1
|
Hua B, Wang Y, Park S, Han KY, Singh D, Kim JH, Cheng W, Ha T. The Single-Molecule Centroid Localization Algorithm Improves the Accuracy of Fluorescence Binding Assays. Biochemistry 2018; 57:1572-1576. [PMID: 29457977 PMCID: PMC6149537 DOI: 10.1021/acs.biochem.7b01293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Here, we demonstrate that the use of the single-molecule centroid localization algorithm can improve the accuracy of fluorescence binding assays. Two major artifacts in this type of assay, i.e., nonspecific binding events and optically overlapping receptors, can be detected and corrected during analysis. The effectiveness of our method was confirmed by measuring two weak biomolecular interactions, the interaction between the B1 domain of streptococcal protein G and immunoglobulin G and the interaction between double-stranded DNA and the Cas9-RNA complex with limited sequence matches. This analysis routine requires little modification to common experimental protocols, making it readily applicable to existing data and future experiments.
Collapse
Affiliation(s)
- Boyang Hua
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Yanbo Wang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Seongjin Park
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kyu Young Han
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Digvijay Singh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Jin H. Kim
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wei Cheng
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Howard Hughes Medical Institute, Baltimore, Maryland 21205, United States
| |
Collapse
|
2
|
Burbelo PD, Teos LY, Herche JL, Iadarola MJ, Alevizos I. Autoantibodies against the Immunoglobulin-Binding Region of Ro52 Link its Autoantigenicity with Pathogen Neutralization. Sci Rep 2018; 8:3345. [PMID: 29463848 PMCID: PMC5820281 DOI: 10.1038/s41598-018-21522-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/02/2018] [Indexed: 11/21/2022] Open
Abstract
Ro52/TRIM21 plays a key role in antibody-dependent pathogen neutralization and is a major autoantigen in systemic lupus erythematosus, Sjögren's syndrome (SS), and other autoimmune diseases. Here we evaluated immunoreactivity against Ro52-related molecules in SS and healthy volunteers. Although most proteins examined were not antigenic, several TRIM paralogs, including TRIM22, and TRIM38, showed sporadic immunoreactivity in SS. In contrast, the murine Ro52 ortholog with limited linear homology demonstrated high levels of autoantibodies implicating the importance of shared conformational epitopes. To further explore the autoantigencity of Ro52, deletion and point mutant analyses were employed revealing previously hidden, robust autoantibodies directed against its C-terminal immunoglobulin-binding domain. Another autoantibody, rheumatoid factor, targeting the Fc region of IgG, strongly overlapped with Ro52 seropositivity (odds ratio 14; P < 0.0001). These convergent mechanistic findings support a model whereby intracellular Ro52-bound antibody-coated pathogen complexes, released or misprocessed from infected cells, drive autoantigenicity against Ro52 and the Fc region of IgG.
Collapse
Affiliation(s)
- Peter D Burbelo
- Dental Clinical Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Leyla Y Teos
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jesse L Herche
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ilias Alevizos
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
3
|
Tanwar N, Munde M. Thermodynamic and conformational analysis of the interaction between antibody binding proteins and IgG. Int J Biol Macromol 2018; 112:1084-1092. [PMID: 29410106 DOI: 10.1016/j.ijbiomac.2018.01.208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 01/29/2023]
Abstract
Studying interaction of IgG with bacterial proteins such as proA (Protein A) and proG is essential for development in the areas of drug discovery and biotechnology. Some solution studies in the past have hinted at the possibility of variable binding ratios for IgG with proA and proG. Since earlier crystallographic studies focussed mostly on monomeric complexes, the knowledge about the binding interfaces and protein conformational changes involved in multimeric complexes is scarce. In this paper, we observed that single proA molecule was able to bind to three IgG molecules (1:3, proA:IgG) in ITC accentuating the presence of conformational flexibility in proA, corroborated also by CD results. By contrast, proG binds with 1:1 stoichiometry to IgG, which also involves key structural rearrangement within the binding interface of IgG-proG complex, confirmed by fluorescence KI quenching study. It is implicit from CD and fluorescence results that IgG does not undergo any significant conformational changes, which further suggests that proA and proG dictate the phenomenon of recognition in antibody complexes. ANS as a hydrophobic probe helped in revealing the distinctive antibody binding mechanism of proA and proG. Additionally, the binding competition experiments using ITC established that proA and proG cannot bind IgG concurrently.
Collapse
Affiliation(s)
- Neetu Tanwar
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manoj Munde
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
4
|
Sugase K. Elucidating slow binding kinetics of a protein without observable bound resonances by longitudinal relaxation NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2011; 50:219-227. [PMID: 21626216 DOI: 10.1007/s10858-011-9511-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 05/05/2011] [Indexed: 05/30/2023]
Abstract
We developed a new method to elucidate the binding kinetics k(on) and k(off), and the dissociation constant K(D) (=k(off)/k(on)), of protein-protein interactions without observable bound resonances of the protein of interest due to high molecular weight in a complex with a large target protein. In our method, k(on) and k(off) rates are calculated from the analysis of longitudinal relaxation rates of free resonances measured for multiple samples containing different concentration ratios of (15)N-labeled protein and substoichiometric amounts of the target protein. The method is applicable to interactions that cannot be analyzed by relaxation dispersion spectroscopy due to slow interactions on millisecond to second timescale and/or minimal conformational (chemical shift) change upon binding. We applied the method to binding of the B1 domain of protein G (GB1) to immunoglobulin G, and derived the binding kinetics despite the absence of observable bound GB1 resonances.
Collapse
Affiliation(s)
- Kenji Sugase
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka, Japan.
| |
Collapse
|
5
|
Antibody orientation enhanced by selective polymer–protein noncovalent interactions. Anal Bioanal Chem 2008; 393:1531-8. [DOI: 10.1007/s00216-008-2567-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 11/26/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
|
6
|
Harrison SL, Housden NG, Bottomley SP, Cossins AJ, Gore MG. Generation and expression of a minimal hybrid Ig-receptor formed between single domains from proteins L and G. Protein Expr Purif 2008; 58:12-22. [DOI: 10.1016/j.pep.2007.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 11/09/2007] [Accepted: 11/12/2007] [Indexed: 11/25/2022]
|
7
|
Cao Y, Balamurali MM, Sharma D, Li H. A functional single-molecule binding assay via force spectroscopy. Proc Natl Acad Sci U S A 2007; 104:15677-81. [PMID: 17895384 PMCID: PMC2000387 DOI: 10.1073/pnas.0705367104] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Indexed: 11/18/2022] Open
Abstract
Protein-ligand interactions, including protein-protein interactions, are ubiquitously essential in biological processes and also have important applications in biotechnology. A wide range of methodologies have been developed for quantitative analysis of protein-ligand interactions. However, most of them do not report direct functional/structural consequence of ligand binding. Instead they only detect the change of physical properties, such as fluorescence and refractive index, because of the colocalization of protein and ligand, and are susceptible to false positives. Thus, important information about the functional state of protein-ligand complexes cannot be obtained directly. Here we report a functional single-molecule binding assay that uses force spectroscopy to directly probe the functional consequence of ligand binding and report the functional state of protein-ligand complexes. As a proof of principle, we used protein G and the Fc fragment of IgG as a model system in this study. Binding of Fc to protein G does not induce major structural changes in protein G but results in significant enhancement of its mechanical stability. Using mechanical stability of protein G as an intrinsic functional reporter, we directly distinguished and quantified Fc-bound and Fc-free forms of protein G on a single-molecule basis and accurately determined their dissociation constant. This single-molecule functional binding assay is label-free, nearly background-free, and can detect functional heterogeneity, if any, among protein-ligand interactions. This methodology opens up avenues for studying protein-ligand interactions in a functional context, and we anticipate that it will find broad application in diverse protein-ligand systems.
Collapse
Affiliation(s)
- Yi Cao
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | - M. M. Balamurali
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | - Deepak Sharma
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| |
Collapse
|
8
|
James LC, Keeble AH, Khan Z, Rhodes DA, Trowsdale J. Structural basis for PRYSPRY-mediated tripartite motif (TRIM) protein function. Proc Natl Acad Sci U S A 2007; 104:6200-5. [PMID: 17400754 PMCID: PMC1851072 DOI: 10.1073/pnas.0609174104] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human tripartite motif (TRIM) family comprises 70 members, including HIV restriction factor TRIM5alpha and disease-associated proteins TRIM20 (pyrin) and TRIM21. TRIM proteins have conserved domain architecture but diverse cellular roles. Here, we describe how the C-terminal PRYSPRY domain mediates diverse TRIM functions. The crystal structure of TRIM21 PRYSPRY in complex with its target IgG Fc reveals a canonical binding interface comprised of two discrete pockets formed by antibody-like variable loops. Alanine scanning of this interface has identified the hot-spot residues that control TRIM21 binding to Fc; the same hot-spots control HIV/murine leukemia virus restriction by TRIM5alpha and mediate severe familial Mediterranean fever in TRIM20/pyrin. Characterization of the IgG binding site for TRIM21 PRYSPRY reveals TRIM21 as a superantigen analogous to bacterial protein A and suggests that an antibody bipolar bridging mechanism may contribute to the pathogenic accumulation of anti-TRIM21 autoantibody immune complex in autoimmune disease.
Collapse
Affiliation(s)
- Leo C James
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, UK.
| | | | | | | | | |
Collapse
|
9
|
Li Q, Du HN, Hu HY. Study of protein-protein interactions by fluorescence of tryptophan analogs: application to immunoglobulin G binding domain of streptococcal protein G. Biopolymers 2003; 72:116-22. [PMID: 12583014 DOI: 10.1002/bip.10300] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The protein-protein interaction system often contains many fluorophores that may significantly interfere with the quantitative determination of the binding abilities. To solve this perplexing problem, we biosynthetically incorporated the two tryptophan analogs, 5-hydroxytryptophan and 7-azatryptophan, into the immunoglobulin G (IgG) binding domain of streptococcal protein G (PGBD). The exclusive excitation and novel fluorescence changes in both the intensity and anisotropy are beneficial to reporting the details of the interactions between PGBD and the IgG fragments and enable assessment of the binding abilities. The dissociation constants are estimated to be 0.28 microM for the binding of human Fc and 8.0 microM for mouse Fc. The results clearly demonstrate that labeling of tryptophan analogs has very little effect on the binding abilities and is broadly applicable to quantitatively studying protein-protein interactions in a whole biomolecular complex.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | | | | |
Collapse
|
10
|
Powell KD, Ghaemmaghami S, Wang MZ, Ma L, Oas TG, Fitzgerald MC. A general mass spectrometry-based assay for the quantitation of protein-ligand binding interactions in solution. J Am Chem Soc 2002; 124:10256-7. [PMID: 12197709 DOI: 10.1021/ja026574g] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new method that utilizes matrix-assisted laser desorption/ionization (MALDI) mass spectrometry and exploits the hydrogen/deuterium (H/D) exchange properties of proteins was developed for measuring the thermodynamic properties of protein-ligand complexes in solution. Dissociation constants (Kd values) determined by the method for five model protein-ligand complexes that included those with small molecules, nucleic acids, peptides, and other proteins were generally in good agreement with Kd values measured by conventional methods. Important experimental advantages of the described method over existing methods include: the ability to make measurements in a high-throughput and automated fashion, the ability to make measurements using only picomole quantitities of protein, and the ability to analyze either purified or unpurified protein-ligand complexes.
Collapse
Affiliation(s)
- Kendall D Powell
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | | | |
Collapse
|