpha (IL-1 alpha). IL-1 alpha evoked an early (30 min) release of PGI(2) and [(3)H]arachidonate that was blocked by the cytosolic phospholipase A(2)alpha (cPLA(2)alpha) inhibitor arachidonyl trifluoromethyl ketone. IL-1 alpha-mediated activation of extracellular signal-regulated kinase 1/2 (ERK1/2; p42/p44(mapk)) coincided temporally with phosphorylation of cPLA(2)alpha and with the onset of PGI(2) synthesis. The mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitors, PD-98059 and U-0126, blocked IL-1 alpha-induced ERK activation and partially attenuated cPLA(2)alpha phosphorylation and PGI(2) release, suggesting that ERK-dependent and -independent pathways regulate cPLA(2)alpha phosphorylation. SB-203580 treatment enhanced IL-1 alpha-induced MEK, p42/44(mapk), and cPLA(2)alpha phosphorylation but reduced thrombin-stimulated MEK and p42/44(mapk) activation. IL-1 alpha, but not thrombin, activated Raf-1 as assessed by immune-complex kinase assay, as did SB-203580 alone. These results show that IL-1 alpha causes an acute upregulation of PGI(2) generation in HUVEC, establish a role for the MEK/ERK/cPLA(2)alpha pathway in this early release, and provide evidence for an agonist-specific cross talk between p38(mapk) and p42/44(mapk) that may reflect receptor-specific differences in the signaling elements proximal to MAPK activation.
Collapse
Affiliation(s)
- R A Houliston
- Department of Veterinary Basic Sciences, The Royal Veterinary College, University of London, London NW1 0TU, United Kingdom
| | | | | |
Collapse
|
47
|
Miralem T, Steinberg R, Price D, Avraham H. VEGF(165) requires extracellular matrix components to induce mitogenic effects and migratory response in breast cancer cells. Oncogene 2001; 20:5511-24. [PMID: 11571649 DOI: 10.1038/sj.onc.1204753] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2001] [Revised: 06/19/2001] [Accepted: 06/26/2001] [Indexed: 02/03/2023]
Abstract
The expression of VEGF and the relapse-free survival rate of breast cancer patients are inversely related. While VEGF induces the proliferation and migration of vascular endothelial cells, its function in breast cancer cells is not well studied. We reported previously that fibronectin increased VEGF-dependent migration in breast cancer cells. Since VEGF has an extracellular matrix (ECM)-binding domain and possesses binding affinity for heparin, we sought to determine the effects of VEGF in breast cancer cells and the role of heparin and/or fibronectin in VEGF-induced signaling. Cells grown on plastic were compared to those grown on fibronectin or to those grown on plastic in the presence of heparin, and analysed for intracellular signaling, proliferation and migration in response to VEGF(165). Both heparin and fibronectin enhanced the binding of VEGF to T47D cells. After treatment with VEGF, [(3)H]thymidine incorporation, c-fos induction, and the number of migrating cells were significantly higher ( approximately twofold) in cells grown on fibronectin or in cells grown on plastic in the presence of heparin when compared to those grown on plastic only. Likewise, tyrosine phosphorylation of VEGF receptors, MAPK activity and PI3-kinase activity were all several-fold higher in cells seeded on fibronectin or in the presence of heparin as compared to cells exposed to VEGF alone. VEGF-dependent c-fos induction was found to be regulated through a MAPK-dependent, but PI3-kinase-independent pathway. In contrast, the migration of T47D cells in response to VEGF, in the presence of ECM, was regulated through PI3-kinase. Therefore, VEGF requires ECM components to induce a mitogenic response and cell migration in T47D breast cancer cells.
Collapse
Affiliation(s)
- T Miralem
- Division of Experimental Medicine, Beth Israel-Deaconess Medical Center, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, Massachusetts, MA 02115, USA
| | | | | | | |
Collapse
|
48
|
Robinson AJ, Dickenson JM. Activation of the p38 and p42/p44 mitogen-activated protein kinase families by the histamine H(1) receptor in DDT(1)MF-2 cells. Br J Pharmacol 2001; 133:1378-86. [PMID: 11498525 PMCID: PMC1621152 DOI: 10.1038/sj.bjp.0704200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. The mitogen-activated protein kinases (MAPKs) consist of the p42/p44 MAPKs and the stress-activated protein kinases, c-Jun N-terminal kinase (JNK) and p38 MAPK. In this study we have examined the effect of histamine H(1) receptor activation on MAPK pathway activation in the smooth muscle cell line DDT(1)MF-2. 2. Histamine stimulated time and concentration-dependent increases in p42/p44 MAPK activation in DDT(1)MF-2 cells. Responses to histamine were inhibited by the histamine H(1) receptor antagonist mepyramine (K(D) 3.5 nM) and following pre-treatment with pertussis toxin (PTX; 57% inhibition). 3. Histamine-induced increases in p42/p44 MAPK activation were blocked by inhibitors of MAPK kinase 1 (PD 98059), tyrosine kinase (genistein and tyrphostin A47), phosphatidylinositol 3-kinase (wortmannin and LY 294002) and protein kinase C (Ro 31-8220; 10 microM; 41% inhibition). Inhibitors of Src tyrosine kinase (PP2) and the epidermal growth factor tyrosine kinase (AG1478) were without effect. Removal of extracellular Ca(2+), chelation of intracellular Ca(2+) with BAPTA and inhibition of focal adhesion assembly (cytochalasin D) had no significant effect on histamine-induced p42/p44 MAPK activation. 4. Histamine stimulated time and concentration-dependent increases in p38 MAPK activation in DDT(1)MF-2 cells but had no effect on JNK activation. Histamine-induced p38 MAPK activation was inhibited by pertussis toxin (74% inhibition) and the p38 MAPK inhibitor SB 203580 (95% inhibition). 5. In summary, we have shown the histamine H(1) receptor activates p42/p44 MAPK and p38 MAPK signalling pathways in DDT(1)MF-2 smooth muscle cells. Interestingly, signalling to both pathways appears to involve histamine H(1) receptor coupling to G(i)/G(o)-proteins.
Collapse
Affiliation(s)
- Alex J Robinson
- Department of Life Sciences, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS
| | - John M Dickenson
- Department of Life Sciences, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS
- Author for correspondence:
| |
Collapse
|
49
|
Wheldon LM, Nahorski SR, Willars GB. Inositol 1,4,5-trisphosphate-independent calcium signalling by platelet-derived growth factor in the human SH-SY5Y neuroblastoma cell. Cell Calcium 2001; 30:95-106. [PMID: 11440467 DOI: 10.1054/ceca.2001.0217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In adherent SH-SY5Y human neuroblastoma cells, activation of G-protein-coupled muscarinic M3 receptors evoked a biphasic elevation of both intracellular [Ca(2+)] ([Ca(2+)]i) and inositol-1,4,5-trisphosphate (D-Ins(1,4,5)P3) mass. In both cases, temporal profiles consisted of rapid transient elevations followed by a decline to a lower, yet sustained level. In contrast, platelet-derived growth factor (PDGF), a receptor tyrosine kinase agonist acting via PDGF receptor b chains in these cells, elicited a slow and transient elevation of [Ca(2+)]i that returned to basal levels within 5 to 10 min with no evidence of inositol phosphate generation. Full responses for either receptor type required intracellular and extracellular Ca(2+) and mobilization of a shared thapsigargin-sensitive intracellular Ca(2+) store. Strategies that affected the ability of D-Ins(1,4,5)P3 to interact with the Ins(1,4,5)P3-receptor demonstrated an Ins(1,4,5)P3-dependency of the muscarinic receptor-mediated elevation of [Ca(2+)]i but showed that PDGF-mediated elevations of [Ca(2+)]i are Ins(1,4,5)P3-independent in these cells.
Collapse
Affiliation(s)
- L M Wheldon
- Department of Cell Physiology & Pharmacology, University of Leicester, UK.
| | | | | |
Collapse
|
50
|
Colombo F, Noël J, Mayers P, Mercier I, Calderone A. beta-Adrenergic stimulation of rat cardiac fibroblasts promotes protein synthesis via the activation of phosphatidylinositol 3-kinase. J Mol Cell Cardiol 2001; 33:1091-106. [PMID: 11444915 DOI: 10.1006/jmcc.2001.1381] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
beta -adrenergic agonists stimulate neonatal rat cardiac fibroblast growth, albeit the identity of the signaling event(s) remains equivocal. Isoproterenol (ISO) treatment increased intracellular cyclic AMP levels; however, cyclic AMP-elevating agents had no effect on protein synthesis. The tyrosine kinase inhibitor tyrphostin A25, and the inhibition of ras processing by the farnesyltransferase inhibitor BMS-191563 attenuated ISO-stimulated protein synthesis. Concomitant with increased protein synthesis, ISO stimulated extracellular signal-regulated protein kinase (ERK) and phosphatidylinositol 3-kinase (PI3-K) activity. The MEK1/2 inhibitor PD098059 abrogated ISO-stimulated ERK activity, albeit the increase in protein synthesis was unaffected. By contrast, LY294002 inhibited both ISO-stimulated PI3-K activity, and protein synthesis. ISO treatment did not increase the expression of transforming growth factor-beta(1)(TGF-beta(1)) mRNA, whereas a significant decrease in the steady-state mRNA level of TGF- beta(3)was observed. This latter effect was mimicked by cyclic AMP-elevating agents. Angiotensin II (AII) activation of the AT(1)receptor increased protein synthesis, but in contrast to ISO, the growth response was not inhibited by either tyrphostin A25 or BMS-191563, and was associated with the concomitant expression of both TGF-beta(1)and TGF-beta(3)mRNAs. Analogous to ISO, AII treatment increased ERK and PI3-K activity, and PI3-K was required for protein synthesis. These findings are the first to highlight the activation of PI3-K by a Gs(alpha)-coupled receptor, and its essential role in beta -adrenergic as well as AT(1)receptor-mediated protein synthesis in neonatal rat cardiac fibroblasts. However, despite the conserved role of PI3-K, additional disparate signaling pathways are recruited by ISO and AII, which may differentially influence fibroblast phenotype.
Collapse
Affiliation(s)
- F Colombo
- Departément de Physiologie, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|