1
|
Takagi Y, Akutsu Y, Doi M, Furukawa K. Utilization of proliferable extracellular amastigotes for transient gene expression, drug sensitivity assay, and CRISPR/Cas9-mediated gene knockout in Trypanosoma cruzi. PLoS Negl Trop Dis 2019; 13:e0007088. [PMID: 30640901 PMCID: PMC6347291 DOI: 10.1371/journal.pntd.0007088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 01/25/2019] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
Trypanosoma cruzi has three distinct life cycle stages; epimastigote, trypomastigote, and amastigote. Amastigote is the replication stage in host mammalian cells, hence this stage of parasite has clinical significance in drug development research. Presence of extracellular amastigotes (EA) and their infection capability have been known for some decades. Here, we demonstrate that EA can be utilized as an axenic culture to aid in stage-specific study of T. cruzi. Amastigote-like property of axenic amastigote can be sustained in LIT medium at 37°C at least for 1 week, judging from their morphology, amastigote-specific UTR-regulated GFP expression, and stage-specific expression of selected endogenous genes. Inhibitory effect of benznidazole and nifurtimox on axenic amastigotes was comparable to that on intracellular amastigotes. Exogenous nucleic acids can be transfected into EA via conventional electroporation, and selective marker could be utilized for enrichment of transfectants. We also demonstrate that CRISPR/Cas9-mediated gene knockout can be performed in EA. Essentiality of the target gene can be evaluated by the growth capability of the knockout EA, either by continuation of axenic culturing or by host infection and following replication as intracellular amastigotes. By taking advantage of the accessibility and sturdiness of EA, we can potentially expand our experimental freedom in studying amastigote stage of T. cruzi.
Collapse
Affiliation(s)
- Yuko Takagi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Yukie Akutsu
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Motomichi Doi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Koji Furukawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Osorio-Méndez JF, Cevallos AM. Discovery and Genetic Validation of Chemotherapeutic Targets for Chagas' Disease. Front Cell Infect Microbiol 2019; 8:439. [PMID: 30666299 PMCID: PMC6330712 DOI: 10.3389/fcimb.2018.00439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/10/2018] [Indexed: 01/06/2023] Open
Abstract
There is an urgent need to develop new treatments for Chagas' disease. To identify drug targets, it is important to understand the basic biology of Trypanosoma cruzi, in particular with respect to the biological pathways or proteins that are essential for its survival within the host. This review provides a streamlined approach for identifying drug targets using freely available chemogenetic databases and outlines the relevant characteristics of an ideal chemotherapeutic target. Among those are their essentiality, druggability, availability of structural information, and selectivity. At the moment only 16 genes have been found as essential by gene disruption in T. cruzi. At the TDR Targets database, a chemogenomics resource for neglected diseases, information about published structures for these genes was only found for three of these genes, and annotation of validated inhibitors was found in two. These inhibitors have activity against the parasitic stages present in the host. We then analyzed three of the pathways that are considered promising in the search for new targets: (1) Ergosterol biosynthesis, (2) Resistance to oxidative stress, (3) Synthesis of surface glycoconjugates. We have annotated all the genes that participate in them, identified those that are considered as druggable, and incorporated evidence from either Trypanosoma brucei, and Leishmania spp. that supports the hypothesis that these pathways are essential for T. cruzi survival.
Collapse
Affiliation(s)
- Juan Felipe Osorio-Méndez
- Laboratorio de Microbiología y Biología Molecular, Programa de Medicina, Corporación Universitaria Empresarial Alexander von Humboldt, Armenia, Colombia.,Grupo de Estudio en Parasitología Molecular, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| | - Ana María Cevallos
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Manta B, Möller MN, Bonilla M, Deambrosi M, Grunberg K, Bellanda M, Comini MA, Ferrer-Sueta G. Kinetic studies reveal a key role of a redox-active glutaredoxin in the evolution of the thiol-redox metabolism of trypanosomatid parasites. J Biol Chem 2018; 294:3235-3248. [PMID: 30593501 DOI: 10.1074/jbc.ra118.006366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/27/2018] [Indexed: 12/11/2022] Open
Abstract
Trypanosomes are flagellated protozoan parasites (kinetoplastids) that have a unique redox metabolism based on the small dithiol trypanothione (T(SH)2). Although GSH may still play a biological role in trypanosomatid parasites beyond being a building block of T(SH)2, most of its functions are replaced by T(SH)2 in these organisms. Consequently, trypanosomes have several enzymes adapted to using T(SH)2 instead of GSH, including the glutaredoxins (Grxs). However, the mechanistic basis of Grx specificity for T(SH)2 is unknown. Here, we combined fast-kinetic and biophysical approaches, including NMR, MS, and fluorescent tagging, to study the redox function of Grx1, the only cytosolic redox-active Grx in trypanosomes. We observed that Grx1 reduces GSH-containing disulfides (including oxidized trypanothione) in very fast reactions (k > 5 × 105 m-1 s-1). We also noted that disulfides without a GSH are much slower oxidants, suggesting a strongly selective binding of the GSH molecule. Not surprisingly, oxidized Grx1 was also reduced very fast by T(SH)2 (4.8 × 106 m-1 s-1); however, GSH-mediated reduction was extremely slow (39 m-1 s-1). This kinetic selectivity in the reduction step of the catalytic cycle suggests that Grx1 uses preferentially a dithiol mechanism, forming a disulfide on the active site during the oxidative half of the catalytic cycle and then being rapidly reduced by T(SH)2 in the reductive half. Thus, the reduction of glutathionylated substrates avoids GSSG accumulation in an organism lacking GSH reductase. These findings suggest that Grx1 has played an important adaptive role during the rewiring of the thiol-redox metabolism of kinetoplastids.
Collapse
Affiliation(s)
- Bruno Manta
- From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.,the Laboratorio de Fisicoquímica Biológica and
| | - Matías N Möller
- the Laboratorio de Fisicoquímica Biológica and.,the Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay, and
| | - Mariana Bonilla
- From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.,the Laboratorio de Fisicoquímica Biológica and.,Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Matías Deambrosi
- From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.,Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Karin Grunberg
- From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.,the Laboratorio de Fisicoquímica Biológica and
| | - Massimo Bellanda
- the Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova 35131, Italy
| | - Marcelo A Comini
- From the Grupo Biología Redox de Tripanosomas, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Gerardo Ferrer-Sueta
- the Laboratorio de Fisicoquímica Biológica and .,the Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay, and
| |
Collapse
|
4
|
Manta B, Bonilla M, Fiestas L, Sturlese M, Salinas G, Bellanda M, Comini MA. Polyamine-Based Thiols in Trypanosomatids: Evolution, Protein Structural Adaptations, and Biological Functions. Antioxid Redox Signal 2018; 28:463-486. [PMID: 29048199 DOI: 10.1089/ars.2017.7133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE Major pathogenic enterobacteria and protozoan parasites from the phylum Euglenozoa, such as trypanosomatids, are endowed with glutathione (GSH)-spermidine (Sp) derivatives that play important roles in signaling and metal and thiol-redox homeostasis. For some Euglenozoa lineages, the GSH-Sp conjugates represent the main redox cosubstrates around which entire new redox systems have evolved. Several proteins underwent molecular adaptations to synthesize and utilize the new polyamine-based thiols. Recent Advances: The genomes of closely related organisms have recently been sequenced, which allows mining and analysis of gene sequences that belong to these peculiar redox systems. Similarly, the three-dimensional structures of several of these proteins have been solved, which allows for comparison with their counterparts in classical redox systems that rely on GSH/glutaredoxin and thioredoxin. CRITICAL ISSUES The evolutionary and structural aspects related to the emergence and use of GSH-Sp conjugates in Euglenozoa are reviewed focusing on unique structural specializations that proteins developed to use N1,N8-bisglutathionylspermidine (trypanothione) as redox cosubstrate. An updated overview on the biochemical and biological significance of the major enzymatic activities is also provided. FUTURE DIRECTIONS A thiol-redox system strictly dependent on trypanothione is a feature unique to trypanosomatids. The physicochemical properties of the polyamine-GSH conjugates were a major driving force for structural adaptation of proteins that use these thiols as ligand and redox cofactor. In fact, the structural differences of indispensable components of this system can be exploited toward selective drug development. Future research should clarify whether additional cellular processes are regulated by the trypanothione system. Antioxid. Redox Signal. 28, 463-486.
Collapse
Affiliation(s)
- Bruno Manta
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay .,2 Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica , Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Mariana Bonilla
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay .,2 Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica , Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Lucía Fiestas
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay
| | - Mattia Sturlese
- 3 Department of Chemical Sciences, Università degli Studi di Padova , Padova, Italy
| | - Gustavo Salinas
- 4 Worm Biology Lab, Institut Pasteur de Montevideo , Montevideo, Uruguay .,5 Departamento de Biociencias, Facultad de Química, Universidad de la República , Montevideo, Uruguay
| | - Massimo Bellanda
- 3 Department of Chemical Sciences, Università degli Studi di Padova , Padova, Italy
| | - Marcelo A Comini
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay
| |
Collapse
|
5
|
Cazorla SI, Matos MN, Cerny N, Ramirez C, Alberti AS, Bivona AE, Morales C, Guzmán CA, Malchiodi EL. Oral multicomponent DNA vaccine delivered by attenuated Salmonella elicited immunoprotection against American trypanosomiasis. J Infect Dis 2014; 211:698-707. [PMID: 25160983 DOI: 10.1093/infdis/jiu480] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We have reported that attenuated Salmonella (S) carrying plasmids encoding the cysteine protease cruzipain (Cz) protects against Trypanosoma cruzi infection. Here, we determined whether immunoprotection could be improved by the oral coadministration of 3 Salmonella carrying the plasmids that encode the antigens Cz, Tc52, and Tc24. SCz+STc52+STc24-immunized mice presented an increased antibody response against each antigen compared with those in the single antigen-immunized groups, as well as higher trypomastigotes antibody-mediated lyses and cell invasion inhibition compared with controls. SCz+STc52+STc24-immunized and -challenged mice rendered lower parasitemia. Weight loss after infection was detected in all mice except those in the SCz+STc52+STc24 group. Moreover, cardiomyopathy-associated enzyme activity was significantly lower in SCz+STc24+STc52-immunized mice compared with controls. Few or no abnormalities were found in muscle tissues of SCz+STc24+STc52-immunized mice, whereas controls presented with inflammatory foci, necrosis, and amastigote nests. We conclude that a multicomponent approach that targets several invasion and metabolic mechanisms improves protection compared with single-component vaccines.
Collapse
Affiliation(s)
- Silvia I Cazorla
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Dr. R. A. Margni, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires (CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET and Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA
| | - Marina N Matos
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Dr. R. A. Margni, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires (CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET and Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA
| | - Natacha Cerny
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Dr. R. A. Margni, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires (CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET and Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA
| | - Carolina Ramirez
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Dr. R. A. Margni, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires (CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET and Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA
| | - Andrés Sanchez Alberti
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Dr. R. A. Margni, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires (CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET and Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA
| | - Augusto E Bivona
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Dr. R. A. Margni, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires (CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET and Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA
| | - Celina Morales
- Departamento de Patología, Facultad de Medicina UBA, Instituto de Fisiopatología Cardiovascular, Buenos Aires, Argentina
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Emilio L Malchiodi
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Dr. R. A. Margni, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires (CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET and Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA
| |
Collapse
|
6
|
Trypanothione: A unique bis-glutathionyl derivative in trypanosomatids. Biochim Biophys Acta Gen Subj 2013; 1830:3199-216. [DOI: 10.1016/j.bbagen.2013.01.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 11/21/2022]
|
7
|
Abstract
This article provides an overview about the recent advances in the dissection of the peroxide metabolism of Trypanosomatidae. This family of protozoan organisms comprises the medically relevant parasites Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. Over the past 10 years, three major families of peroxidases have been identified in these organisms: (a) 2-cysteine peroxiredoxins, (b) nonselenium glutathione peroxidases, and (c) ascorbate peroxidases. In trypanosomatids, these enzymes display the unique feature of using reducing equivalents derived from trypanothione, a dithiol found exclusively in these protozoa. The electron transfer between trypanothione and the peroxidases is mediated by a redox shuttle, which can either be tryparedoxin, ascorbate, or even glutathione. The preference for the intermediate molecule differs among each peroxidase and so does the specificity for the peroxide substrate. These observations, added to the fact that these peroxidases are distributed throughout different subcellular compartments, point to the existence of an elaborate peroxide metabolism in trypanosomatids. With the completion of the trypanosomatids genome, other molecules displaying peroxidase activity might be added to this list in the future.
Collapse
Affiliation(s)
- Helena Castro
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
8
|
Krauth-Siegel RL, Comini MA. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta Gen Subj 2008; 1780:1236-48. [PMID: 18395526 DOI: 10.1016/j.bbagen.2008.03.006] [Citation(s) in RCA: 296] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 02/26/2008] [Accepted: 03/11/2008] [Indexed: 01/09/2023]
Abstract
Trypanosomes and leishmania, the causative agents of several tropical diseases, possess a unique redox metabolism which is based on trypanothione. The bis(glutathionyl)spermidine is the central thiol that delivers electrons for the synthesis of DNA precursors, the detoxification of hydroperoxides and other trypanothione-dependent pathways. Many of the reactions are mediated by tryparedoxin, a distant member of the thioredoxin protein family. Trypanothione is kept reduced by the parasite-specific flavoenzyme trypanothione reductase. Since glutathione reductases and thioredoxin reductases are missing, the reaction catalyzed by trypanothione reductase represents the only connection between the NADPH- and the thiol-based redox metabolisms. Thus, cellular thiol redox homeostasis is maintained by the biosynthesis and reduction of trypanothione. Nearly all proteins of the parasite-specific trypanothione metabolism have proved to be essential.
Collapse
|
9
|
Torres-Rivera A, Landa A. Glutathione transferases from parasites: a biochemical view. Acta Trop 2008; 105:99-112. [PMID: 17897613 DOI: 10.1016/j.actatropica.2007.08.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 08/11/2007] [Accepted: 08/21/2007] [Indexed: 10/22/2022]
Abstract
The glutathione transferase (GST) system of parasites represents the main detoxification mechanism of hydrophobic and electrophilic compounds. Parasites lack the CYP450 activity, hence part of its function has been taken over by other enzymes including GSTs. Cytosolic GSTs (cGSTs) are found in this system and constitute a versatile and numerous group that in parasites display many peculiarities in contrast to mammalian cGSTs. This review summarizes aspects of the biochemistry of parasite cGSTs such as substrate specificities, inhibitor sensitivities, classification, kinetics and catalysis, as well as some aspects of their protective role.
Collapse
Affiliation(s)
- Anayetzin Torres-Rivera
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Edificio A, 2o Piso, Ciudad Universitaria, México D.F. 04510, Mexico
| | | |
Collapse
|
10
|
Parodi-Talice A, Monteiro-Goes V, Arrambide N, Avila AR, Duran R, Correa A, Dallagiovanna B, Cayota A, Krieger M, Goldenberg S, Robello C. Proteomic analysis of metacyclic trypomastigotes undergoing Trypanosoma cruzi metacyclogenesis. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:1422-1432. [PMID: 17960573 DOI: 10.1002/jms.1267] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Trypanosoma cruzi, the causative agent of the Chagas disease, has a complex life cycle alternating between replicative and noninfective forms with nonreplicative and infective forms of the parasite. Metacyclogenesis is a process that takes place in the invertebrate host, comprising morphogenetic transformation from a noninfective form to an infective form, such that parasites acquire the ability to invade human cells. We analyze here the metacyclogenesis process by 2D electrophoresis coupled to MALDI-TOF MS. A large proportion of unique proteins expressed during metacyclogenesis were observed. Interestingly, 50% of the spots were found to differ between epimastigotes and trypomastigotes. We provide a 2D map of the infective metacyclic trypomastigotes. Sixty six protein spots were successfully identified corresponding to 43 different proteins. We analyzed the expression profiles for the identified proteins along metacyclogenesis and classified them into three groups according to their maximal level of expression. We detected several isoforms for a number of proteins, some displaying differential expression during metacyclogenesis. These results suggest that posttranslational modifications may be a fundamental part of the parasite's strategy for regulating gene expression during differentiation. This study contributes to the identification of relevant proteins involved in the metacyclogenesis process. The identification and molecular characterization of these proteins will render vital information about the steps of the parasite differentiation into the infective form.
Collapse
|
11
|
Garg N, Bhatia V. Current status and future prospects for a vaccine against American trypanosomiasis. Expert Rev Vaccines 2007; 4:867-80. [PMID: 16372882 DOI: 10.1586/14760584.4.6.867] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The clinically relevant pathognomonic consequences of human infection by Trypanosoma cruzi are dilation and hypertrophy of the left ventricle walls and thinning of the apex. The major complications and debilitating evolutionary outcomes of chronic infection include ventricular fibrillation, thromboembolism and congestive heart failure. American trypanosomiasis (Chagas disease) poses serious public healthcare and budgetary concerns. The currently available drugs, although effective against acute infection, are highly toxic and ineffective in arresting or attenuating clinical disease symptoms in chronic patients. The development of an efficacious prophylactic vaccine faces many challenges, and progress is slow, despite several years of effort. Studies in animal models and human patients have revealed the pathogenic mechanisms during disease progression, pathology of disease and features of protective immunity. Accordingly, several antigens, antigen-delivery vehicles and adjuvants have been tested in animal models, and some efforts have been successful in controlling infection and disease. This review will summarize the accumulated knowledge about the parasite and disease, as well as pathogenesis and protective immunity. The authors will discuss the efforts to date, and the challenges faced in achieving an efficient prophylactic vaccine against human American trypanosomiasis, and present the future perspectives.
Collapse
Affiliation(s)
- Nisha Garg
- Sealy Center for Vaccine Development, Department of Microbiology, Immunology and Pathology, University of Texas Medical Branch, Galveston TX 77555, USA.
| | | |
Collapse
|
12
|
Mathieu-Daudé F, Bosseno MF, Garzon E, Lelièvre J, Sereno D, Ouaissi A, Brenière SF. Sequence diversity and differential expression of Tc52 immuno-regulatory protein in Trypanosoma cruzi: potential implications in the biological variability of strains. Parasitol Res 2007; 101:1355-63. [PMID: 17659387 DOI: 10.1007/s00436-007-0651-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/19/2007] [Accepted: 06/20/2007] [Indexed: 10/23/2022]
Abstract
Trypanosoma cruzi is highly heterogeneous in terms of genetics and biological properties. To explore the diversity of T. cruzi, we focused our study on the T. cruzi Tc52 protein playing a critical immunosuppressive role during infection. Sequence variability and expression levels of this virulence factor were analysed in various strains. Among the 40 amino acid substitutions detected in the Tc52 coding sequences, three substitutions may have an impact on protein activity or function, as two are localized in sites involved in the glutathione binding and the third is present in the region bearing immunomodulatory function. This sequence variability was consistent with the genetic subdivisions of T. cruzi. Moreover, we observed that the level of Tc52 transcripts and proteins varied between the different strains, but we did not find a significant correlation between Tc52 expression and the phylogeny of the parasite. Thus, both diversity in the sequences and differences in the expression levels of Tc52 protein may be involved in the biological variability of T. cruzi, especially in virulence and immunosuppression properties of T. cruzi strains.
Collapse
Affiliation(s)
- Françoise Mathieu-Daudé
- Département Sociétés et Santé, UR008 Pathogénie et Epidémiologie des Trypanosomatidés, Institut de Recherche pour le Développement, 911 Av. Agropolis, 34394, Montpellier cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|
13
|
Oury B, Tarrieu F, Monte-Alegre A, Ouaissi A. Trypanosoma cruzi: Sequence polymorphism of the gene encoding the Tc52 immunoregulatory-released factor in relation to the phylogenetic diversity of the species. Exp Parasitol 2005; 111:198-206. [PMID: 16199037 DOI: 10.1016/j.exppara.2005.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 07/04/2005] [Accepted: 07/15/2005] [Indexed: 10/25/2022]
Abstract
We have previously identified a Trypanosoma cruzi gene encoding a protein named Tc52 sharing structural and functional properties with the thioredoxin and glutaredoxin family involved in thiol-disulfide redox reactions. Gene targeting strategy and immunological studies allowed showing that Tc52 is among T. cruzi virulence factors. Taking into account that T. cruzi has a genetic variability that might be important determinant that governs the different behaviour of T. cruzi clones in vitro and in vivo, we thought it was of interest to analyse the sequence polymorphism of Tc52 gene in several reference clones. The DNA sequences of 12 clones which represent the whole genetic diversity of T. cruzi allowed showing that 40 amino-acid positions over 400 analysed are targets for mutations. A number of residues corresponding to putative amino-acids playing a role in GSH binding and/or enzymatic function and others located nearby are subject to mutations. Although the immunological analysis showed that Tc52 is present in parasite extracts from different clones, it is possible that the amino-acid differences could affect the enzymatic and/or the immunomodulatory function of Tc52 variants and therefore the parasite phenotype.
Collapse
Affiliation(s)
- Bruno Oury
- Institut de Recherche pour le Développement (IRD), Unité de Recherche no 8 Pathogénie des Trypanosomatidae, Montpellier, France.
| | | | | | | |
Collapse
|
14
|
Hand CE, Honek JF. Biological chemistry of naturally occurring thiols of microbial and marine origin. JOURNAL OF NATURAL PRODUCTS 2005; 68:293-308. [PMID: 15730267 DOI: 10.1021/np049685x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The presence of thiols in living systems is critical for the maintenance of cellular redox potentials and protein thiol-disulfide ratios, as well as for the protection of cells from reactive oxygen species. In addition to the well-studied tripeptide glutathione (gamma-Glu-Cys-Gly), a number of compounds have been identified that contribute to these essential cellular roles. This review provides a survey of the chemistry and biochemistry of several critically important and naturally occurring intracellular thiols such as coenzyme M, trypanothione, mycothiol, ergothioneine, and the ovothiols. Coenzyme M is a key thiol required for methane production in methogenic bacteria. Trypanothione and mycothiol are very important to the biochemistry of a number of human pathogens, and the enzymes utilizing these thiols have been recognized as important novel drug targets. Ergothioneine, although synthesized by fungi and the Actinomycetales bacteria, is present at significant physiological levels in humans and may contribute to single electron redox reactions in cells. The ovothiols appear to function as important modulators of reactive oxygen toxicity and appear to serve as small molecule mimics of glutathione peroxidase, a key enzyme in the detoxification of reactive oxygen species.
Collapse
Affiliation(s)
- Christine E Hand
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | |
Collapse
|
15
|
Denton H, McGREGOR J, Coombs G. Reduction of anti-leishmanial pentavalent antimonial drugs by a parasite-specific thiol-dependent reductase, TDR1. Biochem J 2004; 381:405-12. [PMID: 15056070 PMCID: PMC1133846 DOI: 10.1042/bj20040283] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 03/23/2004] [Accepted: 04/01/2004] [Indexed: 11/17/2022]
Abstract
The reason why Leishmania parasites are susceptible to organic antimonial drugs, the standard chemotherapeutic agents for over 50 years, apparently lies in the fact that the mammalian stage of the parasite reduces the pentavalent form of the administered drug to a trivalent form that causes parasite death. We have identified and characterized a parasite-specific enzyme that can catalyse the reduction of pentavalent antimonials and may therefore be central to the anti-parasite activity of the drug. The unusual protein, a trimer of two-domain monomers in which each domain has some similarity to the Omega class glutathione S-transferases, is a thiol-dependent reductase (designated TDR1) that converts pentavalent antimonials into trivalent antimonials using glutathione as the reductant. The higher abundance of the enzyme in the mammalian stage of the parasite could explain why this parasite form is more susceptible to the drug.
Collapse
Key Words
- antimonial
- chemotherapy
- glutathione s-transferase
- leishmania
- parasite
- thiol-dependent reductase
- bpr, bromopyrogallol red
- dha, dehydroascorbate
- dhar, dha reductase
- dtnb, 5,5′-dithiobis-(2-nitrobenzoic acid)
- ea, ethacrynic acid
- epnp, 1,2-epoxy-3(4-nitrophenoxy)propane
- gst, glutathione s-transferases
- gsto, omega class gst
- hgsto, human gsto
- heds, 2-hydroxyethyldisulphide
- mmav, monomethylarsenate
- race, rapid amplification of cdna ends
- tdr1, thiol-dependent reductase
Collapse
Affiliation(s)
- Helen Denton
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, U.K
| | - Joanne C. McGREGOR
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, U.K
| | - Graham H. Coombs
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, U.K
| |
Collapse
|
16
|
Ouaissi A, Ouaissi M, Tavares J, Cordeiro-Da-Silva A. Host Cell Phenotypic Variability Induced by Trypanosomatid-Parasite-Released Immunomodulatory Factors: Physiopathological Implications. J Biomed Biotechnol 2004; 2004:167-174. [PMID: 15292583 PMCID: PMC551588 DOI: 10.1155/s1110724304311034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The parasitic protozoa Trypanosoma cruzi and Leishmania sp release a variety of molecules into their mammalian hosts (ESA: excretory-secretory products). The effects of these ESA on the host cell function may participate in the establishment of a successful infection, in which the parasite persists for a sufficient period of time to complete its life cycle. A number of regulatory components or processes originating from the parasite that control or regulate the metabolism and the growth of host cell have been identified. The purpose of the present review is to analyze some of the current data related to the parasite ESA that interfere with the host cell physiology. Special attention is given to members of conserved protein families demonstrating remarkable diversity and plasticity of function (ie, glutathione S-transferases and related molecules; members of the trans-sialidase and mucin family; and members of the ribosomal protein family). The identification of parasite target molecules and the elucidation of their mode of action toward the host cell represents a step forward in efforts aimed at an immunotherapeutic or pharmacological control of parasitic infection.
Collapse
Affiliation(s)
- Ali Ouaissi
- Institut de la Recherche pour le Développement, Unité de Recherche no 008 “Pathogénie des Trypanosomatidae,” Montpellier, France
- *Ali Ouaissi:
| | - Mehdi Ouaissi
- Service de Chirurgie Digestive et Générale, Hôpital Sainte Marguerite, 270 Boulevard de Sainte Marguerite, Marseille, France
| | - Joana Tavares
- Biochemical Laboratory, Faculty of Pharmacy, University of Porto, Portugal
| | | |
Collapse
|
17
|
Garzón E, Borges MC, Cordeiro-da-Silva A, Nacife V, Meirelles MDN, Guilvard E, Bosseno MF, Guevara AG, Brenière SF, Ouaissi A. Trypanosoma cruzi carrying a targeted deletion of a Tc52 protein-encoding allele elicits attenuated Chagas' disease in mice. Immunol Lett 2003; 89:67-80. [PMID: 12946866 DOI: 10.1016/s0165-2478(03)00112-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The intracellular protozoan parasite Trypanosoma cruzi is the etiological agent of Chagas' disease. We have previously characterized a T. cruzi virulence factor named Tc52 sharing structural and functional properties with the thioredoxin and glutaredoxin protein family. Single mutant parasite clones (Tc52(+/-)) exhibiting low virulence in vitro and in vivo were obtained by targeted Tc52 gene replacement. In this report, we have extended our study to analyze the immune response and the disease phenotype in Tc52(+/-)-infected BALB/c mice, during the acute and chronic phases of the disease. Significantly lower parasitemia were found in Tc52(+/-)-infected mice, as compared to wild-type parasite (WT)-infected ones. However, the expansion of all classes of lymphocytes and macrophages was similar for both clones. Furthermore, except for IgG2b levels which were higher in the case of WT-infected mice, all classes of Ig presented no significant difference for WT and Tc52(+/-)-infected animals. Interestingly, a lack of suppression of IL-2 production and of T-cell proliferation inhibition was observed in the case of spleen cells from Tc52(+/-)-infected mice. Finally, the pattern of inflammation process was different and characterized as diffused in the case of Tc52(+/-)-infected mice, or presenting numerous foci in the case of WT-infected mice. Localization of the Tc52 protein in tissue sections and infected heart cell primary cultures by immunofluorescence and immunogold labeling, respectively, revealed the presence of Tc52 at the amastigote surface and associated to aggregates within host cell vesicles. Taken together, these results reinforce the notion of Tc52 being a virulence factor playing a role in the phenotype of the immune response associated to the infection and on the course of the disease.
Collapse
Affiliation(s)
- Edwin Garzón
- IRD UR 008 Pathogénie des Trypanosomatidae, Centre IRD de Montpellier, 911 Avenue Agropolis, BP 5045, 34032 Montpellier Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wilkinson SR, Horn D, Prathalingam SR, Kelly JM. RNA interference identifies two hydroperoxide metabolizing enzymes that are essential to the bloodstream form of the african trypanosome. J Biol Chem 2003; 278:31640-6. [PMID: 12791697 DOI: 10.1074/jbc.m303035200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Detoxification of hydroperoxides in trypanosomes is mediated by a series of linked redox pathways that are dependent on the parasite-specific thiol trypanothione for reducing equivalents. These pathways are characterized by differences in subcellular location, electron transport molecules, and substrate specificity. To determine the functional significance of the enzymes involved, we have used a tetracycline-inducible RNA interference system to down-regulate expression of each of the corresponding transcripts in bloodstream form Trypanosoma brucei. We have identified two peroxidases, a cytosolic peroxiredoxin (TbCPX) and a member of the non-selenium glutathione-dependent peroxidase family (TbGPXI), that appear to be essential for the viability of this clinically relevant stage of the parasite life cycle. The addition of tetracycline to the cultures resulted in a major reduction in mRNA levels and enzyme activity, a dramatic fall in growth rate, and significant cell death. Furthermore, within 20 h of adding tetracycline, cells in which the cytosolic peroxiredoxin transcript was targeted were found to be 16-fold more susceptible to killing by exogenous hydrogen peroxide. We also observed that knockdown of the tryparedoxin TbT-PNI, a thioredoxin-like protein that facilitates electron transport to both TbCPX and TbGPXI, resulted in a reduction in growth rate. These experiments therefore identify redox pathways that are essential for oxidative defense in T. brucei and validate the corresponding peroxidases as targets for drug design.
Collapse
Affiliation(s)
- Shane R Wilkinson
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom.
| | | | | | | |
Collapse
|
19
|
Borges M, Da Silva AC, Sereno D, Ouaissi A. Peptide-based analysis of the amino acid sequence important to the immunoregulatory function of Trypanosoma cruzi Tc52 virulence factor. Immunology 2003; 109:147-55. [PMID: 12709028 PMCID: PMC1782932 DOI: 10.1046/j.1365-2567.2003.01637.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular protozoan parasite Trypanosoma cruzi is the aetiological agent of Chagas' disease. We have previously identified a T. cruzi-released protein called Tc52, which is crucial for parasite survival and virulence. In the present study, we attempted to define the Tc52 epitope(s) responsible for its immunoregulatory function. A naturally occurring major peptide fragment of molecular mass 28 kDa (Tc28k) was identified, which was localized in the C-terminal portion of Tc52 and was inhibitory for T-cell activation. Synthetic peptides corresponding to amino acid sequences in Tc52 were evaluated for their ability to modulate T-cell proliferation and cytokine production. Results obtained using five peptides spanning the N-terminal or C-terminal domain of the Tc52 protein indicated that the activity mapped to Tc52 residues 432-445. Moreover, it was found that the peptide, when coupled to a carrier protein (ovalbumin), exhibited increased inhibitory activity on T-lymphocyte activation. Incubation with 8 nm ovalbumin-coupled peptide 432-445 resulted in approximately the same levels (>75%) of inhibition of T-cell proliferation as 5 micro g/ml Tc28k. Furthermore, we showed that the coupled peptide significantly down-regulated the secretion of interferon-gamma (IFN-gamma) and interleukin-2 (IL-2). Likewise, in immunized mice, the coupled peptide 432-445 was a very poor B- and T-cell antigen compared with the other Tc52-derived peptides. These results suggest that the immunomodulatory portion of the T. cruzi Tc52 virulent factor may reside, at least in part, in a conserved sequence within its C-terminal domain, which could minimize its antigenicity.
Collapse
Affiliation(s)
- Margarida Borges
- IRD UR 008 ‘Pathogénie des Trypanosomatidae’, Centre IRD de MontpellierMontpellier, France
| | - Anabela Cordeiro Da Silva
- Department of Biochemistry, Faculty of Pharmacy and Institute of Cellular and Molecular Biology, University of PortoPortugal
| | - Denis Sereno
- IRD UR 008 ‘Pathogénie des Trypanosomatidae’, Centre IRD de MontpellierMontpellier, France
| | - Ali Ouaissi
- IRD UR 008 ‘Pathogénie des Trypanosomatidae’, Centre IRD de MontpellierMontpellier, France
| |
Collapse
|
20
|
Abstract
Reactive oxygen species are the unwanted by-products of aerobic metabolism. To protect cells against their potentially lethal effects a series of pathways have evolved that are collectively called the oxidative defence system. In most eukaryotes, catalases and selenium-dependent glutathione peroxidases form the front line of defence against hydroperoxide-mediated damage. However, these activities are lacking in members of the Trypanosomatidae family of protozoan parasites. Instead these organisms contain several enzyme-mediated pathways for removal of hydroperoxides that are centred upon the unusual thiol trypanothione. Here we discuss the biochemical properties of one group of these enzymes, the non-selenium glutathione-dependent peroxidases, and outline the roles that they play in protecting the parasite against hydroperoxides associated with biological membranes.
Collapse
Affiliation(s)
- Shane R Wilkinson
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | |
Collapse
|
21
|
Girardini J, Amirante A, Zemzoumi K, Serra E. Characterization of an omega-class glutathione S-transferase from Schistosoma mansoni with glutaredoxin-like dehydroascorbate reductase and thiol transferase activities. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5512-21. [PMID: 12423349 DOI: 10.1046/j.1432-1033.2002.03254.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glutathione S-transferases (EC 2.5.1.18) (GSTs), are a family of multifunctional enzymes present in all living organisms whose main function is the detoxification of electrophilic compounds. GSTs are considered the most prominent detoxifying class II enzymes in helminths. We describe here the characterization of novel dehydroascorbate reductase and thiol transferase activities that reside in the human parasite Schistosoma mansoni GSTx. Protein sequence analysis of this parasite product showed lower identity to known GSTs. However, phylogenic analysis placed SmGSTx among the recently described omega class GSTs (GSTO1-1). We report here that SmGSTO protein is a 28-kDa polypeptide, detected in all life stages of the parasite, being highly expressed in adult worms. Like other omega class GSTs, SmGSTO showed very low activity toward classical GSTs substrates as 1-chloro-2,4-dinitrobenzene, and no binding affinity to glutathione-agarose matrix but showed some biochemical characteristics related with thioredoxins/glutaredoxins. Interestingly, SmGSTO was able to bind S-hexyl glutathione matrix and displayed significant glutathione-dependent dehydroascorbate reductase and thiol transferase enzymatic activities.
Collapse
Affiliation(s)
- Javier Girardini
- Instituto de Biología Molecular y Celular de Rosario, IBR-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR; and Facultad de Odontología, UNR, Rorario, Argentina
| | | | | | | |
Collapse
|
22
|
Ouaissi A, Guilvard E, Delneste Y, Caron G, Magistrelli G, Herbault N, Thieblemont N, Jeannin P. The Trypanosoma cruzi Tc52-released protein induces human dendritic cell maturation, signals via Toll-like receptor 2, and confers protection against lethal infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:6366-74. [PMID: 12055254 DOI: 10.4049/jimmunol.168.12.6366] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The intracellular protozoan parasite Trypanosoma cruzi is the etiological agent of Chagas disease. We have recently identified a T. cruzi-released protein related to thiol-disulfide oxidoreductase family, called Tc52, which is crucial for parasite survival and virulence. In vitro, Tc52 in combination with IFN-gamma activates human macrophages. In vivo, active immunization with Tc52 relieves the immunosuppression associated to acute infection and elicits a specific immune response. As dendritic cells (DC) have a central role in the initiation of immune responses, we investigated whether Tc52 may modulate DC activity. We show that Tc52 induces human DC maturation. Tc52-treated immature DC acquire CD83 and CD86 expression, produce inflammatory chemokines (IL-8, monocyte chemoattractant protein-1, and macrophage-inflammatory protein-1 alpha), and present potent costimulatory properties. Tc52 binds to DC by a mechanism with the characteristics of a saturable receptor system and signals via Toll-like receptor 2. While Tc52-mediated signaling involves its reduced glutathione-binding site, another portion of the molecule is involved in Tc52 binding to DC. Finally, we report that immunization with Tc52 protects mice in vivo against lethal infection with T. cruzi. Together these data evidence complex molecular interactions between the T. cruzi-derived molecule, Tc52, and DC, and suggest that Tc52 and related class of proteins might represent a new type of pathogen-associated molecular patterns. Moreover, the immune protection data suggest that Tc52 is among candidate molecules that may be used to design an optimal multicomponent vaccine to control T. cruzi infection.
Collapse
Affiliation(s)
- Ali Ouaissi
- Institut de Recherche pour le Développement UR 008, Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wilkinson SR, Taylor MC, Touitha S, Mauricio IL, Meyer DJ, Kelly JM. TcGPXII, a glutathione-dependent Trypanosoma cruzi peroxidase with substrate specificity restricted to fatty acid and phospholipid hydroperoxides, is localized to the endoplasmic reticulum. Biochem J 2002; 364:787-94. [PMID: 12049643 PMCID: PMC1222628 DOI: 10.1042/bj20020038] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Until recently, it had been thought that trypanosomes lack glutathione peroxidase activity. Here we report the subcellular localization and biochemical properties of a second glutathione-dependent peroxidase from Trypanosoma cruzi (TcGPXII). TcGPXII is a single-copy gene which encodes a 16 kDa protein that appears to be specifically dependent on glutathione as the source of reducing equivalents. Recombinant TcGPXII was purified and shown to have peroxidase activity towards a narrow substrate range, restricted to hydroperoxides of fatty acids and phospholipids. Analysis of the pathway revealed that TcGPXII activity could be readily saturated by glutathione and that the peroxidase functioned by a Ping Pong mechanism. Enzyme reduction was shown to be the rate-limiting step in this pathway. Using immunofluorescence, TcGPXII was shown to co-localize with a homologue of immunoglobulin heavy-chain binding protein (BiP), a protein restricted to the endoplasmic reticulum and Golgi. As the smooth endoplasmic reticulum is the site of phospholipid and fatty acid biosynthesis, this suggests that TcGPXII may play a specific role in the T. cruzi oxidative defence system by protecting newly synthesized lipids from peroxidation.
Collapse
Affiliation(s)
- Shane R Wilkinson
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Ouaissi A, Ouaissi M, Sereno D. Glutathione S-transferases and related proteins from pathogenic human parasites behave as immunomodulatory factors. Immunol Lett 2002; 81:159-64. [PMID: 11947919 DOI: 10.1016/s0165-2478(02)00035-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a rapidly expanding interest into the glutathione S-transferases (GSTs) and the structurally related molecules. Many of the latter have been identified as members of conserved protein families sharing structural and some times functional properties being particularly involved in heat-shock response, drug resistance and carcinogenesis. Also, evidence is emerging that members of the GST super family from some pathogens could exert immunomodulatory functions toward the cell of the immune system, involving separate profiles of cytokine gene transcription and different patterns of cell growth, illustrating therefore the 'one gene-dual function' phenomenon. The implication of these biological properties for pathogenesis is discussed.
Collapse
Affiliation(s)
- Ali Ouaissi
- IRD UR 008 Pathogénie des Trypanosomatidés, Centre IRD de Montpellier, 911 Av. Agropolis, BP 5045, 34032, Montpellier, France.
| | | | | |
Collapse
|
25
|
Borges M, Guilvard E, Cordeiro da Silva A, Vergnes B, Zemzoumi K, Ouaissi A. Endogenous Trypanosoma cruzi Tc52 protein expression upregulates the growth of murine macrophages and fibroblasts and cytokine gene expression. Immunol Lett 2001; 78:127-34. [PMID: 11578686 DOI: 10.1016/s0165-2478(01)00248-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- M Borges
- IRD UR 008 Pathogénie des Trypanosomatidés, Centre IRD de Montpellier, 911 Av. Agropolis, BP 5045, 34032, Montpellier, France
| | | | | | | | | | | |
Collapse
|
26
|
Wilkinson SR, Meyer DJ, Kelly JM. Biochemical characterization of a trypanosome enzyme with glutathione-dependent peroxidase activity. Biochem J 2000; 352 Pt 3:755-61. [PMID: 11104683 PMCID: PMC1221514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In most eukaryotes, glutathione-dependent peroxidases play a key role in the metabolism of peroxides. Numerous studies have reported that trypanosomatids lack this activity. Here we show that this is not the case, at least for the American trypanosome Trypanosoma cruzi. We have isolated a single-copy gene from T. cruzi with the potential to encode an 18 kDa enzyme, the sequence of which has highest similarity with glutathione peroxidases from plants. A recombinant form of the protein was purified following expression in Escherichia coli. The enzyme was shown to have peroxidase activity in the presence of glutathione/glutathione reductase but not in the presence of trypanothione/trypanothione reductase. It could metabolize a wide range of hydroperoxides (linoleic acid hydroperoxide and phosphatidylcholine hydroperoxide>cumene hydroperoxide>t-butyl hydroperoxide), but no activity towards hydrogen peroxide was detected. Enzyme activity could be saturated by glutathione when both fatty acid and short-chain organic hydroperoxides were used as substrate. For linoleic acid hydroperoxide, the rate-limiting step of this reaction is the reduction of the peroxidase by glutathione. With lower-affinity substrates such as t-butyl hydroperoxide, the rate-limiting step is the reduction of the oxidant. The data presented here identify a new arm of the T. cruzi oxidative defence system.
Collapse
Affiliation(s)
- S R Wilkinson
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | | | | |
Collapse
|
27
|
Florent I, Mouray E, Dali Ali F, Drobecq H, Girault S, Schrével J, Sergheraert C, Grellier P, Florenta I. Cloning of Plasmodium falciparum protein disulfide isomerase homologue by affinity purification using the antiplasmodial inhibitor 1,4-bis[3-[N-(cyclohexyl methyl)amino]propyl]piperazine.. FEBS Lett 2000; 484:246-52. [PMID: 11078887 DOI: 10.1016/s0014-5793(00)02170-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A series of 10 1,4-bis(3-aminopropyl)piperazine compounds was found to display antiplasmodial activity with 50% growth inhibition between 30 and 250 nM, on three Plasmodium falciparum strains differently sensitive to chloroquine. By affinity chromatography using one of these compounds, a 52-kDa protein was isolated from P. falciparum, microsequenced and cloned. It corresponded to a single copy gene encoding a 453 amino acid protein displaying the typical features of protein disulfide isomerases, a thiol metabolizing enzyme belonging to the thiol: disulfide oxidoreductase superfamily, which was not previously described in malarial species.
Collapse
Affiliation(s)
- I Florent
- Laboratoire de Biologie et Evolution des Parasites, FR CNRS 63, Muséum National d'Histoire Naturelle, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ouaissi A, Vergnes B, Borges M, Guilvard E. Identification and molecular characterization of two novel Trypanosoma cruzi genes encoding polypeptides sharing sequence motifs found in proteins involved in RNA editing reactions. Gene 2000; 253:271-80. [PMID: 10940565 DOI: 10.1016/s0378-1119(00)00253-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have previously identified a Trypanosoma cruzi cDNA encoding a protein named Tc52 sharing structural and functional properties with the thioredoxin and glutaredoxin protein family involved in thiol-disulphide redox reactions. Furthermore, we reported that Tc52 also plays a role in T. cruzi-associated immunosuppression observed during Chagas' disease. Moreover, Tc52 gene targeting deletion strategy allowed us to demonstrate that monoallelic disruption of Tc52 resulted in the alteration of the metacyclogenesis process and the production of less virulent parasites. Sequence analysis of a 7358 bp genomic fragment containing the Tc52 encoding gene revealed two additional open reading frames (ORF-A and C). The ORFs are likely to have protein coding function by a number of criteria, including reverse transcriptase polymerase chain reaction (RT-PCR), Western blot and immunofluorescence analyses. The deduced amino-acid (aa) sequence of the ORF-A localized upstream of the Tc52 gene revealed that it contains within its N-terminus (aa 1 to 170) four RGG boxes known to act as RNA binding motifs in some proteins that interact with RNA, interspersed with a high density of glycine with regular spacing of tryptophan (WX(9-10)) in which X is often a glycine. Moreover, the C-terminal part of the ORF-C (aa 253-289) contains a motif that is strikingly similar (7-35% identity, 14-46% similarity over 28aa) to a short sequence (RNP1) comprising the consensus sequence RNA binding domain (CS-RBD) found in a number of proteins that interact with RNA. The aa sequence from the ORF-C localized downstream of the Tc52 gene showed significant homology to human adenosine deaminase acting on RNA (hADAT1) that specifically deaminates adenosine 37 to inosine in eukaryotic tRNA(Ala) and to its homologue yeast protein (Tad1p) (22-25% identity and an additional 38-40% similarity over 177aa). Moreover, highly similar motifs of the deaminase domain are present in the T. cruzi ORF-C. Furthermore, the 5' flanking regions of the genes contained repeat TATA and CAAT nucleotide sequences which resemble the motifs found upstream of the transcription initiation sites in eukaryotic promoters. Therefore, the characterization of novel T. cruzi genes encoding proteins which show similarity to components of RNA processing reactions provides new tools to investigate the gene expression regulation in these parasitic organisms. Moreover, our recent findings on the Tc52 encoding gene underline the interest of genetic manipulation of T. cruzi, not only making it possible to use more closely an in vitro approach to find out how genes function, but also to obtain 'attenuated' strains that could be used in the development of vaccinal strategies.
Collapse
Affiliation(s)
- A Ouaissi
- CJF INSERM No. 96-04 'Approches Moléculaires et Immunologiques de la Pathogénie des Trypanosomatidae', Institut de Recherche pour le Développement, Centre IRD (ex-ORSTOM) de Montpellier, France.
| | | | | | | |
Collapse
|
29
|
Zemzoumi K, Guilvard E, Sereno D, Preto A, Benlemlih M, Da Silva AC, Lemesre JL, Ouaissi A. Cloning of a Leishmania major gene encoding for an antigen with extensive homology to ribosomal protein S3a. Gene 1999; 240:57-65. [PMID: 10564812 DOI: 10.1016/s0378-1119(99)00433-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Following purification by affinity chromatography, a Leishmania major S-hexylglutathione- binding protein of molecular mass 66kDa was isolated. The immune serum against the parasite 66kDa polypeptide when used to screen a L. major cDNA library could identify clones encoding for the human v-fos transformation effector homologue, namely ribosomal protein S3a, and thus was named LmS3a-related protein (LmS3arp). A 1027bp cDNA fragment was found to contain the entire parasite gene encoding for a highly basic protein of 30kDa calculated molecular mass sharing homology to various ribosomal S3a proteins from different species. Using computer methods for a multiple alignment and sequence motif search, we found that LmS3arp shares a sequence homology to class theta glutathione S-transferase mainly in a segment containing critical residues involved in glutathione binding. These new findings are discussed in the light of recent published data showing multiple function(s) of the ribosomal proteins S3a.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies/immunology
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antigens, Protozoan/metabolism
- Antigens, Surface/genetics
- Base Sequence
- Blotting, Western
- Cell Line
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/immunology
- Electrophoresis, Polyacrylamide Gel
- Fluorescent Antibody Technique
- Gene Library
- Genes, Protozoan/genetics
- Glutathione/metabolism
- Leishmania major/chemistry
- Leishmania major/genetics
- Leishmania major/growth & development
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Precipitin Tests
- Protein Binding
- Protozoan Proteins
- Ribosomal Proteins/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sulfur Radioisotopes
Collapse
Affiliation(s)
- K Zemzoumi
- CJF-INSERM n degrees 96-04, Centre IRD, 911 Av. Agropolis, BP 5045, 34032, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Davioud-Charvet E, Berecibar A, Girault S, Landry V, Drobecq H, Sergheraert C. Synthesis of polyamine derivatives for the preparation of affinity chromatography columns for the search of new Trypanosoma cruzi targets. Bioorg Med Chem Lett 1999; 9:1567-72. [PMID: 10386937 DOI: 10.1016/s0960-894x(99)00226-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The most potent trypanocidal compound of a series of symmetrically substituted 1,4-bis(3-aminopropylpiperazines) which displayed an IC50 value of 5 microM on Trypanosoma cruzi trypomastigotes, was inactive on trypanothione reductase. Two derivatives 6 and 12 of this compound, one symmetrical and one dissymmetrical, were synthesized via a reductive amination reaction, to prepare affinity chromatography columns, which allowed us to isolate three parasitic proteins. Among these, the major ligand 6- and 12-binding protein having an apparent molecular weight of 52 kDa has been identified as the thiol-disulfide oxido-reductase Tc52, previously characterized in Trypanosoma cruzi.
Collapse
Affiliation(s)
- E Davioud-Charvet
- Institut de Biologie et Institut Pasteur de Lille - UMR CNRS 8525 - Faculté de Pharmacie - Université de Lille II, France
| | | | | | | | | | | |
Collapse
|
31
|
Allaoui A, François C, Zemzoumi K, Guilvard E, Ouaissi A. Intracellular growth and metacyclogenesis defects in Trypanosoma cruzi carrying a targeted deletion of a Tc52 protein-encoding allele. Mol Microbiol 1999; 32:1273-86. [PMID: 10383767 DOI: 10.1046/j.1365-2958.1999.01440.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified previously a Trypanosoma cruzi gene encoding a protein named Tc52 sharing structural and functional properties with the thioredoxin and glutaredoxin protein family involved in thiol-disulphide redox reactions. Furthermore, we have reported that Tc52 also played a role in T. cruzi-associated immunosuppression observed during Chagas' disease. In an effort to understand further the biological role of Tc52, we used a gene-targeted deletion strategy to create T. cruzi mutants. Although T. cruzi tolerates deletion of one wild-type Tc52 allele, deletion of both genes is a lethal event, indicating that at least one active Tc52 gene is required for parasite survival. Monoallelic disruption of Tc52 (Tc52+/-) resulted in the production of T. cruzi lines that express less Tc52 mRNA and produced lower amounts of Tc52 protein compared with wild-type cells. In axenic cultures, growth rates of epimastigote forms bearing an interrupted allele were not different from those of wild-type parasites. Furthermore, monoallelic disruption of the Tc52 gene did not modify the growth rate of epimastigotes or their sensitivity to inhibition by benznidazole and nifurtimox, the two drugs used to treat Chagasic patients. Moreover, the antimonial drug SbIII, which is known, at least in Leishmania parasites, to be conjugated to a thiol and extruded by an ATP-coupled pump, had a similar effect on wild-type and mutant parasites, being equally sensitive. Hence, parasite drug sensitivity was also observed in clones overexpressing the Tc52 protein as well as in those carrying an antisense plasmid construct. Surprisingly, a significant impairment of the ability of epimastigotes carrying a Tc52 single gene replacement or antisense construct to differentiate into metacyclic trypomastigotes and to proliferate in vitro and in vivo was observed, whereas no significant enhancement of these biological properties was seen in the case of parasites that overexpress Tc52 protein. Moreover, functional complementation of Tc52+/- single mutant or selection of antisense revertant clones demonstrated that the phenotype observed is a direct consequence of Tc52 gene manipulation. Taken together, these results may suggest that Tc52 could participate among other factors in the phenotypic expression of T. cruzi virulence.
Collapse
Affiliation(s)
- A Allaoui
- CJF INSERM no. 96-04, Centre de l'Institut de Recherche pour le Développement (IRD ex-ORSTOM) de Montpellier, 911 Avenue Agropolis, BP 5045, 34032 Montpellier Cédex 1, France
| | | | | | | | | |
Collapse
|
32
|
Kodym R, Calkins P, Story M. The cloning and characterization of a new stress response protein. A mammalian member of a family of theta class glutathione s-transferase-like proteins. J Biol Chem 1999; 274:5131-7. [PMID: 9988762 DOI: 10.1074/jbc.274.8.5131] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using differential display, a cDNA fragment was identified as being overexpressed in a mouse lymphoma cell line that had gained resistance to cell death after exposure to a variety of agents used in cancer therapy. The full-length cDNA of 1.1 kb that was cloned contained an open reading frame coding for a previously unidentified 28-kDa mammalian protein, p28. p28 showed significant homologies to a large family of stress response proteins that contain a glutathione S-transferase (GST) domain. In correspondence with the sequence homology, p28 was found to bind glutathione; however, GST or glutathione peroxidase activity could not be demonstrated. Northern analysis of the mRNA of this protein showed abundant expression in mouse heart and liver tissues, whereas anti-p28 antibody binding identified p28 expression in mouse 3T3 cells and early passage mouse embryo fibroblasts. Subcellular protein fractionation revealed p28 localization in the cytoplasm, but with thermal stress p28 relocated to the nuclear fraction of cellular proteins. Based on sequence homology and protein activity we conclude that p28 acts as a small stress response protein, likely involved in cellular redox homeostasis, and belongs to a family of GST-like proteins related to class theta GSTs.
Collapse
Affiliation(s)
- R Kodym
- Department of Experimental Radiation Oncology, University of Texas, M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
33
|
Foley V, Sheehan D. Glutathione S-transferases of the yeast Yarrowia lipolytica have unusually large molecular mass. Biochem J 1998; 333 ( Pt 3):839-45. [PMID: 9677348 PMCID: PMC1219652 DOI: 10.1042/bj3330839] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two similar glutathione S-transferases (GSTs), which do not bind to glutathione- or S-hexylglutathione-agarose affinity resins, have been purified from the yeast Yarrowia lipolytica. An approx. 400-fold purification was obtained by a combination of DEAE-Sephadex, phenyl-Sepharose, hydroxyapatite and Mono-Q anion-exchange chromatography. The native molecular mass of both proteins was estimated as approx. 110 kDa by both Superose-12 gel-filtration chromatography and non-denaturing electrophoresis. SDS/PAGE indicated a subunit mass of 50 kDa. Reverse-phase HPLC of purified proteins gave a single, well-resolved, peak, suggesting that the proteins are homodimers. Identical behaviour on HPLC, native electrophoresis and SDS/PAGE, N-terminal sequencing, sensitivity to a panel of inhibitors and identical specific activities with 1-chloro-2,4-dinitrobenzene as substrate suggest that the two isoenzymes are very similar. The enzymes do not immunoblot with antisera to any of the main GST classes, and N-terminal sequencing suggests no clear relationship with previously characterized enzymes, such as that of the fungus, Phanerochaete chrysosporium [Dowd, Buckley and Sheehan (1997) Biochem. J. 324, 243-248]. It is possible that the two isoenzymes arise as a result of post-translational modification of a single GST isoenzyme.
Collapse
Affiliation(s)
- V Foley
- Department of Biochemistry, University College Cork, Lee Maltings, Prospect Row, Cork, Republic of Ireland
| | | |
Collapse
|
34
|
O'Sullivan MC, Zhou Q, Li Z, Durham TB, Rattendi D, Lane S, Bacchi CJ. Polyamine derivatives as inhibitors of trypanothione reductase and assessment of their trypanocidal activities. Bioorg Med Chem 1997; 5:2145-55. [PMID: 9459012 DOI: 10.1016/s0968-0896(97)00157-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Trypanothione reductase (TR) occurs exclusively in trypanosomes and leishmania, which are the etiological agents of many diseases. TR plays a vital role in the antioxidant defenses of these parasites and inhibitors of TR have potential as antitrypanosomal agents. We describe the syntheses of several spermine and spermidine derivatives and the inhibiting effects of these compounds on T. cruzi TR. All of the inhibiting compounds displayed competitive inhibition of TR-mediated reduction of trypanothione disulfide. The three most effective compounds studied were N4,N8-bis(3-phenylpropyl)spermine (12), N4,N8-bis(2-naphthylmethyl)spermine (14), and N1,N8-bis(2-naphthylmethyl)spermidine (21), with Ki values of 3.5, 5.5 and 9.5 microM, respectively. Compounds 12, 14, and 21 were found to be potent trypanocides in vitro with IC50 values ranging from 0.19 to 0.83 microM against four T. brucei ssp. strains. However, these compounds did not prolong the lives of mice infected with trypanosomes. This work indicates that certain polyamine derivatives which target a unique pathway in Trypanosomatidae have potential as antitrypanosomal agents.
Collapse
Affiliation(s)
- M C O'Sullivan
- Department of Chemistry, Indiana State University, Terre Haute 47809, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
This paper reviews current knowledge regarding the metabolism of the sulphur-containing amino acids methionine and cysteine in parasitic protozoa and helminths. Particular emphasis is placed on the unusual aspects of parasite biochemistry which may present targets for rational design of antiparasite drugs. In general, the basic pathways of sulphur amino acid metabolism in most parasites resemble those of their mammalian hosts, since the enzymes involved in (a) the methionine cycle and S-adenosylmethionine metabolism, (b) the trans-sulphuration sequence, (c) the transminative catabolism of methionine, (d) the oxidative catabolism of cysteine and (e) glutathione synthesis have been demonstrated variously in several helminth and protozoan species. Despite these common pathways, there also exist numerous differences between parasite and mammalian metabolism. Some of these differences are relatively subtle. For example, the biochemical properties (and primary amino acid structures) of certain parasite methionine cycle enzymes and S-adenosylmethionine decarboxylases differ from those of the corresponding mammalian enzymes, and nematodes and trichomonads possess a novel, non-mammalian form of the trans-sulphuration enzyme cystathionine beta-synthase. The most profound differences between parasite and mammalian biochemistry relate to a number of unusual enzymes and thiol metabolites found in parasitic protozoa. In certain protozoa the pathway for methionine recycling from 5'-methylthioadenosine differs markedly from the mammalian route, and involves 2 exclusively microbial enzymes. Trypanosomatid protozoa contain the non-mammalian antioxidant thiol compounds ovothiol A and trypanothione, together with unique trypanothione-linked enzymes. Specific anaerobic protozoa possess another exclusively microbial enzyme, methionine gamma-lyase, which catabolises methionine (and homocysteine); the physiological significance of these non-mammalian activities is not fully understood. These unusual features offer opportunities for chemotherapeutic exploitation, and in some cases represent metabolic similarities with bacteria. Additionally, some anaerobic protozoa contain unidentified thiols and this implies the presence of further unusual enzymes/pathways in these organisms. So far, no truly unique targets for chemotherapy have been found in helminth sulphur amino acid metabolism, and to some degree this reflects the relative lack of detailed study in the area.
Collapse
Affiliation(s)
- J Walker
- Department of Veterinary Parasitology, University of Glasgow, U.K
| | | |
Collapse
|
36
|
Moutiez M, Quéméneur E, Sergheraert C, Lucas V, Tartar A, Davioud-Charvet E. Glutathione-dependent activities of Trypanosoma cruzi p52 makes it a new member of the thiol:disulphide oxidoreductase family. Biochem J 1997; 322 ( Pt 1):43-8. [PMID: 9078241 PMCID: PMC1218156 DOI: 10.1042/bj3220043] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Trypanothione: glutathione disulphide thioltransferase of Try-panosoma cruzi (p52) is a key enzyme in the regulation of the intracellular thiol-disulphide redox balance by reducing glutathione disulphide. Here we show that p52, like other disulphide oxidoreductases possessing the CXXC active site motif, catalyses the reduction of low-molecular-mass disulphides (hydroxyethyl-disulphide) as well as protein disulphides (insulin). However, p52 seems to be a poor oxidase under physiological conditions as evidenced by its very low rate for oxidative renaturation of reduced ribonuclease A Like thioltransferase and protein disulphide isomerase, p52 was found to possess a glutathione-dependent dehydroascorbate reductase activity. The kinetic parameters were in the same range as those determined for mammalian dehydroascorbate reductases. A catalytic mechanism taking into account both trypanothione- and glutathione-dependent reduction reactions was proposed. This newly characterized enzyme is specific for the parasite and provides a new target for specific chemotherapy.
Collapse
Affiliation(s)
- M Moutiez
- Service de Chimie des biomolécules, URA CNRS 1309, Institut Pasteur de Lille, France
| | | | | | | | | | | |
Collapse
|
37
|
|
38
|
O'Sullivan MC, Dalrymple DM, Zhou Q. Inhibiting effects of spermidine derivatives on Trypanosoma cruzi trypanothione reductase. JOURNAL OF ENZYME INHIBITION 1996; 11:97-114. [PMID: 9204399 DOI: 10.3109/14756369609036537] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Trypanothione reductase is a vital component of the antioxidant defenses of trypanosomes. This enzyme reduces trypanothione, a spermidine-glutathione conjugate. The inhibitory effects of several spermidine derivatives on the reduction of trypanothione by Trypanosoma cruzi trypanothione reductase were assessed. Spermidine derivatives containing hydrophobic aromatic substituents were found to be competitive inhibitors of trypanothione reductase. N4-acylated spermidine derivatives were less effective inhibitors than the corresponding N4-alkylated derivatives. The most effective compounds studied were N1, N8-bis(2-naphthylmethyl)spermidine and N4-(2-naphthylmethyl)spermidine, with Ki values of 9.5 and 108 microM, respectively.
Collapse
Affiliation(s)
- M C O'Sullivan
- Department of Chemistry, Indiana State University, Terre Haute 47809, USA
| | | | | |
Collapse
|
39
|
Benard O, Balasubramanian KA. Purification and properties of thioltransferase from monkey small intestinal mucosa: its role in protein-S-thiolation. Int J Biochem Cell Biol 1996; 28:1051-9. [PMID: 8930128 DOI: 10.1016/1357-2725(96)00031-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Modification of protein thiol by mixed disulfide formation with low molecular weight cellular thiols has been proposed as one of the post-translational modifications of amino acid side chains and is known to be catalyzed by thioltransferase. Intestinal mucosa is susceptible to oxidative injury and is likely to form protein mixed disulfide during oxidative stress. In the present study thioltransferase was purified from monkey small intestinal mucosa and its role in protein-s-thiolation was investigated. The purified enzyme was homogeneous, as judged by polyacrylamide gel electrophoresis under reducing conditions. The enzyme, with a molecular weight of 52 kDa, was a monomeric protein, which showed optimum activity at pH 8.0 with hydroxyethyl disulfide as substrate. The enzyme specifically cleaved the disulfide bond of the synthetic substrate, hydroxyethyl disulfide, in the presence of reduced glutathione (GSH) with the formation of oxidized glutathione (GSSG) as shown by high performance liquid chromatography. The enzyme also catalyzed protein thiolation of monkey intestinal mitochondria when incubated with glutathione disulfide. These studies have shown that thioltransferase purified from intestinal mucosa could catalyze dethiolation and thiolation.
Collapse
Affiliation(s)
- O Benard
- Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore, India
| | | |
Collapse
|