1
|
Costa CF, Lismont C, Chornyi S, Li H, Hussein MAF, Waterham HR, Fransen M. Functional Analysis of GSTK1 in Peroxisomal Redox Homeostasis in HEK-293 Cells. Antioxidants (Basel) 2023; 12:1236. [PMID: 37371965 DOI: 10.3390/antiox12061236] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Peroxisomes serve as important centers for cellular redox metabolism and communication. However, fundamental gaps remain in our understanding of how the peroxisomal redox equilibrium is maintained. In particular, very little is known about the function of the nonenzymatic antioxidant glutathione in the peroxisome interior and how the glutathione antioxidant system balances with peroxisomal protein thiols. So far, only one human peroxisomal glutathione-consuming enzyme has been identified: glutathione S-transferase 1 kappa (GSTK1). To study the role of this enzyme in peroxisomal glutathione regulation and function, a GSTK1-deficient HEK-293 cell line was generated and fluorescent redox sensors were used to monitor the intraperoxisomal GSSG/GSH and NAD+/NADH redox couples and NADPH levels. We provide evidence that ablation of GSTK1 does not change the basal intraperoxisomal redox state but significantly extends the recovery period of the peroxisomal glutathione redox sensor po-roGFP2 upon treatment of the cells with thiol-specific oxidants. Given that this delay (i) can be rescued by reintroduction of GSTK1, but not its S16A active site mutant, and (ii) is not observed with a glutaredoxin-tagged version of po-roGFP2, our findings demonstrate that GSTK1 contains GSH-dependent disulfide bond oxidoreductase activity.
Collapse
Affiliation(s)
- Cláudio F Costa
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Celien Lismont
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Serhii Chornyi
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Hongli Li
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Mohamed A F Hussein
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Department of Biochemistry, Faculty of Pharmacy, Assiut University, 71515 Asyut, Egypt
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marc Fransen
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Rosalia Rani, Simarani K, Alias Z. Functional Role of Beta Class Glutathione Transferases and Its Biotechnological Potential (Review). BIOL BULL+ 2022. [DOI: 10.1134/s106235902214014x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
3
|
Vodiasova EA, Meger YV, Lantushenko AO. Identification and characterization of the novel genes encoding glutathione S-transferases in Mytilus galloprovincialis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100926. [PMID: 34743056 DOI: 10.1016/j.cbd.2021.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022]
Abstract
The superfamily of glutathione S-transferases (GST) plays an essential role in the xenobiotic metabolism, binding compounds to the glutathione, and is like a cell protector during the influence of various negative external factors. Nevertheless, there are very few works devoted to the investigation of these genes in marine invertebrates. Up to this time, only three classes of cytosolic GSTs for one of the leading commercial molluscs Mytilus galloprovincialis were described. We sequenced the whole transcriptome from the gill tissues and, using bioinformatic analysis, detected ten classes of glutathione S-transferases, which are expressed in the mussel M. galloprovincialis. For the first time, two subfamilies were described: mitochondrial GST (kappa class) and microsomal (MAPEG), as well as five classes of the family of cytosolic GSTs (mu, omega, rho, tau, theta). Omega and sigma GST classes might be rapidly regulated genes due to the lack of introns and this assumption was confirmed by the investigation of short-term hypoxia on M. galloprovincialis. Seven new classes of GST revealed a greater gene variety of this detoxifying enzyme in mussels than expected. The obtained nucleotide sequences are necessary for future investigations of GSTs expression in response to various external factors (pollution, oxygen starvation, infection, etc.).
Collapse
Affiliation(s)
- E A Vodiasova
- Laboratory of Marine Biodiversity and Functional Genomics, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Lenninsky ave, 38, Moscow 119991, Russia
| | - Y V Meger
- Laboratory of Molecular and Cell Biophysics, Sevastopol State University, Sevastopol 299053, Russia.
| | - A O Lantushenko
- Laboratory of Molecular and Cell Biophysics, Sevastopol State University, Sevastopol 299053, Russia
| |
Collapse
|
4
|
Liu Q, Liu Z, Hua W, Gou S. Discovery of 6-(7-Nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol Derivatives as Glutathione Transferase Inhibitors with Favorable Selectivity and Tolerated Toxicity. J Med Chem 2021; 64:1701-1712. [PMID: 33529017 DOI: 10.1021/acs.jmedchem.0c02048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glutathione transferase (GST P1-1) is a potential target for anticancer drugs. In this work, a series of 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) derivatives as GST P1-1 inhibitors were designed, synthesized, and evaluated for their biological activity. Among the target compounds, 4n showed more selective inhibition toward GST P1-1 and GST M2-2, better water solubility, and more potent anticancer activities toward all the tested cancer cells (except for HOS) than its parent molecule. Detailed biological studies on the effect of 4n toward 143b cells revealed that 4n could arrest the cell cycle at the G2 phase and induced cell apoptosis in a dose-dependent manner. Like NBDHEX, 4n displayed good pharmacokinetic characteristics. An in vivo study on 143b xenograft models demonstrated that 4n could significantly reduce tumor growth in a dose-dependent manner, showing stronger antitumor activity than NBDHEX. Thus, 4n deserves to be further investigated as a potential antitumor agent for cancer therapy.
Collapse
Affiliation(s)
- Qingqing Liu
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhikun Liu
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wuyang Hua
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.,Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, Jiangsu Province 211189, China
| |
Collapse
|
5
|
Park JC, Hagiwara A, Park HG, Lee JS. The glutathione S-transferase genes in marine rotifers and copepods: Identification of GSTs and applications for ecotoxicological studies. MARINE POLLUTION BULLETIN 2020; 156:111080. [PMID: 32510351 DOI: 10.1016/j.marpolbul.2020.111080] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Various xenobiotics are constantly being released and accumulated into the aquatic environments and consequently, the aquatic organisms are continuously being exposed to exogenous stressors. Among various xenobiotic detoxifying enzymes, Glutathione S-transferase (GST) is one of the major xenobiotic detoxifying enzyme which is widely distributed among living organisms and thus, understanding of the nature of GSTs is crucial. Previous studies have shown GST activity in response to various xenobiotics yet, full identification of GSTs in marine invertebrates is still limited. This review covers information on the importance of GSTs as a biomarker for emerging chemicals and their response to wide ranges of environmental pollutants as well as in-depth phylogenetic analysis of marine invertebrates, including recently identified GSTs belonging to rotifers (Brachionus spp.) and copepods (Tigriopus japonicus and Paracyclopina nana), with unique class-specific features of GSTs, as well as a new suggestion of GST evolutionary pathway.
Collapse
Affiliation(s)
- Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU), Suwon 16419, South Korea.
| |
Collapse
|
6
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
7
|
Dasari S, Gonuguntla S, Yellanurkonda P, Nagarajan P, Meriga B. Sensitivity of glutathione S-transferases to high doses of acrylamide in albino wistar rats: Affinity purification, biochemical characterization and expression analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109416. [PMID: 31301596 DOI: 10.1016/j.ecoenv.2019.109416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/21/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
The main objectives of this study were to purify the glutathione S-transfereses (GSTs) and assess the effect of high doses of acrylamide (ACR) on male albino Wistar rat liver, kidney, testis and bran GST activities, and expression analysis of GST. ACR (50 mg/300 ml) was ingested for 40 days (20 doses) in drinking water on alternative days, on 40 day post ingestion the control and treated tissues were collected for GST purification by affinity column and biochemical characterization of GSTs by substrate specificities, and GST expression by immuno dot blots. In the analysis of the purified GSTs, we observed that liver GSTs were resolved in to three bands known as Yc, Yb and Ya; kidney GSTs were resolved in to two bands known as Yc and Ya; testis and brain GSTs were resolved as four bands known as Yc, Yb, Yβ and Yδ on 12.5% sodium dodecyl sulfate polyacrylamide gel (SDS PAGE). In the analysis of biochemical characterization, we observed a significant decrease (p < 0.05) in the specific activities of liver GST isoforms with the substrates 1-chloro 2,4-dinitrobenzene (CDNB), bromosulfophthalein (BSP), p-nitrophenyl acetate (pNPA), p-nitrobenzyl chloride (pNBC) and cumene hydroperoxide (CHP), but showed no activity with ethacrynic acid (ECA) and significant decrease (p < 0.05) in the specific activities of kidney GST isoforms with the substrates CDNB, pNPA, pNBC and CHP, but showed no activity with BSP and ECA, and a significant decrease (p < 0.05) in the specific activities of testis and brain GST isoforms with the substrates CDNB, BSP, pNPA, pNBC, ECA and CHP. In the analysis of immuno dot blots, we observed a decreased expression of liver, kidney, testis and brain GSTs. Through the affinity purification and biochemical characterization, we observed a tissue specific distribution of GSTs that is liver GSTs possess Yc, Yb and Ya sub units known as alpha (α) and mu (μ) class GSTs; kidney GSTs possess Yc and Ya sub units known as (α) alpha class GST; testis and brain GSTs possess Yc, Yb, Yβ and Yδ sub units known as alpha (α), mu (μ) and pi (π) class GSTs. Purification studies, biochemical characterization and immuno dot blot analysis were revealed the GSTs were sensitive to high doses of ACR and the high level exposure to ACR cause the damage of detoxification function of GST due to decreased expression and hence lead to cellular dysfunction of vital organs.
Collapse
Affiliation(s)
- Sreenivasulu Dasari
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India.
| | - Sailaja Gonuguntla
- College of Pharmaceutical Sciences, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | | | - Prabhusaran Nagarajan
- Research Laboratory of Leptospirosis and Medical Nanotechnology, SRM Medical College Hospital and Research Centre, Tiruchirapalli, Tamilnadu, India
| | - Balaji Meriga
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| |
Collapse
|
8
|
Hua S, Wang X, Chen F, Gou S. Novel conjugates with dual suppression of glutathione S-transferases and tryptophan-2,3-dioxygenase activities for improving hepatocellular carcinoma therapy. Bioorg Chem 2019; 92:103191. [PMID: 31445192 DOI: 10.1016/j.bioorg.2019.103191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/01/2019] [Accepted: 08/09/2019] [Indexed: 12/26/2022]
Abstract
Tryptophan-2,3-dioxygenase (TDO) is an immune checkpoint enzyme expressed in human tumors and involved in immune evasion and tumor tolerance. While glutathione S-transferases (GSTs) are pharmacological targets for several cancer. Here we demonstrated the utility of NBDHEX (GSTs inhibitor) and TDO inhibitor by the combinatorial linker design. Two novel conjugates with different linkers were prepared to reverse tumor immune suppression. The conjugates displayed significant antitumor activity against TDO and GSTs expression of HepG2 cancer cells. Further study indicated that compound 4 could induce higher apoptotic effect than its mother compounds via a mitochondrial-dependent pathway, simultaneously more effective to inhibit TDO and GSTs protein expression. Further study indicated that 4 could decrease the production of kynurenine and deactivate aryl hydrocarbon receptor (AHR), leading to CD3+T-cell activation and proliferation to involve in antitumor immune response.
Collapse
Affiliation(s)
- Shixian Hua
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xinyi Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Feihong Chen
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China; Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
9
|
DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway. Proc Natl Acad Sci U S A 2017; 114:12196-12201. [PMID: 29087318 DOI: 10.1073/pnas.1708744114] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the DNA-sensing cGAS-cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A oxidoreductase-like protein (DsbA-L), a chaperone-like protein originally identified in the mitochondrial matrix, impaired mitochondrial function and promoted mtDNA release, leading to activation of the cGAS-cGAMP-STING pathway and inflammatory responses. Conversely, fat-specific overexpression of DsbA-L protected mice against high-fat diet-induced activation of the cGAS-cGAMP-STING pathway and inflammation. Taken together, we identify DsbA-L as a key molecule that maintains mitochondrial integrity. DsbA-L deficiency promotes inflammation and insulin resistance by activating the cGAS-cGAMP-STING pathway. Our study also reveals that, in addition to its well-characterized roles in innate immune surveillance, the cGAS-cGAMP-STING pathway plays an important role in mediating obesity-induced metabolic dysfunction.
Collapse
|
10
|
Özaslan MS, Demir Y, Küfrevioğlu OI, Çiftci M. Some metals inhibit the glutathione S-transferase from Van Lake fish gills. J Biochem Mol Toxicol 2017; 31. [DOI: 10.1002/jbt.21967] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/05/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022]
Affiliation(s)
- M. Serhat Özaslan
- Department of Chemistry, Faculty of Sciences; Atatürk University; Erzurum 25240 Turkey
| | - Yeliz Demir
- Department of Chemistry, Faculty of Sciences; Atatürk University; Erzurum 25240 Turkey
| | - O. Irfan Küfrevioğlu
- Department of Chemistry, Faculty of Sciences; Atatürk University; Erzurum 25240 Turkey
| | - Mehmet Çiftci
- Department of Chemistry, Faculty of Sciences; Bingöl University; Bingöl 12000 Turkey
| |
Collapse
|
11
|
Chatzikonstantinou M, Vlachakis D, Chronopoulou E, Papageorgiou L, Papageorgiou AC, Labrou NE. The glutathione transferase family of Chlamydomonas reinhardtii: Identification and characterization of novel sigma class-like enzymes. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Chen H, Bai J, Dong F, Fang H, Zhang Y, Meng W, Liu B, Luo Y, Liu M, Bai Y, Abdul-Ghani MA, Li R, Wu J, Zeng R, Zhou Z, Dong LQ, Liu F. Hepatic DsbA-L protects mice from diet-induced hepatosteatosis and insulin resistance. FASEB J 2017; 31:2314-2326. [PMID: 28232481 DOI: 10.1096/fj.201600985r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/30/2017] [Indexed: 01/28/2023]
Abstract
Hepatic insulin resistance and hepatosteatosis in diet-induced obesity are associated with various metabolic diseases, yet the underlying mechanisms remain to be fully elucidated. Here we show that the expression levels of the disulfide-bond A oxidoreductase-like protein (DsbA-L) are significantly reduced in the liver of obese mice and humans. Liver-specific knockout or adenovirus-mediated overexpression of DsbA-L exacerbates or alleviates, respectively, high-fat diet-induced mitochondrial dysfunction, hepatosteatosis, and insulin resistance in mice. Mechanistically, we found that DsbA-L is localized in mitochondria and that its deficiency is associated with impairment of maximum respiratory capacity, elevated cellular oxidative stress, and increased JNK activity. Our results identify DsbA-L as a critical regulator of mitochondrial function, and its down-regulation in the liver may contribute to obesity-induced hepatosteatosis and whole body insulin resistance.-Chen, H., Bai, J., Dong, F., Fang, H., Zhang, Y., Meng, W., Liu, B., Luo, Y., Liu, M., Bai, Y., Abdul-Ghani, M. A., Li, R., Wu, J., Zeng, R., Zhou, Z., Dong, L. Q., Liu, F. Hepatic DsbA-L protects mice from diet-induced hepatosteatosis and insulin resistance.
Collapse
Affiliation(s)
- Hongzhi Chen
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, Second Xiangya Hospital, Central South University, Changsha, China.,Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Juli Bai
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Feng Dong
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Hezhi Fang
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Yun Zhang
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen Meng
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, Second Xiangya Hospital, Central South University, Changsha, China
| | - Bilian Liu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Luo
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, Second Xiangya Hospital, Central South University, Changsha, China
| | - Meilian Liu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, Second Xiangya Hospital, Central South University, Changsha, China.,Department of Biochemistry and Molecular Biology, University of New Mexico Health Science Center, Albuquerque, New Mexico, USA
| | - Yidong Bai
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Muhammad A Abdul-Ghani
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Rongxia Li
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiarui Wu
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rong Zeng
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lily Q Dong
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Feng Liu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Disease, Second Xiangya Hospital, Central South University, Changsha, China; .,Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
13
|
Isoniazid metabolism and hepatotoxicity. Acta Pharm Sin B 2016; 6:384-392. [PMID: 27709007 PMCID: PMC5045547 DOI: 10.1016/j.apsb.2016.07.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/09/2016] [Accepted: 06/27/2016] [Indexed: 12/17/2022] Open
Abstract
Isoniazid (INH) is highly effective for the management of tuberculosis. However, it can cause liver injury and even liver failure. INH metabolism has been thought to be associated with INH-induced liver injury. This review summarized the metabolic pathways of INH and discussed their associations with INH-induced liver injury.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AcHz, acetylhydrazine
- AcINH, acetylisoniazid
- Amidase
- Anti-tuberculosis
- DiAcHz, diacetylhydrazine
- GSH, glutathione
- GST, glutathione S-transferase
- Hepatotoxicity
- Hz, hydrazine
- INA, isonicotinic acid
- INH, isoniazid
- Isoniazid
- MPO, myeloperoxidase
- Metabolism
- N-Acetyltransferase 2
- NAD+, nicotinamide adenine dinucleotide
- NAT, N-acetyltransferase
- P450, cytochrome P450
- R.M., reactive metabolite
- TB, tuberculosis
Collapse
|
14
|
Chaurasia MK, Ravichandran G, Nizam F, Arasu MV, Al-Dhabi NA, Arshad A, Harikrishnan R, Arockiaraj J. In-silico analysis and mRNA modulation of detoxification enzymes GST delta and kappa against various biotic and abiotic oxidative stressors. FISH & SHELLFISH IMMUNOLOGY 2016; 54:353-363. [PMID: 27109581 DOI: 10.1016/j.fsi.2016.04.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
This study reports the comprehensive comparative information of two different detoxification enzymes such as glutathione S-transferases (GSTs) delta and kappa from freshwater giant prawn Macrobrachium rosenbergii (designated as MrGSTD and MrGSTK) by investigating their in-silico characters and mRNA modulation against various biotic and abiotic oxidative stressors. The physico-chemical properties of these cDNA and their polypeptide structure were analyzed using various bioinformatics program. The analysis indicated the variation in size of the polypeptides, presence or absence of domains and motifs and structure. Homology and phylogenetic analysis revealed that MrGSTD shared maximum identity (83%) with crustaceans GST delta, whereas MrGSTK fell in arthropods GST kappa. It is interesting to note that MrGSTD and MrGSTK shared only 21% identity; it indicated their structural difference. Structural analysis indicated that MrGSTD to be canonical dimer like shape and MrGSTK appeared to be butterfly dimer like shape, in spite of four β-sheets being conserved in both GSTs. Tissue specific gene expression analysis showed that both MrGSTD and MrGSTK are highly expressed in immune organs such as haemocyte and hepatopancreas, respectively. To understand the role of mRNA modulation of MrGSTD and MrGSTK, the prawns were inducted with oxidative stressors such as bacteria (Vibrio harveyi), virus [white spot syndrome virus (WSSV)] and heavy metal, cadmium (Cd). The analysis revealed an interesting fact that both MrGSTD and MrGSTK showed higher (P < 0.05) up-regulation at 48 h post-challenge, except MrGSTD stressed with bacteria, where it showed up-regulation at 24 h post-challenge. Overall, the results suggested that GSTs are diverse in their structure and possibly conferring their potential involvement in immune protection in crustaceans. However, further study is necessary to focus their functional differences at proteomic level.
Collapse
Affiliation(s)
- Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Gayathri Ravichandran
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India; SRM Research Institute, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Faizal Nizam
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aziz Arshad
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631 501, Tamil Nadu, India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
15
|
Lyu K, Gu L, Li B, Lu Y, Wu C, Guan H, Yang Z. Stress-responsive expression of a glutathione S-transferase (delta) gene in waterflea Daphnia magna challenged by microcystin-producing and microcystin-free Microcystis aeruginosa. HARMFUL ALGAE 2016; 56:1-8. [PMID: 28073492 DOI: 10.1016/j.hal.2016.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/18/2016] [Accepted: 04/21/2016] [Indexed: 05/27/2023]
Abstract
Harmful cyanobacterial blooms resulting from eutrophication and global warming have emerged as a worldwide environmental concern. Some zooplankton populations, including Daphnia, have been shown to adapt locally to microcystin-producing Microcystis. Previous in vitro experiments indicate that glutathione-S-transferase (GST) may act as the first step of detoxification in Daphnia by conjugating microcystins (MCs) with glutathione. The GST family is categorized into many classes, and different classes present distinct responses to MC detoxification. To date, however, the molecular mechanism of single class GST participation in buffering the toxic effects of MCs in Daphnia remains poorly known. In this study, a full-length delta-GST cDNA of Daphnia magna (Dm-dGST) was isolated and characterized through bioinformatics. Differential gene expression studies revealed that short-term exposure to microcystin-producing (MP) Microcystis aeruginosa increased Dm-dGST transcript levels. By contrast, long-term exposure to MP or microcystin-free (MF) M. aeruginosa decreased Dm-dGST transcript levels. Together with changes in three other antioxidation biomarkers (catalase, CuZn- and Mn-superoxide dismutase), it is concluded that Dm-dGST can potentially biotransform MCs to reduce their toxicity. The present study highlights the importance of Dm-dGST in response to MC toxicity and may thus facilitate future research on the molecular mechanisms of MC tolerance in zooplankton under an increasing eutrophic world.
Collapse
Affiliation(s)
- Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Lei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bangping Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yichun Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Changcan Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Haoyong Guan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
16
|
Pavlidi N, Tseliou V, Riga M, Nauen R, Van Leeuwen T, Labrou NE, Vontas J. Functional characterization of glutathione S-transferases associated with insecticide resistance in Tetranychus urticae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 121:53-60. [PMID: 26047112 DOI: 10.1016/j.pestbp.2015.01.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 05/13/2023]
Abstract
The two-spotted spider mite Tetranychus urticae is one of the most important agricultural pests world-wide. It is extremely polyphagous and develops resistance to acaricides. The overexpression of several glutathione S-transferases (GSTs) has been associated with insecticide resistance. Here, we functionally expressed and characterized three GSTs, two of the delta class (TuGSTd10, TuGSTd14) and one of the mu class (TuGSTm09), which had been previously associated with striking resistance phenotypes against abamectin and other acaricides/insecticides, by transcriptional studies. Functional analysis showed that all three GSTs were capable of catalyzing the conjugation of both 1-chloro-2,4 dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzene(DCNB) to glutathione (GSH), as well as exhibiting GSH-dependent peroxidase activity toward Cumene hydroperoxide (CumOOH). The steady-state kinetics of the T. urticae GSTs for the GSH/CDNB conjugation reaction were determined and compared with other GSTs. The interaction of the three recombinant proteins with several acaricides and insecticides was also investigated. TuGSTd14 showed the highest affinity toward abamectin and a competitive type of inhibition, which suggests that the insecticide may bind to the H-site of the enzyme. The three-dimensional structure of the TuGSTd14 was predicted based on X-ray structures of delta class GSTs using molecular modeling. Structural analysis was used to identify key structural characteristics and to provide insights into the substrate specificity and the catalytic mechanism of TuGSTd14.
Collapse
Affiliation(s)
- Nena Pavlidi
- Department of Biology, University of Crete, Heraklion 71409, Greece
| | - Vasilis Tseliou
- Department of Biology, University of Crete, Heraklion 71409, Greece
| | - Maria Riga
- Department of Biology, University of Crete, Heraklion 71409, Greece
| | - Ralf Nauen
- BayerCropScience AG, RD-SMR Pest Control Biology, Alfred Nobel Str. 50, Monheim D-40789, Germany
| | - Thomas Van Leeuwen
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (UvA), Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 IeraOdos Street, Athens GR-11855, Greece
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, Heraklion Crete GR-700 13, Greece; Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 75 IeraOdos Street, Athens GR-11855, Greece.
| |
Collapse
|
17
|
Abstract
Adiponectin is among the most studied adipokines, the collection of molecules secreted from adipose tissue. It is also one of the most architecturally complex adipokines with its various oligomeric states that include trimers, hexamers, nonamers (9mers), dodecamers (12mers), and octadecamers (18mers). The importance of adiponectin in metabolic regulation is underscored by its strong positive associations with improvement in insulin action and also decreased risks for developing type 2 diabetes. Understanding the mechanisms involved in maintaining the steady-state concentrations of adiponectin oligomers in circulation is therefore likely to provide important insight into the development of insulin resistance. This review will discuss the current state of knowledge regarding the biochemical composition of adiponectin oligomers, the commonly used techniques to analyze them, and the known post-translational modifications that affect their assembly. Evidence based on in vitro oligomer assembly reactions in support of a "cystine ratchet" model of adiponectin oligomer formation will be considered along with limitations of the evidence. Secretory pathway proteins that have been shown to affect the distribution of adiponectin oligomers will also be discussed along with hypotheses regarding their potential involvement in the cystine ratchet model of adiponectin oligomerization.
Collapse
Affiliation(s)
- Tsu-Shuen Tsao
- Department of Chemistry and Biochemistry, University of Arizona, MRB Diabetes Research, P.O. Box 245218, Tucson, AZ, 85724, USA,
| |
Collapse
|
18
|
Li L, Liang XF, He S, Li G, Wen Z, Cai W, Shen D. Transcriptional responses of mu-, pi- and omega-class glutathione S-transferase genes in the hepatopancreas of Cipangopaludina cahayensis exposed to microcystin-LR. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-014-0305-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Dewey S, Lai X, Witzmann FA, Sohal M, Gomes AV. Proteomic Analysis of Hearts from Akita Mice Suggests That Increases in Soluble Epoxide Hydrolase and Antioxidative Programming Are Key Changes in Early Stages of Diabetic Cardiomyopathy. J Proteome Res 2013; 12:3920-33. [DOI: 10.1021/pr4004739] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Xianyin Lai
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Frank A. Witzmann
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | | | | |
Collapse
|
20
|
Hui KM, Hao FY, Li W, Zhang Z, Zhang CY, Wang W, Ren Q. Cloning and identification of four Mu-type glutathione S-transferases from the giant freshwater prawn Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2013; 35:546-552. [PMID: 23727284 DOI: 10.1016/j.fsi.2013.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/13/2013] [Accepted: 05/17/2013] [Indexed: 06/02/2023]
Abstract
Glutathione S-transferases (GSTs) are essential components of the cellular detoxification system because of their capability to protect organisms against the toxicity of reactive oxygen species (ROSs). Four different GSTs (MrMuGST1-MrMuGST4) showing similarities with Mu-type GSTs were cloned from the hepatopancreas of Macrobrachium rosenbergii. These four GSTs have 219, 216, 218 and 219 amino acids in length, respectively. MrMuGST1-MrMuGST4 proteins all have a G-site in the N-terminus and an H-site in the C-terminus. Phylogenetic analysis reveals that four Mu-type GSTs are classified into two different clades (MrMuGST2 one clade; MrMuGST1, MrMuGST3 and MrMuGST4 other clades). Nonetheless, no site under positive selection was detected but rapid evolution was found in the few of MuGST genes. Reverse transcription-polymerase chain reaction (RT-PCR) results showed that MrMuGST1 and MrMuGST2 transcripts were expressed in all detected tissues, however, MrMuGST3 and MrMuGST4 were just mainly expressed in hepatopancreas and intestines. Quantitative RT-PCR analysis showed that MrMuGST1 and MrMuGST2 were down-regulated upon Vibrio anguillarum challenge, whereas MrMuGST3 and MrMuGST4 were quickly up-regulated 2 h after the Vibrio challenge. Our results imply that different Mu-type GSTs may respond to Vibrio challenge with different manners.
Collapse
Affiliation(s)
- Kai-Min Hui
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | | | | | | | | | | | | |
Collapse
|
21
|
Han J, Won EJ, Hwang DS, Rhee JS, Kim IC, Lee JS. Effect of copper exposure on GST activity and on the expression of four GSTs under oxidative stress condition in the monogonont rotifer, Brachionus koreanus. Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:91-100. [PMID: 23707386 DOI: 10.1016/j.cbpc.2013.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 11/29/2022]
Abstract
Glutathione S-transferases (GSTs; EC 2.5.1.18) are major enzymes that function in Phase II detoxification reactions by catalyzing the conjugation of reduced glutathione through cysteine thiol. In this study, we cloned and sequenced four GST genes from the monogonont rotifer Brachionus koreanus. The domain regions of four Bk-GSTs showed a high similarity to those of other species. In addition, to evaluate the potential of GST genes as an early warning signal for oxidative stress, we exposed sublethal concentrations of copper (Cu) to B. koreanus and measured glutathione (GSH) contents and several antioxidant enzymes such as glutathione S-transferase (GST), glutathione peroxidase (GPx; EC 1.11.1.9), and glutathione reductase (GR; EC 1.8.1.7). The reactive oxygen species (ROS) at 12h and 24h after copper exposure increased significantly. GSH contents however did not increase significantly and even it decreased at 0.24mg/L at 12h. The activities of several antioxidant enzymes, particularly GPx and GR, showed a dramatic increase in 0.24mg/L of CuCl2. Messenger RNAs of each Bk-GST showed different patterns of modulations according to GST types, and particularly, Bk-GST-omega, Bk-GST-sigma, and Bk-GST zeta genes were highly sensitive to Cu. These results indicate that Bk-GSTs, functioning as one of the enzymatic defense mechanisms particularly in the early stage of oxidative stress response, were induced by Cu exposure. This also suggests that these genes and related enzymes have a potential as biomarkers for a more sensitive initial stress response.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | |
Collapse
|
22
|
Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta Gen Subj 2013; 1830:3217-66. [DOI: 10.1016/j.bbagen.2012.09.018] [Citation(s) in RCA: 625] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/25/2012] [Indexed: 12/12/2022]
|
23
|
Sarkar DD, Edwards SK, Mauser JA, Suarez AM, Serowoky MA, Hudok NL, Hudok PL, Nuñez M, Weber CS, Lynch RM, Miyashita O, Tsao TS. Increased redox-sensitive green fluorescent protein reduction potential in the endoplasmic reticulum following glutathione-mediated dimerization. Biochemistry 2013; 52:3332-45. [PMID: 23594148 DOI: 10.1021/bi400052u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As the endoplasmic reticulum (ER) is the compartment where disulfide bridges in secreted and cell surface proteins are formed, the disturbance of its redox state has profound consequences, yet regulation of ER redox potential remains poorly understood. To monitor the ER redox state in live cells, several fluorescence-based sensors have been developed. However, these sensors have yielded results that are inconsistent with each other and with earlier non-fluorescence-based studies. One particular green fluorescent protein (GFP)-based redox sensor, roGFP1-iL, could detect oxidizing changes in the ER despite having a reduction potential significantly lower than that previously reported for the ER. We have confirmed these observations and determined the mechanisms by which roGFP1-iL detects oxidizing changes. First, glutathione mediates the formation of disulfide-bonded roGFP1-iL dimers with an intermediate excitation fluorescence spectrum resembling a mixture of oxidized and reduced monomers. Second, glutathione facilitates dimerization of roGFP1-iL, which shifted the equilibrium from oxidized monomers to dimers, thereby increasing the molecule's reduction potential compared with that of a dithiol redox buffer. We conclude that the glutathione redox couple in the ER significantly increased the reduction potential of roGFP1-iL in vivo by facilitating its dimerization while preserving its ratiometric nature, which makes it suitable for monitoring oxidizing and reducing changes in the ER with a high degree of reliability in real time. The ability of roGFP1-iL to detect both oxidizing and reducing changes in ER and its dynamic response in glutathione redox buffer between approximately -190 and -130 mV in vitro suggests a range of ER redox potentials consistent with those determined by earlier approaches that did not involve fluorescent sensors.
Collapse
Affiliation(s)
- Deboleena Dipak Sarkar
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Many proteins contain free thiols that can be modified by the reversible formation of mixed disulfides with glutathione. Protein glutathionylation is of significance for defense against oxidative damage and in redox signaling. Here we outline the mechanisms and possible significance of protein glutathionylation.
Collapse
|
25
|
Boušová I, Skálová L. Inhibition and induction of glutathione S-transferases by flavonoids: possible pharmacological and toxicological consequences. Drug Metab Rev 2012; 44:267-86. [PMID: 22998389 DOI: 10.3109/03602532.2012.713969] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many studies reviewed herein demonstrated the potency of some flavonoids to modulate the activity and/or expression of glutathione S-transferases (GSTs). Because GSTs play a crucial role in the detoxification of xenobiotics, their inhibition or induction may significantly affect metabolism and biological effects of many drugs, industrials, and environmental contaminants. The effect of flavonoids on GSTs strongly depends on flavonoid structure, concentration, period of administration, as well as on GST isoform and origin. Moreover, the results obtained in vitro are often contrary to the vivo results. Based on these facts, the revelation of important flavonoid-drug or flavonoid-pollutant interaction has been complicated. However, it should be borne in mind that ingestion of certain flavonoids in combination with drugs or pollutants (e.g., acetaminophen, simvastatin, cyclophosphamide, cisplatine, polycyclic aromatic hydrocarbons, chlorpyrifos, acrylamide, and isocyanates), which are GST substrates, could have significant pharmacological and toxicological consequences. Although reasonable consumptions of a flavonoids-rich diet (that may lead to GST induction) are mostly beneficial, the uncontrolled intake of high concentrations of certain flavonoids (e.g., quercetin and catechins) in dietary supplements (that may cause GST inhibition) may threaten human health.
Collapse
Affiliation(s)
- Iva Boušová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic, European Union
| | | |
Collapse
|
26
|
Chronopoulou E, Madesis P, Asimakopoulou B, Platis D, Tsaftaris A, Labrou NE. Catalytic and structural diversity of the fluazifop-inducible glutathione transferases from Phaseolus vulgaris. PLANTA 2012; 235:1253-1269. [PMID: 22203322 DOI: 10.1007/s00425-011-1572-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/05/2011] [Indexed: 05/31/2023]
Abstract
Plant glutathione transferases (GSTs) comprise a large family of inducible enzymes that play important roles in stress tolerance and herbicide detoxification. Treatment of Phaseolus vulgaris leaves with the aryloxyphenoxypropionic herbicide fluazifop-p-butyl resulted in induction of GST activities. Three inducible GST isoenzymes were identified and separated by affinity chromatography. Their full-length cDNAs with complete open reading frame were isolated using RACE-RT and information from N-terminal amino acid sequences. Analysis of the cDNA clones showed that the deduced amino acid sequences share high homology with GSTs that belong to phi and tau classes. The three isoenzymes were expressed in E. coli and their substrate specificity was determined towards 20 different substrates. The results showed that the fluazifop-inducible glutathione transferases from P. vulgaris (PvGSTs) catalyze a broad range of reactions and exhibit quite varied substrate specificity. Molecular modeling and structural analysis was used to identify key structural characteristics and to provide insights into the substrate specificity and the catalytic mechanism of these enzymes. These results provide new insights into catalytic and structural diversity of GSTs and the detoxifying mechanism used by P. vulgaris.
Collapse
Affiliation(s)
- Evangelia Chronopoulou
- Laboratory of Enzyme Technology, Department of Agricultural Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece
| | | | | | | | | | | |
Collapse
|
27
|
Umasuthan N, Revathy KS, Lee Y, Whang I, Choi CY, Lee J. A novel molluscan sigma-like glutathione S-transferase from Manila clam, Ruditapes philippinarum: cloning, characterization and transcriptional profiling. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:539-50. [PMID: 22245757 DOI: 10.1016/j.cbpc.2012.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 12/27/2011] [Accepted: 01/02/2012] [Indexed: 01/23/2023]
Abstract
Glutathione S-transferases (GSTs) are versatile enzymes, act as primary intracellular detoxifiers and contribute to a broad range of physiological processes including cellular defense. In this study, a full-length cDNA representing a novel sigma-like GST was identified from Manila clam, Ruditapes philippinarum (RpGSTσ). RpGSTσ (884 bp) was found to possess an open reading frame of 609 bp. The encoded polypeptide (203 amino acids) had a predicted molecular mass of 23.21 kDa and an isoelectric point of 7.64. Sequence analysis revealed two conserved GST domain profiles in N- and C-termini. Alignment studies revealed that the identity between deduced peptides of RpGSTσ and known GSTσ members was relatively low (<35%), except a previously identified Manila clam GSTσ isoform (87.2%). Phylogenetic analysis indicated that RpGSTσ clustered together with molluscan GSTσ homologs, which were closely related to insect GSTσs. The RpGSTσ was subsequently cloned and expressed as recombinant protein, in order to characterize its biological activity. The recombinant RpGSTσ exhibited characteristic glutathione conjugating catalytic activity toward 1-chloro-2,4-dinitrobenzene, 3,4-dichloronitrobenzene and ethacrynic acid. It had an optimal pH and temperature of 8.0 and 35 °C, respectively. Expression profiles under normal conditions and in response to lipopolysaccharide-, poly I:C- and Vibrio tapetis-challenges were also investigated. RpGSTσ demonstrated a differential tissue distribution with robust transcription in gills of normal animals. We explored potential association of GSTσ in cellular defense during bacterial infection and found that in challenged clams, RpGSTσ gene was significantly induced in internal and external tissues, in conjunction with manganese- as well as copper-zinc superoxide dismutase (MnSOD and CuZnSOD) genes. Moreover, the induction was remarkably higher in hemocytes than in gill. Collectively, our findings suggested that RpGSTσ could play a significant role in cellular defense against oxidative stress caused by bacteria, in conjunction with other antioxidant enzymes, such as SODs.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province, 690-756, Republic of Korea
| | | | | | | | | | | |
Collapse
|
28
|
Erat M, Şakiroğlu H. The effect of some antineoplastic agents on glutathione S-transferase from human erythrocytes. J Enzyme Inhib Med Chem 2012; 28:711-6. [DOI: 10.3109/14756366.2012.677837] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mustafa Erat
- Atatürk University, Erzurum Vocational College, Chemistry and Chemical Processing Technologies, Erzurum-Turkey
| | - Halis Şakiroğlu
- Atatürk University, Science Faculty, Department of Chemistry, Erzurum-Turkey
| |
Collapse
|
29
|
A glutathione transferase from Agrobacterium tumefaciens reveals a novel class of bacterial GST superfamily. PLoS One 2012; 7:e34263. [PMID: 22496785 PMCID: PMC3319563 DOI: 10.1371/journal.pone.0034263] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 02/24/2012] [Indexed: 01/07/2023] Open
Abstract
In the present work, we report a novel class of glutathione transferases (GSTs) originated from the pathogenic soil bacterium Agrobacterium tumefaciens C58, with structural and catalytic properties not observed previously in prokaryotic and eukaryotic GST isoenzymes. A GST-like sequence from A. tumefaciens C58 (Atu3701) with low similarity to other characterized GST family of enzymes was identified. Phylogenetic analysis showed that it belongs to a distinct GST class not previously described and restricted only in soil bacteria, called the Eta class (H). This enzyme (designated as AtuGSTH1-1) was cloned and expressed in E. coli and its structural and catalytic properties were investigated. Functional analysis showed that AtuGSTH1-1 exhibits significant transferase activity against the common substrates aryl halides, as well as very high peroxidase activity towards organic hydroperoxides. The crystal structure of AtuGSTH1-1 was determined at 1.4 Å resolution in complex with S-(p-nitrobenzyl)-glutathione (Nb-GSH). Although AtuGSTH1-1 adopts the canonical GST fold, sequence and structural characteristics distinct from previously characterized GSTs were identified. The absence of the classic catalytic essential residues (Tyr, Ser, Cys) distinguishes AtuGSTH1-1 from all other cytosolic GSTs of known structure and function. Site-directed mutagenesis showed that instead of the classic catalytic residues, an Arg residue (Arg34), an electron-sharing network, and a bridge of a network of water molecules may form the basis of the catalytic mechanism. Comparative sequence analysis, structural information, and site-directed mutagenesis in combination with kinetic analysis showed that Phe22, Ser25, and Arg187 are additional important residues for the enzyme's catalytic efficiency and specificity.
Collapse
|
30
|
Murphy MP. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal 2012; 16:476-95. [PMID: 21954972 DOI: 10.1089/ars.2011.4289] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE The mitochondrial matrix contains much of the machinery at the heart of metabolism. This compartment is also exposed to a high and continual flux of superoxide, hydrogen peroxide, and related reactive species. To protect mitochondria from these sources of oxidative damage, there is an integrated set of thiol systems within the matrix comprising the thioredoxin/peroxiredoxin/methionine sulfoxide reductase pathways and the glutathione/glutathione peroxidase/glutathione-S-transferase/glutaredoxin pathways that in conjunction with protein thiols prevent much of this oxidative damage. In addition, the changes in the redox state of many components of these mitochondrial thiol systems may transduce and relay redox signals within and through the mitochondrial matrix to modulate the activity of biochemical processes. RECENT ADVANCES Here, mitochondrial thiol systems are reviewed, and areas of uncertainty are pointed out, focusing on recent developments in our understanding of their roles. CRITICAL ISSUES The areas of particular focus are on the multiple, overlapping roles of mitochondrial thiols and on understanding how these thiols contribute to both antioxidant defenses and redox signaling. FUTURE DIRECTIONS Recent technical progress in the identification and quantification of thiol modifications by redox proteomics means that many of the questions raised about the multiple roles of mitochondrial thiols can now be addressed.
Collapse
|
31
|
Saranya Revathy K, Umasuthan N, Lee Y, Choi CY, Whang I, Lee J. First molluscan theta-class Glutathione S-Transferase: identification, cloning, characterization and transcriptional analysis post immune challenges. Comp Biochem Physiol B Biochem Mol Biol 2012; 162:10-23. [PMID: 22390916 DOI: 10.1016/j.cbpb.2012.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/13/2012] [Accepted: 02/13/2012] [Indexed: 10/28/2022]
Abstract
Glutathione S-Transferases (GSTs) are multifunctional cytosolic isoenzymes, distinctly known as phase II detoxification enzymes. GSTs play a significant role in cellular defense against toxicity and have been identified in nearly all organisms studied to date, from bacteria to mammals. In this study, we have identified a full-length cDNA of the theta class GST from Ruditapes philippinarum (RpGSTθ), an important commercial edible molluscan species. RpGSTθ was cloned and the recombinant protein expressed, in order to study its biochemical characteristics and determine its physiological activities. The cDNA comprised an ORF of 693 bp, encoding 231 amino acids with a predicted molecular mass of 27 kDa and an isoelectric point of 8.2. Sequence analysis revealed that RpGSTθ possessed characteristic conserved domains of the GST_N family, Class Theta subfamily (PSSM: cd03050) and GST_C_family Super family (PSSM: cl02776). Phylogenetic analysis showed that RpGSTθ evolutionarily linked with other theta class homologues. The recombinant protein was expressed in Escherichia coli BL21(DE3) cells and the purified enzyme showed high activity with GST substrates like CDNB and 4-NBC. Glutathione dependent peroxidase activity of GST, investigated with cumene hydroperoxide as substrate affirmed the antioxidant property of rRpGSTθ. By quantitative PCR, RpGSTθ was found to be ubiquitously expressed in all tissues examined, with the highest levels occurring in gills, mantle, and hemocytes. Since GSTs may act as detoxification enzymes to mediate immune defense, the effects of pathogen associated molecular pattern, lipopolysaccharide and intact Vibrio tapetis bacteria challenge on RpGSTθ gene transcription were studied. Furthermore, the RpGSTθ expression changes induced by immune challenges were similar to those of the antioxidant defense enzyme manganese superoxide dismutase (RpMnSOD). To our knowledge, RpGSTθ is the first molluscan theta class GST reported, and its immune-related role in Manila clam may provide insights into potential therapeutic targets for protecting this important aquaculture species.
Collapse
Affiliation(s)
- Kasthuri Saranya Revathy
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | | | |
Collapse
|
32
|
Li C, Su X, Li Y, Li T, Sun C, Zhou T, Liu H. Two classes of glutathione S-transferase genes with different response profiles to bacterial challenge in Venerupis philippinarum. FISH & SHELLFISH IMMUNOLOGY 2012; 32:219-222. [PMID: 22119575 DOI: 10.1016/j.fsi.2011.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 05/31/2023]
Abstract
Glutathione S-transferase (GST) is major cytosolic detoxification enzymes involved in many pathological and physiological processes. In the present study, two classes of GSTs (VpGST-1 and VpGST-2) were cloned from Venerupis philippinarum haemocytes by cDNA library and RACE approaches. Sequence alignments and phylogenetic analysis together supported that they belonged to a new member of sigma and pi classes GSTs protein family, respectively. The expression profiles of these two genes under Vibrio anguillarum challenge were investigated by quantitative RT-PCR. The bacterial challenge could significantly up-regulate the mRNA expression of both VpGST-1 and VpGST-2 with larger amplitude in VpGST-2, and the feedback speed for VpGST-2 was more rapid than that of VpGST-1. The differences in the response to bacterial challenge indicated that they were functional diversity and probably played cooperative roles in mediating the Vibrio challenge in clam.
Collapse
Affiliation(s)
- Chenghua Li
- Faculty of Life Science and Biotechnology, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, PR China.
| | | | | | | | | | | | | |
Collapse
|
33
|
Binding of GSH conjugates to π-GST: a cross-docking approach. J Mol Graph Model 2011; 32:9-18. [PMID: 22014382 DOI: 10.1016/j.jmgm.2011.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 09/15/2011] [Accepted: 09/21/2011] [Indexed: 10/17/2022]
Abstract
The high degree of flexibility characterizing the members of the GST protein family is supposed to be an evolution-resolved feature related to the detoxifying role of these enzymes. Many evidences suggest that overexpression of these enzymes may be implicated in the development of acquired resistance to antitumor agents. Among the most effective GST inhibitors, GSH conjugates have been found to be particularly promising because of their low toxicity. Here, we used a cross docking approach based on an ensemble of X-ray structures of GST bound complexes to model the effects of protein flexibility on the binding of GSH conjugates. We showed that our multitarget approach, allows to analyze the impact of protein flexibility and induced fit effects in GSH conjugate docking to GST. Moreover, the inclusion of conserved water molecules in the model allowed to include a further source of target variability and improve the performances in the docking of GSH conjugates through an enhanced description of the GSH moiety interactions. Therefore, a map of ligand-protein interactions reflecting the target variability included in the docking model was retraced and used to gain a thorough insight about the way GSH conjugates bind to GST.
Collapse
|
34
|
Crystal structures and kinetic studies of human Kappa class glutathione transferase provide insights into the catalytic mechanism. Biochem J 2011; 439:215-25. [DOI: 10.1042/bj20110753] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
GSTs (glutathione transferases) are a family of enzymes that primarily catalyse nucleophilic addition of the thiol of GSH (reduced glutathione) to a variety of hydrophobic electrophiles in the cellular detoxification of cytotoxic and genotoxic compounds. GSTks (Kappa class GSTs) are a distinct class because of their unique cellular localization, function and structure. In the present paper we report the crystal structures of hGSTk (human GSTk) in apo-form and in complex with GTX (S-hexylglutathione) and steady-state kinetic studies, revealing insights into the catalytic mechanism of hGSTk and other GSTks. Substrate binding induces a conformational change of the active site from an ‘open’ conformation in the apo-form to a ‘closed’ conformation in the GTX-bound complex, facilitating formations of the G site (GSH-binding site) and the H site (hydrophobic substrate-binding site). The conserved Ser16 at the G site functions as the catalytic residue in the deprotonation of the thiol group and the conserved Asp69, Ser200, Asp201 and Arg202 form a network of interactions with γ-glutamyl carboxylate to stabilize the thiolate anion. The H site is a large hydrophobic pocket with conformational flexibility to allow the binding of different hydrophobic substrates. The kinetic mechanism of hGSTk conforms to a rapid equilibrium random sequential Bi Bi model.
Collapse
|
35
|
Overlapping protective roles for glutathione transferase gene family members in chemical and oxidative stress response in Agrobacterium tumefaciens. Funct Integr Genomics 2011; 12:157-72. [PMID: 21909786 DOI: 10.1007/s10142-011-0248-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/06/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
In the present work, we describe the characterisation of the glutathione transferase (GST) gene family from Agrobacterium tumefaciens C58. A genome survey revealed the presence of eight GST-like proteins in A. tumefaciens (AtuGSTs). Comparison by multiple sequence alignment generated a dendrogram revealing the phylogenetic relationships of AtuGSTs-like proteins. The beta and theta classes identified in other bacterial species are represented by five members in A. tumefaciens C58. In addition, there are three "orphan" sequences that do not fit into any previously recognised GST classes. The eight GST-like genes were cloned, expressed in Escherichia coli and their substrate specificity was determined towards 17 different substrates. The results showed that AtuGSTs catalyse a broad range of reactions, with different members of the family exhibiting quite varied substrate specificity. The 3D structures of AtuGSTs were predicted using molecular modelling. The use of comparative sequence and structural analysis of the AtuGST isoenzymes allowed us to identify local sequence and structural characteristics between different GST isoenzymes and classes. Gene expression profiling was conducted under normal culture conditions as well as under abiotic stress conditions (addition of xenobiotics, osmotic stress and cold and heat shock) to induce and monitor early stress-response mechanisms. The results reveal the constitutive expression of GSTs in A. tumefaciens and a modulation of GST activity after treatments, indicating that AtuGSTs presumably participate in a wide range of functions, many of which are important in counteracting stress conditions. These functions may be relevant to maintaining cellular homeostasis as well as in the direct detoxification of toxic compounds.
Collapse
|
36
|
Higgins LG, Hayes JD. Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents. Drug Metab Rev 2011; 43:92-137. [PMID: 21495793 DOI: 10.3109/03602532.2011.567391] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glutathione transferase (GST) isoezymes are encoded by three separate families of genes (designated cytosolic, microsomal and mitochondrial transferases), with distinct evolutionary origins, that provide mammalian species with protection against electrophiles and oxidative stressors in the environment. Members of the cytosolic class Alpha, Mu, Pi and Theta GST, and also certain microsomal transferases (MGST2 and MGST3), are up-regulated by a diverse spectrum of foreign compounds typified by phenobarbital, 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, pregnenolone-16α-carbonitrile, 3-methylcholanthrene, 2,3,7,8-tetrachloro-dibenzo-p-dioxin, β-naphthoflavone, butylated hydroxyanisole, ethoxyquin, oltipraz, fumaric acid, sulforaphane, coumarin, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole, 12-O-tetradecanoylphorbol-13-acetate, dexamethasone and thiazolidinediones. Collectively, these compounds induce gene expression through the constitutive androstane receptor (CAR), the pregnane X receptor (PXR), the aryl hydrocarbon receptor (AhR), NF-E2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor-γ (PPARγ) and CAATT/enhancer binding protein (C/EBP) β. The microsomal T family includes 5-lipoxygenase activating protein (FLAP), leukotriene C(4) synthase (LTC4S) and prostaglandin E(2) synthase (PGES-1), and these are up-regulated by tumour necrosis factor-α, lipopolysaccharide and transforming growth factor-β. Induction of genes encoding FLAP, LTC4S and PGES-1 is mediated by the transcription factors C/EBPα, C/EBPδ, C/EBPϵ, nuclear factor-κB and early growth response-1. In this article we have reviewed the literature describing the mechanisms by which cytosolic and microsomal GST are up-regulated by xenobiotics, drugs, cytokines and endotoxin. We discuss cross-talk between the different induction mechanisms, and have employed bioinformatics to identify cis-elements in the upstream regions of GST genes to which the various transcription factors mentioned above may be recruited.
Collapse
Affiliation(s)
- Larry G Higgins
- Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | | |
Collapse
|
37
|
Khatiwada J, Verghese M, Davis S, Williams LL. Green tea, phytic acid, and inositol in combination reduced the incidence of azoxymethane-induced colon tumors in Fisher 344 male rats. J Med Food 2011; 14:1313-20. [PMID: 21501094 DOI: 10.1089/jmf.2010.0302] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Experimental as well as epidemiologic studies in human populations provide evidence that consumption of phytochemicals reduces the incidence of degenerative diseases. Green tea (GT) catechins are known for their antioxidative potential. Phytic acid (PA) also acts as a natural antioxidant and may have numerous health benefits. This experiment was designed to investigate the inhibitory effects of combinations of 1% and 2% GT, PA, and inositol (I) in reducing the incidence of azoxymethane-induced colon tumors in Fisher 344 male rats. After an acclimatization period of 1 week, nine groups of rats (15 rats per group) were initially assigned to consume AIN 93 G diet and later AIN 93 M diet after 20 weeks of age. Treatments were given in drinking water. All rats received azoxymethane injections (16 mg/kg of body weight) subcutaneously at 7 and 8 weeks of age. Rats were killed at 45 weeks of age by CO(2) euthanasia. Tumor incidence (93.76%) and the number of tumors per tumor-bearing rat ratio (2.25) were significantly (P<.05) higher in the control group compared with treatment groups. Glutathione S-transferase activity was significantly (P<.05) higher in rats fed combinations of 2% GT+PA+I and GT+PA (33.25 ± 1.23 and 29.83 ± 1.10 μmol/mL, respectively) compared with other groups. These findings suggest that the synergistic effect of the 2% level of GT, PA, and I may reduce the incidence of colon tumors and therefore have potential as a chemopreventive agent.
Collapse
Affiliation(s)
- Janak Khatiwada
- Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, Kannapolis, North Carolina 28081-4332, USA.
| | | | | | | |
Collapse
|
38
|
Abstract
Glutathione transferase (GST) kappa, also named mitochondrial GST, is a very ancient protein family with orthologs in bacteria and eukaryotes. Both the structure and the subcellular localization of GSTK1-1, in mitochondria and peroxisomes, make this enzyme distinct from cytosolic GSTs. Rodent and human GSTK1 exhibit activity towards a number of model GST substrates and, in Caenorhabditis elegans, this enzyme may be involved in energy and lipid metabolism, two functions related to mitochondria and peroxisomes. Interestingly, GST kappa is also a key regulator of adiponectin biosynthesis and multimerization suggesting that it might function as a chaperone to facilitate correct folding and assembly of proteins. Since adiponectin expression has been correlated with insulin resistance, obesity and diabetes, GSTK1 expression level which is negatively correlated with obesity in mice and human adipose tissues may be an important factor in these metabolic disorders. Furthermore, a polymorphism in the hGSTK1 promoter has been associated with insulin secretion and fat deposition.
Collapse
Affiliation(s)
- Fabrice Morel
- INSERM UMR991, Université de Rennes 1, F-35033 Rennes, France.
| | | |
Collapse
|
39
|
Aniya Y, Imaizumi N. Mitochondrial glutathione transferases involving a new function for membrane permeability transition pore regulation. Drug Metab Rev 2011; 43:292-9. [PMID: 21428695 DOI: 10.3109/03602532.2011.552913] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The mitochondria in mammalian cells are a predominant resource of reactive oxygen species (ROS), which are produced during respiration-coupled oxidative metabolism or various chemical stresses. End-products from membrane-lipid peroxidation caused by ROS are highly toxic, thereby their elimination/scavenging are protective of mitochondria and cells against oxidative damages. In mitochondria, soluble (kappa, alpha, mu, pi, zeta) and membrane-bound glutathione transferases (GSTs) (MGST1) are distributed. Mitochondrial GSTs display both glutathione transferase and peroxidase activities that detoxify such harmful products through glutathione (GSH) conjugation or GSH-mediated peroxide reduction. Some GST isoenzymes are induced by oxidative stress, an adaptation mechanism for the protection of cells from oxidative stress. Membrane-bound MGST1 is activated through the thiol modification in oxidative conditions. Protective action of MGST1 against oxidative stress has been confirmed using MCF7 cells highly expressed of MGST1. In recent years, mitochondria have been recognized as a regulator of cell death via both apoptosis and necrosis, where oxidative stress-induced alteration of the membrane permeability is an important step. Recent studies have shown that MGST1 in the inner mitochondrial membrane could interact with the mitochondrial permeability transition (MPT) regulator proteins, such as adenine nucleotide translocator (ANT) and/or cyclophilin D, and could contribute to oxidant-induced MPT pores. Interaction of GST alpha with ANT has also been shown. In this review, functions of the mitochondrial GSTs, including a new role for mitochondria-mediated cell death, are described.
Collapse
Affiliation(s)
- Yoko Aniya
- Laboratory of Molecular Genetics and Pharmacology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan.
| | | |
Collapse
|
40
|
Board PG, Anders MW. Glutathione transferase zeta: discovery, polymorphic variants, catalysis, inactivation, and properties of Gstz1-/- mice. Drug Metab Rev 2011; 43:215-25. [PMID: 21303221 DOI: 10.3109/03602532.2010.549132] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glutathione transferase zeta (GSTZ1) is a member of the GST superfamily of proteins that catalyze the reaction of glutathione with endo- and xenobiotics. GSTZ1-1 was discovered by a bioinformatics strategy that searched the human-expressed sequence-tag database with a sequence that matched a putative plant GST. A sequence that was found was expressed and termed GSTZ1-1. In common with other GSTs, GSTZ1-1 showed some peroxidase activity, but lacked activity with most known GST substrates. GSTZ1-1 was also found to be identical with maleylacetoacetate isomerase, which catalyzes the penultimate step in the tyrosine-degradation pathway. Further studies showed that dichloroacetate (DCA) and a range of α-haloalkanoates and α,α-dihaloalkanoates were substrates. A subsequent search of the human-expressed sequence-tag database showed the presence of four polymorphic alleles: 1a, 1b, 1c, and 1d; GSTZ1c was the most common and was designated as the wild-type gene. DCA was shown to be a k(cat) inactivator of human, rat, and mouse GSTZ1-1; human GSTZ1-1 was more resistant to inactivation than mouse or rat GSTZ1-1. Proteomic analysis showed that hGSTZ1-1 was inactivated when Cys-16 was modified by glutathione and the carbon skeleton of DCA. The polymorphic variants of hGSTZ1-1 differ in their susceptibility to inactivation, with 1a-1a being more resistant to inactivation than the other variants. The targeted deletion of GSTZ1 yielded mice that were not phenotypically distinctive. Phenylalanine proved, however, to be toxic to Gstz1(-/-) mice, and these mice showed evidence of organ damage and leucopenia.
Collapse
Affiliation(s)
- Philip G Board
- Molecular Genetics Group, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | |
Collapse
|
41
|
Banerjee S, Goswami R. GST profile expression study in some selected plants: in silico approach. Mol Cell Biochem 2010; 336:109-26. [PMID: 20135200 DOI: 10.1007/s11010-010-0384-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 09/15/2009] [Indexed: 11/29/2022]
Abstract
Glutathione acts as a protein disulphide reductant, which detoxifies herbicides by conjugation, either spontaneously or by the activity of one of a number of glutathione-S-transferases (GSTs), and regulates gene expression in response to environmental stress and pathogen attack. GSTs play roles in both normal cellular metabolisms as well as in the detoxification of a wide variety of xenobiotic compounds, and they have been intensively studied with regard to herbicide detoxification in plants. A newly discovered plant GST subclass has been implicated in numerous stress responses, including those arising from pathogen attack, oxidative stress and heavy-metal toxicity. In addition, plants GSTs play a role in the cellular response to auxins and during the normal metabolism of plant secondary products like anthocyanins and cinnamic acid. The present work involves two in silico analytical approaches-general secondary structure prediction studies of the proteins and detailed signature pattern studies of some selected GST classes in Arabdiopsis thaliana, mustard, maize and bread wheat by standard Bioinformatics tools; structure prediction tools; signature pattern tools; and the evolutionary trends were analyzed by ClustalW. For this purpose, sequences were obtained from standard databases. The work reveals that these proteins are mainly alpha helical in nature with specific signature pattern similar to phosphokinase C, tyrosine kinase and casein kinase II proteins, which are closely related to plant oxidative stress. This study aims to comprehend the relationship of GST gene family and plant oxidative stress with respect to certain specific conserved motifs, which may help in future studies for screening of biomodulators involved in plant stress metabolism.
Collapse
Affiliation(s)
- Soma Banerjee
- Department of Biotechnology, Heritage Institute of Technology, Chowbaga Road, Anandapur. P.O. East Kolkata Township, Kolkata, 700107, India.
| | | |
Collapse
|
42
|
Jain M, Ghanashyam C, Bhattacharjee A. Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses. BMC Genomics 2010; 11:73. [PMID: 20109239 PMCID: PMC2825235 DOI: 10.1186/1471-2164-11-73] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 01/29/2010] [Indexed: 11/22/2022] Open
Abstract
Background Glutathione S-transferases (GSTs) are the ubiquitous enzymes that play a key role in cellular detoxification. Although several GSTs have been identified and characterized in various plant species, the knowledge about their role in developmental processes and response to various stimuli is still very limited. In this study, we report genome-wide identification, characterization and comprehensive expression analysis of members of GST gene family in crop plant rice, to reveal their function(s). Results A systematic analysis revealed the presence of at least 79 GST genes in the rice genome. Phylogenetic analysis grouped GST proteins into seven classes. Sequence analysis together with the organization of putative motifs indicated the potential diverse functions of GST gene family members in rice. The tandem gene duplications have contributed a major role in expansion of this gene family. Microarray data analysis revealed tissue-/organ- and developmental stage-specific expression patterns of several rice GST genes. At least 31 GST genes showed response to plant hormones auxin and cytokinin. Furthermore, expression analysis showed the differential expression of quite a large number of GST genes during various abiotic stress (20), arsenate stress (32) and biotic stress (48) conditions. Many of the GST genes were commonly regulated by developmental processes, hormones, abiotic and biotic stresses. Conclusion The transcript profiling suggests overlapping and specific role(s) of GSTs during various stages of development in rice. Further, the study provides evidence for the role of GSTs in mediating crosstalk between various stress and hormone response pathways and represents a very useful resource for functional analysis of selected members of this family in rice.
Collapse
Affiliation(s)
- Mukesh Jain
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi-110067, India.
| | | | | |
Collapse
|
43
|
Abstract
Adiponectin is an adipose-tissue-derived hormone with anti-diabetic, anti-atherogenic and anti-inflammatory functions. Adiponectin circulates in the bloodstream in trimeric, hexameric and high-molecular-mass species, and different forms of adiponectin have been found to play distinct roles in the regulation of energy homoeostasis. The serum levels of adiponectin are negatively correlated with obesity and insulin resistance, yet the underlying mechanisms remain elusive. In the present review, we summarize recent progress made on the mechanisms regulating adiponectin gene transcription, multimerization and secretion. We also discuss the potential relevance of these studies to the development of new clinical therapy for insulin resistance, Type 2 diabetes and other obesity-related metabolic disorders.
Collapse
|
44
|
Fabrini R, De Luca A, Stella L, Mei G, Orioni B, Ciccone S, Federici G, Lo Bello M, Ricci G. Monomer-dimer equilibrium in glutathione transferases: a critical re-examination. Biochemistry 2009; 48:10473-82. [PMID: 19795889 DOI: 10.1021/bi901238t] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glutathione transferases (GSTs) are dimeric enzymes involved in cell detoxification versus many endogenous toxic compounds and xenobiotics. In addition, single monomers of GSTs appear to be involved in particular protein-protein interactions as in the case of the pi class GST that regulates the apoptotic process by means of a GST-c-Jun N-terminal kinase complex. Thus, the dimer-monomer transition of GSTs may have important physiological relevance, but many studies reached contrasting conclusions both about the modality and extension of this event and about the catalytic competence of a single subunit. This paper re-examines the monomer-dimer question in light of novel experiments and old observations. Recent papers claimed the existence of a predominant monomeric and active species among pi, alpha, and mu class GSTs at 20-40 nM dilution levels, reporting dissociation constants (K(d)) for dimeric GST of 5.1, 0.34, and 0.16 microM, respectively. However, we demonstrate here that only traces of monomers could be found at these concentrations since all these enzymes display K(d) values of <<1 nM, values thousands of times lower than those reported previously. Time-resolved and steady-state fluorescence anisotropy experiments, two-photon fluorescence correlation spectroscopy, kinetic studies, and docking simulations have been used to reach such conclusions. Our results also indicate that there is no clear evidence of the existence of a fully active monomer. Conversely, many data strongly support the idea that the monomeric form is scarcely active or fully inactive.
Collapse
Affiliation(s)
- Raffaele Fabrini
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Konishi T, Kato K, Araki T, Shiraki K, Takagi M, Tamaru Y. A new class of glutathione S-transferase from the hepatopancreas of the red sea bream Pagrus major. Biochem J 2009; 388:299-307. [PMID: 15610066 PMCID: PMC1186719 DOI: 10.1042/bj20041578] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To elucidate drug deposition and metabolism in cultured marine fishes, in a previous study we isolated and purified the GSTs (glutathione S-transferases) from the hepatopancreas of the red sea bream Pagrus major that contained 25 and 28 kDa GST subunits. The 25 kDa GST subunits encoded by two genes (GSTA1 and GSTA2) have been identified as Alpha-class GSTs. In the present study, we performed the molecular cloning and characterization of the GSTR1 gene encoding the 28 kDa GST subunit from the Pa. major hepatopancreas. The nucleotide sequence of GSTR1 was composed of an ORF (open reading frame) of 675 bp encoding a protein of 225 residues with a predicted molecular mass of 25.925 Da. A search of the BLAST protein database revealed that the deduced amino acid sequence of GSTR1 was structurally similar to that of GSTs derived from other fishes such as largemouth bass (Micropterus salmoides) and plaice (Pleuronectes platessa). The genomic DNA containing the GSTR1 gene was found to consist of six exons and five introns quite distinct from mammalian Theta-class GSTs. We have purified and characterized the recombinant GSTR1 enzyme (pmGSTR1-1) which showed activity only towards 1-chloro-2,4-dinitrobenzene, although it had no detectable activity towards cumene hydroperoxide, 1,2-dichloro-4-nitrobenzene, ethacrynic acid, 4-hydroxynonenal and p-nitrobenzyl chloride. Moreover, pmGSTR1-1 revealed remarkable heat instability (melting temperature Tm=30.3+/-0.11 degrees C). Collectively, our results indicated that the characteristic GST genes including GSTR1 have been conserved and functional in fishes. Therefore we designate them 'Rho-class', a new class of GSTs.
Collapse
Affiliation(s)
- Takafumi Konishi
- *Department of Life Science, Faculty of Bioresources, Mie University, 1515 Kamihama, Tsu, Mie 514-8507, Japan
- †School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan
| | - Keitaro Kato
- ‡Fisheries Laboratory of Kinki University, 3153, Shirahama, Nishimuro, Wakayama 649-2211, Japan
| | - Toshiyoshi Araki
- *Department of Life Science, Faculty of Bioresources, Mie University, 1515 Kamihama, Tsu, Mie 514-8507, Japan
| | - Kentaro Shiraki
- §Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Masahiro Takagi
- †School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan
| | - Yutaka Tamaru
- *Department of Life Science, Faculty of Bioresources, Mie University, 1515 Kamihama, Tsu, Mie 514-8507, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
46
|
Cvilink V, Lamka J, Skálová L. Xenobiotic metabolizing enzymes and metabolism of anthelminthics in helminths. Drug Metab Rev 2009; 41:8-26. [PMID: 19514969 DOI: 10.1080/03602530802602880] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Anthelminthics remain the only accessible means in the struggle against helminth parasites, which cause significant morbidity and mortality in man and farm animals. The treatment of helminthic infections has become problematic because of frequent drug resistance of helminth parasites. The development of drug resistance can be facilitated by the action of xenobiotic metabolizing enzymes (XMEs). In all organisms, XMEs serve as an efficient defense against the potential negative action of xenobiotics. The activities of XMEs determine both desired and undesired effects of drugs, and the knowledge of drug metabolism is necessary for safe, effective pharmacotherapy. While human and mammalian XMEs have been intensively studied for many years, XMEs of helminth parasites have undergone relatively little investigation, so far. However, many types of XMEs, including oxidases, reductases, hydrolases, transferases, and transporters, have been described in several helminth species. XMEs of helminth parasites may protect these organisms from the toxic effects of anthelminthics. In case of certain anthelminthics, metabolic deactivation was reported in helminth larvae and/or adults. Moreover, if a helminth is in the repeated contact with an anthelminthic, it defends itself against the chemical stress by the induction of biotransformation enzymes or transporters. This induction can represent an advantageous defense strategy of the parasites and may facilitate the drug-resistance development.
Collapse
Affiliation(s)
- Viktor Cvilink
- Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | | | | |
Collapse
|
47
|
Molecular cloning and characterization of a glutathione S-transferase in the tropical liver fluke, Fasciola gigantica. J Helminthol 2009; 84:55-60. [DOI: 10.1017/s0022149x09990046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractGlutathione S-transferase from an Indian isolate of Fasciola gigantica of buffalo origin was isolated and characterized. Total RNA was transcribed to cDNA by reverse transcription and an amplicon of 657 bp glutathione S-transferase gene was obtained by polymerase chain reaction (PCR). The present isolate showed 99.1% sequence homology with the published sequence of the F. giganticaGST gene of cattle origin, with six nucleotide changes causing an overall change of four amino acids. Glutathione S-transferase protein was expressed in Escherichia coli using a prokaryotic expression vector pPROEXHTb. The recombinant protein was purified under non-denaturing and denaturing conditions by nickel nitrilotriacetic acid (Ni-NTA) affinity chromatography. Recombinant GST protein detected F. gigantica infection in naturally infected buffaloes by dot-ELISA.
Collapse
|
48
|
Liebau E, Dawood KF, Fabrini R, Fischer-Riepe L, Perbandt M, Stella L, Pedersen JZ, Bocedi A, Petrarca P, Federici G, Ricci G. Tetramerization and cooperativity in Plasmodium falciparum glutathione S-transferase are mediated by atypic loop 113-119. J Biol Chem 2009; 284:22133-22139. [PMID: 19531494 DOI: 10.1074/jbc.m109.015198] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutathione S-transferase of Plasmodium falciparum (PfGST) displays a peculiar dimer to tetramer transition that causes full enzyme inactivation and loss of its ability to sequester parasitotoxic hemin. Furthermore, binding of hemin is modulated by a cooperative mechanism. Site-directed mutagenesis, steady-state kinetic experiments, and fluorescence anisotropy have been used to verify the possible involvement of loop 113-119 in the tetramerization process and in the cooperative phenomenon. This protein segment is one of the most prominent structural differences between PfGST and other GST isoenzymes. Our results demonstrate that truncation, increased rigidity, or even a simple point mutation of this loop causes a dramatic change in the tetramerization kinetics that becomes at least 100 times slower than in the native enzyme. All of the mutants tested have lost the positive cooperativity for hemin binding, suggesting that the integrity of this peculiar loop is essential for intersubunit communication. Interestingly, the tetramerization process of the native enzyme that occurs rapidly when GSH is removed is prevented not only by GSH but even by oxidized glutathione. This result suggests that protection by PfGST against hemin is independent of the redox status of the parasite cell. Because of the importance of this unique segment in the function/structure of PfGST, it could be a new target for the development of antimalarial drugs.
Collapse
Affiliation(s)
- Eva Liebau
- Institute of Animal Physiology, University of Münster, Hindenburgplatz, 55 Münster, Germany
| | - Kutayba F Dawood
- the Departments of Chemical Sciences and Technologies, 00133 Rome, Italy
| | - Raffaele Fabrini
- the Departments of Chemical Sciences and Technologies, 00133 Rome, Italy
| | - Lena Fischer-Riepe
- Institute of Animal Physiology, University of Münster, Hindenburgplatz, 55 Münster, Germany
| | - Markus Perbandt
- Institute of Biochemistry, Center for Structural and Cell Biology, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; Laboratory for Structural Biology of Infection and Inflammation, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22603 Hamburg, Germany
| | - Lorenzo Stella
- the Departments of Chemical Sciences and Technologies, 00133 Rome, Italy
| | - Jens Z Pedersen
- Biology, University of Rome "Tor Vergata," 00133 Rome, Italy
| | - Alessio Bocedi
- Department of Biology, University of Rome "Roma Tre," 00146 Rome, Italy; Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27708
| | | | | | - Giorgio Ricci
- the Departments of Chemical Sciences and Technologies, 00133 Rome, Italy
| |
Collapse
|
49
|
Khan AJ, Ruwali M, Choudhuri G, Mathur N, Husain Q, Parmar D. Polymorphism in cytochrome P450 2E1 and interaction with other genetic risk factors and susceptibility to alcoholic liver cirrhosis. Mutat Res 2009; 664:55-63. [PMID: 19428381 DOI: 10.1016/j.mrfmmm.2009.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 02/12/2009] [Accepted: 02/13/2009] [Indexed: 05/27/2023]
Abstract
The association of polymorphism in cytochrome P450 2E1 (CYP2E1), the major microsomal ethanol metabolizing enzyme and its interaction with genes, involved in detoxification of reactive oxygen species, such as glutathione-S-transferases M1 (GSTM1) and alcohol intake, gamma-aminobutyric acid receptor gamma2 (GABRG2) was studied with the risk to alcoholic cirrhosis in a case-control study. A total of 160 alcoholic cirrhotic and 125 non-alcoholic cirrhotic cases, visiting the OPD facility of Gastroenterology Department of Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI), Lucknow, India and 250 non-alcoholic and 100 alcoholic controls having no evidence of liver disease were included in the study. PCR-based RFLP methodology was followed for genotyping studies. Our data revealed that the variant genotypes of CYP2E1 5B exhibited significant association with the alcoholic liver cirrhosis when compared to non-alcoholic controls (OR: 4.3; 95%CI: 1.5-12.4; p: 0.003) or non-alcoholic cirrhosis patients (OR: 5.4; 95%CI: 1.2-24.5; p: 0.01) or alcoholic controls (OR: 4.3; 95%CI: 0.95-19.62; p: 0.04). Haplotype approach revealed that haplotype T-A-T was found to be associated with more than 5-fold increase in risk for alcoholic cirrhosis. Likewise, combination of variant genotype of CYP2E1 5B with null genotype of GSTM1, a phase II detoxification enzyme, resulted in several fold increase in risk in alcoholic cirrhotic patients when compared with non-alcoholic controls or non-alcoholic cirrhotic patients. Further, the combination of variant genotype of CYP2E1 5B with GABRG2, significantly increased the risk upto 6.5-fold in alcoholic cirrhotic patients when compared with non-alcoholic controls thereby suggesting the role of gene-gene interaction in alcoholic cirrhosis.
Collapse
Affiliation(s)
- Anwar Jamal Khan
- Developmental Toxicology Division, Indian Institute of Toxicology Research (formerly ITRC), CSIR, P.O. Box 80, M.G. Marg, Lucknow 226 001, UP, India
| | | | | | | | | | | |
Collapse
|
50
|
Glutathione S-transferase genetic polymorphisms (GSTM1, GSTT1 and GSTO2) in three Iranian populations. Mol Biol Rep 2009; 37:155-8. [PMID: 19430957 DOI: 10.1007/s11033-009-9565-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Accepted: 05/01/2009] [Indexed: 12/22/2022]
Abstract
Genetic polymorphisms in genes encoding glutathione S-transferases M1 (GSTM1; a member of class mu), T1 (GSTT1; a member of class theta) and O2 (GSTO2; a member of class omega) have been defined previously. Studies have revealed that there were significant differences between populations for allelic frequencies of GSTT1, GSTM1 and GSTO2 N412D polymorphisms. To get more insight into the genetic structure of Iranian populations the present study was done on Iranian Georgians living in Frydoonshahr (Isfahan province) and two Persian populations who living in Shiraz (Fars province) and Frydoonshahr. Study subjects consisted of 401 unrelated healthy individuals. From these 121 were Georgians. The remaining subjects were Persians from either Frydoonshahr (n = 34) or Shiraz (n = 246). The genetic polymorphism of GSTT1, GSTM1 and GSTO2 N412D was detected by PCR-based method. The frequency of GSTT1 null genotype in Georgian and Persians of Frydoonshahr and Shiraz was 15.7, 35.2 and 24.8%, respectively. There was significant difference between these populations for the distributions of the GSTT1 genotypes (chi(2) = 7.00, df = 2, P = 0.030). No significant difference was observed between these populations for polymorphisms of GSTM1 (chi(2) = 1.682, df = 2, P = 0.431) and GSTO N142D (chi(2) = 4.622, df = 4, P = 0.328). The prevalence of GSTT1 null genotype in Iranian Georgians showed significant difference with Persians and other Asian countries, but it seems to be similar with the frequency which was reported from European populations.
Collapse
|