1
|
De La Cruz N, Pradhan P, Veettil RT, Conti BA, Oppikofer M, Sabari BR. Disorder-mediated interactions target proteins to specific condensates. Mol Cell 2024; 84:3497-3512.e9. [PMID: 39232584 DOI: 10.1016/j.molcel.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/03/2024] [Accepted: 08/10/2024] [Indexed: 09/06/2024]
Abstract
Selective compartmentalization of cellular contents is fundamental to the regulation of biochemistry. Although membrane-bound organelles control composition by using a semi-permeable barrier, biomolecular condensates rely on interactions among constituents to determine composition. Condensates are formed by dynamic multivalent interactions, often involving intrinsically disordered regions (IDRs) of proteins, yet whether distinct compositions can arise from these dynamic interactions is not known. Here, by comparative analysis of proteins differentially partitioned by two different condensates, we find that distinct compositions arise through specific IDR-mediated interactions. The IDRs of differentially partitioned proteins are necessary and sufficient for selective partitioning. Distinct sequence features are required for IDRs to partition, and swapping these sequence features changes the specificity of partitioning. Swapping whole IDRs retargets proteins and their biochemical activity to different condensates. Our results demonstrate that IDR-mediated interactions can target proteins to specific condensates, enabling the spatial regulation of biochemistry within the cell.
Collapse
Affiliation(s)
- Nancy De La Cruz
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Pradhan
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reshma T Veettil
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brooke A Conti
- Pfizer Centers for Therapeutic Innovation, Pfizer Inc., New York, NY 10016, USA
| | - Mariano Oppikofer
- Pfizer Centers for Therapeutic Innovation, Pfizer Inc., New York, NY 10016, USA
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
El Harrar T, Gohlke H. Cumulative Millisecond-Long Sampling for a Comprehensive Energetic Evaluation of Aqueous Ionic Liquid Effects on Amino Acid Interactions. J Chem Inf Model 2023; 63:281-298. [PMID: 36520535 DOI: 10.1021/acs.jcim.2c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The interactions of amino acid side-chains confer diverse energetic contributions and physical properties to a protein's stability and function. Various computational tools estimate the effect of changing a given amino acid on the protein's stability based on parametrized (free) energy functions. When parametrized for the prediction of protein stability in water, such energy functions can lead to suboptimal results for other solvents, such as ionic liquids (IL), aqueous ionic liquids (aIL), or salt solutions. However, to our knowledge, no comprehensive data are available describing the energetic effects of aIL on intramolecular protein interactions. Here, we present the most comprehensive set of potential of mean force (PMF) profiles of pairwise protein-residue interactions to date, covering 50 relevant interactions in water, the two biotechnologically relevant aIL [BMIM/Cl] and [BMIM/TfO], and [Na/Cl]. These results are based on a cumulated simulation time of >1 ms. aIL and salt ions can weaken, but also strengthen, specific residue interactions by more than 3 kcal mol-1, depending on the residue pair, residue-residue configuration, participating ions, and concentration, necessitating considering such interactions specifically. These changes originate from a complex interplay of competitive or cooperative noncovalent ion-residue interactions, changes in solvent structural dynamics, or unspecific charge screening effects and occur at the contact distance but also at larger, solvent-separated distances. This data provide explanations at the atomistic and energetic levels for complex IL effects on protein stability and should help improve the prediction accuracies of computational tools that estimate protein stability based on (free) energy functions.
Collapse
Affiliation(s)
- Till El Harrar
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.,Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Das BK, Chakraborty D. Deciphering the competitive inhibition of dihydropteroate synthase by 8 marcaptoguanine analogs: enhanced potency in phenylsulfonyl fragments. J Biomol Struct Dyn 2022; 40:13083-13102. [PMID: 34581241 DOI: 10.1080/07391102.2021.1981452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The emergence of sulfa-drug resistance and reduced efficacy of pterin-based analogs towards Dihydropteroate synthase (DHPS) inhibition dictate a pressing need of developing novel antimicrobial agents for immune-compromised patients. Recently, a series of 8-Marcaptoguanin (8-MG) derivatives synthesized for 6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (experimental KD ∼ 100-.0.36) showed remarkable homology with the pteroic-acid and serve as a template for product antagonism in DHPS. The present work integrates ligand-based drug discovery techniques with structure-based docking, enhanced MD simulation, and MM/PBSA techniques to demonstrate the essential features of 8-MG analogs which make it a potent inhibitor for DHPS. The delicate balance in hydrophilic, hydrophobic substitutions on the 8-MG core is the crucial signature for DHPS inhibition. It is found that the dynamic interactions of active compounds are mainly dominated by consistent hydrogen bonding network with Asp 96, Asn 115, Asp 185, Ser 222, Arg 255 and π-π stacking, π-cation interactions with Phe 190, Lys 221. Further, two new 8-MG compounds containing N-phenylacetamide (compound S1, ΔGbind-eff = -62.03 kJ/mol) and phenylsulfonyl (compound S3, ΔGbind-eff = -71.29 kJ/mol) fragments were found to be the most potent inhibitor of DHPS, which stabilize the flexible pABA binding loop, thereby increasing their binding affinity. MM/PBSA calculation shows electrostatic energy contribution to be the principal component in stabilizing the inhibitors in the binding pocket. This fact is further confirmed by the higher energy barrier obtained in umbrella sampling for this class of inhibitors.
Collapse
Affiliation(s)
- Bratin Kumar Das
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Mangalore, India
| | - Debashree Chakraborty
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Mangalore, India
| |
Collapse
|
4
|
Chakraborty J. An account of noncovalent interactions in homoleptic palladium(II) and platinum(II) complexes within the DFT framework: A correlation between geometries, energy components of symmetry-adapted perturbation theory and NCI descriptors. Heliyon 2022; 8:e11408. [DOI: 10.1016/j.heliyon.2022.e11408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/26/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022] Open
|
5
|
Srivastava R. Computational Studies on Antibody Drug Conjugates (ADCs) for Precision Oncology. ChemistrySelect 2022. [DOI: 10.1002/slct.202202259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ruby Srivastava
- Bioinformatics CSIR-Centre for Cellular and Molecular Biology, CGCR+CC3 Uppal Rd, IICT Colony, Habsiguda Hyderabad Telangana 500007
| |
Collapse
|
6
|
Novikov AP, German KE, Safonov AV, Grigoriev MS. Cation Protonation Degree Influence on the Formation of Anion⋅⋅⋅Anion and Other Non‐Valent Interactions in Guaninium Perrhenates and Pertechnetate. ChemistrySelect 2022. [DOI: 10.1002/slct.202202814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anton P. Novikov
- Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences 31 Bldg 4, Leninsky prosp. Moscow 119071 Russian Federation
| | - Konstantin E. German
- Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences 31 Bldg 4, Leninsky prosp. Moscow 119071 Russian Federation
| | - Alexey V. Safonov
- Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences 31 Bldg 4, Leninsky prosp. Moscow 119071 Russian Federation
| | - Mikhail S. Grigoriev
- Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences 31 Bldg 4, Leninsky prosp. Moscow 119071 Russian Federation
| |
Collapse
|
7
|
Halevas E, Matsia S, Hatzidimitriou A, Geromichalou E, Papadopoulos T, Katsipis G, Pantazaki A, Litsardakis G, Salifoglou A. A unique ternary Ce(III)-quercetin-phenanthroline assembly with antioxidant and anti-inflammatory properties. J Inorg Biochem 2022; 235:111947. [DOI: 10.1016/j.jinorgbio.2022.111947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
|
8
|
Oxidized Forms of Ergothioneine Are Substrates for Mammalian Thioredoxin Reductase. Antioxidants (Basel) 2022; 11:antiox11020185. [PMID: 35204068 PMCID: PMC8868364 DOI: 10.3390/antiox11020185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Ergothioneine (EGT) is a sulfur-containing amino acid analog that is biosynthesized in fungi and bacteria, accumulated in plants, and ingested by humans where it is concentrated in tissues under oxidative stress. While the physiological function of EGT is not yet fully understood, EGT is a potent antioxidant in vitro. Here we report that oxidized forms of EGT, EGT-disulfide (ESSE) and 5-oxo-EGT, can be reduced by the selenoenzyme mammalian thioredoxin reductase (Sec-TrxR). ESSE and 5-oxo-EGT are formed upon reaction with biologically relevant reactive oxygen species. We found that glutathione reductase (GR) can reduce ESSE, but only with the aid of glutathione (GSH). The reduction of ESSE by TrxR was found to be selenium dependent, with non-selenium-containing TrxR enzymes having little or no ability to reduce ESSE. In comparing the reduction of ESSE by Sec-TrxR in the presence of thioredoxin to that of GR/GSH, we find that the glutathione system is 10-fold more efficient, but Sec-TrxR has the advantage of being able to reduce both ESSE and 5-oxo-EGT directly. This represents the first discovered direct enzymatic recycling system for oxidized forms of EGT. Based on our in vitro results, the thioredoxin system may be important for EGT redox biology and requires further in vivo investigation.
Collapse
|
9
|
Clustering of Aromatic Amino Acid Residues around Methionine in Proteins. Biomolecules 2021; 12:biom12010006. [PMID: 35053154 PMCID: PMC8774105 DOI: 10.3390/biom12010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/31/2022] Open
Abstract
Short-range, non-covalent interactions between amino acid residues determine protein structures and contribute to protein functions in diverse ways. The interactions of the thioether of methionine with the aromatic rings of tyrosine, tryptophan, and/or phenylalanine has long been discussed and such interactions are favorable on the order of 1–3 kcal mol−1. Here, we carry out a new bioinformatics survey of known protein structures where we assay the propensity of three aromatic residues to localize around the [-CH2-S-CH3] of methionine. We term these groups “3-bridge clusters”. A dataset consisting of 33,819 proteins with less than 90% sequence identity was analyzed and such clusters were found in 4093 structures (or 12% of the non-redundant dataset). All sub-classes of enzymes were represented. A 3D coordinate analysis shows that most aromatic groups localize near the CH2 and CH3 of methionine. Quantum chemical calculations support that the 3-bridge clusters involve a network of interactions that involve the Met-S, Met-CH2, Met-CH3, and the π systems of nearby aromatic amino acid residues. Selected examples of proposed functions of 3-bridge clusters are discussed.
Collapse
|
10
|
El Sayed DS, Abdelrehim ESM. Computational details of molecular structure, spectroscopic properties, topological studies and SARS-Cov-2 enzyme molecular docking simulation of substituted triazolo pyrimidine thione heterocycles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120006. [PMID: 34098482 PMCID: PMC8149157 DOI: 10.1016/j.saa.2021.120006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/30/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Investigation the molecular structure of the system requires a detailed experience in dealing with theoretical computational guides to highlight its important role. Molecular structure of three heterocyclic compounds 8,10-diphenylpyrido[3,2-e][1,2,4]triazolo[4,3-c]pyrimidine-3(2H)-thione (HL), 8-phenyl-10-(p-tolyl)pyrido[3,2-e][1,2,4]triazolo[4,3-c]pyrimidine-3(2H)-thione (CH3L) and10-(4-nitrophenyl)-8-phenylpyrido[3,2-e][1,2,4]triazolo[4,3-c]pyrimidine-3(2H)-thione (NO2L) was studied at DFT/B3LYP/6-31G (d,p) level in ethanol solvent. Spectroscopic properties such Infrared (IR, 1H NMR and 13C NMR) and ultraviolet-visible (UV-VIS) analyses were computed. Some quantum and reactivity parameters (HOMO energy, LUMO energy, energy gap, ionization potential, electron affinity, chemical potential, global softness, lipophelicity) were studied, also molecular electrostatic potential (MEP) was performed to indicate the reactive nucleophilic and electrophilic sites. The effects of H-, CH3- and NO2- substituents on heterocyclic ligands were studied and it was found that the electron donation sites concerned with hydrogen and methyl substituents over nitro substituent. Topological analysis using reduced density gradient (RDG) was discussed in details. To predict the relevant antiviral activity of the reported heterocyclic compounds, molecular docking simulation was applied to the crystal structure of SARS-Cov-2 viral Mpro enzyme with 6WTT code and PLpro with 7JRN code. The enzymatic viral protein gives an image about the binding affinity between the target protein receptor and the heterocyclic ligands entitled. The hydrogen bonding interactions were evaluated from molecular docking with different strength for each ligand compound to discuss the efficiency of heterocyclic ligands toward viral inhibition.
Collapse
Affiliation(s)
- Doaa S El Sayed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | | |
Collapse
|
11
|
Cation-π Interactions and their Functional Roles in Membrane Proteins. J Mol Biol 2021; 433:167035. [PMID: 33957146 PMCID: PMC8338773 DOI: 10.1016/j.jmb.2021.167035] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/25/2023]
Abstract
Cation-π interactions arise as a result of strong attractive forces between positively charged entities and the π-electron cloud of aromatic groups. The physicochemical characteristics of cation-π interactions are particularly well-suited to the dual hydrophobic/hydrophilic environment of membrane proteins. As high-resolution structural data of membrane proteins bring molecular features into increasingly sharper view, cation-π interactions are gaining traction as essential contributors to membrane protein chemistry, function, and pharmacology. Here we review the physicochemical properties of cation-π interactions and present several prominent examples which demonstrate significant roles for this specialized biological chemistry.
Collapse
|
12
|
Sanchez-Andrada P, Vidal-Vidal A, Prieto T, Elguero J, Alkorta I, Marin-Luna M. Alkylammonium Cation Affinities of Nitrogenated Organobases: The Roles of Hydrogen Bonding and Proton Transfer. Chempluschem 2021; 86:1097-1105. [PMID: 34251758 DOI: 10.1002/cplu.202100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/29/2021] [Indexed: 11/06/2022]
Abstract
Alkylammonium cation affinities of 64 nitrogen-containing organobases, as well as the respective proton transfer processes from the alkylammonium cations to the base, have been computed in the gas phase by using DFT methods. The guanidine bases show the highest proton transfer values (191.9-233 kJ mol-1 ) whereas the cis-2,2'-biimidazole presents the largest affinity towards the alkylammonium cations (>200 kJ mol-1 ) values. The resulting data have been compared with the experimentally reported proton affinities of the studied nitrogen-containing organobases revealing that the propensity of an organobase for the proton transfer process increases linearly with its proton affinity. This work can provide a tool for designing senors for bioactive compounds containing amino groups that are protonated at physiological pH.
Collapse
Affiliation(s)
- Pilar Sanchez-Andrada
- Departamento de Química Orgánica Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia Facultad de Química, Campus de Espinardo, E-30100, Murcia, Spain
| | - Angel Vidal-Vidal
- Departamento de Química Orgánica, Universidade de Vigo Campus Lagoas-Marcosende, Vigo, Spain
| | - Tania Prieto
- Departamento de Química Orgánica, Universidade de Vigo Campus Lagoas-Marcosende, Vigo, Spain
| | - José Elguero
- Instituto de Química Médica, Centro Superior de Investigaciones Científicas (CSIC), Juan de la Cierva, 3, E-28006, Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica, Centro Superior de Investigaciones Científicas (CSIC), Juan de la Cierva, 3, E-28006, Madrid, Spain
| | - Marta Marin-Luna
- Departamento de Química Orgánica Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia Facultad de Química, Campus de Espinardo, E-30100, Murcia, Spain
| |
Collapse
|
13
|
Young EC, Baumgartner JT, Karatan E, Kuhn ML. A mutagenic screen reveals NspS residues important for regulation of Vibrio cholerae biofilm formation. MICROBIOLOGY-SGM 2021; 167. [PMID: 33502310 DOI: 10.1099/mic.0.001023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biofilm formation in the human intestinal pathogen Vibrio cholerae is in part regulated by norspermidine, spermidine and spermine. V. cholerae senses these polyamines through a signalling pathway consisting of the periplasmic protein, NspS, and the integral membrane c-di-GMP phosphodiesterase MbaA. NspS and MbaA belong to a proposed class of novel signalling systems composed of periplasmic ligand-binding proteins and membrane-bound c-di-GMP phosphodiesterases containing both GGDEF and EAL domains. In this signal transduction pathway, NspS is hypothesized to interact with MbaA in the periplasm to regulate its phosphodiesterase activity. Polyamine binding to NspS likely alters this interaction, leading to the activation or inhibition of biofilm formation depending on the polyamine. The purpose of this study was to determine the amino acids important for NspS function. We performed random mutagenesis of the nspS gene, identified mutant clones deficient in biofilm formation, determined their responsiveness to norspermidine and mapped the location of these residues onto NspS homology models. Single mutants clustered on two lobes of the NspS model, but the majority were found on a single lobe that appeared to be more mobile upon norspermidine binding. We also identified residues in the putative ligand-binding site that may be important for norspermidine binding and interactions with MbaA. Ultimately, our results provide new insights into this novel signalling pathway in V. cholerae and highlight differences between periplasmic binding proteins involved in transport versus signal transduction.
Collapse
Affiliation(s)
- Erin C Young
- Department of Biology, Appalachian State University, Boone, NC, USA
| | - Jackson T Baumgartner
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA
| | - Ece Karatan
- Department of Biology, Appalachian State University, Boone, NC, USA
| | - Misty L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA
| |
Collapse
|
14
|
Boknevitz K, Darrigan C, Chrostowska A, Liu SY. Cation-π binding ability of BN indole. Chem Commun (Camb) 2020; 56:3749-3752. [PMID: 32125334 DOI: 10.1039/d0cc00869a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A BN indole-containing aromatic scaffold has been synthesized and the cation-π binding ability characterized by nuclear magnetic resonance (NMR) monitored titrations. The resulting chemical shifts were analyzed using a non-linear curve fitting procedure and the extracted association constants (Ka's) compared with the natural indole scaffold. Computations were also performed to support our findings. This work shows that incorporation of a B-N bond in place of a C-C bond in an aromatic system slightly lowers the cation-π binding ability of the arene's π-system with simple cations.
Collapse
Affiliation(s)
- Katherine Boknevitz
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA.
| | - Clovis Darrigan
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Anna Chrostowska
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA. and Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
15
|
Raghunathan S, Jaganade T, Priyakumar UD. Urea-aromatic interactions in biology. Biophys Rev 2020; 12:65-84. [PMID: 32067192 PMCID: PMC7040157 DOI: 10.1007/s12551-020-00620-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Noncovalent interactions are key determinants in both chemical and biological processes. Among such processes, the hydrophobic interactions play an eminent role in folding of proteins, nucleic acids, formation of membranes, protein-ligand recognition, etc.. Though this interaction is mediated through the aqueous solvent, the stability of the above biomolecules can be highly sensitive to any small external perturbations, such as temperature, pressure, pH, or even cosolvent additives, like, urea-a highly soluble small organic molecule utilized by various living organisms to regulate osmotic pressure. A plethora of detailed studies exist covering both experimental and theoretical regimes, to understand how urea modulates the stability of biological macromolecules. While experimentalists have been primarily focusing on the thermodynamic and kinetic aspects, theoretical modeling predominantly involves mechanistic information at the molecular level, calculating atomistic details applying the force field approach to the high level electronic details using the quantum mechanical methods. The review focuses mainly on examples with biological relevance, such as (1) urea-assisted protein unfolding, (2) urea-assisted RNA unfolding, (3) urea lesion interaction within damaged DNA, (4) urea conduction through membrane proteins, and (5) protein-ligand interactions those explicitly address the vitality of hydrophobic interactions involving exclusively the urea-aromatic moiety.
Collapse
Affiliation(s)
- Shampa Raghunathan
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Tanashree Jaganade
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - U Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
16
|
Zhao X, Zheng W, Zhang Y, Huang W. cis alkenes stabilized by intramolecular sulphurπ interactions. Chem Commun (Camb) 2020; 56:814-817. [PMID: 31848539 DOI: 10.1039/c9cc08558k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of alkenes with bistable isomers were obtained containing a thiophene/azoheteroaryl backbone. Visible light and heat-induced reversible cis ⇌ trans isomerizations were evidenced by UV-Vis and 1H NMR spectra. The stabilization of cis alkenes was attributed to intramolecular sulphurπ (Sπ) interactions, which were further supported by theoretical calculations.
Collapse
Affiliation(s)
- Xiaolei Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China.
| | | | | | | |
Collapse
|
17
|
Palanisamy K, Prakash M, Rajapandian V. Combined DFT and MD simulation studies of protein stability on imidazolium–water (ImH+Wn) clusters with aromatic amino acids. NEW J CHEM 2020. [DOI: 10.1039/d0nj03085f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The hydrated clusters of protonated imidazole (ImH+) can induce protein denaturation through various kinds of monovalent interactions such as cation···π (stacking), N–H⋯π (T-shaped) and water-mediated O–H⋯O H-bonds.
Collapse
Affiliation(s)
- Kandhan Palanisamy
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar
- Kattankulathur-603203
- India
| | - Muthuramalingam Prakash
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar
- Kattankulathur-603203
- India
| | - Varatharaj Rajapandian
- Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science
- Coimbatore-641020
- India
| |
Collapse
|
18
|
Dolgonos G, Tsukanov A, Psakhie SG, Lukin O, Gurbych O, Shivanyuk A. Theoretical studies of capsular complexes of C2V-symmetrical resorcin[4]arene tetraesters with tetramethylammonium cation. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Misturini A, Ortolan AO, Caramori GF, Cintra CH, Parreira RLT. Tracking the absence of anion–π interactions in modified [2 3](1,3,5)cyclophanes: insights from computation. NEW J CHEM 2019. [DOI: 10.1039/c9nj02776a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
[23](1,3,5)Cyclophanes containing 1,3,5-triazine and 1,3,5-triphosphinine planar rings present different degrees of aromaticity as well as σ-donor and π-acceptor abilities.
Collapse
Affiliation(s)
- Alechania Misturini
- Departamento de Química
- Universidade Federal de Santa Catarina
- Campus Universitário Trindade
- Florianópolis
- Brazil
| | - Alexandre O. Ortolan
- Departamento de Química
- Universidade Federal de Santa Catarina
- Campus Universitário Trindade
- Florianópolis
- Brazil
| | - Giovanni F. Caramori
- Departamento de Química
- Universidade Federal de Santa Catarina
- Campus Universitário Trindade
- Florianópolis
- Brazil
| | - Claudia H. Cintra
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas
- Universidade de Franca
- Franca
- Brazil
| | - Renato L. T. Parreira
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas
- Universidade de Franca
- Franca
- Brazil
| |
Collapse
|
20
|
Affiliation(s)
- Shinji Yamada
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
21
|
Penque BA, Su L, Wang J, Ji W, Bale A, Luh F, Fulbright RK, Sarmast U, Sega AG, Konstantino M, Spencer-Manzon M, Pierce R, Yen Y, Lakhani SA. A homozygous variant in RRM2B is associated with severe metabolic acidosis and early neonatal death. Eur J Med Genet 2018; 62:103574. [PMID: 30439532 DOI: 10.1016/j.ejmg.2018.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/23/2018] [Accepted: 11/09/2018] [Indexed: 11/26/2022]
Abstract
RRM2B encodes the crucial p53-inducible ribonucleotide reductase small subunit 2 homolog (p53R2), which is required for DNA synthesis throughout the cell cycle. Mutations in this gene have been associated with a lethal mitochondrial depletion syndrome. Here we present the case of an infant with a novel homozygous p.Asn221Ser mutation in RRM2B who developed hypotonia, failure to thrive, sensorineural hearing loss, and severe metabolic lactic acidosis, ultimately progressing to death at 3 months of age. Through molecular modeling using the X-ray crystal structure of p53R2, we demonstrate that this mutation likely causes disruption of a highly conserved helix region of the protein by altering intramolecular interactions. This report expands our knowledge of potential pathogenic RRM2B mutations as well as our understanding of the molecular function of p53R2 and its role in the pathogenesis of mitochondrial DNA depletion.
Collapse
Affiliation(s)
- Brent A Penque
- Pediatric Genomics Discovery Program, Department of Pediatrics, Section of Critical Care Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Leila Su
- Department of Cancer Biology and Drug Discovery, College of Medical Technology, Taipei Medical University, Taipei, 110, Taiwan; Sino-American Cancer Foundation, Temple City, CA, USA
| | - Jianghai Wang
- Department of Cancer Biology and Drug Discovery, College of Medical Technology, Taipei Medical University, Taipei, 110, Taiwan; Sino-American Cancer Foundation, Temple City, CA, USA
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Section of Critical Care Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Allen Bale
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Frank Luh
- Department of Cancer Biology and Drug Discovery, College of Medical Technology, Taipei Medical University, Taipei, 110, Taiwan; Sino-American Cancer Foundation, Temple City, CA, USA
| | - Robert K Fulbright
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Uzair Sarmast
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Annalisa G Sega
- Pediatric Genomics Discovery Program, Department of Pediatrics, Section of Critical Care Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Monica Konstantino
- Pediatric Genomics Discovery Program, Department of Pediatrics, Section of Critical Care Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | - Richard Pierce
- Pediatric Genomics Discovery Program, Department of Pediatrics, Section of Critical Care Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Yun Yen
- Department of Cancer Biology and Drug Discovery, College of Medical Technology, Taipei Medical University, Taipei, 110, Taiwan; Sino-American Cancer Foundation, Temple City, CA, USA.
| | - Saquib A Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Section of Critical Care Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
22
|
Ortolan AO, Øestrøm I, Caramori GF, Parreira RLT, Muñoz-Castro A, Bickelhaupt FM. Anion Recognition by Organometallic Calixarenes: Analysis from Relativistic DFT Calculations. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00292] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexandre O. Ortolan
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CP 476, Florianópolis, SC, 88040-900, Brazil
| | - Ina Øestrøm
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CP 476, Florianópolis, SC, 88040-900, Brazil
| | - Giovanni F. Caramori
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CP 476, Florianópolis, SC, 88040-900, Brazil
| | - Renato L. T. Parreira
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, 14404-600, Franca, SP, Brazil
| | - Alvaro Muñoz-Castro
- Lab. de Química Inorgánica y Materiales Moleculares, Universidad Autonoma de Chile, Llano Subercaceaux 2801, San Miguel, Santiago, 8910060, Chile
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Institute of Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
23
|
Ortolan AO, Østrøm I, Caramori GF, Parreira RLT, da Silva EH, Bickelhaupt FM. Tuning Heterocalixarenes to Improve Their Anion Recognition: A Computational Approach. J Phys Chem A 2018. [DOI: 10.1021/acs.jpca.8b01866] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Alexandre O. Ortolan
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CP 476, Florianópolis, SC 88040-900, Brazil
| | - Ina Østrøm
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CP 476, Florianópolis, SC 88040-900, Brazil
| | - Giovanni F. Caramori
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CP 476, Florianópolis, SC 88040-900, Brazil
| | - Renato L. T. Parreira
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, 14404-600 Franca, SP, Brazil
| | - Eder H. da Silva
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, 14404-600 Franca, SP, Brazil
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Institute of Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
24
|
Hussain A, AlAjmi MF, Ali I. Supramolecular separation mechanism of pentafluorophenyl column using ibuprofen and omeprazole as markers: LC-MS and simulation study. Biomed Chromatogr 2018; 32:e4206. [DOI: 10.1002/bmc.4206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/09/2018] [Accepted: 01/26/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy; King Saud University; Riyadh Kingdom of Saudi Arabia
| | - Mohamed F. AlAjmi
- Department of Pharmacognosy, College of Pharmacy; King Saud University; Riyadh Kingdom of Saudi Arabia
| | - Imran Ali
- Department of Chemistry, Faculty of Sciences; Taibah University; Al-Medina Al-Munawara Saudi Arabia
- Department of Chemistry; Jamia Millia Islamia; New Delhi India
| |
Collapse
|
25
|
Interaction between a Unique Minor Protein and a Major Capsid Protein of Bluetongue Virus Controls Virus Infectivity. J Virol 2018; 92:JVI.01784-17. [PMID: 29142128 PMCID: PMC5774872 DOI: 10.1128/jvi.01784-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/03/2017] [Indexed: 11/30/2022] Open
Abstract
Among the Reoviridae family of double-stranded RNA viruses, only members of the Orbivirus genus possess a unique structural protein, termed VP6, within their particles. Bluetongue virus (BTV), an important livestock pathogen, is the prototype Orbivirus. BTV VP6 is an ATP-dependent RNA helicase, and it is indispensable for virus replication. In the study described in this report, we investigated how VP6 might be recruited to the virus capsid and whether the BTV structural protein VP3, which forms the internal layer of the virus capsid core, is involved in VP6 recruitment. We first demonstrated that VP6 interacts with VP3 and colocalizes with VP3 during capsid assembly. A series of VP6 mutants was then generated, and in combination with immunoprecipitation and size exclusion chromatographic analyses, we demonstrated that VP6 directly interacts with VP3 via a specific region of the C-terminal portion of VP6. Finally, using our reverse genetics system, mutant VP6 proteins were introduced into the BTV genome and interactions between VP6 and VP3 were shown in a live cell system. We demonstrate that BTV strains possessing a mutant VP6 are replication deficient in wild-type BSR cells and fail to recruit the viral replicase complex into the virus particle core. Taken together, these data suggest that the interaction between VP3 and VP6 could be important in the packaging of the viral genome and early stages of particle formation. IMPORTANCE The orbivirus bluetongue virus (BTV) is the causative agent of bluetongue disease of livestock, often causing significant economic and agricultural impacts in the livestock industry. In the study described in this report, we identified the essential region and residues of the unique orbivirus capsid protein VP6 which are responsible for its interaction with other BTV proteins and its subsequent recruitment into the virus particle. The nature and mechanism of these interactions suggest that VP6 has a key role in packaging of the BTV genome into the virus particle. As such, this is a highly significant finding, as this new understanding of BTV assembly could be exploited to design novel vaccines and antivirals against bluetongue disease.
Collapse
|
26
|
Beema Shafreen R, Dymerski T, Namieśnik J, Jastrzębski Z, Vearasilp S, Gorinstein S. Interaction of human serum albumin with volatiles and polyphenols from some berries. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Brylinski M. Aromatic interactions at the ligand-protein interface: Implications for the development of docking scoring functions. Chem Biol Drug Des 2017; 91:380-390. [PMID: 28816025 DOI: 10.1111/cbdd.13084] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/29/2017] [Accepted: 08/11/2017] [Indexed: 12/22/2022]
Abstract
The ability to design and fine-tune non-covalent interactions between organic ligands and proteins is indispensable to rational drug development. Aromatic stacking has long been recognized as one of the key constituents of ligand-protein interfaces. In this communication, we employ a two-parameter geometric model to conduct a large-scale statistical analysis of aromatic contacts in the experimental and computer-generated structures of ligand-protein complexes, considering various combinations of aromatic amino acid residues and ligand rings. The geometry of interfacial π-π stacking in crystal structures accords with experimental and theoretical data collected for simple systems, such as the benzene dimer. Many contemporary ligand docking programs implicitly treat aromatic stacking with van der Waals and Coulombic potentials. Although this approach generally provides a sufficient specificity to model aromatic interactions, the geometry of π-π contacts in high-scoring docking conformations could still be improved. The comprehensive analysis of aromatic geometries at ligand-protein interfaces lies the foundation for the development of type-specific statistical potentials to more accurately describe aromatic interactions in molecular docking. A Perl script to detect and calculate the geometric parameters of aromatic interactions in ligand-protein complexes is available at https://github.com/michal-brylinski/earomatic. The dataset comprising experimental complex structures and computer-generated models is available at https://osf.io/rztha/.
Collapse
Affiliation(s)
- Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.,Center for Computation & Technology, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
28
|
Bearne SL, St Maurice M. A Paradigm for CH Bond Cleavage: Structural and Functional Aspects of Transition State Stabilization by Mandelate Racemase. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 109:113-160. [PMID: 28683916 DOI: 10.1016/bs.apcsb.2017.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mandelate racemase (MR) from Pseudomonas putida catalyzes the Mg2+-dependent, 1,1-proton transfer reaction that racemizes (R)- and (S)-mandelate. MR shares a partial reaction (i.e., the metal ion-assisted, Brønsted base-catalyzed proton abstraction of the α-proton of carboxylic acid substrates) and structural features ((β/α)7β-barrel and N-terminal α + β capping domains) with a vast group of homologous, yet functionally diverse, enzymes in the enolase superfamily. Mechanistic and structural studies have developed this enzyme into a paradigm for understanding how enzymes such as those of the enolase superfamily overcome kinetic and thermodynamic barriers to catalyze the abstraction of an α-proton from a carbon acid substrate with a relatively high pKa value. Structural studies on MR bound to intermediate/transition state analogues have delineated those structural features that MR uses to stabilize transition states and enhance reaction rates of proton abstraction. Kinetic, site-directed mutagenesis, and structural studies have also revealed that the phenyl ring of the substrate migrates through the hydrophobic cavity within the active site during catalysis and that the Brønsted acid-base catalysts (Lys 166 and His 297) may be utilized as binding determinants for inhibitor recognition. In addition, structural studies on the adduct formed from the irreversible inhibition of MR by 3-hydroxypyruvate revealed that MR can form and deprotonate a Schiff-base with 3-hydroxypyruvate to yield an enol(ate)-aldehyde adduct, suggesting a possible evolutionary link between MR and the Schiff-base forming aldolases. As the archetype of the enolase superfamily, mechanistic and structural studies on MR will continue to enhance our understanding of enzyme catalysis and furnish insights into the evolution of enzyme function.
Collapse
|
29
|
Shah MB, Liu J, Zhang Q, Stout CD, Halpert JR. Halogen-π Interactions in the Cytochrome P450 Active Site: Structural Insights into Human CYP2B6 Substrate Selectivity. ACS Chem Biol 2017; 12:1204-1210. [PMID: 28368100 DOI: 10.1021/acschembio.7b00056] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Numerous cytochrome P450 (CYP) 2B6 substrates including drugs and environmental chemicals are halogenated. To assess the role of halogen-π bonds in substrate selectivity and orientation in the active site, structures of four CYP2B6 monoterpenoid complexes were solved by X-ray crystallography. Bornyl bromide exhibited dual orientations in the active site with the predominant orientation revealing a bromine-π bond with the Phe108 side chain. Bornane demonstrated two orientations with equal occupancy; in both, the C2 atom that bears the bromine in bornyl bromide was displaced by more than 2.5 Å compared with the latter complex. The bromine in myrtenyl bromide π-bonded with Phe297 in CYP2B6, whereas the two major orientations in the active site mutant I114V exhibited bromine-π interactions with two additional residues, Phe108 and Phe115. Analysis of existing structures suggests that halogen-π interactions may be unique to the CYP2B enzymes within CYP family 2 but are also important for CYP3A enzymes.
Collapse
Affiliation(s)
- Manish B. Shah
- School
of Pharmacy, University of Connecticut, Storrs, Connecticut, United States
| | - Jingbao Liu
- School
of Pharmacy, University of Connecticut, Storrs, Connecticut, United States
| | - Qinghai Zhang
- The
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States
| | - C. David Stout
- The
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States
| | - James R. Halpert
- School
of Pharmacy, University of Connecticut, Storrs, Connecticut, United States
| |
Collapse
|
30
|
Giełdoń A, Witt MM, Gajewicz A, Puzyn T. Rapid insight into C60 influence on biological functions of proteins. Struct Chem 2017. [DOI: 10.1007/s11224-017-0957-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Shuaib S, Goyal B. Scrutiny of the mechanism of small molecule inhibitor preventing conformational transition of amyloid-β 42 monomer: insights from molecular dynamics simulations. J Biomol Struct Dyn 2017; 36:663-678. [PMID: 28162045 DOI: 10.1080/07391102.2017.1291363] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by loss of intellectual functioning of brain and memory loss. According to amyloid cascade hypothesis, aggregation of amyloid-β42 (Aβ42) peptide can generate toxic oligomers and their accumulation in the brain is responsible for the onset of AD. In spite of carrying out a large number of experimental studies on inhibition of Aβ42 aggregation by small molecules, the detailed inhibitory mechanism remains elusive. In the present study, comparable molecular dynamics (MD) simulations were performed to elucidate the inhibitory mechanism of a sulfonamide inhibitor C1 (2,5-dichloro-N-(4-piperidinophenyl)-3-thiophenesulfonamide), reported for its in vitro and in vivo anti-aggregation activity against Aβ42. MD simulations reveal that C1 stabilizes native α-helix conformation of Aβ42 by interacting with key residues in the central helix region (13-26) with hydrogen bonds and π-π interactions. C1 lowers the solvent-accessible surface area of the central hydrophobic core (CHC), KLVFF (16-20), that confirms burial of hydrophobic residues leading to the dominance of helical conformation in the CHC region. The binding free energy analysis with MM-PBSA demonstrates that Ala2, Phe4, Tyr10, Gln15, Lys16, Leu17, Val18, Phe19, Phe20, Glu22, and Met35 contribute maximum to binding free energy (-43.1 kcal/mol) between C1 and Aβ42 monomer. Overall, MD simulations reveal that C1 inhibits Aβ42 aggregation by stabilizing native helical conformation and inhibiting the formation of aggregation-prone β-sheet conformation. The present results will shed light on the underlying inhibitory mechanism of small molecules that show potential in vitro anti-aggregation activity against Aβ42.
Collapse
Affiliation(s)
- Suniba Shuaib
- a Department of Chemistry , School of Basic and Applied Sciences, Sri Guru Granth Sahib World University , Fatehgarh Sahib 140406 , Punjab , India
| | - Bhupesh Goyal
- a Department of Chemistry , School of Basic and Applied Sciences, Sri Guru Granth Sahib World University , Fatehgarh Sahib 140406 , Punjab , India
| |
Collapse
|
32
|
Ortolan AO, Caramori GF, Matthias Bickelhaupt F, Parreira RLT, Muñoz-Castro A, Kar T. How the electron-deficient cavity of heterocalixarenes recognizes anions: insights from computation. Phys Chem Chem Phys 2017; 19:24696-24705. [DOI: 10.1039/c7cp03925e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The nature of bridging heteroatoms in a heterocalixarene structure has a crucial role in anion recognition.
Collapse
Affiliation(s)
- Alexandre O. Ortolan
- Departamento de Química
- Universidade Federal de Santa Catarina
- Campus Universitário Trindade
- Florianópolis
- Brazil
| | - Giovanni F. Caramori
- Departamento de Química
- Universidade Federal de Santa Catarina
- Campus Universitário Trindade
- Florianópolis
- Brazil
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM)
- Vrije Universiteit Amsterdam
- 1081 HV Amsterdam
- The Netherlands
- Institute of Molecules and Materials
| | - Renato L. T. Parreira
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas
- Universidade de Franca
- Franca
- Brazil
| | - Alvaro Muñoz-Castro
- Lab. de Química Inorgánica y Materiales Moleculares
- Universidad Autonoma de Chile
- Santiago
- Chile
- Doctorado en Fisicoquímica Molecular
| | - Tapas Kar
- Department of Chemistry and Biochemistry
- Utah State University
- Logan
- USA
| |
Collapse
|
33
|
Yamada S, Yamamoto N, Takamori E. Synthesis of Molecular Seesaw Balances and the Evaluation of Pyridinium−π Interactions. J Org Chem 2016; 81:11819-11830. [DOI: 10.1021/acs.joc.6b02295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shinji Yamada
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku,
Tokyo 112-8610, Japan
| | - Natsuo Yamamoto
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku,
Tokyo 112-8610, Japan
| | - Eri Takamori
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku,
Tokyo 112-8610, Japan
| |
Collapse
|
34
|
Deka BC, Purkayastha SK, Bhattacharyya PK. Formation of thiophene sandwiches through cation–π interaction: A DFT study. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Suresh A, Hung A. Molecular simulation study of the unbinding of α-conotoxin [ϒ4E]GID at the α7 and α4β2 neuronal nicotinic acetylcholine receptors. J Mol Graph Model 2016; 70:109-121. [PMID: 27721068 DOI: 10.1016/j.jmgm.2016.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/11/2016] [Accepted: 09/05/2016] [Indexed: 12/27/2022]
Abstract
The α7 and α4β2 neuronal nicotinic receptors belonging to the family of ligand-gated ion channels are most prevalent in the brain, and are implicated in various neurodegenerative disorders. α-conotoxin GID (and its analogue [ϒ4E]GID) specifically inhibits these subtypes, with more affinity towards the human α7 (hα7) subtype, and is valuable in understanding the physiological roles of these receptors. In this study, we use umbrella-sampling molecular dynamics simulations to understand the mechanism of interaction between [ϒ4E]GID and the agonist binding pockets of the α4β2 and the hα7 receptors, and to estimate their relative binding affinities (ΔGbind). The obtained ΔGbind values indicate stronger interaction with the hα7 receptor, in agreement with previous experimental studies. Simulations also revealed different unbinding pathways between the two receptor subtypes, enabling identification of a number of interactions at locations far from the orthosteric binding site which may explain the difference in [ϒ4E]GID potency. The pathways identified will help in the design of novel conotoxins with increased potency at α4β2, for which there is currently no known highly potent conotoxin inhibitor. Computational mutational free energy analyses also revealed a number of possible single-site mutations to GID which might enhance its selective binding to α4β2 over α7.
Collapse
Affiliation(s)
- Abishek Suresh
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Andrew Hung
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
36
|
Bayat M, Ebrahimkhani L, Salehzadeh S. Where, how and how much the strength of interaction between a hydrated lanthanide cation and a π-system would be increased? A theoretical study. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Vetrivel U, Muralikumar S, Mahalakshmi B, Lily Therese K, Madhavan HN, Alameen M, Thirumudi I. Multilevel Precision-Based Rational Design of Chemical Inhibitors Targeting the Hydrophobic Cleft of Toxoplasma gondii Apical Membrane Antigen 1 (AMA1). Genomics Inform 2016; 14:53-61. [PMID: 27445648 PMCID: PMC4951401 DOI: 10.5808/gi.2016.14.2.53] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is an intracellular Apicomplexan parasite and a causative agent of toxoplasmosis in human. It causes encephalitis, uveitis, chorioretinitis, and congenital infection. T. gondii invades the host cell by forming a moving junction (MJ) complex. This complex formation is initiated by intermolecular interactions between the two secretory parasitic proteins-namely, apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) and is critically essential for the host invasion process. By this study, we propose two potential leads, NSC95522 and NSC179676 that can efficiently target the AMA1 hydrophobic cleft, which is a hotspot for targeting MJ complex formation. The proposed leads are the result of an exhaustive conformational search-based virtual screen with multilevel precision scoring of the docking affinities. These two compounds surpassed all the precision levels of docking and also the stringent post docking and cumulative molecular dynamics evaluations. Moreover, the backbone flexibility of hotspot residues in the hydrophobic cleft, which has been previously reported to be essential for accommodative binding of RON2 to AMA1, was also highly perturbed by these compounds. Furthermore, binding free energy calculations of these two compounds also revealed a significant affinity to AMA1. Machine learning approaches also predicted these two compounds to possess more relevant activities. Hence, these two leads, NSC95522 and NSC179676, may prove to be potential inhibitors targeting AMA1-RON2 complex formation towards combating toxoplasmosis.
Collapse
Affiliation(s)
- Umashankar Vetrivel
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, Chennai 600-006, India
| | - Shalini Muralikumar
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, Chennai 600-006, India
| | - B Mahalakshmi
- L&T Microbiology Research Centre, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, Chennai 600-006, India
| | - K Lily Therese
- L&T Microbiology Research Centre, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, Chennai 600-006, India
| | - H N Madhavan
- L&T Microbiology Research Centre, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, Chennai 600-006, India
| | - Mohamed Alameen
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, Chennai 600-006, India
| | - Indhuja Thirumudi
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, Chennai 600-006, India
| |
Collapse
|
38
|
Ramachandran B, Kesavan S, Rajkumar T. Molecular modeling and docking of small molecule inhibitors against NEK2. Bioinformation 2016; 12:62-68. [PMID: 28104962 PMCID: PMC5237649 DOI: 10.6026/97320630012062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/18/2016] [Accepted: 03/19/2016] [Indexed: 11/23/2022] Open
Abstract
Aberrant expression of NEK2 (NIMA-related kinase 2) is indicated in a wide variety of human cancers. NEK2 is highly correlated to multi drug resistance by activating drug efflux activity. Identification of new small molecule inhibitors targeted against NEK2 therefore, facilitates to increase drug sensitivity of cancer cells, by stabilizing drug influx and minimizes the dose of therapeutic drug. Our work investigates to screen for optimal small molecule inhibitors against NEK2. In this study, we used a computational approach by modeling NEK2 protein using I-TASSER (Iterative Threading ASSEmbly Refinement) software. The modeled structure was subjected to protein preparation wizard; to add hydrogens and to optimize the protonation states of His, Gln and Asn residues. Active site of the modeled protein was identified using SiteMap tool of Schrodinger package. We further carried out docking studies by means of Glide, with various ligands downloaded from EDULISS database. Based on glide score, potential ligands were screened and their interaction with NEK2 was identified. The best hits were further screened for Lipinski's rule for drug-likeliness, bioactivity scoring and ADME properties. Thus, we report two (didemethylchlorpromazine and 2-[5-fluoro-1Hindol- 3-yl] propan-1-amine) compounds that have successfully satisfied all in silico parameters, necessitating further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Balaji Ramachandran
- Department of Molecular Oncology, Cancer Institute (W.I.A), No.38, Sardar Patel Road, Adyar, Chennai - 600 036
| | - Sabitha Kesavan
- Department of Molecular Oncology, Cancer Institute (W.I.A), No.38, Sardar Patel Road, Adyar, Chennai - 600 036
| | - Thangarajan Rajkumar
- Department of Molecular Oncology, Cancer Institute (W.I.A), No.38, Sardar Patel Road, Adyar, Chennai - 600 036
| |
Collapse
|
39
|
Immunomodulatory and Anti-Inflammatory Activities of Chicken Cathelicidin-2 Derived Peptides. PLoS One 2016; 11:e0147919. [PMID: 26848845 PMCID: PMC4743981 DOI: 10.1371/journal.pone.0147919] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/10/2016] [Indexed: 11/19/2022] Open
Abstract
Host Defence Peptides and derived peptides are promising classes of antimicrobial and immunomodulatory lead compounds. For this purpose we examined whether chicken cathelicidin-2 (CATH-2)-derived peptides modulate the function and inflammatory response of avian immune cells. Using a chicken macrophage cell line (HD11) we found that full-length CATH-2 dose-dependently induced transcription of chemokines CXCLi2/IL-8, MCP-3 and CCLi4/RANTES, but not of pro-inflammatory cytokine IL-1β. In addition, CATH-2 efficiently inhibited IL-1β and nitric oxide production by HD11 cells induced by different sources of lipopolysaccharides (LPS). N-terminal truncated CATH-2 derived peptides maintained the capacity to selectively induce chemokine transcription, but despite their high LPS affinity several analogs lacked LPS-neutralizing capacity. Substitution of phenylalanine residues by tryptophan introduced endotoxin neutralization capacity in inactive truncated CATH-2 derived peptides. In contrast, amino acid substitution of phenylalanine by tyrosine abrogated endotoxin neutralization activity of CATH-2 analogs. These findings support a pivotal role for aromatic residues in peptide-mediated endotoxin neutralization by CATH-2 analogs and were shown to be independent of LPS affinity. The capacity to modulate chemokine production and dampen endotoxin-induced pro-inflammatory responses in chicken immune cells implicates that small CATH-2 based peptides could serve as leads for the design of CATH-2 based immunomodulatory anti-infectives.
Collapse
|
40
|
Synthesis, spectroscopy and computational studies of some novel π-conjugated vinyl N-alkylated quinolinium salts and their precursor's. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2015.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Shah MB, Liu J, Huo L, Zhang Q, Dearing MD, Wilderman PR, Szklarz GD, Stout CD, Halpert JR. Structure-Function Analysis of Mammalian CYP2B Enzymes Using 7-Substituted Coumarin Derivatives as Probes: Utility of Crystal Structures and Molecular Modeling in Understanding Xenobiotic Metabolism. Mol Pharmacol 2016; 89:435-45. [PMID: 26826176 DOI: 10.1124/mol.115.102111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/20/2016] [Indexed: 01/09/2023] Open
Abstract
Crystal structures of CYP2B35 and CYP2B37 from the desert woodrat were solved in complex with 4-(4-chlorophenyl)imidazole (4-CPI). The closed conformation of CYP2B35 contained two molecules of 4-CPI within the active site, whereas the CYP2B37 structure demonstrated an open conformation with three 4-CPI molecules, one within the active site and the other two in the substrate access channel. To probe structure-function relationships of CYP2B35, CYP2B37, and the related CYP2B36, we tested the O-dealkylation of three series of related substrates-namely, 7-alkoxycoumarins, 7-alkoxy-4-(trifluoromethyl)coumarins, and 7-alkoxy-4-methylcoumarins-with a C1-C7 side chain. CYP2B35 showed the highest catalytic efficiency (kcat/KM) with 7-heptoxycoumarin as a substrate, followed by 7-hexoxycoumarin. In contrast, CYP2B37 showed the highest catalytic efficiency with 7-ethoxy-4-(trifluoromethyl)coumarin (7-EFC), followed by 7-methoxy-4-(trifluoromethyl)coumarin (7-MFC). CYP2B35 had no dealkylation activity with 7-MFC or 7-EFC. Furthermore, the new CYP2B-4-CPI-bound structures were used as templates for docking the 7-substituted coumarin derivatives, which revealed orientations consistent with the functional studies. In addition, the observation of multiple -Cl and -NH-π interactions of 4-CPI with the aromatic side chains in the CYP2B35 and CYP2B37 structures provides insight into the influence of such functional groups on CYP2B ligand binding affinity and specificity. To conclude, structural, computational, and functional analysis revealed striking differences between the active sites of CYP2B35 and CYP2B37 that will aid in the elucidation of new structure-activity relationships.
Collapse
Affiliation(s)
- Manish B Shah
- School of Pharmacy, University of Connecticut, Storrs, Connecticut (M.B.S., J.L., L.H., P.R.W., J.R.H.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California (Q.Z., C.D.S.); Department of Biology, University of Utah, Salt Lake City, Utah (M.D.D.); and Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (G.D.S.)
| | - Jingbao Liu
- School of Pharmacy, University of Connecticut, Storrs, Connecticut (M.B.S., J.L., L.H., P.R.W., J.R.H.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California (Q.Z., C.D.S.); Department of Biology, University of Utah, Salt Lake City, Utah (M.D.D.); and Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (G.D.S.)
| | - Lu Huo
- School of Pharmacy, University of Connecticut, Storrs, Connecticut (M.B.S., J.L., L.H., P.R.W., J.R.H.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California (Q.Z., C.D.S.); Department of Biology, University of Utah, Salt Lake City, Utah (M.D.D.); and Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (G.D.S.)
| | - Qinghai Zhang
- School of Pharmacy, University of Connecticut, Storrs, Connecticut (M.B.S., J.L., L.H., P.R.W., J.R.H.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California (Q.Z., C.D.S.); Department of Biology, University of Utah, Salt Lake City, Utah (M.D.D.); and Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (G.D.S.)
| | - M Denise Dearing
- School of Pharmacy, University of Connecticut, Storrs, Connecticut (M.B.S., J.L., L.H., P.R.W., J.R.H.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California (Q.Z., C.D.S.); Department of Biology, University of Utah, Salt Lake City, Utah (M.D.D.); and Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (G.D.S.)
| | - P Ross Wilderman
- School of Pharmacy, University of Connecticut, Storrs, Connecticut (M.B.S., J.L., L.H., P.R.W., J.R.H.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California (Q.Z., C.D.S.); Department of Biology, University of Utah, Salt Lake City, Utah (M.D.D.); and Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (G.D.S.)
| | - Grazyna D Szklarz
- School of Pharmacy, University of Connecticut, Storrs, Connecticut (M.B.S., J.L., L.H., P.R.W., J.R.H.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California (Q.Z., C.D.S.); Department of Biology, University of Utah, Salt Lake City, Utah (M.D.D.); and Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (G.D.S.)
| | - C David Stout
- School of Pharmacy, University of Connecticut, Storrs, Connecticut (M.B.S., J.L., L.H., P.R.W., J.R.H.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California (Q.Z., C.D.S.); Department of Biology, University of Utah, Salt Lake City, Utah (M.D.D.); and Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (G.D.S.)
| | - James R Halpert
- School of Pharmacy, University of Connecticut, Storrs, Connecticut (M.B.S., J.L., L.H., P.R.W., J.R.H.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California (Q.Z., C.D.S.); Department of Biology, University of Utah, Salt Lake City, Utah (M.D.D.); and Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia (G.D.S.)
| |
Collapse
|
42
|
Ali I, Kulsum U, AL-Othman ZA, Saleem K. Analyses of Nonsteroidal Anti-inflammatory Drugs in Human Plasma Using Dispersive Nano Solid-Phase Extraction and High-Performance Liquid Chromatography. Chromatographia 2016. [DOI: 10.1007/s10337-015-3020-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
43
|
Cao M, Wang N, Wang L, Zhang Y, Chen Y, Xie Z, Li Z, Pambou E, Li R, Chen C, Pan F, Xu H, Penny J, Webster JRP, Lu JR. Direct exfoliation of graphite into graphene in aqueous solutions of amphiphilic peptides. J Mater Chem B 2016; 4:152-161. [DOI: 10.1039/c5tb02065d] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptide-mediated solution phase graphene exfoliation.
Collapse
|
44
|
Bauzá A, Mooibroek TJ, Frontera A. Towards design strategies for anion–π interactions in crystal engineering. CrystEngComm 2016. [DOI: 10.1039/c5ce01813g] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This highlight article summarizes some of the fundamental aspects of the anion–π interaction leading to several design strategies for generating it in solids. In the main body we highlight some relevant examples that illustrate the viability of these strategies and the importance of anion–π interactions in crystal engineering.
Collapse
Affiliation(s)
- Antonio Bauzá
- Departament de Quimica
- Universitat de les Illes Balears
- 07122 Palma de Mallorca, Spain
| | | | - Antonio Frontera
- Departament de Quimica
- Universitat de les Illes Balears
- 07122 Palma de Mallorca, Spain
| |
Collapse
|
45
|
Baker CM, Grant GH. Modeling Aromatic Liquids: Toluene, Phenol, and Pyridine. J Chem Theory Comput 2015; 3:530-48. [PMID: 26637033 DOI: 10.1021/ct600218f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aromatic groups are now acknowledged to play an important role in many systems of interest. However, existing molecular mechanics methods provide a poor representation of these groups. In a previous paper, we have shown that the molecular mechanics treatment of benzene can be improved by the incorporation of an explicit representation of the aromatic π electrons. Here, we develop this concept further, developing charge-separation models for toluene, phenol, and pyridine. Monte Carlo simulations are used to parametrize the models, via the reproduction of experimental thermodynamic data, and our models are shown to outperform an existing atom-centered model. The models are then used to make predictions about the structures of the liquids at the molecular level and are tested further through their application to the modeling of gas-phase dimers and cation-π interactions.
Collapse
Affiliation(s)
- Christopher M Baker
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, United Kingdom, and Unilever Centre for Molecular Informatics, The University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Guy H Grant
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, United Kingdom, and Unilever Centre for Molecular Informatics, The University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
46
|
Nagar M, Bearne SL. An additional role for the Brønsted acid-base catalysts of mandelate racemase in transition state stabilization. Biochemistry 2015; 54:6743-52. [PMID: 26480244 DOI: 10.1021/acs.biochem.5b00982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mandelate racemase (MR) catalyzes the interconversion of the enantiomers of mandelate and serves as a paradigm for understanding the enzyme-catalyzed abstraction of an α-proton from a carbon acid substrate with a high pKa. The enzyme utilizes a two-base mechanism with Lys 166 and His 297 acting as Brønsted acid and base catalysts, respectively, in the R → S reaction direction. In the S → R reaction direction, their roles are reversed. Using isothermal titration calorimetry (ITC), MR is shown to bind the intermediate/transition state (TS) analogue inhibitor benzohydroxamate (BzH) in an entropy-driven process with a value of ΔCp equal to -358 ± 3 cal mol(-1) K(-1), consistent with an increased number of hydrophobic interactions. However, MR binds BzH with an affinity that is ∼2 orders of magnitude greater than that predicted solely on the basis of hydrophobic interactions [St. Maurice, M., and Bearne, S. L. (2004) Biochemistry 43, 2524], suggesting that additional specific interactions contribute to binding. To test the hypothesis that cation-π/NH-π interactions between the side chains of Lys 166 and His 297 and the aromatic ring and/or the hydroxamate/hydroximate moiety of BzH contribute to the binding of BzH, site-directed mutagenesis was used to generate the MR variants K166M, K166C, H297N, and K166M/H297N and their binding affinity for various ligands determined using ITC. Comparison of the binding affinities of these MR variants with the intermediate/TS analogues BzH and cyclohexanecarbohydroxamate revealed that cation-π/NH-π interactions between His 297 and the hydroxamate/hydroximate moiety and the phenyl ring of BzH contribute approximately 0.26 and 0.91 kcal/mol to binding, respectively, while interactions with Lys 166 contribute approximately 1.74 and 1.74 kcal/mol, respectively. Similarly, comparison of the binding affinities of these mutants with substrate analogues revealed that Lys 166 contributes >2.93 kcal/mol to the binding of (R)-atrolactate, and His 297 contributes 2.46 kcal/mol to the binding of (S)-atrolactate. These results are consistent with Lys 166 and His 297 playing dual roles in catalysis: they act as Brønsted acid-base catalysts, and they stabilize both the enolate moiety and phenyl ring of the altered substrate in the TS.
Collapse
Affiliation(s)
- Mitesh Nagar
- Department of Biochemistry and Molecular Biology, Dalhousie University , Halifax, NS B3H 4R2, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University , Halifax, NS B3H 4R2, Canada.,Department of Chemistry, Dalhousie University , Halifax, NS B3H 4R2, Canada
| |
Collapse
|
47
|
Robillard DE, Mpangase PT, Hazelhurst S, Dehne F. SpeeDB: fast structural protein searches. Bioinformatics 2015; 31:3027-34. [PMID: 25979473 DOI: 10.1093/bioinformatics/btv274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/27/2015] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Interactions between amino acids are important determinants of the structure, stability and function of proteins. Several tools have been developed for the identification and analysis of such interactions in proteins based on the extensive studies carried out on high-resolution structures from Protein Data Bank (PDB). Although these tools allow users to identify and analyze interactions, analysis can only be performed on one structure at a time. This makes it difficult and time consuming to study the significance of these interactions on a large scale. RESULTS SpeeDB is a web-based tool for the identification of protein structures based on structural properties. SpeeDB queries are executed on all structures in the PDB at once, quickly enough for interactive use. SpeeDB includes standard queries based on published criteria for identifying various structures: disulphide bonds, catalytic triads and aromatic-aromatic, sulphur-aromatic, cation-π and ionic interactions. Users can also construct custom queries in the user interface without any programming. Results can be downloaded in a Comma Separated Value (CSV) format for further analysis with other tools. Case studies presented in this article demonstrate how SpeeDB can be used to answer various biological questions. Analysis of human proteases revealed that disulphide bonds are the predominant type of interaction and are located close to the active site, where they promote substrate specificity. When comparing the two homologous G protein-coupled receptors and the two protein kinase paralogs analyzed, the differences in the types of interactions responsible for stability accounts for the differences in specificity and functionality of the structures. AVAILABILITY AND IMPLEMENTATION SpeeDB is available at http://www.parallelcomputing.ca as a web service. CONTACT d@drobilla.net SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- David E Robillard
- School of Computer Science, Carleton University, Ottawa, Ontario, Canada, Sydney Brenner Institute for Molecular Bioscience and School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Phelelani T Mpangase
- School of Computer Science, Carleton University, Ottawa, Ontario, Canada, Sydney Brenner Institute for Molecular Bioscience and School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Scott Hazelhurst
- School of Computer Science, Carleton University, Ottawa, Ontario, Canada, Sydney Brenner Institute for Molecular Bioscience and School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa School of Computer Science, Carleton University, Ottawa, Ontario, Canada, Sydney Brenner Institute for Molecular Bioscience and School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Frank Dehne
- School of Computer Science, Carleton University, Ottawa, Ontario, Canada, Sydney Brenner Institute for Molecular Bioscience and School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
48
|
Affiliation(s)
- Michael Giese
- Institut
für Organische Chemie, Universität Duisburg Essen, Universitätsstraße
7, 45141 Essen, Germany
| | - Markus Albrecht
- Institut
für Organische Chemie, RWTH Aachen University, Landoltweg
1, 52074 Aachen, Germany
| | - Kari Rissanen
- Department
of Chemistry, Nanoscience Center, University of Jyvaskyla, P.O. Box. 35, FI-40014 Jyvaskylan yliopisto, Finland
| |
Collapse
|
49
|
Probing the selective separation of potassium ion from sodium ion with cyclopentadienyl anion as receptor: a computational study. J Mol Model 2015; 21:218. [DOI: 10.1007/s00894-015-2767-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
|
50
|
Theoretical study of the influence of cation-π and anion-π interactions on some NMR data of borazine complexes. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|